PENGUJIAN KARAKTERISTIK TURBIN PELTON DENGAN DENGAN SUDU 15 DAN 16 SKALA LABORATORIUM Muhammad Syawal Al-Azhar Hsb 1,.Tugiman.

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENGUJIAN KARAKTERISTIK TURBIN PELTON DENGAN DENGAN SUDU 15 DAN 16 SKALA LABORATORIUM Muhammad Syawal Al-Azhar Hsb 1,.Tugiman."

Transkripsi

1 PENGUJIAN KARAKTERISTIK TURBIN PELTON DENGAN DENGAN SUDU 15 DAN 16 SKALA LABORATORIUM Muhammad Syawal Al-Azhar Hsb 1,.Tugiman. 2 1,2.Jurusan Teknik Mesin Sekolah Tinggi Teknik Harapan Medan aalhsb77@gmail.com ABSTRAK Turbin Pelton terdiri dari satu set sudu yang diputar oleh pancaran air yang disemprotkan dari satu atau lebih alat yang disebut nosel, sehingga terjadi konversi energi kinetik menjadi energi mekanis. Pengujian ini bertujuan untuk menganalisa unjuk kerja Turbin Pelton Skala Laboratorium. Jumlah sudu yang di gunakan adalah 15 buah dan 16 buah. Langkah-langkah yang dilakukan dalam penelitian ini di lakukan pengujian untuk mengetahui karakteristik turbin. Turbin yang diuji memiliki nosel tunggal, dengan ukuran 16 mm. Dari data pengujiaan diperoleh daya mekanik, Efisiensi turbin (η) maksimum diperoleh pada pengujian dengan menggunakan jumlah sudu 15 buah yaitu sebesar 79% dengan daya mekanik turbin (P m) sebesar 174,23 Watt. Kata kunci : Turbin Pelton, Nosel, Jumlah sudu. ABSTRACT Turbine Pelton consists of a set of blades played by water jets which is sprayed from one or more a tool called a nozzle, resulting in the conversion of kinetic energy into mechanical energy. this test aims to analyze turbine pelton laboratory scale. the number of blades used is 15 pieces and 16 pieces. the steps undertaken in this study testing to determine the characteristics of turbine, turbine tested had single nozzle, with measure 16 mm. data from testing obtained mechanical power. efficiency turbine (η) maximun obtained in the test by using the number of blades 15 pieces that is equal to 79% with turbin mechanical power (P m) big as 174,23 Watt. Keywords : Turbine Pelton, Nozzle, The number of blades. 1. PENDAHULUAN Dalam perkuliahan Teknik Mesin yang mana berhubungan dengan ilmu sains dibutuhkan laboratorium. Laboratorium adalah prasarana pendidikan atau wadah proses pembelajaran dimana dalam proses pembelajarannya melalui praktikum yang dapat membuat mahasiswa berlatih mengembangkan keterampilan intelektual melalui kegiatan pengamatan, pencatatan dan pengkajian. Mahasiswa tidak hanya dapat mengetahui teoriteori tetapi dapat juga mengamati secara langsung dan membuktikan sendiri sesuatu yang di pelajari. Laboratorium terdiri dari ruang yang dilengkapi dengan berbagai perlengkapan dengan bermacammacam kondisi yang dapat dikendalikan. Turbin Pelton merupakan turbin air jenis impuls. Turbin Pelton pertama kali ditemukan oleh insinyur dari Amerika yaitu Lester A. Pelton pada tahun Turbin ini dioprasikan pada head sampai 1800 m, turbin ini relatife membutuhkan jumlah air yang lebih sedikit dan biasanya porosnya dalam posisi mendatar. Sebagaimana perkembangan teknologi penulis mengembangkan turbin Pelton skala laboratorium yang telah ada dengan penambahan alat ukur digital untuk pengujian yang lebih akurat guna memenuhi kebutuhan peralatan Laboratorium Pengujian Mesin. Setelah alat tersebut selesai dirancang dan dibuat, maka penulis menganggap perlu untuk melakukan pengujian terhadap alat tersebut. Pada pengujian ini, penulis hanya melakukan pengujian padaturbin dengan jumlah sudu 15 buah. Sementara untuk turbin dengan jumlah 16 buah, penulis mengambil data pengujian dari peneliti sebelumnya yang bernama Daulay, Ihsan, Fikri Study Eksprimental Pengaruh Diameter Nosel Terhadap Efisiensi Turbin Palton. Medan : Sekolah Tinggi Teknik Harapan Medan.

2 1.1 Latar Belakang a) Perbandingan Efisiensi turbin pelton dengan sudu 15 dan 16 buah. b) Turbin Pelton dengan variasi jumlah sudu Tujuan Penelitian a) Untuk mengetahui daya mekanik maksimum. b) Mengetahui Efisiensi turbin maksimum. c) Mengetahui karakteristik turbin Pelton. 1.3 Manfaat Penelitian a) Menghasilkan informasi ilmiah dalam pengujian prestasi turbin pelton dengan variasi jumlah sudu. b) Sebagai pengembangan ilmu pengetahuan dan teknologi khususnya bidang konversi energi dan energi berkelanjutan. c) Mahasiswa lainnya yang ingin mengembangkan hasil penelitian ini serta dapat dijadikan sebagai pembanding dalam pembahasan pada topik yang sama. 2. METODE PENELITIAN 2.1 Tempat Dan Waktu Penelitian turbin air untuk skala laboratorium ini dilakukan dilaboratorium Pengujian Mesin Sekolah Tinggi Teknik Harapan.Waktu penelitian direncanakan mulai dari persetujuan yang diberikan oleh pengelola program dan komisi pembimbing, perencanaan dan pembuatan alat, pengambilan data dan pengolahan data sampai dinyatakan selesai. 2.2 Bahan, Peralatan dan Metode Bahan Bahan yang digunakan untuk pembuatan nosel adalah stainless steel, untuk menghindari nosel dari karat Peralatan a) pressure Gauge, berfungsi untuk mengetahui tekanan air di dalam pipa b) Pipa PVC 2 inc, berfungsi untuk tempat mengalirkan air sampai ke turbin. c) Katub by pass, berfungsi untuk mengatur kapasitas air. d) Pompa, dengan kapasitas 30 m 3 /jam berfungsi untuk memindahkan air melalui pipa sebagai sumber tenaga air. e) Reservoar, berfungsi sebagai tempat sumber air dan tempat menampung kembali air yang keluar dari saluran pembuangan. f) Globe valve, berfungsi sebagai katub pengatur penggunaan satu nosel atau dua nosel. g) Nosel, adalah mekanisme pengarah lingkaran yang mengarahkan air kearah yang diinginkan, dan juga berfungsi untuk menaikkan kecepatan pancaran air. h) Roda Pelton, berfungsi mengubah energi air menjadi energi mekanik. i) V-Notch Weir 90 0, berfungsi sebagai alat untuk mengukur kapasitas air. j) Hydrolic Brake, alat ini berfungsi untuk mengukur torsi dan putaran poros, system unit untuk torsi (N.m) dan putaran (rpm). Jika pembebanan diberikan maka akan mengeluarkan hasil yang di tampilkan pada layar LED k) PLX DAQ Arduino, suatu software data akuisisi yang mampu menampilkan data dan grafik secara real time yang langsung diintegrasikan ke microsoft excel dengan pembacaan sensor kecepatan putaran dan beban. Penerapan teknik pemantauan data ini dapat menghemat waktu pengolahan data secara signifikan Metode Penelitian ini dilakukan untuk mendapatkan suatu hasil dari pengujian menggunakan satu nosel dengan jumlah sudu 15 oleh gambar 1 Gambar 1 Jumlah sudu 15 buah Untuk melakukan penelitian tersebut maka terlebih dahulu dibuat nosel dengan jumlah sudu 15. Desain nosel yang direncanakan diperlihatkan oleh gambar 2

