BAB II TINJAUAN PUSTAKA. Gempa bumi merupakan salah satu bagian daripada jenis beban yang dapat

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA. Gempa bumi merupakan salah satu bagian daripada jenis beban yang dapat"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1. Umum Gempa bumi merupakan salah satu bagian daripada jenis beban yang dapat membebani struktur selain beban mati, beban hidup dan beban angin. Beban gempa memang tidak selalu diperhitungkan dalam perencanaan atau analisa struktur. Namun bagi struktur yang dibuat pada suatu lokasi dimana gempa bumi dapat terjadi maka analisa ini harus dibuat. Besarnya tingkat pembebanan gempa berbeda-beda dari suatu wilayah ke wilayah lain tergantung pada keadaan seismotektonik geografi dan pada geologi setempat. Kerusakan bangunan akibat gempa bumi dapat diantisipasi dengan beberapa metode, baik secara konvensional maupun secara teknologi sekarang ini yaitu sistem control pasif dengan penambahan alat seismic devices kedalam struktur. Seismic devices bekerja dengan merubah kekakuan, damping dan menambah massa ke struktur. System seismic device adalah dengan menggunakan alat yang disebut damper. Damper merupakan alat tambahan yang dipasang pada struktur untuk menambah redaman (damping) dari suatu struktur. Damper bekerja dengan mendissipasi energi melalui pembentukan sendi plastis atau pelelehan bahan damper. Damper merupakan alat dissipasi energi yang berfungsi memperkecil respon simpangan struktur dan menghentikan getaran, agar simpangan simpangan antar tingkat dapat diperkecil sehingga gaya lateral kolom menjadi kecil, sehingga struktur dapat direncanakan secara elastis meskipun akibat gaya gempa besar, maka biaya yang dibutuhkan cukup ekonomis.

2 2.2 Karakteristik Struktur Bangunan Pada persamaan difrensial melibatkan tiga properti utama suatu struktur yaitu massa, kekakuan dan redaman. Ketiga properti struktur itu umumnya disebut dinamik karakteristik struktur. Properti-properti tersebut sangat spesifik yang tidak semuanya digunakan pada problem statik. Kekakuan elemen / struktur adalah salah satu-satunya karakteristik yang dipakai pada problem statik, sedangkan karakteristik yang lainnya yaitu massa dan redaman tidak dipakai Massa Suatu struktur yang kontinu kemungkinan mempunyai banyak derajat kebebasan karena banyaknya massa yang mungkin dapat ditentukan. Banyaknya derajat kebebasan umumnya berasosiasi dengan jumlah massa tersebut akan menimbulkan kesulitan. Hal ini terjadi karena banyaknya persamaan differensial yang ada. Terdapat dua permodelan pokok yang umumnya dilakukan untuk mendeskripsikan massa struktur Model Lumped Mass Model pertama adalah model diskretisasi massa yaitu massa diangggap menggumpal pada tempat-tempat (lumped mass) join atau tempat-tempat tertentu. Dalam hal ini gerakan / degree of freedom suatu join sudah ditentukan. Untuk titik model yang hanya mempunyai satu derajat kebebasan / satu translasi maka nantinya elemen atau struktur yang bersangkutan akan mempunyai matriks yang isinya hanya bagian diagonal saja. Clough dan Penzien (1993) mengatakan bahwa

3 bagian off-daigonal akan sama dengan nol karena gaya inersia hanya bekerja pada tiap-tiap massa. Selanjutnya juga dikatakan bahwa apabila terdapat gerakan rotasi massa ( rotation degree of freedom ), maka pada model lumped mass ini juga tidak akan ada rotation moment of inertia. Hal ini terjadi karena pada model ini massa dianggap menggumpal pada suatu titik yang tidak berdimensi (mass moment of inertia dapat dihitung apabila titik tersebut mempunyai dimensi fisik). Dalam kondisi tersebut terdapat matriks massa dengan diagonal mass of moment inertia sama dengan nol. Pada bangunan gedung bertingkat banyak, konsentrasi beban akan terpusat pada tiap-tiap lantai tingkat bangunan. Dengan demikian untuk setiap tingkat hanya ada satu tingkat massa yang mewakili tingkat yang bersangkutan. Karena hanya terdapat satu derajat kebebasan yang terjadi pada setiap massa / tingkat, maka jumlah derajat kebebasan pada suatu bangunan bertingkat banyak akan ditunjukkan oleh banyaknya tingkat bangunan yang bersangkutan. Pada kondisi tersebut matriks massa hanya akan berisi pada bagian diagonal saja Model Consistent Mass Matrix. Model ini adalah model yang kedua dari kemungkinan permodelan massa struktur. Pada prinsip consistent mass matrix ini, elemen struktur akan berdeformasi menurut bentuk fungsi (shape function) tertentu. Permodelan massa seperti ini akan sangat bermanfaat pada struktur yang distribusi massanya kontiniu. Apabila tiga derajat kebebasan (horizontal, vertikal dan rotasi) diperhitungkan pada setiap node maka standar consistent mass matrix akan

4 menghasilkan full-populated consistent matrix artinya suatu matri yang offdiagonal matriksnya tidak sama dengan nol. Pada lumped mass model tidak akan terjadi ketergantungan antar massa (mass coupling) karena matriks massa adalah diagonal. Apabila tidak demikian maka mass moment of inertia akibat translasi dan rotasi harus diperhitungkan. Pada bangunan bertingkat banyak yang massanya terkonsentrasi pada tiap-tiap tingkat bangunan, maka penggunaan model lumped mass masih cukup akurat. Untuk pembahasan struktur MDOF seterusnya maka model inilah (lumped mass) yang akan dipakai Kekakuan Kekakuan adalah salah satu dinamik karakteristik struktur bangunan yang sangat penting disamping massa bangunan. Antara massa dan kekakuan struktur akan mempunyai hubungan yang unik yang umumnya disebut karakteristik diri atau Eigenproblem. Hubungan tersebut akan menetukan nilai frekuensi sudut ω, dan periode getar struktur T. Kedua nilai ini merupakan parameter yang sangat penting dan akan sangat mempengaruhi respon dinamik struktur. Pada prinsip bangunan geser ( shear building ) balok pada lantai tingkat dianggap tetap horizontal baik sebelum maupun sesudah terjadi pergoyangan. Adanya plat lantai yang menyatu secara kaku dengan balok diharapkan dapat membantu kekakuan balok sehingga anggapan tersebut tidak terlalu kasar. Pada prinsif desain bangunan tahan gempa dikehendaki agar kolom lebih kuatdibandingkan dengan balok, namun demikian rasio tersebut tidak selalu linear dengan kekakuannya. Dengan prinsif shear building maka dimungkinkan

