EVALUASI UNJUK KERJA KESELAMATAN OPERASI RSG-GAS TERAS LXII-LXVI. J. Sukmana, J. A. Korua, S. Suwarto

dokumen-dokumen yang mirip
EVALUASI OPERASI REAKTOR RSG-GAS SIKLUS OPERASI 90

EVALUASI GANGGUAN SCRAM PADA PENGOPERASIAN REAKTOR SERBA GUNA GA SIWABESSY KURUN WAKTU Sriawan

LAMPIRAN FAKTOR-FAKTOR YANG HARUS DIPERTIMBANGKAN UNTUK MENETAPKAN KONDISI-KONDISI BATAS UNTUK OPERASI YANG AMAN

CONTOH KEJADIAN AWAL TERPOSTULASI. Kejadian Awal Terpostulasi. No. Kelompok Kejadian Kejadian Awal

LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 1 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR NONDAYA

PARAMETER YANG DIPERTIMBANGKAN SEBAGAI KONDISI BATAS UNTUK OPERASI NORMAL

EV ALUASI KONSUMSI DAY A LISTRIK RSG-GAS PADA SIKLUS OPERAS I TERAS KE 58. Teguh Sulistyo Pusat Reaktor Serba Guna Kawasan Puspiptek Serpong 5310

EVALUASI KEJADIAN ABNORMAL/GANGGUAN OPERASI REAKTOR RSG-GAS KURUN WAKTU TAHUN Diterima Editor : Diperbaiki :

FORMAT DAN ISI BATASAN DAN KONDISI OPERASI REAKTOR NONDAYA. I. Kerangka Format Batasan dan Kondisi Operasi Reaktor Nondaya

EVALUASI KINERJA SISTEM KESELAMATAN REAKTOR RSG-GAS SELAMA BEROPERASI 25 TAHUN

PENGARUH KEDIP LISTRIK PADA OPERASI RSG-GAS TERAS 66

PENGARUH GARPU PENYERAP UJI TERHADAP REAKTIVITAS TERAS DAN KALIBRASI DAYA RSG-GAS

CONTOH BATASAN DAN KONDISI OPERASI REAKTOR NONDAYA

PERHITUNGAN BURN UP BAHAN BAKAR REAKTOR RSG-GAS MENGGUNAKAN PAKET PROGRAM BATAN-FUEL. Mochamad Imron, Ariyawan Sunardi

BAB I PENDAHULUAN di Bandung dan Reaktor Kartini yang berada di Yogyakarta. Ketiga reaktor

PENGUJIAN IRADIASI KELONGSONG PIN PRTF DENGAN LAJU ALIR SEKUNDER 750 l/jam. Sutrisno, Saleh Hartaman, Asnul Sufmawan, Pardi dan Sapto Prayogo

EVALUASI OPERASI REAKTOR G.A SIWABESSYSIKLUS OPERASI 78

MANAJEMEN OPERASI REAKTOR

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 7 TAHUN 2011 TENTANG DESAIN SISTEM CATU DAYA DARURAT UNTUK REAKTOR DAYA

BERITA NEGARA REPUBLIK INDONESIA

LAMPIRAN III PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 4 TAHUN 2014 TENTANG BATASAN DAN KONDISI OPERASI INSTALASI NUKLIR NONREAKTOR

PENGARUH IRADIASI BATU TOPAS TERHADAP KUALITAS AIR PENDINGIN PRIMER DAN KESELAMATAN RSG-GAS

LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 5 TAHUN 2011 TENTANG KETENTUAN PERAWATAN REAKTOR NONDAYA.

PENGENDALIAN PAPARAN RADIASI NEUTRON DI KANAL HUBUNG PRSG PSTBM PADA SAAT REAKTOR RSG-GAS BEROPERASI

KEGIATAN PEMINDAHAN BAHAN BAKAR NUKLIR BEKAS DAN MATERIAL TERIRRADIASI DI KH-IPSB3 TH

FORMAT DAN ISI LAPORAN ANALISIS KESELAMATAN REAKTOR NONDAYA. I. Kerangka Format Laporan Analisis Keselamatan Reaktor Nondaya

FORMAT DAN ISI LAPORAN ANALISIS KESELAMATAN REAKTOR NONDAYA

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 2 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN OPERASI REAKTOR NONDAYA

REAKTOR PEMBIAK CEPAT

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR... TAHUN... TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR DAYA DENGAN RAHMAT TUHAN YANG MAHA ESA

GANGGUAN OPERASI RSG-GAS PADA SIKLUS OPERASI 61-75

EVALUASI PENGOPERASIAN POMPA SISTEM PENDINGIN SEKUNDER UNTUK MENUNJANG OPERASI REAKTOR RSG-GAS

2011, No BAB I KETENTUAN UMUM Pasal 1 Dalam Peraturan Kepala Badan Pengawas Tenaga Nuklir ini, yang dimaksud dengan: 1. Reaktor nondaya adalah r

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 3 TAHUN 2009 TENTANG BATASAN DAN KONDISI OPERASI DAN PROSEDUR OPERASI REAKTOR DAYA

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 10 TAHUN 2008 TENTANG IZIN BEKERJA PETUGAS INSTALASI DAN BAHAN NUKLIR