3 Gambar 2 Desain nosel yang direncanakan Nosel didesain menjadi tiga bagian, yaitu : 1. Badan nosel, berfungsi sebagai saluran air. 2. Kepala nosel, didesain terpisah dari badan nosel dengan menggunakan ulir bertujuan agar kepala nosel dapat ditukar dengan diameter berbeda. 3. Ring pengunci nosel, berfungsi sebagai pengunci nosel saat dipasang pada rumah turbin. 2.3 Dimensi Utama Turbin Pelton Runner turbin Pelton terdiri dari mangkok dan cakra. Mangkok (bucket) dibagi menjadi dua bagian yang simetri dengan tepi yang mancung dibagian tengahnya. Hal ini untuk membagi pancaran air menjadi dua bagian yang sama. Karena kedua ruang simetri maka tidak ada momen pada arah aksial, sehingga tidak ada gaya aksial pada bearing poros. Dalam perancangan bucket diusahakan sudut defleksi pembelokan pada mangkok sekitar Hal ini dimaksud agar air bekas dapat meninggalkan bucket tanpa mengenai mangkok berikutnya ketika berputar. Persamaan-persamaan yang akan digunakan dalam menentukan ukuran-ukuran utama turbin Pelton adalah: 1. Kecepatan jet awal, (V i) 2. Kecepatan jet akhir, (V f) 3. Kecepatan keliling runner (u) 4. Diameter runner (D) 5. Diameter pancaran air / nosel (d) 6. Jumlah sudu (Z) 7. Lebar sudu (b) 8. Panjang sudu (h) 9. Diameter luar runner (Do) 10. Kedalaman sudu (t) 2.4 Potensi Turbin Pelton Air merupakan sumber energi yang murah dan relatif mudah didapat, karena pada air tersimpan energi potensial (pada air jatuh) dan energi kinetik (pada air mengalir). Tenaga air (Hydropower) adalah energi yang diperoleh dari air yang mengalir. Energi yang dimiliki air dapat dimanfaatkan dan digunakan dalam wujud energi mekanis maupun energi listrik.pemanfaatan energi air banyak dilakukan dengan menggunakan kincir air atau turbin air yang memanfaatkan adanya suatu air terjun atau aliran air di sungai. Besarnya tenaga air yang tersedia dari suatu sumber air bergantung pada besarnya head dan debit air. Dalam hubungan dengan reservoir air maka head adalah beda ketinggian antara muka air pada reservoir dengan muka air keluar dari kincir air/turbin air. Total energi yang tersedia dari suatu reservoir air adalah merupakan energi potensial air yaitu : E = mgh E = energy potensial air (J) m = massa air (kg) g = percepatan gravitasi (m/s 2 ) h = head (m) 2.5 Pengujian Turbin Pelton 1. Perhitungan Daya Air (P w) Perhitungan daya teoritis yang diberikan oleh air dapat dihitung dengan rumus : P w = ρgqh P w = daya yang diberikan oleh air (W) ρ = massa jenis fluida (kg/m 3 ) Q = kapasitas air (m 3 /s) H = ketinggian efektif (m) g = gaya gravitasi (m/s 2 ) 2. Perhitungan Kapasitas Air (Q) Kapasitas air diukur dengan menggunakan V-notch Weir Q = 1,4 H 5 2 H = H 1 H 0 H 0 = jarak takik dari dasar weir (m) H 1 = ketinggian permukaan air dari dasar weir (m) 3. Perhitungan Head (H) Head diukur dengan menggunakan Pressure Gauge H = p pipe ρg

4 p pipe = tekanan pada pipa ( kgf/cm 2 = 0,98 x 10 5 Pa) ρ = massa jenis fluida (kg/m 3 ) g = gaya gravitasi (m/s 2 ) 4. Perhitungan Daya Mekanik (P m) P m = 2πNT 60 P m = daya mekanik turbin (W) N = putaran turbin (rpm) T = torsi pada poros(nm) 5. Perhiutngan Efesiensi Turbin η T = P m P w Dimana : η T = efisiensi Turbin Pm = daya mekanik turbin (W) P w = daya yang diberikan oleh air (W) 2.6 Pelaksanaan Pengujian Dalam pengujian ini variabel yang akan diamati adalah : 1. Tinggi air pada weir (H 1). 2. Tekanan air di dalam pipa (P gauge). 3. Torsi (T). 4. Putaran turbin (N) Tahap pengambilan data dapat dilaksanakan setelah seluruh tahap persiapan rampung. Pengambilan data dapat dimulai dengan 1. Sebelum pompa dihidupkan, terlebih dahulu mengatur katub by pass pada posis terbuka O penuh, dan mengatur katub nosel pada posisi tertutup S agar tidak terjadi pancaran air secara tiba tiba pada roda turbin. 2. Menghidupkan pompa dengan menekan tombol on pada kotak panel. 3. Setelah pompa dihidupkan, kemudian membuka satu katub nosel secara perlahan hingga posisi terbuka penuh. Sementara untuk katub nosel lainnya ditutup. 4. Mengatur kapasitas air dengan menutup katub by pass secara perlahan sambil memperhatikan ketinggian air (H 1) pada weir konstan. Kemudian mecatat H 1 pada data sheet yang telah disediakan. 5. Membaca tekanan air dalam pipa pada pressure gauge dan mencatatnya pada data sheet. 6. Mengatur putaran poros turbin dengan menggunakan Hydrolic Brake, perolehan data putaran poros dan torsi yang diakuisisi oleh PLX DAQ langsung di import ke microsoft exel kemudian di simpan. Tampilan gambar data akuisisi oleh PLX DAQ 7. Mengulangi langkah 6 untuk variasi putaran poros turbin. 8. Mengulangi langkah 1 sampai 7 untuk pengujian dengan jumlah sudu yang berbeda. 2.7 Data Hasil Pengujian Setelah melakukan pengukuran, selanjutnya data data yang diperoleh dimasukkan kedalam tabel data percobaan seperti berikut ini. Tabel 1 Data hasil pengujian sudu 15 buah nsudu [buah 15 H0 0,1 1 H1 0,18 4 Pgaug e [bar 1,1 Tors i [Nm N [rpm 1, , , , , Tabel 2 Data hasil pengujian sudu 16 nsudu [buah H0 16 0,11 H1 0,18 4 Pgaug e [bar 1,1 Tors i [Nm N [rpm 2, , , , ,9 296 Tabel 3 Data hasil pengujian sudu 15 buah dan sudu 16 buah nsudu [buah H0 H1 Pgauge [bar 15 0,11 0,184 1,1 Torsi [Nm N [rpm 1, , , , ,75 293

5 16 0,11 0,184 1,1 3. PEMBAHASAN DAN HASIL 3.1 Pembahasan 2, , , , ,9 296 Setelah mendapatkan data hasil pengujian, maka perlu dilakukan perhitungan.perhitungan data dari hasil pengujian ini bertujuan untuk mengetahui unjuk kerja turbin Pelton dengan variasi diameter nosel, yang terdiri dari perhitungan Kapasitas air (Q), Head (H), Daya air (P w), Daya mekanik (P m), dan Efisiensi (η). Dari hasil perhitungan ini nantinya akan dilakukan analisa. Dalam perhitungan ini diasumsikan ρ = 1000 kg/m 3 dan g = 10 m/s 2 Data yang diambil sebagai perhitungan berikut ini adalah pada jumlah sudu 15 buah dan 16 buah dengan masing-masing variasi kecepatan. Perhitungan keselurahan data pengujian 3.2 Hasil Data hasil pengujian yang diperoleh perlu dibuat grafik untuk menganalisa setiap percobaan. Pengujian menggunakan roda turbin dengan jumlah sudu 14 buah, hubungan daya mekanik dengan putaran turbin daya mekanik pengujian menggunakan roda turbin dengan jumlah sudu 15 buah terus meningkat hingga di putaran 497 rpm, namun diputaran 598 rpm dan 698 rpm daya mekanik semakin menurun. Sedangkan pengujian menggunakan roda turbin dengan jumlah sudu 16 buah terus meningkat hingga di putaran 604 rpm, namun diputaran 693 daya mekanik menurun. Berdasarkan hasil pengujian dan perhitungan, daya mekanik maksimum diperoleh menggunakan roda turbin dengan jumlah sudu 15 buah pada putaran 497 rpm dengan perolehan daya mekanik sebesar 174,23 Watt. Sedangkan daya mekanik minimum diperoleh menggunakan roda turbin dengan jumlah sudu 16 buah pada putaran 296 rpm dengan perolehan daya mekanik sebesar 120,82 Watt. Hubungan efisiensi turbin dengan putaran turbin pada pengujian menggunakan jumlah sudu 15 buah dan sudu 16 buah memperlihatkan efisiensi pengujian menggunakan jumlah sudu 16 buah terus meningkat hingga di putaran 604 rpm, namun diputaran 693 efisiensi menurun. Sedangkan pengujian menggunakan jumlah sudu 15 buah terjadi peningkatan efisiensi hingga putaran 497 rpm, tetapi pada putaran 598 rpm dan 698 rpm efisiensi semakin menurun. Berdasarkan hasil pengujian dan perhitungan, efisiensi maksimum diperoleh dengan menggunakan jumlah sudu 15 buah pada putaran 497 rpm dengan perolehan efisiensi sebesar 79%. Sedangkan efisiensi turbin minimum diperoleh dengan menggunakan jumlah sudu 16 buah pada putaran 296 rpm dengan perolehan efisiensi turbin sebesar 54 %. 4. KESIMPULAN DAN SARAN 4.1 Kesimpulan Dari hasil perhitungan dan analisa terhadap pengujian turbin pelton skala laboratorium dengan menggunakan variasi jumlah sudu turbin, maka diperoleh : 1. Daya mekanik maksimum pengujian menggunakan roda turbin dengan jumlah sudu 15 buah sebesar 174,23 W. Sedangkan daya mekanik maksimum pengujian menggunakan roda turbin dengan jumlah sudu 16 buah sebesar 180,80 W. 2. Efisiensi turbin maksimum pengujian menggunakan roda turbin dengan jumlah sudu 15 buah sebesar 79. Sedangkan efisiensi turbin maksimum pengujian menggunakan roda turbin dengan jumlah sudu 16 buah sebesar 82 %. 3. Karekteristik Turbin Palton dari hasil pengujian diperoleh : a. Dari Grafik variabel putaran terhadap daya mekanik terlihat daya mekanik turbin dengan jumlah sudu 15 buah, daya maksimum diperoleh pada putaran 497 rpm sebesar 174,23 W. Namun daya mekanik semangkin menurun di putaran 598 rpm dan 698 rpm. Sedangkan daya mekanik turbin dengan jumlah sudu 16 buah, daya maksimum di peroleh pada putaran 604 rpm sebesar 180,8 W, Namun daya mekanik menurun setelah putaran 604 rpm b. Dari grafik variabel putaran terhadap efisiensi terlihat efisiensi turbin dengan jumlah sudu 15 buah, efisisensi diperoleh pada putaran 497 rpm sebesar 79 %, namun efisiensi semangkin menurun di putaran 598