5 pemakaian lumped mass model. Pada prinsif ini, kekakuan setiap kolom dapat dihitung berdasarkan rumus yang telah ada Redaman Redaman merupakan peristiwa pelepasan energi ( energi dissipation) oeh struktur akibat adanya berbagai macam sebab. Beberapa penyebab itu antara lain adalah pelepasan energi oleh adanya gerakan antar molekul didalam material, pelepasan energi oleh gesekan alat penyambung maupun system dukungan, pelepasan energi oleh adanya gesekan dengan udara dan pada respon inelastic pelepasan energi juga terjadi akibat adanya sendi plastis. Karena redaman berfungsi melepaskan energi maka hal ini akan mengurangi respon struktur Simpangan (Drift) Akibat Gaya Gempa Simpangan (drift) adalah sebagai perpindahan lateral relative antara dua tingkat bangunan yang berdekatan atau dapat dikatakan simpangan mendatar tiaptiap tingkat bangunan (horizontal story to story deflection). Simpangan lateral dari suatu system struktur akibat beban gempa adalah sangat penting yang dilihat dari tiga pandangan yan berbeda, menurut Farzat Naeim (1989): 1. Kestabilan struktur (structural stability) 2. Kesempurnaan arsitektural (architectural integrity) dan potensi kerusakan bermacam-macam komponen bukan struktur 3. Kenyaman manusia (human comfort), sewaktu terjadi gempa bumi dan sesudah bangunan mengalami gerakan gempa.

6 2.2.5 Derajat Kebebasan (Degree Of Freedom, DOF) Derajat kebebasan (degree of freedom) adalah derajat independensi yang diperlukan untuk menyatakan posisi suatu system pada setiap saat. Pada masalah dinamika, setiap titik atau massa pada umumnya hanya diperhitungkan berpindah tempat dalam satu arah saja yaitu arah horizontal. Karena simpangan yang terjadi hanya terjadi dalam satu bidang atau dua dimensi, maka simpangan suatu massa pada setiap saat hanya mempunyai posisi atau ordinat tertentu baik bertanda negative ataupun bertanda positif. Pada kondisi dua dimensi tersebut, simpangan suatu massa pada saat t dapat dinyatakan dalam koordinat tunggal yaitu U(t). Struktur seperti itu dinamakan struktur dengan derajat kebebasan tunggal (SDOF system). Dalam model system SDOF atau berderajat kebebasan tunggal, ssetiap massa m, kekakuan k, mekanisme kehilangan atau redaman c, dan gaya luar yang dianggap tertumpu pada elemen fisik tunggal. Struktur yang mempunyai n-derjat kebebasan atau struktur dengan derajat kebebasan banyak disebut multi degree of freedom (MDOF). Akhirnya dapat disimpulkan bahwa jumlah derajat kebebasan adalah jumlah koordinat yang diperlukan untuk menyatakan posisi suatu massa pada saat tertentu.

7 2.3. Prinsip Damping Pada Struktur Damper mempunyai cara kerja mendissipasi energi yang masuk ke struktur dengan merubah energi tersebut menjadi sendi plastis atau pelelehan bahan damper, sehingga response simpangan struktur menjadi kecil. Peran damping dalam struktur antara lain : 1. Menyebabkan getaran dapat berhenti 2. Memperkecil response simpangan ( displacement ) 3. Mengurangi simpangan saat resonansi Damping dalam struktur disebut juga inherent damping, yaitu damping yang berasal dari gesekan antara struktur dengan bagian non struktur, gesekan udara dan tutup bukanya penampang beton yang retak, dan plastisitas bahan setelah struktur mengalami deformasi inelastic. Besarnya damping tersebut sekitar 1% sampai 5%, bergantung pada jenis dan kekakuan struktur. Bila suatu struktur tanpa damping, getaran struktur tidak akan berhenti, seperti yang ditunjukan gambar 2.1. Untuk getaran bebas tanpa damping (undamped free vibration) atau 0% damping, amplitudo getaran akan tetap dan berulang-ulang terus tanpa berhenti, sedangkan getaran dengan damping ( damped free vibration ) yang ditunjukan oleh kurva dengan damping 5%, dan 10%, amplitude getaran semakin mengecil terhadap waktu. Makin besar damping dari suatu sistim makin cepat amplitudo getaran berkurang dan makin cepat berhenti bergetar. Perbedaaan tersebut ditunjukan oleh kurva dengan damping 5% dan kurva dengan damping 10% pada gambar 2.1.

8 Gambar 2.1 Pengaruh Damping terhadap Getaran Sumber: Mahadianto, Hotma, Daniel (2008) Bila terjadi resonansi pada getaran suatu sistim SDOF, simpangan getaran akan menjadi membesar sesuai dengan amplikasi yang terjadi, besarnya amplikasi ditentukan dengan faktor dinamis (magnification factor) yang berbanding terbalik dengan besarnya factor damping ζ, yaitu: R d = 1 2ζ (2.1)

9 Gambar 2.2 Magnification Faktor Getaran Sumber: Mahadianto, Hotma, Daniel (2008) Untuk getaran tanpa damping ζ = 0, nilai R d menjadi tak berhingga, sehingga deformasi juga menjadi tak berhingga, sedangkan dengan damping 50% factor amplikasi menjadi satu atau tidak terjadi pembesaran simpangan sama sekali. Gambar 2.2 menunjukan besarnya amplikasi simpangan yang terjadi untuk berbagai nilai damping yang ditandai dengan magnification factor R d.