PERHITUNGAN KESEIMBANGAN CATU DAYA SISTEM PENDINGIN SEKUNDER RSG-GAS

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 1 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR NONDAYA

LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 4 TAHUN 2014 TENTANG FORMAT DAN ISI

REACTOR SAFETY SYSTEMS AND SAFETY CLASSIFICATION

EVALUASI PENYEBAB SCRAM PADA KANAL UBL SISTEM PROTEKSI REAKTOR DALAM PENGOPERASIAN REAKTOR RSG-GAS

CONTOH BATASAN DAN KONDISI OPERASI INSTALASI NUKLIR NONREAKTOR (INNR)

PENENTUAN FRAKSI BAKAR PELAT ELEMEN BAKAR UJI DENGAN ORIGEN2. Kadarusmanto, Purwadi, Endang Susilowati

2 instalasi nuklir adalah instalasi radiometalurgi. Instalasi nuklir didesain, dibangun, dan dioperasikan sedemikian rupa sehingga pemanfaatan tenaga

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 8 TAHUN 2008 TENTANG KETENTUAN KESELAMATAN MANAJEMEN PENUAAN REAKTOR NONDAYA

2011, No BAB I KETENTUAN UMUM Pasal 1 Dalam Peraturan Kepala Badan Pengawas Tenaga Nuklir ini, yang dimaksud dengan: 1. Reaktor nondaya adalah r

EVALUASI PEMANFAATAN FASILITAS IRADIASI RSG-GAS PADA TAHUN 2006

DEFINISI. Definisi-definisi berikut berlaku untuk maksud-maksud dari publikasi yang sekarang.

ANALISIS KEHILANGAN ALIRAN PENDINGIN PRIMER RSG-GAS MODA SATU JALUR

ANALISIS LEPASAN RADIOAKTIF DI RSG GAS

KEPALA BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA

REAKTOR GRAFIT BERPENDINGIN GAS (GAS COOLED REACTOR)

REFUNGSIONALISASI SISTEM PEMANTAU RADIASI BETA AEROSOL DAN ALPHA-BETA AEROSOL RSG-GA

EVALUASI KINERJA SISTEM PEMANTAU AKTIVITAS GAMMA PENDINGIN PRIMER RSG-GAS

ANALISIS FAKTOR PUNCAK DAYA TERAS RSG-GAS BERBAHAN BAKAR U 3 SI 2 -AL. Jati Susilo, Endiah Pudjihastuti Pusat Teknologi Reaktor Dan Keselamatan Nuklir

LAMPIRAN PENJELASAN BENTUK-BENTUK YANG DIGUNAKAN DALAM DOKUMEN

DEGRADASI KEMAMPUAN SISTEM PENDINGIN DARURAT KOLAM REAKTOR JNA 10/20/30

BERITA NEGARA REPUBLIK INDONESIA BAPETEN. Penanganan. Penyimpanan. Bahan Bakar Nuklir. Reaktor Non Daya. Manajemen Teras.

2014, No MANAJEMEN TERAS. Langkah-langkah Manajemen Teras terdiri atas:

Kiswanto, Teguh Sulistyo, Muhammad Taufiq, Yuyut S

KEANDALAN SISTEM PEMURNIAN TERHADAP KUALITAS AIR PENDINGIN PRIMER RSG GAS

FORMAT DAN ISI LAPORAN PENILAIAN KESELAMATAN BERKALA KONDISI TERKINI STRUKTUR, SISTEM, DAN KOMPONEN

KAJIAN OPERASI RSG-GAS DENGAN MENGGUNAKAN DUA TRANSFORMATOR

SISTEM PELAPORAN KEJADIAN DI RSG GAS

SISTEM DETEKSI DAN PEMADAMAN KEBAKARAN

AKTIVITAS SDM UJI TAK RUSAK-PTRKN UNTUK MENYONGSONG PLTN PERTAMA DI INDONESIA

PENGARUH POSISI DAN LINEARITAS DETEKTOR START-UP DALAM PENGUKURAN FRAKSI BAKAR RSG-GAS PADA KONDISI SUBKRITIS. Purwadi

PEMASANGAN SISTEM MONITOR PADA SISTEM BANTU REAKTOR KARTINI

KAJIAN MODA OPERASI TWO OF THREE PADA ARUS BEBAN SISTEM PENDINGIN SEKUNDER RSG-GAS

LEMBARAN NEGARA REPUBLIK INDONESIA

ANALISIS TRANSIEN AKIBAT KEHILANGAN ALIRAN PENDINGIN PADA TERAS SILISIDA RSG-GAS MENGGUNAKAN KODE EUREKA-2/RR

MITIGASI DAMPAK KEBAKARAN

OPTIMASI DAN REVISI KANAL HUBUNG - INSTALASI PENYIMPANAN SEMENTARA BAHAN BAKAR BEKAS

BERITA NEGARA REPUBLIK INDONESIA

PRINSIP DASAR KESELAMATAN NUKLIR (II)

KETENTUAN KESELAMATAN DEKOMISIONG REAKTOR NUKLIR 1

PENCEGAHAN KEBAKARAN. Pencegahan Kebakaran dilakukan melalui upaya dalam mendesain gedung dan upaya Desain untuk pencegahan Kebakaran.

PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 43 TAHUN 2006 TENTANG PERIZINAN REAKTOR NUKLIR DENGAN RAHMAT TUHAN YANG MAHA ESA

EVALUASI FLUKS NEUTRON THERMAL DAN EPITHERMAL DI FASILITAS SISTEM RABBIT RSG GAS TERAS 89. Elisabeth Ratnawati, Jaka Iman, Hanapi Ali

LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 3 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR DAYA

EVALUASI KEGAGALAN KINERJA SISTEM PENANGKAP BOLA SPONGE SISTEM PEMBERSIH MEKANIK PENUKAR PANAS RSG-GAS

REAKTOR AIR DIDIH (BOILING WATER REACTOR, BWR)

Reactor Safety System and Safety Classification BAB I PENDAHULUAN

ANALISIS NEUTRONIK TERAS SILISIDA DENGAN KERAPATAN 5,2 g U/cc REAKTOR RSG-GAS Lily Suparlina *)

ID ANALISIS KEANDALAN KOMPONEN DAN SISTEM RSG GAS DENGAN MENGGUNAKAN DATA BASE

PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 43 TAHUN 2006 TENTANG PERIZINAN REAKTOR NUKLIR DENGAN RAHMAT TUHAN YANG MAHA ESA

DAFTAR STANDAR KOMPETENSI TENAGA TEKNIK KETENAGALISTRIKAN BIDANG PEMBANGKITAN TENAGA NUKLIR

ANALISIS DAN PENGENDALIAN KONDUKTIVITAS AIR PADA KOLOM RESIN CAMPURAN (MIX-BED) SISTEM AIR BEBAS MINERAL (GCA 01)

RANCANGAN PERATURAN KEPALA BAPETEN TENTANG VERIFIKASI DAN PENILAIAN KESELAMATAN REAKTOR NONDAYA

[ PTRKN BATAN ] 2012 BATAN [ B.20] [DESAIN PERISAI DAN DOSIMETRI REAKTOR RISET INOVATIF. [ Amir Hamzah, Pudjijanto, Ardani, Rokhmadi, Sriawan ]

BAB I PENDAHULUAN Latar Belakang

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 5 TAHUN 2011 TENTANG KETENTUAN PERAWATAN REAKTOR NONDAYA DENGAN RAHMAT TUHAN YANG MAHA ESA

KEPUTUSAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 04-P/Ka-BAPETEN/I-03 TENTANG PEDOMAN PELATIHAN OPERATOR DAN SUPERVISOR REAKTOR NUKLIR

RANCANG BANGUN PERANGKAT LUNAK SIMULATOR REAKTOR NUKLIR

EVALUASI LEGALISASI KEGIATAN PENGENDALIAN DAERAH KERJA RADIASI DI LINGKUNGAN RSG-GAS

PENGARUH DAYA TERHADAP UNJUK KERJA PIN BAHAN BAKAR NUKLIR TIPE PWR PADA KONDISI STEADY STATE

BAB I PENDAHULUAN. umat manusia kepada tingkat kehidupan yang lebih baik dibandingkan dengan

EVALUASI KlNERJA GARPU PENYERAP BARU BAT ANG KENDALl RSG-GAS. Slamet Wiranto, Purwadi, Arif Hidayat, Agus Sanjaya

PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 43 TAHUN 2006 TENTANG PERIZINAN REAKTOR NUKLIR DENGAN RAHMAT TUHAN YANG MAHA ESA

EVALUASI TINGKAT KESELAMATAN HIGH TEMPERATURE REACTOR 10 MW DITINJAU DARI NILAI SHUTDOWN MARGIN.

KAJIAN PERPANJANGAN UMUR OPERASI REAKTOR RISET DI INDONESIA

Transkripsi:

