Sistem Temu Kembali Informasi/ Information Retrieval IRS VS SI LAIN
|
|
|
- Siska Makmur
- 8 tahun lalu
- Tontonan:
Transkripsi
1 Sistem Temu Kembali Informasi/ Information Retrieval IRS VS SI LAIN
2 Dokumen
3 Penyimpanan yang Terorganisasi
4 Database Mahasiswa Database Buku ID Nama Buku Pengarang 001 Information Retrieval Ricardo baeza 002 Matematika Diskrit Rinaldi Munir 003 Pengenalan Java Abdul Kadir 004 Pengenalan C++ Abdul Kadir 005 Design Pattern Arnold
5 Siapa pemain dalam novel tersebut? Unstructured
6 Digital Library UPGRIS
7 Google
8 Database retrieval Database Retrieval vs IR Dokumen mana yang mengandung himpunan keyword? Semantik didefinisikan dengan baik Error dari suatu obyek mengakibatkan kegagalan! Information retrieval Informasi mengenai suatu subyek atau topik Semantik dapat bersifat lepas (longgar) Error kecil ditoleransi
9 Pengertian IR Pencarian materi (biasanya dokumen) dari sesuatu yang sifatnya tak-terstruktur (unstructured, biasanya teks) untuk memenuhi kebutuhan informasi dari dalam koleksi besar (biasanya disimpan dalam komputer). Representasi, penyimpanan, organisasi, pencarian dan akses ke item informasi untuk memenuhi kebutuhan informasi pengguna. Penekanan pada proses retrieval informasi (bukan data). Karakterisasi kebutuhan informasi tidaklah mudah. Harus ditranslasi ke dalam suatu query terlebih dahulu.
10 Information Retrieval Secara teknis: indexing (pembuatan index) dan retrieval (pencarian keterangan) dokumen textual. Pencarian halaman pada WWW adalah aplikasi paling ngetop saat ini Fokus pertama: me-retrieve dokumen- dokumen yang relevan dengan query. Fokus kedua: me-retrieve himpunan besar dokumen secara efisien. Tujuan: Me-retrieve semua dokumen yang relevan sekaligus me-retrieve sesedikit mungkin dokumen yang tidak relevan
11 Relevan Relevansi merupakan suatu judgment (keputusan) subyektif dan dapat didasarkan pada: Topik yang tepat. Waktu (informasi terbaru). Otoritatif (dari suatu sumber terpercaya). Kebutuhan informasi dari pengguna. Kriteria relevansi utama: suatu sistem IR sebaiknya (harus) memenuhi kebutuhan informasi pengguna.
12 Pencarian Keyword Ide paling sederhana dari relevansi: apakah string query ada di dalam dokumen (kata demi kata, verbatim)? Ide yang lebih fleksibel: Berapa sering kata-kata di dalam query muncul di dalam dokumen, tanpa melihat urutannya (bag of words)?
13 Masalah dengan Keyword Mungkin tidak me-retrieve dokumen relevan yang menyertakan synonymous terms. restaurant vs. café NDHU vs. National Dong Hwa University Mungkin me-retrieve dokumen tak-relevan yang menyertakan ambiguous terms. bat (baseball vs. mamalia) Apple (perusahaan vs. buah-buahan) bit (unit data vs. perilaku menggigit)
14 Bukan Sekedar Keyword Kita akan mendiskusikan dasar-dasar IR berbasis keyword, tetapi Fokus pada perluasan dan pengembangan terakhir untuk mendapatkan hasil terbaik. Kita akan membahas dasar-dasar pembangunan sistem IR yang efisien, tetapi Fokus pada algoritma dan kemampuan dasar, bukan masalah sistem yang memungkinkan pengembangan ke database ukuran industri.
15 IR Cerdas Memanfaatkan pengertian atau makna dari kata yang digunakan. Melibatkan urutan kata di dalam query. Beradaptasi dengan pengguna berdasarkan pada feedback, langsung atau tidak langsung. Memperluas pencarian dengan term terkait. Mengerjakan pemeriksaan ejaaan/perbaikan tanda pengenal otomatis. Memanfaatkan Otoritas dari sumber
16 Perkembangan IR 1. Klasifikasi Dokumen 2. Clustering Dokumen 3. Peringkasan Teks 4. Question Answering System
17 Portal Jurnal e-jurnal.upgris.ac.id : : Prosiding.upgris.ac.id
18 Salah satu aplikasi umum dari Sistem Temu Kembali Informasi adalah search engine atau mesin pencarian yang terdapat pada jaringan internet. Pengguna dapat mencari halaman-halaman web yang dibutuhkannya melalui search engine. Contoh lain dari Sistem Temu Kembali Informasiadalah sistem informasi perpustakaan
19 Text Mining vs Data Mining Perbedaan di antara keduanya adalah pada data yang digunakan. Pada Data Retrieval System, data yang digunakan adalah structured data, sedangkan pada Information Retrieval System (IRS), data yang digunakan text mining pada umumnya adalah unstructured data, atau minimal semistructured. Hal ini menyebabkan adanya tantangan tambahan pada Information Retrieval System (IRS) yaitu struktur teks yang complex dan tidak lengkap, arti yang tidak jelas dan tidak standard, dan bahasa yang berbeda ditambah translasi yang tidak akurat. Dokumen adalah contoh informasi yang tidak terstruktur. Isi dari suatu dokumen sangat tergantung pada pembuat dokumen tersebut.