10 2.4. Sistem Kontrol Struktur Upaya untuk mengatasi kerusakan-kerusakan yang terjadi pada struktur dilakukan dengan memberikan alat tambahan ke struktur, untuk membatasi energi atau mendissipasi energi gempa yang masuk ke bangunan. Alat-alat tersebut dikenal dengan Seismic Devices. Dengan menambah alat-alat tersebut, energy gempa yang masuk ke struktur dapat direduksi dan dikontrol sehingga gaya-gaya dan simpangan struktur menjadi kecil. Seismic devices pada umumnya dapat dibagi menjadi 2 jenis, yaitu : 1. Actived seismic device 2. Passived seismic device Seismic devices adalah alat yang dipasang pada bangunan untuk membatasi energi atau mendisipasi energi gempa yang masuk ke bangunan seperti yang sudah dijelaskan tadi. Seismic devices bekerja dengan merubah kekakuan, damping dan menambah massa ke struktur. Pemakaian seismic devices tidak hanya terbatas pada struktur bangunan gedung saja, juga bisa digunakan juga pada jembatan, tangki penimbunan dan lainnya Actived Seismic Devices Actived seismic devices bekerja dengan menerima masukan data getaran dari sensor yang dipasang pada sekeliling struktur. Melalui computer, data tersebut digunakan untuk mengatur gerakan sesuai dengan input gempa ke bangunan. Perangkat aktif memanfaatkan sumber daya eksternal untuk menyesuaikan respon dari perangkat untuk bereaksi terhadap perilaku struktur secara real time dan mencapai respon yang diinginkan secara keseluruhan.

11 2.4.2 Passived Seismic Devices Tujuan utama dari respon struktural pada gerakan tanah adalah kemampuan untuk menghilangkan energi dalam jumlah besar selama periode waktu yang singkat. Sarana disipasi energi yang mengisolasi kerusakan, atau secara signifikan mengurangi kerusakan elemen struktural utama, dapat dicapai dengan menambahkan perangkat kontrol ke sistem struktur konvensional. Passived seismic devices bekerja setelah energi gempa masuk ke struktur, pada umumnya reaksi seismic devices semakin besar bila respon struktur atau energi yang masuk semakin besar. Passived seismic devices sesuai fungsinya secara garis besar dapat dibagi dalam 2 jenis, yaitu bersifat isolasi (seismic isolator) dan yang bersifat dissipasi energi (damper) Seismic Isolator Seismic Isolator dipasang dibagian bawah bangunan, alat ini mereduksi energy yang masuk ke struktur dengan merubah getaran frekwensi tinggi menjadi frekwensi rendah, percepatan bangunan bagian atas menjadi kecil sehingga gaya inertia juga menjadi kecil. ada 2 jenis seismic isolator yang telah sering dipakai yaitu jenis rubber bearing dan jenis friction pendulum. Rubber bearing memiliki kekakuan dan sifat damping yang rendah, untuk memperbesar damping dipasang batangan timah dibagian tengah. Isolator jenis friction pendulum bekerja dengan membentuk kekakuan dari gesekan antara piringan bawah dengan tumpuan bulatan di bagian atas yang diberi lapisan bahan Teflon.

12 Damper Damper bekerja dengan mendissipasi energi melalui pembentukan sendi plastis atau pelelehan bahan damper. Bila gaya yang bekerja pada damper adalah gaya siklik atau gempa, hubungan gaya dan simpangan akan membentuk kurva yang disebut dengan hysteristic loop. Luas hysteristic loop merupakan energi yang didissipasi oleh damper tersebut Hysteristic Loop Hyterestic loop merupakan kurva hubungan gaya dengan simpangan pada sistim SDOF yang dibebani dengan beban siklik. dan luas dari loop merupakan besarnya energi yang dissipasi. Hysteristic loop akan berbentuk ellips, kalau kekakuan konstan dengan linier-viscous damping. Bila kekakuan tidak konstan dan damping bukan linier vicous damping, loop tidak berbentuk ellips lagi. Besar gaya dalam sistim adalah gaya dari kekakuan struktur ditambah gaya damping, yaitu: F = Fk + Fd (2.21) Dimana: F = total gaya dalam struktur Fk = k u = gaya dari kekakuan pegas Fd = c ú = gaya dari damping Dari persamaaan undamped forced vibration, m ü + k u = Po cos (ωt), bila kekakuan tidak konstant, tetapi sebagai fungsi dari simpangan u, k = k (u).

13 Maka gaya dalam struktur adalah : F = u. k (u) (2.22) Persamaan getaran menjadi : m ü + k (u). u = Po cos (ωt) (2.23) Bila kita gambarkan hubungan gaya dengan displacement akan terbentuk loop, seperti pada getaran linier-vicous damping, tapi dengan bentuk yang berbeda, lihat gambar Tapi energi yang didissipasi tetap sama yaitu sebesar luas dari loop. Getaran dengan gaya gesekan yang konstan, seperti getaran dengan coulomb friction, gaya gesekan: F f = N µ fr (2.24) Dimana : Ff = Gaya gesekan N = Gaya normal μ fr = Koefisien gesekan Dengan persamaan getaran menjadi: m ü + k u ± N µ fr = Po cos (ωt) (2.25) Hysteristic loop getaran akan berbentuk segi -4, lihat gambar Energi yang didissipasi dalam 1 siklus pembebanan Po cos (ωt) sama dengan luas segi 4, Ed = N µ fr μ o (2.26) Bentuk hysteristic loop segi-4 ini, dinamai hyteristic loop bi-linier.