6 4.2 Saran rpm dan 698 rpm. Sedangkan efisiensi turbin dengan jumlah 16 buah, efisiensi maksimum di peroleh pada putaran 604 rpm sebear 82 %, namun efisiensi menurun setelah putaran 604 rpm. Untuk lebih menyempurnakan pembahasan mengenai pengujian ini, maka sebaiknya : 1. Dilakukan penambahan alat ukur kapasitas air dengan menggunakan rotameter atau flowmeter untuk melihat perbedaan pengukuran dengan menggunakan weir. 2. Dilakukan perawatan terhadap komponen komponen instalasi pengujian turbin Pelton, khususnya pada sambungan pipa ke rumah turbin yang saat pengoperasian terjadi kebocoran 4. DAFTAR PUSTAKA Daulay, Ihsan, Fikri, Study Eksprimental Pengaruh Diameter Nosel Terhadap Efisiensi Turbin Palton : STTH Medan Dietzel, Fritz Turbin Pompa dan Kompresor. Trans. Dakso Sriyono. Jakarta : Erlangga Dixon, S.L Mekanika Fluida, Termodinamika:Mesin Turbo. Trans. Sutanto. Jakarta: Universitas Indonesia. Munson R.Bruce., Young F.Donald., Okiishi H.Theodore., Mekanika Fluida Edisi Keempat Jilid 1. Trans. Dr.Ir.Harinaldi., Budiarso, Jakarta: Universitas Indonesia. Erlangga, Munson R.Bruce., Young F.Donald., Okiishi H.Theodore., Mekanika Fluida Edisi Keempat Jilid 2. Trans. Dr.Ir.Harinaldi., Ir.Budiarso, M.Eng. Jakarta : Universitas Indonesia. Erlangga, Streeter L. Victor Mekanika Fluida Edisi Delapan JIlid 1. Trans. Arko Prijono. Jakarta : Erlangga MHPG Series, Harnessing Water Power on a Small Scale, Volume 9 Micro Pelton Turbines; published by SKAT, Swiss Centre for Appropriate Technology, Nechleba, Miroslav, 1957, Hydraulic Turbine Their Design Equipment, Czeckoslavakia : Artia Pragu Finnemore and Franzini,Tenth Edition, Fluid Mechanics Applications, Singapure, McGraw-Hill Nechleba, Miroslav, 1957, Hydraulic Turbine Their Design and EquipmenCzeckoslavakia : Artia Pragu Finnemore and Franzini,Tenth Edition, Fluid Mechanics with Engineering Applications, Singapure, McGraw-S.R.Khurmi. Hydraulics,Fluid Mechanics and Hydraulics Machines.New Delhi: Seith S.M., Modi P.P., 1991, Hydraulics Fluid Mechanics and Fluid Machines, Delhi, Dhempat & SonsS. P.K. Nag., Power Plant Engineering Second Edition. Australia : McGraw Hill. Nagpal. G.R. Power Plant Engineering Sixth Edition.Delhi-IndiaKhanna Publishers Maher. Phillip., Smith. Nigel. Pico Hydro for Village Power. Micro Hydro Research Group Department of Electrical and Electronic Engineering The Nottingham Trent University. Burton Street Nottingham.2001.

STUDY EKSPERIMENTAL PENGARUH DIAMETER NOSEL TERHADAP EFISIENSI TURBIN PELTON

STUDY EKSPERIMENTAL PENGARUH DIAMETER NOSEL TERHADAP EFISIENSI TURBIN PELTON STUDY EKSPERIMENTAL PENGARUH DIAMETER NOSEL TERHADAP EFISIENSI TURBIN PELTON Fikri Ihsan Daulay *), Rahmawaty, ST, MT Jurusan Teknik Mesin Sekolah Tinggi Teknik Harapan 2016 *) E-mail : fid246@yahoo.co.id

Lebih terperinci

KARAKTERISASI DAYA TURBIN PELTON MIKRO DENGAN VARIASI BENTUK SUDU

KARAKTERISASI DAYA TURBIN PELTON MIKRO DENGAN VARIASI BENTUK SUDU KARAKTERISASI DAYA TURBIN PELTON MIKRO DENGAN VARIASI BENTUK SUDU Bono 1) dan Indarto ) 1) Mahsiswa Program Pascasarjana Teknik Mesin dan Industri, Fakultas Teknik Universitas Gadjah Mada, Jalan Grafika

Lebih terperinci

KARAKTERISASI DAYA TURBIN PELTON MIKRO SUDU SETENGAH SILINDER DENGAN VARIASI BENTUK PENAMPANG NOSEL

KARAKTERISASI DAYA TURBIN PELTON MIKRO SUDU SETENGAH SILINDER DENGAN VARIASI BENTUK PENAMPANG NOSEL KARAKTERISASI DAYA TURBIN PELTON MIKRO SUDU SETENGAH SILINDER DENGAN VARIASI BENTUK PENAMPANG NOSEL Bono Jurusan Teknik Mesin Politeknik Negeri Semarang Jl. Prof. H. Sudarto, S.H., Tembalang, Kotak Pos

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro BAB II TINJAUAN PUSTAKA 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro Pembangunan sebuah PLTMH harus memenuhi beberapa kriteria seperti, kapasitas air yang cukup baik dan tempat yang memadai untuk

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pengertian Umum Turbin Air Secara sederhana turbin air adalah suatu alat penggerak mula dengan air sebagai fluida kerjanya yang berfungsi mengubah energi hidrolik dari aliran

Lebih terperinci

I. PENDAHULUAN Saat ini Negara berkembang di dunia, khususnya Indonesia telah membuat turbin air jenis mini dan mikro hydro yang merupakan salah satu

I. PENDAHULUAN Saat ini Negara berkembang di dunia, khususnya Indonesia telah membuat turbin air jenis mini dan mikro hydro yang merupakan salah satu DISTRIBUSI TEKANAN FLUIDA PADA NOZEL TURBIN PELTON BERSKALA MIKRO DENGAN MENGGUNAKAN PERANGKAT LUNAK SOLIDWORKS Dr. Rr. Sri Poernomo Sari ST., MT. *), Muharom Firmanzah **) *) Dosen Teknik Mesin Universitas

Lebih terperinci

a. Turbin Impuls Turbin impuls adalah turbin air yang cara kerjanya merubah seluruh energi air(yang terdiri dari energi potensial + tekanan +

a. Turbin Impuls Turbin impuls adalah turbin air yang cara kerjanya merubah seluruh energi air(yang terdiri dari energi potensial + tekanan + Turbin air adalah alat untuk mengubah energi potensial air menjadi menjadi energi mekanik. Energi mekanik ini kemudian diubah menjadi energi listrik oleh generator.turbin air dikembangkan pada abad 19

Lebih terperinci

RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN PENGUJIAN BENTUK SUDU TERHADAP TORSI DAN DAYA TURBIN YANG DIHASILKAN

RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN PENGUJIAN BENTUK SUDU TERHADAP TORSI DAN DAYA TURBIN YANG DIHASILKAN TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN

Lebih terperinci

RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU

RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU PKMT-2-16-1 RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU Pamungkas Irwan N, Franciscus Asisi Injil P, Karwanto, Samodra Wasesa Jurusan Teknik

Lebih terperinci

Prosiding Seminar Nasional Sains dan Teknologi ke-2 Tahun 2011 Fakultas Teknik Universitas Wahid Hasyim Semarang A.13

Prosiding Seminar Nasional Sains dan Teknologi ke-2 Tahun 2011 Fakultas Teknik Universitas Wahid Hasyim Semarang A.13 KARAKTERISASI DAYA TURBIN PELTON SUDU SETENGAH SILINDER DENGAN VARIASI PERBANDINGAN LEBAR SUDU DENGAN DIAMETER NOSEL PADA HARGA PERBANDINGAN JET SEBESAR 18 Bono dan Gatot Suwoto Jurusan Teknik Mesin Politeknik

Lebih terperinci

ANALISIS PENGUJIAN SIMULATOR TURBIN AIR SKALA MIKRO

ANALISIS PENGUJIAN SIMULATOR TURBIN AIR SKALA MIKRO ANALISIS PENGUJIAN SIMULATOR TURBIN AIR SKALA MIKRO Oleh Bambang hermani bang2hermani@gmail.com. TM-Untag-Crb ABSTRAK Pengkajian rancang bangun simulator turbin air skala mikro dimaksudkan untuk penanding

Lebih terperinci

Publikasi Online Mahsiswa Teknik Mesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018)

Publikasi Online Mahsiswa Teknik Mesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018) Publikasi Online Mahsiswa Teknik Mesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018) ANALISA PENGARUH JUMLAH SUDU DAN LAJU ALIRAN TERHADAP PERFORMA TURBIN KAPLAN Ari Rachmad Afandi 421204156

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1.1 Turbin Air Turbin air adalah turbin dengan media kerja air. Secara umum, turbin adalah alat mekanik yang terdiri dari poros dan sudu-sudu. Sudu tetap atau stationary blade, tidak

Lebih terperinci

BAB I PENGUJIAN TURBIN AIR FRANCIS

BAB I PENGUJIAN TURBIN AIR FRANCIS BAB I PENGUJIAN TURBIN AIR FRANCIS 1.1 Pendahuluan 1.1.1 Latar Belakang Seiring dengan perkembang teknologi yang semakin maju, banyak diciptakan peralatan peralatan yang inovatif serta tepat guna. Dalam

Lebih terperinci

KAJI EKSPERIMENTAL PENGARUH VARIASI DIAMETER NOZZEL DAN JUMLAH SUDU TERHADAP DAYA DAN EFFISIENSI PADA PROTOTYPE TURBIN PELTON DI LAB.