20 Search (Goal Oriented) Discover (Oportunistic) Structured Data Data Retrieval Data Mining Unstructured Data Information Retrieval Text MIning Structured Data vs Unstructured Data
21 Text mining pada unstructured data mendukung proses knowledge discovery pada koleksi dokumen yang besar. Text mining mencoba memberikan solusi terhadap permasalahan information overload, pemrosesan, pengorganisasian atau pengelompokan dan menganalisa dengan menggunakan teknik-teknik dari bidang ilmu yang terkait.
22 Object Data Mining Numerical & Categorical Text Mining Textual Data Structured Unstructured Representation Simpel Complex Dimension Billion Billion
23 Dokumen sebagai objek data dalam Sistem Temu Kembali Informasi merupakan sumber informasi. Dokumen biasanya dinyatakan dalam bentuk indeks atau kata kunci. Kata kunci dapat diekstrak secara langsung dari teks dokumen atau ditentukan secara khusus oleh spesialis subjek dalam proses pengindeksan yang pada dasarnya terdiri dari proses analisis dan representasi dokumen.
24 Tantangan yang dihadapi dari Sistem Temu Kembali Informasi
25 1. Informasi dalam bentuk teks yang terstruktur. 2. Jumlah data yang besar. 3. Jumlah kemungkinan yang tinggi, memungkinkan semua kata dan frase. 4. Hubungan antara konsep teks kompleks, contoh: AOL bergabung dengan time-warner & time-warner dibeli oleh AOL. 5. Kata ambigu dan kepekaan konteks, contoh: apple (perusahaan) atau apel (buah). 6. Kesalahan data, contoh: kesalahan ejaan.
26 Tahapan proses Sistem Temu Kembali Informasi & Text Mining
27 Text preprocessing (Features Generation) Features selection Pattern discovery Interpretation / evaluation,
28 Text preprocessing (Features Generation), Pada tahap ini dilakukan proses pembersihan text dengan cara membuang kata-kata yang tidak dipakai. Selain pembersihan teks, dilakukan juga restrukturisasi dengan cara memisah-misahkan tiap kata, menghilangkan imbuhan, dan melakukan proses penghilangan stopwords (kata yang tidak relevan yang banyak muncul pada sebuah teks).
29 Features selection Pada tahap ini dilakukan penghilangan dimensi kata.
30 Pattern discovery, Pada tahap ini dilakukan proses mining untuk mendapat pengetahuan baru pada teks.
31 Interpretation / evaluation, Hasil dari proses mining akan diinterpretasikan kedalam bentuk tertentu untuk kemudian dilakukan proses evaluasi.
32
33 Bagian-bagian dari Sistem Temu Kembali Informasi menurut gambar diatas meliputi: Text Operations (operasi terhadap teks) yang meliputi pemilihan kata-kata dalam query maupun dokumen (term selection) dalam pentransformasian dokumen atau query menjadi terms index (indeks dari kata-kata). Query formulation (formulasi terhadap query) yaitu memberi bobot pada indeks kata-kata query. Ranking (perangkingan), mencari dokumen-dokumen yang relevan terhadap query dan mengurutkan dokumen tersebut berdasarkan kesesuaiannya dengan query. Indexing (pengindeksan), membangun basis data indeks dari koleksi dokumen. Dilakukan terlebih dahulu sebelum pencarian dokumen dilakukan.
34 NEXT > IVERTED INDEX Tokenisasi, Stopwords, Stemming, Pembobotan,
BAB I PENDAHULUAN Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Semakin canggihnya teknologi di bidang komputasi dan telekomunikasi pada masa kini, membuat informasi dapat dengan mudah didapatkan oleh banyak orang. Kemudahan ini
Tugas Makalah. Sistem Temu Kembali Informasi (STKI) TI Implementasi Metode Generalized Vector Space Model Pada Information Retrieval System
Tugas Makalah Sistem Temu Kembali Informasi (STKI) TI029306 Implementasi Metode Generalized Vector Space Model Pada Information Retrieval System Oleh : I PUTU ANDREAS WARANU 1204505042 Dosen : I Putu Agus
Tugas Makalah. Sistem Temu Kembali Informasi (STKI) TI Implementasi Metode Generalized Vector Space Model Pada Information Retrieval System