14 Gambar 2.3. Hysterestic Loop kekakuan Bi-linier dan Gesekan 2.6. Ekuivalent Viscous Damping Menurut Bertero and Wang, Energi gempa yang masuk dan yang diterima struktur yang memakai hysterestic yield damper dapat ditulis dengan : Eqin = Ek + Es + Ed + Ehys (2.27) Dimana: E qin = Energi gempa yang masuk ke struktur. E k E s E d = Energi kinetic dalam struktur. = Energi regangan dalam struktur. = Energi yang didissipasi oleh damping dari struktur. E hys = Energi yang didissipasi oleh hysterestic loop dari sifatinelastis bahan damper. Ruas kiri merupakan energi yang diperlukan ( demand Energi ) sedangkan bagian kanan adalah jumlah energi yang harus disediakan oleh struktur.

15 E k dan E s merupakan energy yang bersifat tetap (konservatif), yang besarnya E k dan E s adalah konstan, Dissipasi energy hanya dilakukan oleh viscous damping E d dan hysteristic loop E hys dari sifat inelastis bahan. Energi yang didissipasi oleh hysteristic loop dari sifat inelastic bahan sulit diperhitungkan, untuk itu diupayakan penyederhanaan menghitung besarnya dissipasi energy hysteristis loop dengan pendekatan model yang bersifat linier. Pemodelan sifat inelastis menjadi model viscous damping dilakukan oleh Jacobean (1930,1960), kemudian dikembangkan oleh Housner (1956) dan jenning (1964), konsep equivalent viscous damping digunakan untuk menggantikan dissipasi energi berbagai bentuk hysteristic loop menjadi dissipasi energi linier viscous damping. Dengan konsep Equivalent Viscous Damping, bentuk hysterestic loop dirubah menjadi bentuk ellips dengan luas yang sama. A hys = E hys A hys = 2π ζ eq ω ω n k u o 2 Dimana: Dimana: ζ eq = 1 2π ω n ω A hys k u o 2 (2.28) A hys = E hys = luas hysterestic loop ζ = ζ θ + ζ n (2.29) ζ = Jumlah damping ratio ζ θ = Equivalent Damping Ratio dari dissipasi energy dari hyterestic loop. ζ n = inherent damping atau viscous damping dari struktur.

16 2.7 Metode Dissipasi Energi Damper Damper yang biasa dipasang pada struktur, dapat dibedakan menurut cara dissipasi energinya : 1. Viscous Damper 2. Friction Damper 3. Hysterestic-yield Damper 4. Visco-elstic Damper Friction Damper Jenis damper ini mendissipasi energi berdasarkan gesekan yang terjadi dalam damper. Sama seperti metallic yielding damper jenis ini juga biasanya dipasang diantara tingkatan lantai untuk mengurangi perbedaaan pergeseran lantai dan dipasang dengan bracing pada struktur. Untuk friction damper, besarnya energi yang didissipasi bergantung pada deformasi dan gaya gesekan yang terjadi. besarnya gesekan antar pelat bergantung pada gaya tekan antar pelat, tidak bergantung pada simpangan, kecepatan maupun percepatan. jadi dalam pemodelannya berupa suatu gaya yang konstan bila gaya tekan antar pelat tetap. F d = N μ fr (2.32) Dimana : F d = Gaya damping dari damper N = gaya tekan antar pelat μ fr = koefisien friksi antar pelat Pemodelan Friction damper dalam bangunan derajat kebebasan 1 ( SDOF ) dengan input percepatan gempa, persamaan getarannya dapat ditulis :

17 mü + cú + ku Fd = -mü g (2.33) Dimana : m = massa bangunan c = konstanta damping bangunan k = kekakuan struktur Fd = gaya gesekan damper ( gaya tersebut mempunyai nilai absolute karena tetap berlawanan arah dengan arah getaran) ü = Percepatan massa ú= kecepatan massa ü g = percepatan gerakan tanah dasar. Karena gaya gesekan selama getaran tidak bergantung pada simpangan, maka bentuk hysterestic loop akan berbentuk rigid bilinier (empat persegi panjang), lihat Gambar Gambar 2.4 Friction Damper

18 Gambar 2.5. Hysterestic loop friction damper Viscous Damper Viscous damper mendissipasi energi berdasarkan kecepatan gerak dari bagian damper, bentuk yang paling dasar adalah redaman cairan dalam dashpot yang digunakan pada peralatan mesin. Liquid Viscous Damper mendissipasi energi berdasarkan kecepatan gerak piston dan kekentalan cairan yang mengalir melalui lobang di piston, ada yang memakai silikon sebagai pengganti cairan. Dalam pemodelannya untuk analisa, bentuk umum dari gaya redaman atau damping dapat ditulis: F d = c d ú 2 (2.30) Dimana : F d = gaya damping. c d = kontanta damping dari damper ú = kecepatan Koefisien α mempengaruhi kelinieran dari damping, bila α = 1 gaya damping F d menjadi linier, sedangkan bila α 1 gaya damping menjadi non-linier.

19 Bila suatu sistim SDOF dipasang damper jenis ini, persamaan getarannya untuk α = 1 adalah : mü + (c + c d ) ú + ku = - mü g (3.31) dimana : m = massa bangunan c = konstanta damping struktur c u = konstanta damping dari damper k = kekakuan u = simpangan massa ü g = percepatan gerakan tanah dasar. Damping alat ini bekerja untuk semua simpangan baik sewaktu simpangan getaran kecil maupun besar, gaya damping paling besar terjadi pada saat simpangan sama dengan nol. hysteristic loop untuk linier vicous damping yang dibawah beban harmonis ( α =1) akan berbentuk ellips seperti yang ditunjukan gambar Gambar 2.6 Viscous Damper

20 Gambar 2.7. Hysterestic loop linier viscous damper Visco-Elastic Damper Visco-elastic damper memilki sifat damping yang bergantung pada kecepatan gerakan dan juga memiliki sifat kekakuan. bentuk yang paling banyak dijumpai adalah dua lapisan polymer yang dilekatkan pada tiga lapisan pelat baja, ada juga yang menggunakan bahan bitumen dan karet. Gaya damper dapat ditulis dengan persamaan : F d = K d u + c d ú Persamaan getaran untuk bangunan SDOF yang dipasang damper jenis ini adalah: mü + (c +c d ) ú + (k + K d ) u = -mü g (2.35) Dimana : k = Kekakuan struktur K d = Kekakuan damper u = Simpangan / pergeseran damper c d = persen damping damper c = Persen damping struktur ú = Kecepatan