KAJI EKSPERIMENTAL PENGARUH VARIASI DIAMETER NOZZEL DAN JUMLAH SUDU TERHADAP DAYA DAN EFFISIENSI PADA PROTOTYPE TURBIN PELTON DI LAB. Mekanika Jurnal Teknik Mesin, Volume 1 No. 1, 2015 KAJI EKSPERIMENTAL PENGARUH VARIASI DIAMETER NOZZEL DAN JUMLAH SUDU TERHADAP DAYA DAN EFFISIENSI PADA PROTOTYPE TURBIN PELTON DI LAB. FLUIDA Supardi 1,Moh.

Lebih terperinci

KAJIAN EKSPERIMENTAL TURBIN TURGO DENGAN VARIASI SUDUT NOSEL

KAJIAN EKSPERIMENTAL TURBIN TURGO DENGAN VARIASI SUDUT NOSEL Eksergi Jurnal Teknik Energi Vol 8 No. 1 Januari 2012; 14-19 KAJIAN EKSPERIMENTAL TURBIN TURGO DENGAN VARIASI SUDUT NOSEL Bono Prodi Teknik Konversi Energi, Jurusan Teknik Mesin, Politeknik Negeri Semarang

Lebih terperinci

NOZZLE DAN SUDUT BUANG SUDU TERHADAP DAYA DAN EFISIENSI MODEL TURBIN PELTON DI LAB. FLUIDA

NOZZLE DAN SUDUT BUANG SUDU TERHADAP DAYA DAN EFISIENSI MODEL TURBIN PELTON DI LAB. FLUIDA Mekanika Jurnal Teknik Mesin, Volume 1 No. 1, 2015 NOZZLE DAN SUDUT BUANG SUDU TERHADAP DAYA DAN EFISIENSI MODEL TURBIN PELTON DI LAB. FLUIDA Supardi 1, Endra Prasetya 2 Program Studi Teknik Mesin Fakultas

Lebih terperinci

PROTOTYPE TURBIN PELTON SEBAGAI ENERGI ALTERNATIF MIKROHIDRO DI LAMPUNG

PROTOTYPE TURBIN PELTON SEBAGAI ENERGI ALTERNATIF MIKROHIDRO DI LAMPUNG PROTOTYPE TURBIN PELTON SEBAGAI ENERGI ALTERNATIF MIKROHIDRO DI LAMPUNG Dwi Irawan Jurusan Teknik Mesin Universitas Muhammadiyah Metro Jl. Ki Hajar Dewantara No. 116 Kota Metro (0725) 42445-42454 Email

Lebih terperinci

Pengaruh Variasi Tebal Sudu Terhadap Kinerja Kincir Air Tipe Sudu Datar

Pengaruh Variasi Tebal Sudu Terhadap Kinerja Kincir Air Tipe Sudu Datar Pengaruh Variasi Tebal Sudu Terhadap Kinerja Kincir Air Tipe Sudu Datar Slamet Wahyudi, Dhimas Nur Cahyadi, Purnami Jurusan Teknik Mesin Fakultas Teknik Universitas Brawijaya Jl. MT. Haryono 167, Malang

Lebih terperinci

REKAYASA BENTUK SUDU TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO

REKAYASA BENTUK SUDU TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO Rekayasa Bentuk Sudu Turbin Pelton (Bono) REKAYASA BENTUK SUDU TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO Bono Prodi Teknik Konversi Energi, Jurusan Teknik Mesin, Politeknik Negeri

Lebih terperinci

UJI PERFORMANSI TURBIN PELTON DENGAN 26 SUDU PADA HEAD 9,41 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU

UJI PERFORMANSI TURBIN PELTON DENGAN 26 SUDU PADA HEAD 9,41 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU UJI PERFORMANSI TURBIN PELTON DENGAN 26 SUDU PADA HEAD 9,41 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU Bona Halasan Nababan 1,Tekad Sitepu 2 1,2, Departemen Teknik Mesin, Universitas

Lebih terperinci

PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN DAYA TURBIN AIR

PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN DAYA TURBIN AIR TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN

Lebih terperinci

Panduan Praktikum Mesin-Mesin Fluida 2012

Panduan Praktikum Mesin-Mesin Fluida 2012 PERCOBAAN TURBIN PELTON A. TUJUAN PERCOBAAN Tujuan dari pelaksanaan percobaan ini adalah untuk mempelajari prinsip kerja dan karakteristik performance turbin air (pelton). Karakteristik performance turbin

Lebih terperinci

UJI PERFORMANSI TURBIN PELTON DENGAN 24 SUDU PADA HEAD 5,21 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU

UJI PERFORMANSI TURBIN PELTON DENGAN 24 SUDU PADA HEAD 5,21 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU UJI PERFORMANSI TURBIN PELTON DENGAN 24 SUDU PADA HEAD 5,21 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU Bernardus Lumban Gaol 1,Tekad Sitepu 2 1,2, Departemen Teknik Mesin, Universitas

Lebih terperinci

KAJIAN EKSPERIMENTAL OPTIMASI TIPE LEKUK SUDU TURBIN PELTON SUDU BASIS KONSTRUKSI ELBOW PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO

KAJIAN EKSPERIMENTAL OPTIMASI TIPE LEKUK SUDU TURBIN PELTON SUDU BASIS KONSTRUKSI ELBOW PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO A.11. Kajian Eksperimental Optimasi Tipe Lekuk Sudu Turbin Pelton... (Sahid) KAJIAN EKSPERIMENTAL OPTIMASI TIPE LEKUK SUDU TURBIN PELTON SUDU BASIS KONSTRUKSI ELBOW PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO

Lebih terperinci

2 a) Viskositas dinamik Viskositas dinamik adalah perbandingan tegangan geser dengan laju perubahannya, besar nilai viskositas dinamik tergantung dari

2 a) Viskositas dinamik Viskositas dinamik adalah perbandingan tegangan geser dengan laju perubahannya, besar nilai viskositas dinamik tergantung dari VARIASI JARAK NOZEL TERHADAP PERUAHAN PUTARAN TURIN PELTON Rizki Hario Wicaksono, ST Jurusan Teknik Mesin Universitas Gunadarma ASTRAK Efek jarak nozel terhadap sudu turbin dapat menghasilkan energi terbaik.

Lebih terperinci

PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM

PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM Franciscus Manuel Sitompul 1,Mulfi Hazwi 2 Email:manuel_fransiskus@yahoo.co.id 1,2, Departemen

Lebih terperinci

PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN AIR KINETIK (Sebagai Alternatif Pembangkit Listrik Daerah Pedesaan)

PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN AIR KINETIK (Sebagai Alternatif Pembangkit Listrik Daerah Pedesaan) TURBO Vol. 5 No. 1. 2016 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN

Lebih terperinci

ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON ABSTRAK

ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON ABSTRAK ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON Ali Thobari, Mustaqim, Hadi Wibowo Faculty of Engineering, Universitas Pancasakti Tegal Jl. Halmahera KM. 1 Kota Tegal 52122 Telp./Fax.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TURBIN AIR Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi

Lebih terperinci

PENERAPAN NOSEL BERPENAMPANG SEGI EMPAT PADA TURBIN PIPA BELAH DUA

PENERAPAN NOSEL BERPENAMPANG SEGI EMPAT PADA TURBIN PIPA BELAH DUA A.12. Penerapan Nosel Berpenampang Segi Empat pada Turbin Pipa Belah Dua (Sahid) PENERAPAN NOSEL BERPENAMPANG SEGI EMPAT PADA TURBIN PIPA BELAH DUA Sahid Jurusan Teknik Mesin Politeknik Negeri Semarang

Lebih terperinci

RANCANG BANGUN DRAFT TUBE,TRANSMISI DAN PENGUJIAN TURBIN AIR FRANCIS DENGAN KAPASITAS 500 L/MIN DAN HEAD 3,5 M

RANCANG BANGUN DRAFT TUBE,TRANSMISI DAN PENGUJIAN TURBIN AIR FRANCIS DENGAN KAPASITAS 500 L/MIN DAN HEAD 3,5 M RANCANG BANGUN DRAFT TUBE,TRANSMISI DAN PENGUJIAN TURBIN AIR FRANCIS DENGAN KAPASITAS 500 L/MIN DAN HEAD 3,5 M D III TEKNIK MESIN FTI-ITS Oleh: TRISNA MANGGALA Y 2107030056 Dosen Pembimbing: Dr. Ir. HERU

Lebih terperinci

KAJI EKSPERIMENTAL PENGARUH VARIASI DIAMETER NOZZLE DAN DIAMETER RUNNER TERHADAP DAYA DAN EFISIENSI MODEL TURBIN PLETON

KAJI EKSPERIMENTAL PENGARUH VARIASI DIAMETER NOZZLE DAN DIAMETER RUNNER TERHADAP DAYA DAN EFISIENSI MODEL TURBIN PLETON KAJI EKSPERIMENTAL PENGARUH VARIASI DIAMETER NOZZLE DAN DIAMETER RUNNER TERHADAP DAYA DAN EFISIENSI MODEL TURBIN PLETON Supardi 1, Chandra Pramana 2 Program Studi Teknik Mesin Fakultas Teknik Universitas

Lebih terperinci

DAFTAR ISI DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... A. Latar Belakang B. Tujuan dan Manfaat C. Batasan Masalah...