Tugas Makalah Sistem Temu Kembali Informasi (STKI) TI029306 Implementasi Metode Generalized Vector Space Model Pada Information Retrieval System Oleh : I PUTU ANDREAS WARANU 1204505042 Dosen : I Putu Agus
BAB III METODOLOGI PENELITIAN
BAB III METODOLOGI PENELITIAN Metodologi penelitian merupakan sistematika tahap-tahap yang dilaksanakan dalam pembuatan tugas akhir. Adapun tahapan yang dilalui dalam pelaksanaan penelitian ini adalah
UNIVERSITAS MERCU BUANA FAKULTAS : ILMU KOMPUTER PROGRAM STUDI : SISTEM INFORMASI
UNIVERSITAS MERCU BUANA FAKULTAS : ILMU KOMPUTER PROGRAM STUDI : SISTEM INFORMASI No. Dokumen 02-3.04.1.02 Distribusi Tgl. Efektif RENCANA PEMBELAJARAN SEMESTER Mata Kuliah Kode Rumpun MK Bobot (SKS) Semester
Aplikasi Aljabar Vektor pada Sistem Temu-balik Informasi (Information Retrieval System)
Aplikasi Aljabar Vektor pada Sistem Temu-balik Informasi (Information Retrieval System) IF3 Aljabar Geometri Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB Rinaldi Munir - IF3 Aljabar Geometri
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
xi BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan ilmu pengetahuan dan teknologi informasi dewasa ini membuat perubahan perilaku dalam pencarian informasi yang berdampak bagi lembagalembaga yang bergerak
TEMU KEMBALI INFORMASI
JULIO ADISANTOSO Departemen Ilmu Komputer IPB Pertemuan 1 Identitas Mata Kuliah Nama Mata Kuliah : Temu Kembali Informasi (TKI) Information Retrieval (IR) Kode Mata Kuliah : KOM431 Koordinator : Julio
BAB 1 PENDAHULUAN UKDW
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Perkembangan ilmu pengetahuan yang pesat dewasa ini telah mendorong permintaan akan kebutuhan informasi ilmu pengetahuan itu sendiri. Cara pemenuhan kebutuhan
INFORMATION RETRIEVAL SYSTEM PADA PENCARIAN FILE DOKUMEN BERBASIS TEKS DENGAN METODE VECTOR SPACE MODEL DAN ALGORITMA ECS STEMMER
INFORMATION RETRIEVAL SSTEM PADA PENCARIAN FILE DOKUMEN BERBASIS TEKS DENGAN METODE VECTOR SPACE MODEL DAN ALGORITMA ECS STEMMER Muhammad asirzain 1), Suswati 2) 1,2 Teknik Informatika, Fakultas Teknik,
BAB III METODOLOGI PENELITIAN
BAB III METODOLOGI PENELITIAN Metodologi penelitian merupakan rangkaian dari langkah-langkah yang diterapkan dalam penelitian, secara umum dan khusus langkah-langkah tersebut tertera pada Gambar flowchart
Information Retrieval
Information Retrieval Budi Susanto Information Retrieval Information items content Feature extraction Structured Structured Document Document representation representation Retrieval model: relevance Similarity?
KONTRAK PERKULIAHAN TEMU KEMBALI INFORMASI KOM431
KONTRAK PERKULIAHAN TEMU KEMBALI INFORMASI KOM431 KOORDINATOR MATA AJARAN TEMU KEMBALI INFORMASI DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR TAHUN 2011/2012 KONTRAK PERKULIAHAN Nama Matakuliah :
Sistem Temu Kembali Informasi pada Dokumen Teks Menggunakan Metode Term Frequency Inverse Document Frequency (TF-IDF)
Sistem Temu Kembali Informasi pada Dokumen Teks Menggunakan Metode Term Frequency Inverse Document Frequency (TF-IDF) 1 Dhony Syafe i Harjanto, 2 Sukmawati Nur Endah, dan 2 Nurdin Bahtiar 1 Jurusan Matematika,
BAB II DASAR TEORI Crawler Definisi Focused Crawler dengan Algoritma Genetik [2]
BAB II DASAR TEORI Pada bab ini dibahas teori mengenai focused crawler dengan algoritma genetik, text mining, vector space model, dan generalized vector space model. 2.1. Focused Crawler 2.1.1. Definisi
PERTEMUAN 14 DATA WAREHOUSE
PERTEMUAN 14 DATA WAREHOUSE Data Warehouse Definisi : Data Warehouse adalah Pusat repositori informasi yang mampu memberikan database berorientasi subyek untuk informasi yang bersifat historis yang mendukung
Text Pre-Processing. M. Ali Fauzi
Text Pre-Processing M. Ali Fauzi Latar Belakang Latar Belakang Dokumen-dokumen yang ada kebanyakan tidak memiliki struktur yang pasti sehingga informasi di dalamnya tidak bisa diekstrak secara langsung.