21 Gambar 2.8 Visco-Elastic Damper Gambar 2.9 Visco-Elastic Damper pada struktur

22 Gambar Hyteristic loop Viscous-elastic damper Metallic Yielding Damper Perangkat ini didasarkan pada kemampuan baja ringan atau logam lainnya untuk mempertahankan beban siklik, dimana perilaku tersebut menghasilkan kurva histeresis yang stabil. Kurva tersebut menunjukkan kemampuan perangkat tersebut untuk meredam energi yang masuk kedalam struktur. Pelelehan bahan yield damper dapat berupa pelelehan oleh momen lentur, pelelehan oleh momen puntir, ataupun berupa tekuk dari batangan baja. Damper ini biasanya dipasang diantara tingkatan lantai untuk mengurangi perbedaaan pergeseran lantai ( storey drift), umumnya dipasang bergabung dengan bracing. Hysterestic-yielding damper, memiliki karateristik yang berbeda dengan jenis damper sebelumnya. Damper jenis ini mendissipasi energi dengan membentuk hysteristic loop dari perubahan kekakuan damper, yaitu dari keadaan elastic menjadi plastis (yielding). Pelelehan damper ada yang berupa pelelehan lentur, geser atau secara axial (tekuk). Bahan yang sering digunakan adalah baja lunak dan timah.

23 Peredam baja adalah salah satu mekanisme yang paling populer dan banyak peredam baja dengan skema yang berbeda telah diusulkan dan diaplikasikan. Gambar. 1 menunjukkan pilihan yang paling popular untuk saat ini. Gambar 2.11 Tipe dari metallic dampers: (a) ADAS; (b) TADAS; (c) honeycomb damper; (d) slit damper; (e) shear panel damper; (f) bucklingrestrained brace. Sumber: Amadeo Benavent-Climent (2009) Seperti yang kita kenal bentuk jam pasir ini disebut peredam ADAS dan variasi lainnya yang berbentuk segitiga disebut peredam TADAS, peredam ini digunakan untuk pelat logam dengan deformasi lentur seperti ditunjukkan pada Gambar 2.11 (a) dan (b). Pada peredam honeycomb atau celah peredam, masingmasing ditunjukkan pada Gambar 2.11 (c) dan (d). Sebuah pelat baja dengan sejumlah bukaan dikenakan di perangkat deformasi geser maka energi akan hilang melalui lentur/geser dari pelat bukaan baja tersebut. Perangkat lain memanfaatkan disipasi energi melalui deformasi geser plastis panel logam dilas untuk penutupan rangka baja yang memberikan dukungan sepanjang batas seperti ditunjukkan pada Gambar 2.11 (e). Selain itu peredam logam yang juga banyak digunakan adalah baja yang sering disebut Buckling Brace Restrained ( BRB ). BRB dipasang

24 diagonal dalam kerangka struktural sebagai penahan konvensional atau penjepit jenis peredam seismik, seperti ditunjukkan pada gambar 2.11 (f). Dalam pembahasan ini peredam yang akan dibahas adalah hysteretic damper. Contoh hysteretic damper seperti di jelaskan sebelumnya adalah: pelat baja ditambahkan redaman dan kekakuan perangkat disebut sebagai ADAS damper, variasi berbentuk segitiga perangkat ADAS ini disebut TADAS damper, dan panel geser. Untuk meningkatkan disipasi energi dari hysteretic damper bahkan dalam getaran lebih kecil dan juga untuk memastikan perencanaan disipasi energi pada kekuatan yang ditentukan dalam desain, upaya yang dilakukan adalah dengan menggunakan bahan peredam yang berkualitas tinggi dan baja berkadar rendah Untuk menjamin tidak terjadi keruntuhan sewaktu gempa besar, maka struktur harus cukup daktail, hal ini dapat dilakukan dengan pembentukan sendi plastis yang cukup daktail pada lokasi-lokasi tertentu, lokasi pembentukan sendisendi plastis biasanya dipilih pada tumpuan balok, bila pembentukan sendi plastis terjadi di kolom maka akan terjadi soft-story dengan daktilitas struktur yag kecil, perencanaan yang demikian dikenal dengan perencanaan kolom kuat dan balok lemah. Pembentukan sendi plastis pada struktur akan menimbulkan kerusakankerusakan, bila kerusakan masih dalam batas tertentu masih dapat diperbaiki, tapi teknik perbaikan biasanya cukup sulit, memerlukan waktu dan biaya yang cukup besar. Dengan memilih pembentukan sendi plastis pada bagian struktur yang mudah diganti atau memakai struktur tambahan yang direncanakan untuk terjadi kerusakan bila terjadi gempa besar, maka pada struktur utama tidak akan terjadi

25 kerusakan. Konsep perencanaan yang demikian disebut dengan konsep structural fuse. Untuk struktur yang dipasang metallic damper, damper direncanakan sebagi sumbu dari struktur, bila terjadi gempa besar damper akan rusak dengan deformasi plastis yang besar, struktur utama tetap elastis, walaupun keadaan struktur pasca gempa besar akan terjadi off-center atau sideway yang tetap karena deformasi plastis terjadi pada damper, dengan melepaskan damper yang rusak sewaktu penggantian damper baru, bangunan akan kembali kekeadaan awal ADAS (Added Damping And Stiffness) ADAS sering disebut metallic yielding damper karena terdiri dari kumpulan pelat baja yang didesain untuk dipasang pada rangka bangunan. Passived seismic devices bekerja setelah energi gempa masuk ke struktur, pada umumnya reaksi seismic devices semakin besar bila respon struktur atau energi yang masuk semakin besar. Passived seismic devices sesuai yang bersifat mendissipasi energi disebut damper. Damper merupakan alat tambahan yang dipasang distruktur untuk menambah redaman (damping) dari suatu struktur. Dengan alat ini simpangan pada struktur akan berkurang, demikian juga gaya dalam struktur akibat beban lateral, struktur dapat direncanakan secara elastis akibat gempa besar dengan biaya yang cukup ekonomis. Ada beberapa damper yang dipasang pada struktur, adalah sistem seismic device yaitu dengan menggunakan alat yielding damper disebut juga hysteresticyield damper yaitu bekerja dengan mendissipasi energi melalui pembentukan