EVALUASI UNJUK KERJA KESELAMATAN OPERASI RSG-GAS TERAS LXII-LXVI J. Sukmana, J. A. Korua, S. Suwarto ABSTRAK EVALUASI UNJUK KERJA KESELAMATAN OPERASI RSG-GAS TERAS LXII-LXVI. Telah dilakukan evaluasi terhadap unjuk kerja keselamatan konfigurasi teras operasi ke LXII-LXVI oleh Subbidang Keselamatan Operasi. Tujuan evaluasi unjuk kerja keselamatan reaktor adalah untuk menunjukkan kinerja sistem yang optimal dan efektif. Sistem reaktor meliputi: sistem pendingin dan purifikasi, sistem instrumentasi dan kendali, sistem ventilasi, sistem daya listrik bekerja melayani operasi reaktor sesuai dengan fungsinya. Semua sistem pendukung dipertahankan berada dalam kondisi baik dengan cara melakukan perawatan dan pengujian secara periodik. Reaktor dioperasikan dengan daya 15 MW. Pembangkitan daya dari masing-masing konfigurasi teras selama periode tersebut rata-rata adalah 628 MWD dan jumlah sampel yang berhasil diiradiasi rata-rata 52 yang berasal dari beberapa instansi pengguna. Gangguan terhadap operasi yang berakibat scram terjadi rata-rata 2 kali dalam setiap siklus yang sebagian besar masih diakibatkan oleh trip daya PLN. Dari hasil evaluasi dapat diketahui bahwa tujuan RSG-GAS sebagai reaktor penelitian telah secara aman dan optimal dicapai yaitu ditunjukkan dengan banyaknya peneliti yang menggunakan fasilitas iradiasi untuk tujuan penelitian. Penggunaan fasilitas iradiasi untuk tujuan komersial masih perlu dioptimalkan sehingga biaya operasi reaktor dapat dijamin kelangsungannya. ABSTRACT EVALUATION OF THE GA SIWABESSY REACTOR SAFETY PERFORMANCE DURING THE 62 TH 66 TH CORE CONFIGURATION. Evaluation of the GA Siwabessy Reactor (RSG-GAS) safety performance has been done during the 62 th 66 th core configuration by the reactor safety operation subdivision. The aim of the reactor performance evaluation is to demonstrate whether the reactor has been utilized optimally and effectively. The entire reactor systems including cooling and purification system, instrumentation and control system, ventilation system, electrical system operated and served the reactor properly as expected. All support systems were kept in good health by periodically maintained and tested of its performance. The reactor was operated within 15 MW power. The average power developed on each core configuration was 628 MWD and total samples irradiated was 52 pieces coming from different institutions. Troubles causing scram occurred two times in average in every cycle mostly due to The Electrical State Own Company (PLN) trip. From the research and nuclear technology training point of view it can be concluded that reactor has been utilized safely and effectively. Commercially it is recognized that there is still a room to increase and improve on irradiation utilization in order to achieve economically sustainable operation. PENDAHULUAN Mengacu kepada Surat Keputusan kepala Batan No.: 329/KA/XI/2005, pasal 213, ayat 3: Subbidang Keselamatan Operasi (SBKO) mempunyai tugas melakukan analisis dan kajian keselamatan operasi reaktor riset serta penyiapan dokumen Laporan Analisis Keselamatan (LAK). Tugas dan fungsi di atas kemudian diuraikan dalam kegiatan pokok, yakni pengendalian dan analisis keselamatan operasi reaktor, pemutakhiran dokumen LAK RSG-GAS, dan pengembangan program keselamatan. Pengembangan sistem pengendalian keselamatan operasi di RSG-GAS telah diatur dengan tersedianya prosedur dan LAK sebagai tata aturan awal dari sistem pengendalian keselamatan. Kemajuan dalam pengendalian keselamatan ini ternyata terus berkembang sejalan dengan bertambahnya usia operasi dan ragam kejadian/kegagalan dalam operasi reaktor itu sendiri yang akhirnya harus dievaluasi dan dianalisis untuk dicari penyebabnya dan membangun cara supaya kegagalan tidak terulang lagi. Kegiatan evaluasi terhadap operasi dilakukan sebelum, sesudah, dan ketika operasi dilaksanakan untuk keselamatan reaktor. Sehingga secara tidak langsung evaluasi selaras dengan pengawasan terhadap sistem, instalasi, dan langkah-langkah operasi (prosedur) dari pelaksanaan operasi oleh institusi. Seperti pada pelaksanaan pembentukan elemen teras (PPET) baru, uji persiapan sarana operasi (PSO), uji witness terhadap sampel FPM, dan pengendalian sarana penunjang lainnya. Melalui makalah ini, penulis mencoba mengevaluasi unjuk kerja pengoperasian RSG-GAS terutama teras 62 hingga sehingga diharapkan bermanfaat 99