INDEXING AND RETRIEVAL ENGINE UNTUK DOKUMEN BERBAHASA INDONESIA DENGAN MENGGUNAKAN INVERTED INDEX
INDEXING AND RETRIEVAL ENGINE UNTUK DOKUMEN BERBAHASA INDONESIA DENGAN MENGGUNAKAN INVERTED INDEX Wahyu Hidayat 1 1 Departemen Teknologi Informasi, Fakultas Ilmu Terapan, Telkom University 1 [email protected]
Search Engines. Information Retrieval in Practice
Search Engines Information Retrieval in Practice All slides Addison Wesley, 2008 Search Engine Architecture Arsitektur dari mesin pencari ditentukan oleh 2 persyaratan efektivitas (kualitas hasil) efisiensi
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Perkembangan teknologi informasi sudah semakin maju. Beberapa aplikasi text mining awal menggunakan penyajian sederhana yang disebut dengan bag-ofwords' ketika
BAB I PENDAHULUAN. informasi pada ruang lingkup besar (biasanya disimpan di komputer). Di era
BAB I PENDAHULUAN 1.1 Latar Belakang Information retrieval atau disingkat dengan IR adalah menemukan bahan (dokumen) dari dokumen terstruktur (biasanya teks) yang memenuhi kebutuhan informasi pada ruang
1. Pendahuluan 1.1 Latar belakang 1.2 Perumusan masalah
1. Pendahuluan 1.1 Latar belakang Informasi telah menjadi kebutuhan primer pada kehidupan saat ini. Informasi seakan-akan menjadi mata uang baru yang membuat akurasi menjadi sangat penting ketika mencari
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Bagi perusahaan yang bergerak dalam industri manufaktur, sistem informasi produksi yang efektif merupakan suatu keharusan dan tidak lepas dari persoalan persediaan
PENDAHULUAN. I.1 Latar Belakang
I PENDAHULUAN I.1 Latar Belakang Internet sebagai jaringan komputer skala global telah mendorong pertambahan jumlah informasi digital. Pada sistem yang bersifat terbuka seperti internet, pertambahan informasi
PENCARIAN FULL TEXT PADA KOLEKSI SKRIPSI FAKULTAS TEKNIK UHAMKA MENGGUNAKAN METODE VECTOR SPACEMODEL
Vol. 2, 2017 PENCARIAN FULL TEXT PADA KOLEKSI SKRIPSI FAKULTAS TEKNIK UHAMKA MENGGUNAKAN METODE VECTOR SPACEMODEL Miftahul Ari Kusuma 1*, Mia Kamayani 2, Arry Avorizano 3 Program Studi Teknik Informatika,
Universitas Putra Indonesia YPTK Padang Fakulas Ilmu Komputer Program Studi Teknik Informatika. Knowledge Discovery in Databases (KDD)
Universitas Putra Indonesia YPTK Padang Fakulas Ilmu Komputer Program Studi Teknik Informatika Knowledge Discovery in Databases (KDD) Knowledge Discovery in Databases (KDD) Definisi Knowledge Discovery
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Klasifikasi Klasifikasi merupakan suatu pekerjaan menilai objek data untuk memasukkannya ke dalam kelas tertentu dari sejumlah kelas yang tersedia. Dalam klasifikasi ada dua pekerjaan
BAB I. Pendahuluan. 1. Latar Belakang Masalah
BAB I Pendahuluan 1. Latar Belakang Masalah Semakin canggihnya teknologi di bidang komputasi dan telekomunikasi pada masa kini, membuat informasi dapat dengan mudah didapatkan oleh banyak orang. Kemudahan
BAB I PENDAHULUAN 1.1 Tujuan 1.2 Latar Belakang
BAB I PENDAHULUAN 1.1 Tujuan Merancang sebuah sistem yang dapat meringkas teks dokumen secara otomatis menggunakan metode generalized vector space model (GVSM). 1.2 Latar Belakang Dunia informasi yang
BAB I PENDAHULUAN. Dalam suatu basis data, pendekatan model data relasional masih banyak dimanfaatkan untuk penyimpanan data dan informasi terhadap
BAB I PENDAHULUAN 1. 1 Latar Belakang Sistem informasi merupakan serangkaian prosedur normal dimana data dikumpulkan, diproses menjadi sebuah informasi yang valid dan kemudian didistribusikan ke para pengguna
SISTEM REKOMENDASI DOSEN PEMBIMBING TUGAS AKHIR BERBASIS TEXT MINING MENGGUNAKAN VECTOR SPACE MODEL
SISTEM REKOMENDASI DOSEN PEMBIMBING TUGAS AKHIR BERBASIS TEXT MINING MENGGUNAKAN VECTOR SPACE MODEL SKRIPSI Disusun Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Komputer pada Departemen Ilmu
Integrasi Peringkas Dokumen Otomatis Dengan Penggabungan Metode Fitur dan Metode Latent Semantic Analysis (LSA) Sebagai Feature Reduction
Integrasi Peringkas Dokumen Otomatis Dengan Penggabungan Metode Fitur dan Metode Latent Semantic Analysis (LSA) Sebagai Feature Reduction Junta Zeniarja 1, Abu Salam 2, Ardytha Luthfiarta 3, L Budi Handoko