26 sendi plastis atau pelelehan bahan damper. Yielding damper yang dibahas dalam tugas akhir ini adalah damper pelat dengan kekakuan tri-linier, yaitu jenis damper dengan dissipasi energi melalui pelelehan lenturan pelat. Pelelehan bahan yielding damper dalam tugas akhir ini berupa pelelehan oleh gaya lentur. Bahan yang sering digunakan adalah baja lunak. Damper jenis ini merubah kekakuan dari keadaan elastis menjadikeadaan plastis (yielding). Pelelehan damper yang terjadi berupa pelelehan lentur. Damper jenis ini memerlukan simpangan yang besar untuk meleleh, makin besar simpangan pasca pelelehan makin besar damping yang timbul. Persamaan getaran untuk bangunan SDOF untuk damper jenis ini adalah : mü + cú + k(u) u = -m üg (3.1) dimana : m = massa bangunan c = konstanta damping strukturk (u) = kekakuan sebagai fungsi dari displacement ü = percepatan massa ú = kecepatan massa u = simpangan massa üg = percepatan gerakan tanah dasar. Fungsi kekakuan k(u) merupakan kekakuan dari bangunan dan damper, biasanya disederhanakan dengan model bilinier.

27 Gambar Hysterestic loop yield damper Gambar 2.13 Metallic Damper Gambar 2.14 Metallic Damper pada struktur

28 Gambar Sambungan ADAS pada balok dan bracing Gambar Perilaku ADAS pada saat terjadi gempa.

29 Beberapa keuntungan dari pendissipasian energi selama melelehnya ADAS, yaitu: 1. Pendisipasian energy gempa terkonsentrasi pada lokasi yang direncanakan. 2. Kebutuhan pendissipasian energy pada batang lain dapat direduksi dengan besar. 3. Karena perangkat ADAS ini merupakan perangkat struktur yang berfungsi dalam menahan beban lateral saja, lelehnya elemen ini tidak akan berpengaruh kepada kapasitas layan beban gravitasi dari struktur. Perangkat ADAS dapat dengan mudah diganti setelah gempa jika dibutuhkan. ADAS telah diuji bahwa ADAS merupakan alat pendisipasi energi yang sangat baik, hal ini dapat dilihat dari kurva hysteresis yang stabil. Bila gaya yang bekerja pada damper adalah gaya siklik atau gempa, hubungan gaya dan simpangan akan berbentuk loop jajaran genjang yang disebut juga dengan hysteristic loop. Luas hysteristic loop merupakan energi yang didissipasi oleh damper.

30 2.8 Aplikasi Yielding Damper Pada Bangunan Aplikasi penggunaan alat yielding damper ini banyak digunakan pada negara negara ataupun wilayah-wilayah yang sering terjadi gempa besar, seperti Taiwan dan Jepang. Dalam perencanaan bangunan, beban akibat gempa sangat diperhitungkan dalam analisanya sehingga walaupun bangunan tersebut terkena gempa tidak langsung rubuh melainkan timbul keretakan yang akan memperkecil korban jiwa. Pada analisa beban gempa sangat tergantung kepada struktur dari bangunan tersebut dimana bentuk dari denah dan ketinggian bangunan tersebut adalah factor utama dalam memperhitungkan gaya akibat dan guncangan gempa tersebut. Oleh sebab itu, bila telah direncanakan bangunan dengan struktur pengaku masih tidak aman maka solusi yang dianjurkan adalah dengan yielding damper untuk mereduksi gaya gempa dan deformasi yang bias mengakibatkan kerusakan pada struktur yang menyebabkan bangunan rubuh.. Aplikasi yielding damper ini termasuk mudah karena bila terjadi gempa besar maka yang akan rusak terlebih dahulu adalah dampernya, dan kita hanya mengganti damper yang mengalami kerusakan tanpa mengganggu struktur lainya. Untuk penggunaan damper dalam proses pemasangan, perbaikan, dan perbaikan cukup ekonomis dibandingkan dengan pada konsep secara tradisional. Hanya saja pada metallic damper ada beberapa kekurangan yaitu antara lain hanya berfungsi jika terjadi gempa besar, akan merubah tampak bangunan yang direncanakandan lainnya. Oleh sebab itu perlu pemakaian sistim ini harus tepat agar efisien dalam penggunaannya dalam struktur bangunan.

31 Seiring perkembangan jaman alat ini sudah banyak di pakai di Negara maju yang umumnya kekuatan gempanya yang sangat besar. Meskipun demikian alat ini umumnya jarang digunakan pada konstruksi bangunan, karena selain alat ini hanya akan efektif jika terjadi gempa yang besar dan alat ini dari segi keindahan maupun arsitektur akan berkurang karena akan ada struktur pengaku tempat meletakkan alat yielding damper ini. Di Taiwan alat ini digunakan di perpustakaan dari Universitas Feng-Chia, di tempat perbelanjaan Jung-He city, apartemen Taichung city, dan di beberapa bangunan lainnya.. Berikut adalah gambar dari beberapa contoh bangunan yang menggunakan alat yielding damper yaitu : Gambar Tempat Perbelanjaan Jung-He City

32 Gambar Apartemen Taichung City

33 Gambar 2.19 Retrofit Buildings in Taipei, Taiwan.

BAB II TINJAUN KEPUSTAKAAN

BAB II TINJAUN KEPUSTAKAAN 11 BAB II TINJAUN KEPUSTAKAAN 2.1 Material Baja Baja yang akan digunakan dalam struktur dalam diklasifikasikan menjadi baja karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat sifat mekanik

Lebih terperinci

BAB I PENDAHULUAN. dicegah dengan memperkuat struktur bangunan terhadap gaya gempa yang