Evaluasi Unjuk Kerja (J. Sukmana, dkk) khususnya dalam meningkatkan sistem keselamatan operasi reaktor pada kegiatan di masa mendatang. UNJUK KERJA OPERASI REAKTOR Di dalam mengoperasikan reaktor, semua parameter operasi harus dijaga dan dikendalikan agar tidak melampaui batasan operasi yang dipersyaratkan. Batasan dan persyaratan operasi merupakan spesifikasi teknis yang telah didesain dan diuji fungsi, tertuang dalam Laporan Analisis Keselamatan RSG-GAS yang disiapkan dan direvisi oleh SBKO. LAK RSG-GAS yang menjadi acuan pada saat ini adalah LAK Revisi 10. Persyaratan operasi telah ditetapkan di dalam LAK, yaitu dengan membatasi harga variabel yang berkaitan dengan kinerja neutronik, termal, dan hidrolik teras dan membatasi harga variabel dari sistem keselamatan lain seperti yang ditunjukkan pada Tabel 1. Tabel 1. Parameter Operasi RSG-GAS dan Pengendaliannya 1) No Sistem Parameter persyaratan/batasan Kegiatan pengendalian 1. Sistem teras reaktor 2. Sistem pendingin reaktor 3. Sistem instrumentasi Karateristik pemuatan teras, Harga reaktivitas padam, Reaktivitas-konfigurasi-penunjuk posisi waktu jatuh batang kendali, daya reaktor Kendali tinggi air, Purifikasi pendingin, Penukar panas, Mutu pendingin primer, Katup sistem, pipa dan komponen, Lapisan air hangat Sistem proteksi reaktor, Sistem pemantauan udara Pengendalian dilakukan pada kegiatan pembentukan teras baru dan persiapan 4. Sistem daya listrik Distribusi daya AC, Distribusi daya DC 24 Volt 5. Sistem pendukung Integritas pengungkung, Damper isolasi pengungkung, Sistem tekanan rendah 6. Sistem ventilasi Sistem KLE35, Sistem KLD, Sistem KLA60, Suhu & Kelembaban 7. Sistem Re-fuelling Penanganan dalam kolam, Crane di Balai Operasi Pengendalian dilakukan pada kegiatan pembentukan teras baru. 8. Sistem gempa Pengendalian reaktor dari RKU atau RKD, Pemadaman, Estimasi instalasi 9. Eksperimen Persyaratan teknis & adm. Pengendalian dilakukan pada kegiatan iradiasi. Dari tabel di atas tersirat bahwa parameter batasan dan persyaratan operasi sebagian besar sudah dilaksanakan pada kegiatan pengendalian terhadap persiapan sarana operasi, sebagian lagi pada pengendalian dan evaluasi pembentukan teras baru, sebagian kecil dalam kegiatan pengendalian iradiasi, dan pengendalian kualitas air primer serta pencatatan parameter sistem proteksi reaktor. Persyaratan operasi yang belum secara lengkap tersirat pada kegiatan pengendalian seharusnya dilakukan kajian secara khusus yang hasilnya diharapkan memberikan inovasi pengendalian keselamatan reaktor. Batasan operasi reaktor pada SPR (sistem proteksi reaktor) Pengoperasian RSG-GAS yang benar harus mengacu kepada batasan-batasan dan persyaratan keselamatan operasi RSG-GAS yang telah ditetapkandi dalam LAK. Reaktor dirancang tetap aman meskipun ada sistem atau komponen yang tidak berfungsi/gagal. Batasan dan persyaratan operasi RSG-GAS (dengan pendinginan paksa) meliputi parameter daya maksimal reaktor 34,2 MW, faktor daya radial maksimal 2,6 dan faktor daya axial 1,6 1). 100

Tabel 2. Data Variabel SPR dan Syarat Batas Operasi Keselamatan 2) No Variabel Proses Syarat Batas Operasi Proses Setting 1 Kerapatan fluks neutron daerah start-up min. 2 cps 1 cps Kerapatan fluks neutron daerah start-up maks 1 x 10 5 cps 5e5 cps Kerapatan fluks neutron daerah menengah min. 1x10-7 A 1e-7 A Kerapatan fluks neutron daerah menengah Periode < 5 s 15 s Kerapatan fluks neutron daerah daya < 3% (P N ) 3% P N Kerapatan fluks neutron daerah daya Harga batas Fl. < 1,5 %/det 0 - / t (Neg. Floating) Kerapatan fluks neutron daerah daya Saz > 0,20 16% P N Kerapatan fluks neutron daerah daya dan Harga batas Fl. < 0,5 %/det 0 terkoreksi N-16, + / t (Pos. Floating) Kerapatan fluks neutron terkoreksi N-16 terkoreksi > 109 % 110% P N 2 Laju dosis- di dalam sistem pendingin D > 0,36 rad/h 110% P N primer 3 Posisi katup isolasi primer Membuka 86,5 87 4 Tinggi permukaan air kolam reaktor h < 12,5 m 12,25 m 5 Laju aliran dalam sistem pendingin primer M N < 662,5 kg/det 800 kg/det 6 Suhu pada keluaran penukar panas T > 42 C 42 C 7 Tegangan pada busbar daya darurat U < 0,8 U N 304 V 8 Laju dosis- di dalam sistem venting kolam D > 125 mr/h 1,25e-3 Gy/h reaktor 9 Penutupan sirip sirkulasi alam p > 0,60 bar 0,7 bar Batas keselamatan operasi RSG-GAS ini ditetapkan untuk variabel-variabel yang dapat diamati yang berkaitan dengan unjuk kerja 9 variabel proses seperti ditunjukkan pada Tabel 2. Nilai-nilai batas sebagai kriteria untuk memulai tindakan proteksi ditentukan sebagai dasar dari nilai batas yang dihasilkan dari nilai fisik yang diizinkan, dan merupakan batasan-batasan bagi kondisi instalasi yang aman. Parameter teknis batasan operasi ini diseting pada sistem SPR. Batasan dan persyaratan administratif Bagian-bagian sistem reaktor yang terkait dengan keselamatan dan pengoperasiannya dibatasi secara otomatis dikelompokkan dan diaplikasikan oleh SPR secara logic. Sedangkan persyaratan lain yang tidak terkait keselamatan dapat dikendalikan dengan pengukuran dan menerapkan prosedur administratif dengan mengacu pada batasan yang diijinkan dalam LAK. Sistem yang terkait dengan keselamatan diantaranya menyangkut pada sistem teras reaktor, sistem pendingin, dan eksperimen (iradiasi). Daya nominal RSG-GAS adalah 30 MW tetapi sejak tahun 1995 reaktor dioperasikan dengan daya 15 MW dengan tujuan untuk mengefisienkan penggunaannya. Panjang siklus operasi dibatasi selama 21,8 hari dengan pembangkitan daya satu teras operasi 654 MWD. Gangguan yang timbul ketika reaktor beroperasi telah diantisipasi oleh sistem proteksi reaktor dengan cara pemadaman reaktor. Scram atau shut-down sangat dipengaruhi oleh kemampuan reaktivitas batang kendali (BK). Ketika dilakukan pergantian lima elemen bakar, satu elemen kendali juga diganti. Dari 8 elemen kendali yang difungsikan, reaktivitas totalnya dibatasi: 13,8%, reaktivitas lebih: 9,7%, reaktivitas padam minimal: 1,3%. Sedangkan sampel yang akan diiradiasi juga mendapat pengendalian secara administratif berupa ijin dan analisis keselamatannya. Sistem pendingin harus mendapat pemantauan juga yaitu kualitas air sistem primer yang meliputi ph 5 s/d 7 dan konduktivitas < 8 µs/cm. Batasan dan persyaratan operasi senantiasa optimal dengan pengawasan melalui inspeksi, uji fungsi, dan kalibrasi. Pengawasan yang handal dapat tercapai dengan menerapkan struktur organisasi yang tepat dan tanggung jawab yang jelas dengan maksud agar kesalahan dapat segera diantisifasi, diklarifikasi, dan ditindaklanjuti. METODOLOGI Metode untuk mengevaluasi unjuk kerja operasi RSG-GAS diperoleh dengan cara mengidentifikasi dan mengevaluasi data operasi -66 meliputi 101