DAFTAR ISI DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... A. Latar Belakang B. Tujuan dan Manfaat C. Batasan Masalah... i DAFTAR ISI Halaman DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... i iv v viii I. PENDAHULUAN A. Latar Belakang... 1 B. Tujuan dan Manfaat... 2 C. Batasan Masalah... 2 D. Sistematika

Lebih terperinci

TUGAS AKHIR BIDANG STUDI KONVERSI ENERGI

TUGAS AKHIR BIDANG STUDI KONVERSI ENERGI TUGAS AKHIR BIDANG STUDI KONVERSI ENERGI PERANCANGAN ULANG TURBIN FRANCIS PEMBANGKIT LISTRIK TENAGA MIKROHIDRO (PLTMH) STUDI KASUS DI SUNGAI SUKU BAJO, DESA LAMANABI, KECAMATAN TANJUNG BUNGA, KABUPATEN

Lebih terperinci

PENGUJIAN TURBIN AIR FRANCIS

PENGUJIAN TURBIN AIR FRANCIS PENGUJIAN TURBIN AIR FRANCIS BAB I PENDAHULUAN 1.1 Latar Belakang Seiring dengan perkembangan teknologi yang semakin maju, banyak diciptakan peralatan peralatan yang inovatif serta tepat guna. Dalam bidang

Lebih terperinci

Jurnal Ilmiah TEKNIK DESAIN MEKANIKA Vol. 6 No. 3, Juli 2017 ( )

Jurnal Ilmiah TEKNIK DESAIN MEKANIKA Vol. 6 No. 3, Juli 2017 ( ) Jurnal Ilmiah TEKNIK DESAIN MEKANIKA Vol. 6 No. 3, Juli 2017 (294 298) Pengaruh Variasi Sudut Sudu Segitiga Terhadap Performansi Kincir Air Piko Hidro Budiartawan K. 1, Suryawan A. A. A. 2, Suarda M. 3

Lebih terperinci

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Ray Posdam J Sihombing 1, Syahril Gultom 2 1,2 Departemen

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TURBIN AIR Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pembangkit Listrik Tenaga Air Pembangkit Listrik Tenaga Air (PLTA) adalah pembangkit yang mengandalkan energi potensial dan kinetik dari air untuk menghasilkan energi listrik.

Lebih terperinci

HYDRO POWER PLANT. Prepared by: anonymous

HYDRO POWER PLANT. Prepared by: anonymous HYDRO POWER PLANT Prepared by: anonymous PRINSIP DASAR Cara kerja pembangkit listrik tenaga air adalah dengan mengambil air dalam jumlah debit tertentu dari sumber air (sungai, danau, atau waduk) melalui

Lebih terperinci

KAJI EKSPERIMENT PERFORMA TURBIN PELTON TYPE FM 32

KAJI EKSPERIMENT PERFORMA TURBIN PELTON TYPE FM 32 KAJI EKSPERIMENT PERFORMA TURBIN PELTON TYPE FM 32 Sahran Fauji, Suryadimal, M.T 1), Burmawi, M.Si 2) Program Studi Teknik Mesin-Fakultas Teknologi Industri-Universitas Bung Hatta Jl. Gajah Mada No.19

Lebih terperinci

Perancangan Turbin Pelton

Perancangan Turbin Pelton Perancangan Turbin Pelton Anjar Susatyo, Lukman Hakim Puslit Tenaga Listrik dan Mekatronik-LIPI ABSTRAK Turbin Pelton adalah turbin reaksi di mana satu atau lebih pancaran air menumbuk roda yang terdapat

Lebih terperinci

LAPORAN TUGAS AKHIR. Pembuatan dan Pengujian Turbin Pelton Diameter 20cm pada Sistem Simulator Sirkulasi Air

LAPORAN TUGAS AKHIR. Pembuatan dan Pengujian Turbin Pelton Diameter 20cm pada Sistem Simulator Sirkulasi Air LAPORAN TUGAS AKHIR Pembuatan dan Pengujian Turbin Pelton Diameter 20cm pada Sistem Simulator Sirkulasi Air Manufacturing and Testing of Turbine Pelton Diameter of 20 cm on the simulation of water circulation

Lebih terperinci

RANCANG MAJU SCALE DOWN PELTON UNTUK SIMULASI KONDISI LINGKUNGAN FORWARD ENGINEERING PELTON TURBINE SCALE DOWN FOR ENVIRONMENTAL CONDITION SIMULATION

RANCANG MAJU SCALE DOWN PELTON UNTUK SIMULASI KONDISI LINGKUNGAN FORWARD ENGINEERING PELTON TURBINE SCALE DOWN FOR ENVIRONMENTAL CONDITION SIMULATION JMI Vol. 38 No. 1 2016 METAL INDONESIA Journal homepage: http://www.jurnalmetal.or.id/index.php/jmi P-ISSN: 0126 3463 e-issn : 2548-673X RANCANG MAJU SCALE DOWN PELTON UNTUK SIMULASI KONDISI LINGKUNGAN

Lebih terperinci

ANALISIS UNJUK KERJA TURBIN AIR KAPASITAS 81,1 MW UNIT 1 PADA BEBAN NORMAL DAN BEBAN PUNCAK DI PT INDONESIA ASAHAN ALUMINIUM POWER PLANT

ANALISIS UNJUK KERJA TURBIN AIR KAPASITAS 81,1 MW UNIT 1 PADA BEBAN NORMAL DAN BEBAN PUNCAK DI PT INDONESIA ASAHAN ALUMINIUM POWER PLANT ANALISIS UNJUK KERJA TURBIN AIR KAPASITAS 81,1 MW UNIT 1 PADA BEBAN NORMAL DAN BEBAN PUNCAK DI PT INDONESIA ASAHAN ALUMINIUM POWER PLANT LAPORAN TUGAS AKHIR Diajukan untuk Memenuhi Sebagian Persyaratan

Lebih terperinci

BAB I PENGUJIAN TURBIN AIR FRANCIS

BAB I PENGUJIAN TURBIN AIR FRANCIS BAB I PENGUJIAN TURBIN AIR FRANCIS 1.1 Pendahuluan 1.1.1 Tinjauan Umum Praktikan sangat membantu dalam mendapatkan gambaran yang nyata tentang alat/mesin yang telah dipelajari di bangku kuliah. Dengan

Lebih terperinci

ANALISIS TEKANAN POMPA TERHADAP DEBIT AIR Siswadi 5

ANALISIS TEKANAN POMPA TERHADAP DEBIT AIR Siswadi 5 ANALISIS TEKANAN POMPA TERHADAP DEBIT AIR Siswadi 5 Abstrak: Dengan ketersediannya ilmu mekanika fluida maka spesifikasi teknis yang berkaitan dengan aplikasi tekanan pompa terhadap debit air sangat langka,

Lebih terperinci

Pengaruh Variasi Ketinggian Aliran Sungai Terhadap Kinerja Turbin Kinetik Bersudu Mangkok Dengan Sudut Input 10 o

Pengaruh Variasi Ketinggian Aliran Sungai Terhadap Kinerja Turbin Kinetik Bersudu Mangkok Dengan Sudut Input 10 o Pengaruh Variasi Ketinggian Aliran Sungai Terhadap Kinerja Turbin Kinetik Bersudu Mangkok Dengan Sudut Input 10 o Asroful Anam Jurusan Teknik Mesin S-1 FTI ITN Malang, Jl. Raya Karanglo KM 02 Malang E-mail:

Lebih terperinci

PERANCANGAN MODEL AIR ALIRAN SILANG (CROSS FLOW TURBINE) DENGAN HEAD 2 m DAN DEBIT 0,03 m 3 /s

PERANCANGAN MODEL AIR ALIRAN SILANG (CROSS FLOW TURBINE) DENGAN HEAD 2 m DAN DEBIT 0,03 m 3 /s JTM Vol. 03, No. 3, Oktober 2014 7 PERANCANGAN MODEL AIR ALIRAN SILANG (CROSS FLOW TURBINE) DENGAN HEAD 2 m DAN DEBIT 0,03 m 3 /s Ridwan Program Studi Teknik Mesin, Fakultas Teknik, Universitas Mercu Buana,

Lebih terperinci

Jurnal Rekayasa Mesin Vol.4, No.3 Tahun 2013: ISSN X. Pengaruh Variasi Sudut Input Sudu Mangkok Terhadap Kinerja Turbin Kinetik

Jurnal Rekayasa Mesin Vol.4, No.3 Tahun 2013: ISSN X. Pengaruh Variasi Sudut Input Sudu Mangkok Terhadap Kinerja Turbin Kinetik Jurnal Rekayasa Mesin Vol., No.3 Tahun 213: 199-23 ISSN 2-6X Pengaruh Variasi Sudut Input Sudu Mangkok Terhadap Kinerja Turbin Kinetik Asroful Anam, Rudy Soenoko, Denny Widhiyanuriyawan Jurusan Teknik

Lebih terperinci

TURBIN AIR. Turbin air mengubah energi kinetik. mekanik. Energi kinetik dari air tergantung dari massa dan ketinggian air. Sementara. dan ketinggian.