BAB I PENDAHULUAN. dicegah dengan memperkuat struktur bangunan terhadap gaya gempa yang BAB I PENDAHULUAN 1.1 Latar Belakang Kerusakan bangunan akibat gempa secara konvensional dapat dicegah dengan memperkuat struktur bangunan terhadap gaya gempa yang bekerja padanya. Namun, hasil ini sering

Lebih terperinci

KAJIAN EFEK PARAMETER BASE ISOLATOR TERHADAP RESPON BANGUNAN AKIBAT GAYA GEMPA DENGAN METODE ANALISIS RIWAYAT WAKTU DICKY ERISTA

KAJIAN EFEK PARAMETER BASE ISOLATOR TERHADAP RESPON BANGUNAN AKIBAT GAYA GEMPA DENGAN METODE ANALISIS RIWAYAT WAKTU DICKY ERISTA KAJIAN EFEK PARAMETER BASE ISOLATOR TERHADAP RESPON BANGUNAN AKIBAT GAYA GEMPA DENGAN METODE ANALISIS RIWAYAT WAKTU TUGAS AKHIR DICKY ERISTA 06 0404 106 BIDANG STUDI STRUKTUR DEPARTEMEN TEKNIK SIPIL FAKULTAS

Lebih terperinci

BAB II TEORI DASAR Umum. Secara konvensional, perencanaan bangunan tahan gempa dilakukan

BAB II TEORI DASAR Umum. Secara konvensional, perencanaan bangunan tahan gempa dilakukan BAB II TEORI DASAR 2.1. Umum Secara konvensional, perencanaan bangunan tahan gempa dilakukan berdasarkan konsep bagaimana meningkatkan kapasitas tahanan struktur terhadap gaya gempa yang bekerja padanya.

Lebih terperinci

BAB I PENDAHULUAN. sipil mengingat pengaruh dan bahaya yang ditimbulkannya. Gempa bumi (earthquake)

BAB I PENDAHULUAN. sipil mengingat pengaruh dan bahaya yang ditimbulkannya. Gempa bumi (earthquake) 1 BAB I PENDAHULUAN 1.1. Latar Belakang Fenomena gempa bumi menjadi bagian penting dan menarik bagi perencana teknik sipil mengingat pengaruh dan bahaya yang ditimbulkannya. Gempa bumi (earthquake) adalah

Lebih terperinci

BAB I PENDAHULUAN 1.1 LATAR BELAKANG. Kondisi geografis Indonesia terletak di daerah dengan tingkat kejadian gempa

BAB I PENDAHULUAN 1.1 LATAR BELAKANG. Kondisi geografis Indonesia terletak di daerah dengan tingkat kejadian gempa BAB I PENDAHULUAN 1.1 LATAR BELAKANG Kondisi geografis Indonesia terletak di daerah dengan tingkat kejadian gempa bumi tektonik yang relatif tinggi. Maka perlu dilakukan berbagai upaya untuk memperkecil

Lebih terperinci

BAB I PENDAHULUAN. Dalam perencanaan suatu bangunan tahan gempa, filosofi yang banyak. digunakan hampir di seluruh negara di dunia yaitu:

BAB I PENDAHULUAN. Dalam perencanaan suatu bangunan tahan gempa, filosofi yang banyak. digunakan hampir di seluruh negara di dunia yaitu: BAB I PENDAHULUAN 1.1 LATAR BELAKANG Indonesia adalah salah satu negara di dunia yang rawan akan gempa bumi. Hal ini disebabkan Indonesia dilalui dua jalur gempa dunia, yaitu jalur gempa asia dan jalur

Lebih terperinci

PENDEKATAN ANALISA LINIER METALLIC DAMPER TESIS. Oleh MAHADIANTO ONG /TS

PENDEKATAN ANALISA LINIER METALLIC DAMPER TESIS. Oleh MAHADIANTO ONG /TS PENDEKATAN ANALISA LINIER METALLIC DAMPER TESIS Oleh MAHADIANTO ONG 057016010/TS SEKOLAH PASCASARJANA UNIVERSITAS SUMATERA UTARA MEDAN 2008 PENDEKATAN ANALISA LINIER METALLIC DAMPER TESIS Oleh MAHADIANTO

Lebih terperinci

BIDANG STUDI STRUKTUR DEPARTEMEN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA 2011

BIDANG STUDI STRUKTUR DEPARTEMEN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA 2011 STUDI PERBANDINGAN RESPON BANGUNAN DENGAN SISTEM RANGKA PEMIKUL MOMEN DAN DENGAN BANGUNAN YANG MENGGUNAKAN SISTEM RANGKA BERPENGAKU KONSENTRIK SERTA DENGAN BANGUNAN YANG MENGGUNAKAN METALIC YIELDING DAMPER

Lebih terperinci

Seismic devices pada umumnya dapat dibagi menjadi 3 jenis, yaitu :

Seismic devices pada umumnya dapat dibagi menjadi 3 jenis, yaitu : BAB II TINJAUAN PUSTAKA 2.1 PENGENALAN JENIS-JENIS SEISMIC DEVICE Gempa merupakan salah satu beban yang dapat menyebabkan kerusakan pada struktur apalagi jika gedung tersebut bertingkat tinggi. Kini muncul

Lebih terperinci

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT 2.1 KONSEP PERENCANAAN STRUKTUR GEDUNG RAWAN GEMPA Pada umumnya struktur gedung berlantai banyak harus kuat dan stabil terhadap berbagai macam

Lebih terperinci

BAB II TEORI DASAR. jalan serta fasilitas umum lainnya, juga dapat menimbulkan jatuhnya korban jiwa.