MWD ρ (%) Jml, kali Evaluasi Unjuk Kerja (J. Sukmana, dkk) pembangkitan daya, kejadian scram, unjuk kerja batang kendali, dan kualitas air pendingin. Dievaluasi juga jumlah sampel yang berhasil diiradiasi selama periode tersebut dalam kaitannya dengan efektivitas pemanfaatan operasi reaktor. Penuaan komponen dievaluasi melalui program perawatan dan perbaikan. Hasil evaluasi disajikan dalam beberapa laporan dan diidentifikasi dalam kaitannya dengan keselamatan operasi. Hasil evaluasi dijadikan masukan terhadap kegiatan berikutnya. Daya guna pengoperasian reaktor ditunjukkan dengan keberhasilan beroperasi, beragam pemanfaatan reaktor, data gangguan dan perbaikan yang efektif. HASIL DAN PEMBAHASAN Hasil evaluasi unjuk kerja keselamatan operasi dan pembahasannya dilakukan terhadap lima konfigurasi teras operasi, yaitu teras LXII (Teras 62, September 2007) s/d teras LXVI (Teras 66, Februari 2009). Data-data evaluasi diperoleh dari laporan operasi reaktor dan persiapan sarana operasi Bidang Operasi Reaktor serta data pengukuran dan pengendalian Subbidang Keselamatan Operasi. Penyajian data dilakukan dengan tampilan grafik dan tabel untuk memudahkan dalam menguraikan pembahasan. Pembangkitan daya 700 632 564 496 428 360 292 224 156 88 20 Pembangkitan Daya RSG-GAS 1 2 3 4 5 6 7 8 Total Siklus operasi Gambar 1. Grafik Pembangkitan Daya RSG-GAS Pembangkitan daya di setiap teras operasi dengan waktu rata-rata 11 hari dilakukan masing-masing dua kali, yaitu di siklus pertama dan siklus kelima, kecuali dilakukan pada siklus pertama dan ketiga. Dari lima konfigurasi teras, daya terbangkitkan terbesar terdapat pada dan, yaitu 658 MWD. Hal ini telah melebihi 3% batasan pembangkitan yang diperhitungkan. Sedangkan pembangkitan terendah terjadi pada teras 65, yakni 555 MWD. Sehingga rata-rata terbangkitkan 628 MWD dari 5 konfigurasi teras. Jumlah siklus operasi dari setiap konfigurasi teras tidak sama, rata-rata dilakukan sebanyak 6 siklus dan maksimal 8 siklus. Jumlah pembangkitan daya dan frekuensi siklus operasi pada akhirnya ditentukan oleh jumlah permintaan iradiasi dan research. 8 7 6 5 4 3 2 1 0 Scram dan Gangguan Lain 1 2 3 4 5 6 7 8 Total Siklus operasi Gambar 2. Grafik Frekuensi Scram dan Gangguan Lain 14 12 10 8 6 4 2 0 Reaktivitas BK dalam Konfigurasi Teras ρ total ρ lebih ρ padam ρ stuck rod ρ terbesar Gambar 3. Grafik Parameter Reaktivitas Batang Kendali dalam tiap Konfigurasi Teras Operasi Scram dan gangguan lain Dari grafik 2, jumlah scram dan gangguan lain yang membuat daya reaktor harus diturunkan atau dishutdown paling sering terjadi pada operasi, yaitu 8 kali. Sedangkan kejadian paling sering dalam satu siklus ialah pada siklus operasi ke 5 sebanyak 4 kali. Sehingga rata-rata terjadi 1 s/d 2 kali scram tiap siklus. Kejadian ini diakibatkan trip daya PLN, dua kali terindikasi negative floating limit maks (reaktivitas negatif terlampaui), dan gangguan pada unit armature drop JDA07. Scram yang terjadi menunjukkan sistem keselamatan teknis masih optimal, walaupun operasi sempat berhenti namun setelah permasalah teridentifikasi dan dapat ditanggulangi reaktor kembali dioperasikan. Reaktivitas BK 102