TURBIN AIR. Turbin air mengubah energi kinetik. mekanik. Energi kinetik dari air tergantung dari massa dan ketinggian air. Sementara. dan ketinggian. MESIN-MESIN FLUIDA TURBIN AIR TURBIN AIR Turbin air mengubah energi kinetik dan potensial dari air menjadi tenaga mekanik. Energi kinetik dari air tergantung dari massa dan ketinggian air. Sementara energi

Lebih terperinci

RANCANG BANGUN DAN PENGUJIAN TURBIN PELTON MINI BERTEKANAN 7 BAR DENGAN DIAMETER RODA TURBIN 68 MM DAN JUMLAH SUDU 12

RANCANG BANGUN DAN PENGUJIAN TURBIN PELTON MINI BERTEKANAN 7 BAR DENGAN DIAMETER RODA TURBIN 68 MM DAN JUMLAH SUDU 12 RANCANG BANGUN DAN PENGUJIAN TURBIN PELTON MINI BERTEKANAN 7 BAR DENGAN DIAMETER RODA TURBIN 68 MM DAN JUMLAH SUDU 12 SKRIPSI Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik DONALD SUPRI

Lebih terperinci

PENGUJIAN PRESTASI KINCIR AIR TIPE OVERSHOT DI IRIGASI KAMPUS UNIVERSITAS RIAU DENGAN PENSTOCK BERVARIASI

PENGUJIAN PRESTASI KINCIR AIR TIPE OVERSHOT DI IRIGASI KAMPUS UNIVERSITAS RIAU DENGAN PENSTOCK BERVARIASI PENGUJIAN PRESTASI KINCIR AIR TIPE OVERSHOT DI IRIGASI KAMPUS UNIVERSITAS RIAU DENGAN PENSTOCK BERVARIASI T Harismandri 1, Asral 2 Laboratorium, Jurusan Teknik Mesin, Fakultas Teknik Universitas Riau Kampus

Lebih terperinci

BAB II DASAR TEORI. E p = Energi potensial (joule) m =Massa benda (kg) g = Percepatan gravitasi (m/s 2 ) h = Ketinggian benda (m)

BAB II DASAR TEORI. E p = Energi potensial (joule) m =Massa benda (kg) g = Percepatan gravitasi (m/s 2 ) h = Ketinggian benda (m) BAB II DASAR TEORI 2.1 Sumber Energi 2.1.1 Energi Potensial Energi potensial adalah energi yang dimiliki suatu benda akibat pengaruh tempat atau kedudukan dari benda tersebut Rumus yang dipakai dalam energi

Lebih terperinci

BAB III METODE PENELITIAN. Bahan yang digunakan pada penelitian ini adalah :

BAB III METODE PENELITIAN. Bahan yang digunakan pada penelitian ini adalah : BAB III METODE PENELITIAN 3.1. Bahan dan Alat 3.1.1. Bahan Penelitian Bahan yang digunakan pada penelitian ini adalah : Air 3.1.2. Alat Penelitian Alat yang digunakan dalam penelitian ini dapat dilihat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. MESIN-MESIN FLUIDA Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

ANALISA KETINGGIHAN DAN DEBIT AIR PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO PADA DAERAH TERPENCIL

ANALISA KETINGGIHAN DAN DEBIT AIR PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO PADA DAERAH TERPENCIL ANALISA KETINGGIHAN DAN DEBIT AIR PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO PADA DAERAH TERPENCIL Purnomo 1 Efrita Arfah Z 2 Edi Suryanto 3 Jurusan Teknik Mesin Institut Teknologi Adhi Tama Surabaya Jl.

Lebih terperinci

KAJI EKSPERIMENTAL KINERJA TURBIN AIR HASIL MODIFIKASI POMPA SENTRIFUGAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO

KAJI EKSPERIMENTAL KINERJA TURBIN AIR HASIL MODIFIKASI POMPA SENTRIFUGAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO B.11. Kaji eksperimental kinerja turbin air hasil modifikasi... KAJI EKSPERIMENTAL KINERJA TURBIN AIR HASIL MODIFIKASI POMPA SENTRIFUGAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO Gatot Suwoto Program

Lebih terperinci

LAMPIRAN. Panduan Manual. Alat Peraga PLTMH Dengan Turbin Pelton. 1. Bagian Bagian Alat. Gambar 1.1 Bagian Alat. Keterangan gambar:

LAMPIRAN. Panduan Manual. Alat Peraga PLTMH Dengan Turbin Pelton. 1. Bagian Bagian Alat. Gambar 1.1 Bagian Alat. Keterangan gambar: LAMPIRAN Panduan Manual Alat Peraga PLTMH Dengan Turbin Pelton 1. Bagian Bagian Alat Gambar 1.1 Bagian Alat Keterangan gambar: 1. Turbin Pelton 2. Rumah Turbin 3. Bagian Display 4. Pompa Air 5. Sensor

Lebih terperinci

KARAKTERISTIK TURBIN KAPLAN PADA SUB UNIT PEMBANGKIT LISTRIK TENAGA AIR KEDUNGOMBO

KARAKTERISTIK TURBIN KAPLAN PADA SUB UNIT PEMBANGKIT LISTRIK TENAGA AIR KEDUNGOMBO EKSERGI Jurnal Teknik Energi Vol 11 No. 3 September 2015; 69-74 KARAKTERISTIK TURBIN KAPLAN PADA SUB UNIT PEMBANGKIT LISTRIK TENAGA AIR KEDUNGOMBO Mulyono, Suwarti Program Studi Teknik Konversi Energi,

Lebih terperinci

Makalah Pembangkit listrik tenaga air

Makalah Pembangkit listrik tenaga air Makalah Pembangkit listrik tenaga air Di susun oleh : Muhamad Halfiz (2011110031) Robi Wijaya (2012110003) Alhadi (2012110093) Rari Ranjes Noviko (2013110004) Sulis Tiono (2013110008) Jurusan Teknik Mesin

Lebih terperinci

PENGUJIAN PROTOTIPE TURBIN HEAD SANGAT RENDAH PADA SUATU SALURAN ALIRAN AIR

PENGUJIAN PROTOTIPE TURBIN HEAD SANGAT RENDAH PADA SUATU SALURAN ALIRAN AIR PENGUJIAN PROTOTIPE TURBIN HEAD SANGAT RENDAH PADA SUATU SALURAN ALIRAN AIR Ridwan Arief Subekti 1, Anjar Susatyo 2 1 Pusat Penelitian Tenaga Listrik dan Mekatronik, LIPI, Bandung ridw001@lipi.go.id 2

Lebih terperinci

SIMULASI PERANCANGAN TURBIN PROPELLER SUMBU VERTIKAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO

SIMULASI PERANCANGAN TURBIN PROPELLER SUMBU VERTIKAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO TUGAS AKHIR BIDANG KONVERSI ENERGI SIMULASI PERANCANGAN TURBIN PROPELLER SUMBU VERTIKAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO Diajukan Sebagai Salah Satu Syarat Untuk Menyelesaikan Pendidikan Tahap

Lebih terperinci

Rancang Bangun Prototipe Portable Mikro Hydro Menggunakan Turbin Tipe Cross Flow

Rancang Bangun Prototipe Portable Mikro Hydro Menggunakan Turbin Tipe Cross Flow Rancang Bangun Prototipe Portable Mikro Hydro Menggunakan Turbin Tipe Cross Flow Roy Hadiyanto*, Fauzi Bakri Jurusan Fisika, Fakultas MIPA Universitas Negeri Jakarta Jl. Pemuda No.10, Rawamangun, Jakarta

Lebih terperinci

BAB II DASAR TEORI 2.1. Tinjauan Pustaka

BAB II DASAR TEORI 2.1. Tinjauan Pustaka BAB II DASAR TEORI 2.1. Tinjauan Pustaka Chen, dkk (2013) meneliti tentang Vertical Axis Water Turbine (VAWT) yang diaplikasikan untuk menggerakkan power generation untuk aliran air dalam pipa. Tujuannya

Lebih terperinci

PENGARUH KECEPATAN SUDUT TERHADAP EFISIENSI POMPA SENTRIFUGAL JENIS TUNGGAL

PENGARUH KECEPATAN SUDUT TERHADAP EFISIENSI POMPA SENTRIFUGAL JENIS TUNGGAL TURBO Vol. 4 No. 2. 2015 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/ummojs/index.php/turbo PENGARUH KECEPATAN SUDUT TERHADAP EFISIENSI

Lebih terperinci

Pengaruh Berat Bucket Terhadap Putaran dan Torsi Pada Turbin Pelton

Pengaruh Berat Bucket Terhadap Putaran dan Torsi Pada Turbin Pelton Vol. 2, 2017 Pengaruh Berat Bucket Terhadap dan Pada Turbin Pelton Ahmad Samil Mubarok *, M Yusuf Djeli, Dan Mugisidi Program Studi Teknik Mesin, Faculty of Engineering (Universitas Muhammadiyah Prof DR.