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Sistem Rekomendasi Sistem rekomendasi adalah sebuah sistem yang dibangun untuk mengusulkan informasi dan menyediakan fasilitas yang diinginkan pengguna dalam membuat suatu keputusan
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA Pada bab ini menjelaskan topik taksonomi yang merupakan pengorganisasian informasi yang penting karena merupakan dasar dalam memahami suatu informasi. Taksonomi membantu memahami
RANCANG BANGUN SISTEM TEMU KEMBALI INFORMASI ABSTRAK TUGAS AKHIR MAHASISWA PRODI TEKNIK INFORMATIKA UNSOED Oleh : Lasmedi Afuan
RANCANG BANGUN SISTEM TEMU KEMBALI INFORMASI ABSTRAK TUGAS AKHIR MAHASISWA PRODI TEKNIK INFORMATIKA UNSOED Oleh : Lasmedi Afuan Prodi Teknik Informatika, Fakultas Sains dan Teknik, Universitas Jenderal
PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK PENCARIAN WEB SERVICE MENGGUNAKAN LUCENE
PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK PENCARIAN WEB SERVICE MENGGUNAKAN LUCENE OLGA CERIA SARI NRP 5106 100 618 DOSEN PEMBIMBING: Sarwosri,S.Kom,MT. Umi Laili Yuhana, S.Kom, M.Sc LATAR BELAKANG Kebutuhan
BAB I PENDAHULUAN. Information retrieval (IR) adalah ilmu yang mempelajari pencarian
BAB I PENDAHULUAN 1.1 Latar Belakang Information retrieval (IR) adalah ilmu yang mempelajari pencarian dokumen untuk memenuhi kebutuhan informasi dari dalam koleksi besar media penyimpanan komputer (Manning,
IMPLEMENTASI VECTOR SPACE MODEL UNTUK MENINGKATKAN KUALITAS PADA SISTEM PENCARIAN BUKU PERPUSTAKAAN
Seminar Nasional Informatika 205 IMPLEMENTASI VECTOR SPACE MODEL UNTUK MENINGKATKAN KUALITAS PADA SISTEM PENCARIAN BUKU PERPUSTAKAAN Dedi Leman, Khusaeri Andesa 2 Teknik Informasi, Magister Komputer, Universitas
Search Engine. Text Retrieval dan Image Retrieval YENI HERDIYENI
Search Engine Text Retrieval dan Image Retrieval YENI HERDIYENI 14 JUNI 2008 Search engine atau mesin pencari merupakan bagian dari teknologi inte rnet yang sangat penting untuk pencarian informasi. Dewasa
BAB I PENDAHULUAN I.1. Latar Belakang Masalah
BAB I PENDAHULUAN I.1. Latar Belakang Masalah Dalam era teknologi seperti saat ini, informasi berupa teks sudah tidak lagi selalu tersimpan dalam media cetak seperti kertas. Orang sudah mulai cenderung
BAB 3 ANALISA DAN PERANCANGAN
BAB 3 ANALISA AN PERANCANGAN 3.1 Gambaran Umum Pada masa sekarang ini, proses pencarian dokumen dalam web seperti Google, Yahoo, dan sebagainya dilakukan dengan menginput query yang diinginkan pada kotak
BAB 1 PENDAHULUAN. 1.1 Latar Belakang Permasalahan
BAB 1 PENDAHULUAN 1.1 Latar Belakang Permasalahan Teknik Struktur Data dan Data Mining merupakan salah satu ilmu komputer yang penting dan menarik perhatian teori informatika. Saat ini teknik ini sudah
Budi Susanto Versi /08/2012. Teknik Informatika UKDW Yogyakarta
Budi Susanto Versi 1.0 29/08/2012 1 Memahami pengertian dari text mining dan web mining Memahami latar belakang perlunya pengolahan dokumen teks dan web Memahami arsitektur dasar aplikasi text dan web
ANALISA KOMPETENSI DOSEN DALAM PENENTUAN MATAKULIAH YANG DIAMPU MENGGUNAKAN METODE CF-IDF A B S T R A K
ANALISA KOMPETENSI DOSEN DALAM PENENTUAN MATAKULIAH YANG DIAMPU MENGGUNAKAN METODE CF-IDF Oleh : Tacbir Hendro Pudjiantoro A B S T R A K Kompetensi dosen adalah salah satu bagian yang utama dalam penunjukan
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
1.1 Latar Belakang BAB 1 PENDAHULUAN Chatbot adalah sebuah program komputer yang dirancang untuk mensimulasikan sebuah percakapan atau komunikasi yang interaktif kepada pengguna (manusia) melalui bentuk
Bernadus Very Christioko Fakultas Teknologi Informasi dan Komunikasi, Universitas Semarang. Abstract
IMPLEMENTASI SISTEM TEMU KEMBALI INFORMASI Studi Kasus: Dokumen Teks Berbahasa Indonesia (IMPLEMENTATION OF INFORMATION RETRIEVAL SYSTEM Case Study: Text Document in Indonesian Language) Bernadus Very
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Peringkasan Teks Otomatis (Automatic Text Summarization) Peringkasan Teks Otomatis (Automatic Text Summarization) merupakan pembuatan rangkuman dari sebuah sumber teks secara
HASIL DAN PEMBAHASAN. diformulasikan digunakan dalam proses temu kembali selanjutnya.