effisiensi (tanpa satuan) ph jenis kond (µs/cm) jml, kali Batang kendali RSG-GAS yang diberi kode JDA selalu diuji sebelum reaktor beroperasi ketika awal konfigurasi teras. Reaktivitas totalnya terukur ratarata -13% masih dalam batas yang diijinkan begitu juga reaktivitas lebih rata-rata 7,7% dan reaktivitas padam rata-rata -5,4%. Reaktivitas stuck rod di bawah 4% dan reaktivitas terbesar dari batang kendali mencapai 2% pada dan 66. Reaktivitas negatif BK yang dimiliki ini cukup aman dan mampu untuk mengendalikan populasi neutron di teras reaktor. 1,9 1,7 1,5 1,3 1,1 0,9 0,7 0,5 Kualitas (konduktivitas) Pendingin Primer konfigurasi teras kbe01 kbe02 fak01 Power (rerata) Gambar 4. Grafik Kualitas Air Sistem Pendingin Primer (Konduktivitas) 7,5 7 6,5 6 5,5 5 4,5 4 Kualitas (ph) Pendingin Primer konfigurasi teras kbe01 kbe02 fak01 Power (rerata) Gambar 5. Grafik Kualitas Air Sistem Pendingin Primer (ph) Kualitas air pendingin Air pendingin sistem primer RSG-GAS dihasilkan oleh sistem pemasok air GCA01 dengan parameter keasaman ph 6,5-7,5, konduktivitas <0,2 µs/cm. Dengan sistem purifikasi maka kualitas air dipertahankan hingga berada antara ph 5-6,5 dan konduktivitas antara 1 3 µs/cm. Dari hasil pengukuran rata-rata secara kontinyu teramati ph kondisi menurun dan konduktivitas kondisi naik (Grafik 4 dan Grafik 5). Namun keduanya berada dalam batas yang aman. Kemampuan mempertahankan kualitas air pendingin reaktor dilakukan dengan pergantian filter (resin) pada sistem purifikasi. 70 60 50 40 30 20 10 0 Jumlah Sampel Iradiasi 1 2 3 4 5 6 7 8 Total Siklus operasi Gambar 6. Grafik Frekuensi Sampel Iradiasi di RSG-GAS Topaz TeO2 Sm2O3 S-32 LuO3 Iridium FPM Bio, dll Au- Jenis Sampel Iradiasi 0 5 10 15 20 Jml, kali Gambar 7. Grafik Jenis Sampel Iradiasi di RSG- GAS 1,40 1,20 1,00 0,80 0,60 0,40 0,20 0,00 Daya Guna RSG-GAS terhadap Sampel Iradiasi sampel/daya sampel/total daya/total Poly. (sampel/daya) Gambar 8. Grafik Daya Guna RSG-GAS terhadap Sampel Iradiasi Sampel iradiasi Pemanfaatan RSG-GAS yang bisa diamati adalah dari jumlah kegiatan iradiasi. Dalam setiap teras operasi dilakukan iradiasi terhadap sampel rata-rata 52 kali. Dari lima teras operasi iradiasi terbanyak dilakukan pada. Sedangkan sampel yang 103