Lebih terperinci

Turbin Screw Untuk Pembangkit Listrik Skala Mikrohidro Ramah Lingkungan

Turbin Screw Untuk Pembangkit Listrik Skala Mikrohidro Ramah Lingkungan Jurnal Rekayasa Hijau No.3 Vol. I ISSN: 2550-1070 Oktober 2017 Turbin Screw Untuk Pembangkit Listrik Skala Mikrohidro Ramah Lingkungan Encu Saefudin, Tarsisius Kristyadi, Muhammad Rifki, Syaiful Arifin

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN USTAKA 2.1. engertian Dasar Tentang Turbin Air Kata turbin ditemukan oleh seorang insinyur yang bernama Claude Bourdin pada awal abad 19, yang diambil dari terjemahan bahasa latin dari

Lebih terperinci

PENGARUH JARAK SEMPROT NOZZLE TERHADAP PUTARAN POROS TURBIN DAN DAYA LISTRIK YANGDIHASILKAN PADA PROTOTYPE TURBIN PELTON

PENGARUH JARAK SEMPROT NOZZLE TERHADAP PUTARAN POROS TURBIN DAN DAYA LISTRIK YANGDIHASILKAN PADA PROTOTYPE TURBIN PELTON PENGARUH JARAK SEMPROT NOZZLE TERHADAP PUTARAN POROS TURBIN DAN DAYA LISTRIK YANGDIHASILKAN PADA PROTOTYPE TURBIN PELTON Mulyadi 1) Ir. Margianto, M.T 2) Ena Marlina, S.T, M.T 3) Program Strata Satu Teknik

Lebih terperinci

Jurusan Fisika, Fakultas MIPA Universitas Negeri Jakarta Jl. Pemuda No.10, Rawamangun, Jakarta Timur *

Jurusan Fisika, Fakultas MIPA Universitas Negeri Jakarta Jl. Pemuda No.10, Rawamangun, Jakarta Timur * Pengujian Prototipe Model Turbin Air Sederhana Dalam Proses Charging 4 Buah Baterai 1.2 Volt Yang Disusun Seri Pada Sistem Pembangkit Listrik Alternatif Tenaga Air Fitrianto Nugroho *, Iwan Sugihartono,

Lebih terperinci

BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER

BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER 4.1 Perhitungan Blower Untuk mengetahui jenis blower yang digunakan dapat dihitung pada penjelasan dibawah ini : Parameter yang diketahui : Q = Kapasitas

Lebih terperinci

PERENCANAAN SERTA PEMBUATAN PROTOTIPE TURBIN AIR TERAPUNG BERSUDU LENGKUNG DENGAN MEMANFAATKAN KECEPATAN ALIRAN AIR SUNGAI SKRIPSI

PERENCANAAN SERTA PEMBUATAN PROTOTIPE TURBIN AIR TERAPUNG BERSUDU LENGKUNG DENGAN MEMANFAATKAN KECEPATAN ALIRAN AIR SUNGAI SKRIPSI PERENCANAAN SERTA PEMBUATAN PROTOTIPE TURBIN AIR TERAPUNG BERSUDU LENGKUNG DENGAN MEMANFAATKAN KECEPATAN ALIRAN AIR SUNGAI SKRIPSI Skripsi Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Fluida Fluida diartikan sebagai suatu zat yang dapat mengalir. Istilah fluida mencakup zat cair dan gas karena zat cair seperti air atau zat gas seperti udara dapat mengalir.

Lebih terperinci

SESSION 8 HYDRO POWER PLANT. 1. Potensi PLTA 2. Jenis PLTA 3. Prinsip Kerja 4. Komponen PLTA 5. Perencanaan PLTA

SESSION 8 HYDRO POWER PLANT. 1. Potensi PLTA 2. Jenis PLTA 3. Prinsip Kerja 4. Komponen PLTA 5. Perencanaan PLTA SESSION 8 HYDRO POWER PLANT 1. Potensi PLTA 2. Jenis PLTA 3. Prinsip Kerja 4. Komponen PLTA 5. Perencanaan PLTA 6. Kelebihan dan Kekurangan PLTA 1. POTENSI PLTA Teoritis Jumlah potensi tenaga air di permukaan

Lebih terperinci

Jurnal e-dinamis, Volume 3, No.3 Desember 2012 ISSN

Jurnal e-dinamis, Volume 3, No.3 Desember 2012 ISSN SIMULASI NUMERIK ALIRAN FLUIDA DI DALAM RUMAH POMPA SENTRIFUGAL YANG DIOPERASIKAN SEBAGAI TURBIN PADA PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO (PLTMH)MENGGUNAKAN CFD DENGAN HEAD (H) 9,29 M DAN 5,18 M RIDHO

Lebih terperinci

PERFORMANSI POMPA AIR DAB TYPE DB-125B YANG DIFUNGSIKAN SEBAGAI TURBIN AIR

PERFORMANSI POMPA AIR DAB TYPE DB-125B YANG DIFUNGSIKAN SEBAGAI TURBIN AIR PERFORMANSI POMPA AIR DAB TYPE DB-125B YANG DIFUNGSIKAN SEBAGAI TURBIN AIR Adi Ramadhani Muhammad Arief, G. D. Soplanit, I Nyoman Gede Fakultas Teknik, Jurusan Teknik Mesin, Universitas Sam Ratulangi Manado

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Dasar dalam pemilihan bahan Bahan merupakan syarat utama sebelum melakukan perhitungan komponen pada setiap perencanaan pada suatu mesin atau peralatan harus dipertimbangkan

Lebih terperinci

PEMODELAN TURBIN CROSS-FLOW UNTUK DIAPLIKASIKAN PADA SUMBER AIR DENGAN TINGGI JATUH DAN DEBIT KECIL

PEMODELAN TURBIN CROSS-FLOW UNTUK DIAPLIKASIKAN PADA SUMBER AIR DENGAN TINGGI JATUH DAN DEBIT KECIL PEMODELAN TURBIN CROSS-FLOW UNTUK DIAPLIKASIKAN PADA SUMBER AIR DENGAN TINGGI JATUH DAN DEBIT KECIL Oleh: Mokhamad Tirono ABSTRAK : Telah dilakukan suatu upaya memodifikasi dan rekayasa turbin jenis cross-flow

Lebih terperinci

UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL

UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL Yudi Setiawan, Irfan Wahyudi, Erwin Nandes Jurusan Teknik Mesin, Universitas Bangka Belitung Jl.Merdeka no. 04 Pangkalpinang

Lebih terperinci

TUGAS AKHIR BIDANG KONVERSI ENERGI PERANCANGAN, PEMBUATAN DAN PENGUJIAN POMPA DENGAN PEMASANGAN TUNGGAL, SERI DAN PARALEL

TUGAS AKHIR BIDANG KONVERSI ENERGI PERANCANGAN, PEMBUATAN DAN PENGUJIAN POMPA DENGAN PEMASANGAN TUNGGAL, SERI DAN PARALEL TUGAS AKHIR BIDANG KONVERSI ENERGI PERANCANGAN, PEMBUATAN DAN PENGUJIAN POMPA DENGAN PEMASANGAN TUNGGAL, SERI DAN PARALEL Oleh: ANGGIA PRATAMA FADLY 07 171 051 JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

Analisa Pengaruh Variasi Volume Tabung Udara Dan Variasi Beban Katup Limbah Terhadap Performa Pompa Hidram

Analisa Pengaruh Variasi Volume Tabung Udara Dan Variasi Beban Katup Limbah Terhadap Performa Pompa Hidram Analisa Pengaruh Variasi Volume Tabung Udara Dan Variasi Beban Katup Limbah Terhadap Performa Pompa Hidram Andrea Sebastian Ginting 1, M. Syahril Gultom 2 1,2 Departemen Teknik Mesin, Fakultas Teknik,

Lebih terperinci

DRAFT PATENT LINTASAN RANTAI BERBENTUK SEGITIGA PYTHAGORAS PADA ALAT PEMBANGKIT ENERGI MEKANIK DENGAN MENGGUNAKAN ENERGI POTENSIAL AIR

DRAFT PATENT LINTASAN RANTAI BERBENTUK SEGITIGA PYTHAGORAS PADA ALAT PEMBANGKIT ENERGI MEKANIK DENGAN MENGGUNAKAN ENERGI POTENSIAL AIR DRAFT PATENT LINTASAN RANTAI BERBENTUK SEGITIGA PYTHAGORAS PADA ALAT PEMBANGKIT ENERGI MEKANIK DENGAN MENGGUNAKAN ENERGI POTENSIAL AIR Oleh : Dr Suhartono S.Si M.Kom 1 Deskrisi LINTASAN RANTAI BERBENTUK

Lebih terperinci

ANALISA PERANCANGAN TURBIN VORTEX DENGAN CASING BERPENAMPANG SPIRAL DAN LINGKARAN DENGAN 3 VARIASI DIMENSI SUDU

ANALISA PERANCANGAN TURBIN VORTEX DENGAN CASING BERPENAMPANG SPIRAL DAN LINGKARAN DENGAN 3 VARIASI DIMENSI SUDU ANALISA PERANCANGAN TURBIN VORTEX DENGAN CASING BERPENAMPANG SPIRAL DAN LINGKARAN DENGAN 3 VARIASI DIMENSI SUDU SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik INDRA

Lebih terperinci

UJI EKSPERIMENTAL TURBIN KAPLAN DENGAN 5 RUNNER BLADE DAN ANALISA PERBANDINGAN VARIASI SUDUT GUIDE VANE

UJI EKSPERIMENTAL TURBIN KAPLAN DENGAN 5 RUNNER BLADE DAN ANALISA PERBANDINGAN VARIASI SUDUT GUIDE VANE UJI EKSPERIMENTAL TURBIN KAPLAN DENGAN 5 RUNNER BLADE DAN ANALISA PERBANDINGAN VARIASI SUDUT GUIDE VANE SKRIPSI Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik JAN SIMALUNGUN PURBA NIM.