beberapa kata. Menurut Baeza-Yates dan Ribeiro-Neto (1999), tidak semua kata dapat digunakan untuk merepresentasikan sebuah dokumen secara signifikan Pemrosesan teks yang dilakukan dalam penelitian ini
SISTEM PENCARIAN PASAL-PASAL PADA KITAB UNDANG-UNDANG HUKUM PIDANA DENGAN MENGGUNAKAN METODE TF-IDF. Abstrak
SISTEM PENCARIAN PASAL-PASAL PADA KITAB UNDANG-UNDANG HUKUM PIDANA DENGAN MENGGUNAKAN METODE TF-IDF Muh. Alfarisi Ali¹, Moh. Hidayat Koniyo², Abd. Aziz Bouty³ ¹Mahasiswa Teknik Informatika Universitas
BAB 3 LANDASAN TEORI
BAB 3 LANDASAN TEORI 3.1 Text Mining Text mining merupakan suatu teknologi untuk menemukan suatu pengetahuan yang berguna dalam suatu koleksi dokumen teks sehingga diperoleh tren, pola, atau kemiripan
PEMANFAATAN TEKNIK STEMMING UNTUK APLIKASI TEXT PROCESSING BAHASA INDONESIA SKRIPSI. Oleh : SEPTIAN BAGUS WAHYONO NPM :
PEMANFAATAN TEKNIK STEMMING UNTUK APLIKASI TEXT PROCESSING BAHASA INDONESIA SKRIPSI Oleh : SEPTIAN BAGUS WAHYONO NPM : 0734010126 PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS
Sistem Temu-Kembali Informasi Pengantar Perkuliahan
Sistem Temu-Kembali Informasi Pengantar Perkuliahan Husni Program Studi Teknik Informatika Universitas Trunojoyo Madura Semeter Gasal 2015-03 Sep. 2015 Perkenalan... Husni (UGM, ITB) Bidang Minat Sistem
TEMU KEMBALI INFORMASI
Pendahuluan JULIO ADISANTOSO Departemen Ilmu Komputer IPB Pertemuan 1 PENDAHULUAN Pendahuluan Identitas Mata Kuliah Nama Mata Kuliah : Temu Kembali Informasi Kode Mata Kuliah : KOM431 Koordinator : Julio
Mengenal Information Retrieval
STBI-2011 Sistem Temu Balik Informasi 2011 Mengenal Information Retrieval Husni [email protected] Husni.trunojoyo.ac.id Komputasi.wordpress.com 2 3 Amazon.com 4 Amazon.com 5 6 7 8 9 Wordpress.com
BAB 1 PENDAHULUAN Latar Belakang
BAB 1 PENDAHULUAN 1.1. Latar Belakang Kebutuhan informasi dan perkembangan teknologi yang semakin tinggi meningkatkan jumlah artikel atau berita yang terpublikasikan, terutama pada media online. Untuk
Pemanfaatan Metode Vector Space Model dan Metode Cosine Similarity pada Fitur Deteksi Hama dan Penyakit Tanaman Padi
Pemanfaatan Metode Vector Space Model dan Metode Cosine Similarity pada Fitur Deteksi Hama dan Penyakit Tanaman Padi Ana Triana Informatika, Fakultas MIPA, Universitas Sebelas Maret Surakarta Jl. Ir. Sutami
Sistem Rekomendasi Hasil Pencarian Artikel Menggunakan Metode Jaccard s Coefficient
Jurnal Transistor Elektro dan Informatika (TRANSISTOR EI) Vol. 2, No. 1 1 Sistem Rekomendasi Hasil Pencarian Artikel Menggunakan Metode Jaccard s Coefficient Muhammad Fadelillah, Imam Much Ibnu Subroto,
JURNAL INFORMATIKA IMPLEMENTASI METODE GENERALIZED VECTOR SPACE MODEL PADA APLIKASI INFORMATION RETRIEVAL
IMPLEMENTASI METODE GENERALIZED VECTOR SPACE MODEL PADA APLIKASI INFORMATION RETRIEVAL Jasman Pardede [1], Mira Musrini Barmawi [2], Wildan Denny Pramono [3] Jurusan Teknik Informatika Institut Teknologi
SISTEM PENCARIAN AYAT AL-QUR AN BERDASARKAN TERJEMAHAN BAHASA INDONESIA DENGAN PEMODELAN RUANG VEKTOR TUGAS AKHIR
SISTEM PENCARIAN AYAT AL-QUR AN BERDASARKAN TERJEMAHAN BAHASA INDONESIA DENGAN PEMODELAN RUANG VEKTOR TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Teknik Pada Jurusan Teknik
Fatkhul Amin Dosen Fakultas Teknologi Informasi Universitas Stikubank Semarang
45 Dinamika Teknik Januari IMPLEMENTASI SEARCH ENGINE (MESIN PENCARI) MENGGUNAKAN METODE VECTOR SPACE MODEL Dosen Fakultas Teknologi Informasi Universitas Stikubank Semarang Abstract Growth of Machine
BAB I PERSYARATAN PRODUK
BAB I PERSYARATAN PRODUK 1.1 PENDAHULUAN Pada saat kita melakukan pencarian melalui search engine (google.com, yahoo, dsb), kita bisa mendapatkan beberapa hasil, yang berupa dokumen - dokumen yang sama
Text Mining. Budi Susanto. Text dan Web Mining. Teknik Informatika UKDW Yogyakarta
Text Mining Budi Susanto Materi Pengertian Text Mining Pemrosesan Text Tokenisasi Lemmatization Vector Document Pengertian Text Mining Text mining merupakan penerapan konsep dan teknik data mining untuk
BAB I PENDAHULUAN! 1.1 Latar Belakang
1.1 Latar Belakang BAB I PENDAHULUAN Untuk dapat tetap bisa menjalankan proses bisnisnya dengan baik, suatu instansi harus memenuhi suatu standar dalam melayani keinginan konsumen atau yang biasa dikenal
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Seiring dengan perkembangan informasi, banyak pihak menyadari bahwa masalah utama telah bergeser dari cara mengakses atau bagaimana mencari informasi, namun
BAB 2 LANDASAN TEORI