Evaluasi Unjuk Kerja (J. Sukmana, dkk) paling banyak diiradiasi adalah (berurut) TeO 2, FPM, dan Topaz serta berbagai sampel biologis. Hal-hal yang menjadi persyaratan terhadap sampel yang diiradiasi diantaranya reaktivitas, aktivitas radiasi, dan jumlah serta tersedianya analisis keselamatan dari sampel tersebut. Pengawasan dan perijinan terhadap sampel tersebut dievaluasi oleh Subbidang keselamatan operasi 3). Jika efisiensi operasi reaktor ditinjau dari perbandingan daya terbangkitkan dengan jumlah sampel maka menurut Grafik 8, operasi paling efisien adalah operasi dengan angka 1,23. Perawatan dan perbaikan sistem/komponen reaktor Data berikut adalah hasil evaluasi terhadap kegiatan perawatan sistem dan komponen RSG-GAS pada tahun 2008. Permintaan perbaikan dan ijin kerja (PPIK) : Jumlah 280 Sistem yang berdampak pada operasi : Jumlah 58 Terdiri dari : Komp mekanik: 13, Komp elektrik: 9, Komp instrumentasi: 23, Komp ketiganya: 13 Sistem/komponen (urutan paling sering): - KLK : sistem pemantau aktivitas udara dalam gedung atau udara buangan - PA : sistem pendingin sekunder - JE : sistem pendingin primer - JKT : sistem/komponen pemantau fluks neutron atau daya reaktor - KBE : sistem purifikasi pendingin primer reaktor, dst. Sistem yang tidak berdampak pada operasi : Jumlah 222 Terdiri dari : Komp mekanik: 93, Komp elektrik: 45, Komp instrumentasi: 46, Komp ketiganya: 38 Sistem/komponen (urutan paling sering): - KLA : sistem ventilasi gedung reaktor - QKJ : Sistem sumber pendingin udara dari sistem ventilasi - Komponen penerangan: lampu-lampu penerangan dalam gedung reaktor - KLK : sistem pemantau aktivitas udara dalam gedung atau udara buangan - KBE : sistem purifikasi pendingin primer reaktor - SCA : sistem distribusi udara ke tabung berkas neutron - GMA : sistem drainase lantai daerah non-aktif, dst. Sistem/komponen yang paling banyak mendapat perbaikan secara umum (urutan sering ke jarang): KLA QKJ KLK PA KBE - Komponen penerangan -,dst Dari data di atas, menunjukkan perbaikan terhadap berbagai sistem penunjang operasi reaktor cukup banyak seiring dengan usia komponen dan pengoperasian reaktor itu sendiri. KESIMPULAN Jumlah pembangkitan daya dan frekuensi siklus operasi ditentukan oleh jumlah permintaan iradiasi dan percobaan atau research sehingga jumlah operasi bervariasi dari 6 hingga 8 kali dengan daya dibangkitkan hingga 654 MWD dari daya operasi 15 MW. Kejadian scram dan gangguan lain yang membuat operasi reaktor harus berhenti atau diturunkan dayanya menunjukkan sistem keselamatan teknis (SPR) masih optimal, gangguan ini ternyata lebih sering diakibatkan ketidakstabilan daya listrik PLN. Batang kendali RSG-GAS selalu diuji ketika awal konfigurasi teras. Reaktivitas negatif BK yang dimiliki ini cukup aman dan mampu untuk mengendalikan populasi neutron di teras reaktor. Sistem pendingin primer RSG-GAS senantiasa mempertahankan kualitas air hingga berada antara ph 5-6,5 dan konduktivitas antara 1 3 µs/cm. Kemampuan mempertahan kualitas air pendingin reaktor ini dilakukan dengan pergantian filter (resin) pada sistem purifikasi dan pengendalian terhadap kegiatan iradiasi. Dalam setiap teras operasi dilakukan iradiasi terhadap sampel rata-rata sebanyak 52 kali. Sampel yang paling banyak diiradiasi secara berkesinambungan adalah TeO 2, FPM, dan Topaz serta berbagai sampel biologis. Hal-hal yang menjadi persyaratan terhadap sampel yang diiradiasi secara administratif telah dilakukan pengawasan. Operasi RSG-GAS paling efisien menurut evaluasi adalah operasi teras LXIV (64) dengan perbandingan antara jumlah sampel yang diiradiasi terhadap besar daya yang dibangkitkan adalah 1,23. Kondisi menuanya komponen reaktor dapat teramati dengan jumlah perbaikan yang mecapai 280 PPIK dalam satu tahun dan komponen yang berdampak terhadap operasi sekitar 21%. 104

Pemanfaatan RSG-GAS untuk iradiasi dan research harus sejalan dengan resiko operasi, perawatan dan perbaikan sistem serta dibatasi oleh parameter keselamatan. Sehingga pengoperasian sesuai Tusi lebih berdaya guna dan selamat. PUSTAKA 1. SBKO-BK, PRSG, Laporan Analisis Keselamatan (LAK) RSG-GAS Rev. 10, No. Ident.: RSG.KK.03.04.63.08, PRSG, Serpong, 2008. 2. Jaja Sukmana, Kajian Kinerja Sistem Proteksi Reaktor dan Batas Persyaratan Operasi pada Pengendalian Operasi RSG-GAS, Prosiding SDM Tek. Nuklir, STTN, Yogyakarta, 2006. 3. Jaja Sukmana, Evaluasi terhadap Sampel Iradiasi dalam Keselamatan Operasi RSG-GAS, Prosiding Pranata Nuklir, PRSG, 2008 DISKUSI Pertanyaan : Maskur-PRR Pertanyan : - Apa yang dimaksud teras reaktor? - Apa perbedaan, 63, 64 68? - Apa fungsi masing-masing teras berbeda? Jawaban : - Teras reaktor : wadah untuk menempatkan elemen bakar dan elemen kendali & neutron sehingga reaksi nuklir terjadi di area tersebut - Teras 62 teras x : urutan siklus operasi dengan perubahan 5 elemen bakar dan 1 elemen kendali mulai teras 1 tahun 1986 s/d kini teras 68 tahun 2009 - Fungsi setiap teras : sama, yaitu pelayanan iradiasi Pertanyaan : Sriawan Pertanyaan : Apa arti seting angka 1 pada penunjukkan detik pada kanal start up? batas operasi atau batas keselamatan. Jawaban : Angka 1 cps sebagai setting keselamatan sehingga sebelum 2 cps reaktor belum bisa operasi karena sumber belum cukup. Pertanyaan : Anis B-PDL Pertanyaan : Evaporasi semestinya mengarah moda unjuk kerja bukan hanya menampilkan data parameter operasi (perlu lebih detail untuk para meter tertentu saja) Jawaban : Oks saran diterima, untuk evaluasi tertentu di kesempatan yang akan dating. 105