Lebih terperinci

RANCANG BANGUN MODEL TURBIN PELTON MINI SEBAGAI MEDIA SIMULASI/PRAKTIKUM MATA KULIAH KONVERSI ENERGI DAN MEKANIKA FLUIDA

RANCANG BANGUN MODEL TURBIN PELTON MINI SEBAGAI MEDIA SIMULASI/PRAKTIKUM MATA KULIAH KONVERSI ENERGI DAN MEKANIKA FLUIDA RANCANG BANGUN MODEL TURBIN PELTON MINI SEBAGAI MEDIA SIMULASI/PRAKTIKUM MATA KULIAH KONVERSI ENERGI DAN MEKANIKA FLUIDA Hadimi, Supandi dan Agus Rohermanto Dosen Jurusan Teknik Mesin Politeknik Negeri

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan

Lebih terperinci

Potensi Tenaga Air di Indonesia Selama ini telah beberapa kali dilakukan studi potensi tenaga air di negara kita. Pada tahun 1968 Lembaga Masalah Ketenagaan- PLN (LMK) mencatat potensi tenaga air sebesar

Lebih terperinci

LAPORAN TUGAS AKHIR PEMBUATAN DAN PENGUJIAN PERFORMA TURBIN PELTON SUDU 8 DENGAN MENGGUNAKAN 1 NOZEL PADA SIMULATOR PLTMH

LAPORAN TUGAS AKHIR PEMBUATAN DAN PENGUJIAN PERFORMA TURBIN PELTON SUDU 8 DENGAN MENGGUNAKAN 1 NOZEL PADA SIMULATOR PLTMH LAPORAN TUGAS AKHIR PEMBUATAN DAN PENGUJIAN PERFORMA TURBIN PELTON SUDU 8 DENGAN MENGGUNAKAN 1 NOZEL PADA SIMULATOR PLTMH DESIGN OF PELTON TURBINE BLADE 8 AND TESTING PERFORMANCE BY USING 1 NOZZLE IN MICRO

Lebih terperinci

PENGARUH VARIASI JUMLAH NOZZLE TERHADAP DAYA LISTRIK YANG DIHASILKAN PADA PROTOTYPE TURBIN PELTON

PENGARUH VARIASI JUMLAH NOZZLE TERHADAP DAYA LISTRIK YANG DIHASILKAN PADA PROTOTYPE TURBIN PELTON PENGARUH VARIASI JUMLAH NOZZLE TERHADAP DAYA LISTRIK YANG DIHASILKAN PADA PROTOTYPE TURBIN PELTON Sufyan Assauri 1) Ir. Margianto, M.T 2) Ena Marlina, S.T, M.T 3) Program Strata Satu Teknik Mesin Universitas

Lebih terperinci

ANALISIS KINERJA RODA AIR ALIRAN BAWAH SUDU LENGKUNG 180 o UNTUK PEMBANGKIT LISTRIK

ANALISIS KINERJA RODA AIR ALIRAN BAWAH SUDU LENGKUNG 180 o UNTUK PEMBANGKIT LISTRIK PROS ID I NG 2 0 1 3 HASIL PENELITIAN FAKULTAS TEKNIK ANALISIS KINERJA RODA AIR ALIRAN BAWAH SUDU LENGKUNG 180 o UNTUK PEMBANGKIT LISTRIK Jurusan Teknik Mesin Fakultas Teknik Universitas Hasanuddin Jl.

Lebih terperinci

PENGARUH UKURAN DIAMETER NOZZLE 7 DAN 9 mm TERHADAP PUTARAN SUDU DAN DAYA LISTRIK PADA TURBIN PELTON. Dr. Sri Poernomo Sari, ST., MT.

PENGARUH UKURAN DIAMETER NOZZLE 7 DAN 9 mm TERHADAP PUTARAN SUDU DAN DAYA LISTRIK PADA TURBIN PELTON. Dr. Sri Poernomo Sari, ST., MT. PENGARUH UKURAN DIAMETER NOZZLE 7 DAN 9 mm TERHADAP PUTARAN SUDU DAN DAYA LISTRIK PADA TURBIN PELTON Dr. Sri Poernomo Sari, ST., MT.*), Ryan Fasha**) *) Dosen Teknik Mesin Universitas Gunadarma **) Mahasiswa

Lebih terperinci

Perancangan dan Pembuatan Turbin Pelton

Perancangan dan Pembuatan Turbin Pelton Perancangan dan Pembuatan Turbin Pelton Oleh : Tiar Riptahadi W. K. 2106 030 065 Dosen Pembimbing : Dr.Ir. Heru Mirmanto,MT 132 135 223 LOGO Contents You can briefly add outline of this slide page in this

Lebih terperinci

ANALISIS DAYA DAN EFISIENSI TURBIN AIR KINETIS AKIBAT PERUBAHAN PUTARAN RUNNER

ANALISIS DAYA DAN EFISIENSI TURBIN AIR KINETIS AKIBAT PERUBAHAN PUTARAN RUNNER ANALISIS DAYA DAN EFISIENSI TURBIN AIR KINETIS AKIBAT PERUBAHAN PUTARAN RUNNER Arief Muliawan 1, Ahmad Yani 2 1) Teknik Elektro, Sekolah Tinggi Teknologi Bontang Jalan Ir. H. Juanda No. 73 RT.36 Bontang

Lebih terperinci

Kaji Eksperimental Turbin Air Tipe Undershot Untuk Pembangkit Listrik Tenaga Air Dipasang Secara Seri Pada Saluran Irigasi

Kaji Eksperimental Turbin Air Tipe Undershot Untuk Pembangkit Listrik Tenaga Air Dipasang Secara Seri Pada Saluran Irigasi Kaji Eksperimental Turbin Air Tipe Undershot Untuk Pembangkit Listrik Tenaga Air Dipasang Secara Seri Pada Saluran Irigasi Riko Fernando 1, Asral 2 Laboratorium Konversi Energi, Jurusan Teknik Mesin, Fakultas

Lebih terperinci

Eksperimental Bentuk Sudu Turbin Pelton Setengah Silinder Pada Variasi Sudut Keluaran Air Untuk Pembangkit Listrik Tenaga Picohydro

Eksperimental Bentuk Sudu Turbin Pelton Setengah Silinder Pada Variasi Sudut Keluaran Air Untuk Pembangkit Listrik Tenaga Picohydro Eksperimental Bentuk Sudu Turbin Pelton Setengah Silinder Pada Variasi Sudut Keluaran Air Untuk Pembangkit Listrik Tenaga Picohydro Sutomo 1) Arief Budiman 2) 1, 2 adalah Dosen Fakultas Teknik Universitas

Lebih terperinci

PENGARUH VARIASI KECEPATAN ALIRAN SUNGAI TERHADAP KINERJA TURBIN KINETIK BERSUDU MANGKOK DENGAN SUDUT INPUT 10 o

PENGARUH VARIASI KECEPATAN ALIRAN SUNGAI TERHADAP KINERJA TURBIN KINETIK BERSUDU MANGKOK DENGAN SUDUT INPUT 10 o Seminar Nasional Inovasi Dan Aplikasi Teknologi Di Industri 2018 ISSN 2085-4218 PENGARUH VARIASI KECEPATAN ALIRAN SUNGAI TERHADAP KINERJA TURBIN KINETIK BERSUDU MANGKOK DENGAN SUDUT INPUT 10 o Asroful

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010 RANCANGAN NOSEL DENGAN KATUP PENGATURAN DEBIT AIR PENGGERAK TURBIN OSSBEGER DAYA TURBIN = 2,6 KW HEAD = 12 METER SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana H E R D Y

Lebih terperinci

METAL: Jurnal Sistem Mekanik dan Termal

METAL: Jurnal Sistem Mekanik dan Termal METAL: JURNAL SISTEM MEKANIK DAN TERMAL - VOL. 01 NO. 01 (2017) 27-34 Terbit online pada laman web jurnal : http://metal.ft.unand.ac.id METAL: Jurnal Sistem Mekanik dan Termal ISSN (Print) 2477-3085 ISSN

Lebih terperinci