6 BAB 2 LANDASAN TEORI Pada tinjauan pustaka ini akan dibahas tentang konsep dasar dan teori-teori yang mendukung pembahasan yang berhubungan dengan sistem yang akan dibuat. 2.1 Basis Data (Database) Database
BAB 1 PENDAHULUAN UKDW
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Pada era ini perkembangan teknologi informasi sangat pesat. Hal ini ditandai dengan semakin populernya penggunaan internet dan perangkat lunak komputer sebagai
Latent Semantic Analysis dan. Similarity untuk Pencarian. oleh : Umi Sa adah
Metode Latent Semantic Analysis dan Algoritma Weighted Tree Similarity untuk Pencarian berbasis b Semantik oleh : Umi Sa adah 5109201030 Pembimbing : Prof. Drs.Ec. Ir. Riyanarto Sarno, M.Sc, Ph.D Umi Laili
BAB II LANDASAN TEORI. 2.1 Peringkasan Teks Otomatis (Automatic Text Summarization) Peringkasan Teks Otomatis (Automatic Text Summarization) merupakan
BAB II LANDASAN TEORI 2.1 Peringkasan Teks Otomatis (Automatic Text Summarization) Peringkasan Teks Otomatis (Automatic Text Summarization) merupakan pembuatan rangkuman dari sebuah sumber teks secara
Konsep Data Mining. Pendahuluan. Bertalya. Universitas Gunadarma 2009
Konsep Data Mining Pendahuluan Bertalya Universitas Gunadarma 2009 Latar Belakang Data yg dikumpulkan semakin bertambah banyak Data web, e-commerce Data pembelian di toko2 / supermarket Transaksi Bank/Kartu
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Berdasarkan data dari Kementerian Komunikasi dan Informasi Indonesia yang diperoleh dari Lembaga Riset Pasar E-Marketer, populasi pengguna internet tanah air pada tahun
UKDW BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan pengetahuan dan kehidupan manusia sungguh dipercepat dengan kemudahan akses terhadap begitu banyak informasi. Pada beberapa waktu yang lalu akses terhadap
APLIKASI MESIN PENCARI DOKUMEN CROSS LANGUAGE BAHASA INGGRIS BAHASA INDONESIA MENGGUNAKAN VECTOR SPACE MODEL
APLIKASI MESIN PENCARI DOKUMEN CROSS LANGUAGE BAHASA INGGRIS BAHASA INDONESIA MENGGUNAKAN VECTOR SPACE MODEL SKRIPSI Disusun Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Komputer pada Jurusan
ABSTRAK. Kata kunci : Information Retrieval system, Generalized Vector Space Model. Universitas Kristen Maranatha
ABSTRAK Information retrieval (IR) system adalah sistem yang secara otomatis melakukan pencarian atau penemuan kembali informasi yang relevan terhadap kebutuhan pengguna. Kebutuhan pengguna, diekspresikan
- PERTEMUAN 1 - KNOWLEGDE DISCOVERY
DATA WAREHOUSE - PERTEMUAN 1 - KNOWLEGDE DISCOVERY in DATABASE (KDD) Penemuan Pengetahuan di Database Tujuan : Mahasiswa Dapat memahami konsep KDD yang merupakan tujuan akhir dari Data Warehouse dan Data
PERANCANGAN DAN PEMBUATAN APLIKASI PENCARIAN INFORMASI BEASISWA DENGAN MENGGUNAKAN COSINE SIMILARITY
Vol. 4, No. 2 Desember 2014 ISSN 2088-2130 PERANCANGAN DAN PEMBUATAN APLIKASI PENCARIAN INFORMASI BEASISWA DENGAN MENGGUNAKAN COSINE SIMILARITY Andry Kurniawan, Firdaus Solihin, Fika Hastarita Prodi Teknik
BAB I PENDAHULUAN. Diantara banyak fungsi komputer yang digunakan oleh manusia adalah. pencarian data serta pengurutan data (Handoyo, 2004).
BAB I PENDAHULUAN 1.1. Latar Belakang Pada zaman sekarang ini penggunaan komputer sudah merakyat dan hampir selalu digunakan untuk menjalankan berbagai aktivitas manusia. Diantara banyak fungsi komputer
Pemodelan Penilaian Essay Otomatis Secara Realtime Menggunakan Kombinasi Text Stemming Dan Cosine Similarity
Konferensi Nasional Sistem & Informatika 2017 STMIK STIKOM Bali, 10 Agustus 2017 Pemodelan Penilaian Essay Otomatis Secara Realtime Menggunakan Kombinasi Text Stemming Dan Cosine Similarity Komang Rinartha
BAB 4 HASIL DAN BAHASAN. dengan melampirkan tabel data precision dan recall serta diagram-diagramnya Precision Recall Interpolasi
67 BAB 4 HASIL DAN BAHASAN 4.1 Hasil Penelitian dan Evaluasi 4.1.1 Hasil Penelitian Berikut disajikan beberapa data hasil query dari penelitian yang dilakukan dengan melampirkan tabel data precision dan
Implementasi Aljabar Vektor pada Sistem Temu Kembali Informasi untuk Customer Information
Implementasi Aljabar Vektor pada Sistem Temu Kembali Informasi untuk Customer Information Ratnadira Widyasari 13514025 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi
BAB I PENDAHULUAN. Begitu juga halnya pada perkembangan Internet, hampir semua bidang teknologi
BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi di dunia komputer saat ini sangatlah pesat. Begitu juga halnya pada perkembangan Internet, hampir semua bidang teknologi berbasis Internet. Salah
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Data Mining Data Mining adalah proses yang mempekerjakan satu atau lebih teknik pembelajaran komputer (machine learning) untuk menganalisis dan mengekstraksi pengetahuan (knowledge)
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI II.1 Text Mining Text Mining merupakan penerapan konsep dan teknik data mining untuk mencari pola dalam teks, proses penganalisaan teks guna menemukan informasi yang bermanfaat untuk
KOM341 Temu Kembali Informasi
KOM341 Temu Kembali Informasi KULIAH #1 Kontrak Perkuliahan Pendahuluan Matakuliah o Nama Matakuliah : Temu Kembali Informasi o Kode Matakuliah : KOM431 o Beban Kredit : 3(3-0) o Semester : Gasal, 2014/2015
Aplikasi Algoritma Stringmatching pada Analisa Teks (Text Analysis) untuk Decision Support System
Aplikasi Algoritma Stringmatching pada Analisa Teks (Text Analysis) untuk Decision Support System Hanif Lyonnais Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi
1. Pendahuluan. 1.1 Latar belakang
1. Pendahuluan 1.1 Latar belakang Pada saat ini, kebutuhan setiap individu terhadap Internet semakin meningkat. Hal ini terlihat dari semakin banyaknya fasilitas yang ditawarkan dari dunia Internet itu
RENCANA PEMBELAJARAN SEMESTER
RENCANA PEMBELAJARAN SEMESTER Mata Kuliah Big Data and Data Analytics Semester Tujuh Kode SMXXXXXX Prodi MBTI Dosen Andry Alamsyah SKS 4 Capaian Pembelajaran 1. Memahami fenomena, framework, peluang dan
BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan
BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Perkembangan volume dan keragaman informasi yang tersedia di internet saat ini sangat pesat sehingga mendorong tumbuhnya media pemberitaan online.
BAB 3 METODE PENELITIAN. pengelolaan dokumen yang efektif agar kita dapat me-retrieve informasi yang
58 BAB 3 METODE PENELITIAN 3.1 Analisis Masalah Seiring dengan perkembangan zaman, jumlah informasi yang disimpan dalam betuk digital semakin bertambah, sehingga dibutuhkan cara pengorganisasian dan pengelolaan
PEMANFAATAN ALGORITMA TF/IDF UNTUK SISTEM INFORMASI e-complaint HANDLING
PEMANFAATAN ALGORITMA TF/IDF UNTUK SISTEM INFORMASI e-complaint HANDLING Rudhi Ardi Sasmita Jurusan Sistem Informasi, Fakultas Ilmu Komputer, Universitas Narotama Surabaya [email protected] Abstrak
BAB I PENDAHULUAN 1.1 Latar Belakang
1 BAB I PENDAHULUAN 1.1 Latar Belakang Perpustakaan yang berada di universitas merupakan sumber referensi yang bagus untuk digunakan mahasiswa selama proses pembelajarannya, baik untuk referensi Tugas
BAB 1 PENDAHULUAN. 1.1.Latar Belakang
7 BAB 1 PENDAHULUAN 1.1.Latar Belakang Saat ini informasi sangat mudah didapatkan terutama melalui media internet. Dengan banyaknya informasi yang terkumpul atau tersimpan dalam jumlah yang banyak, user
BAB I PENDAHULUAN. penunjang Al-Quran untuk memudahkan untuk mempelajarinya, yang bisa
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dengan kemajuan teknologi yang sangat pesat ini sudah banyak aplikasi penunjang Al-Quran untuk memudahkan untuk mempelajarinya, yang bisa disebut atau di artikan
BAB I PENDAHULUAN. penyimpanan dan cepat. Tuntutan dari gerakan anti global warming juga
1 BAB I PENDAHULUAN A. Latar Belakang Dalam era teknologi informasi seperti saat ini, informasi berupa teks sudah tidak lagi selalu tersimpan dalam media cetak seperti kertas. Orang sudah mulai cenderung
ABSTRAK. Kata kunci : Pemerolehan Informasi, TF-IDF, Inverted Index, document to document
Jurnal Ilmiah Widya Teknik Volume 15 Nomor 2 2016 ISSN 1412-7350 SISTEM PEMEROLEHAN INFORMASI UNDANG-UNDANG DAN KASUS MENGGUNAKAN STRUKTUR DATA INVERTED INDEX DENGAN PEMBOBOTAN TF-IDF Fredes Winda Oktaviani
BAB II TINJAUAN PUSTAKA
7 BAB II TINJAUAN PUSTAKA A. Tinjauan Pustaka Penelitian-penelitian yang pernah dilakukan di bidang information retrieval telah memunculkan berbagai metode pembobotan dan clustering untuk mengelompokkan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Klasifikasi Klasifikasi merupakan suatu pekerjaan menilai objek data untuk memasukkannya ke dalam kelas tertentu dari sejumlah kelas yang tersedia. Dalam klasifikasi ada dua pekerjaan
HASIL DAN PEMBAHASAN. Tabel 1 Perhitungan recall-precision. ) adalah peluang kata i dalam dokumen setelah q j. p( i q j
3 p( i j ) adalah peluang kata i dalam dokumen setelah j diketahui (Adisantoso 1996). Hitung Relevansi Kata Pada tahap ini, dilakukan proses perhitungan setiap kata yang dinilai relevan dan tidak relevan