BAB II TEORI DASAR. jalan serta fasilitas umum lainnya, juga dapat menimbulkan jatuhnya korban jiwa. BAB II TEORI DASAR 2.1 UMUM Gempa bumi merupakan salah satu bencana alam yang tidak dapat diprediksi secara pasti kapan dan dimana datangnya serta berapa besar kekuatannya. Dampak dari gempa bumi ini selain

Lebih terperinci

ANALISIS STRUKTUR RANGKA BAJA MENGGUNAKAN BASE ISOLATION DENGAN TIME HISTORY ANALYSIS

ANALISIS STRUKTUR RANGKA BAJA MENGGUNAKAN BASE ISOLATION DENGAN TIME HISTORY ANALYSIS Vol. 4, No., Oktober 5, Halaman: - 6, ISSN: 97-447 (Print), ISSN: 477-4863 (Online) Alamat Website: http://cantilever.unsri.ac.id ANALISIS STRUKTUR RANGKA BAJA MENGGUNAKAN BASE ISOLATION DENGAN TIME HISTORY

Lebih terperinci

DAFTAR ISI KATA PENGANTAR...

DAFTAR ISI KATA PENGANTAR... DAFTAR ISI KATA PENGANTAR.... i ABSTRAK... iii DAFTAR ISI... iv DAFTAR GAMBAR... viii DAFTAR TABEL... x DAFTAR NOTASI... xiii BAB I. PENDAHULUAN... 1 I.1. Latar Belakang Masalah... 1 I.2 Perumusan Masalah...

Lebih terperinci

ANALISIS PENGARUH FRICTION DAMPER TERHADAP UPAYA RETROFITTING BANGUNAN DI JAKARTA

ANALISIS PENGARUH FRICTION DAMPER TERHADAP UPAYA RETROFITTING BANGUNAN DI JAKARTA ANALISIS PENGARUH FRICTION DAMPER TERHADAP UPAYA RETROFITTING BANGUNAN Jurusan Teknik Sipil, Universitas Tarumanagara Jakarta giovannipranata@gmail.com ABSTRAK Beberapa tahun terakhir ini sering terjadi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Defenisi Beban Dinamik Menurut Widodo (2001), Beban dinamik merupakan beban yang berubah-ubah menurut waktu (time varying) sehingga beban dinamik merupakan fungsi dari waktu.

Lebih terperinci

PENDEKATAN MODEL HYSTERISTIC STEEL DAMPER BERDASARKAN HASIL EKSPERIMENTAL ABSTRAK

PENDEKATAN MODEL HYSTERISTIC STEEL DAMPER BERDASARKAN HASIL EKSPERIMENTAL ABSTRAK PENDEKATAN MODEL HYSTERISTIC STEEL DAMPER BERDASARKAN HASIL EKSPERIMENTAL Jathendra Ambarita 1, Daniel Rumbi Teruna 2, Rahmi Karolina 3 1 Departemen Teknik Sipil, Universitas Sumatera Utara, Jl. Perpustakaan

Lebih terperinci

ANALISIS PENGARUH PENEMPATAN ALAT PEREDAM VISKOS TERHADAP RESPONS STRUKTUR GEDUNG TINGGI DENGAN MENGGUNAKAN METODE ANALISIS RIWAYAT WAKTU

ANALISIS PENGARUH PENEMPATAN ALAT PEREDAM VISKOS TERHADAP RESPONS STRUKTUR GEDUNG TINGGI DENGAN MENGGUNAKAN METODE ANALISIS RIWAYAT WAKTU ANALISIS PENGARUH PENEMPATAN ALAT PEREDAM VISKOS TERHADAP RESPONS STRUKTUR GEDUNG TINGGI DENGAN MENGGUNAKAN METODE ANALISIS RIWAYAT WAKTU TUGAS AKHIR Disusun Oleh : VINCE 11 0404 041 Disetujui : Dosen

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan BAB II TINJAUAN PUSTAKA 2.1 Umum Gempa adalah fenomena getaran yang diakibatkan oleh benturan atau pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan (fault zone). Besarnya

Lebih terperinci

Analisis Respon Spektrum Pada Bangunan Yang Menggunakan Yielding Damper Akibat GayaGempa

Analisis Respon Spektrum Pada Bangunan Yang Menggunakan Yielding Damper Akibat GayaGempa Analisis Respon Spektrum Pada Bangunan Yang Menggunakan Yielding Damper Akibat GayaGempa Tugas Akhir Diaukan untuk melengkapi tugas-tugas dan memenuhi Syarat untuk menempuh uian sarana Teknik Sipil Disusun

Lebih terperinci

DIRECT DISPLACEMENT BASED DESIGN PADA SISTEM RANGKA DENGAN KETIDAKBERATURAN PERGESERAN MELINTANG TERHADAP BIDANG

DIRECT DISPLACEMENT BASED DESIGN PADA SISTEM RANGKA DENGAN KETIDAKBERATURAN PERGESERAN MELINTANG TERHADAP BIDANG DIRECT DISPLACEMENT BASED DESIGN PADA SISTEM RANGKA DENGAN KETIDAKBERATURAN PERGESERAN MELINTANG TERHADAP BIDANG Amelinda Kusuma 1, Fonny Hindarto 2, Ima Muljati 3 ABSTRAK : Metode yang sering digunakan

Lebih terperinci

Studi Respon Seismik Penggunaan Steel Slit Damper (SSD) pada Portal Baja

Studi Respon Seismik Penggunaan Steel Slit Damper (SSD) pada Portal Baja JURNAL TEKNIK ITS Vol. 1, No. 1, (Sept. 2012) ISSN: 2301-9271 D-46 Studi Respon Seismik Penggunaan Steel Slit Damper (SSD) pada Portal Baja Lisa Ika Arumsari dan Endah Wahyuni Jurusan Teknik Sipil, Fakultas

Lebih terperinci

BAB I PENDAHULUAN. Perencanaan Tahan Gempa Indonesia Untuk Gedung (PPTGIUG, 1981) maupun di

BAB I PENDAHULUAN. Perencanaan Tahan Gempa Indonesia Untuk Gedung (PPTGIUG, 1981) maupun di BAB I PENDAHULUAN 1.1 LATAR BELAKANG Wilayah-wilayah gempa yang ada di Indonesia sudah disajikan baik di Peraturan Perencanaan Tahan Gempa Indonesia Untuk Gedung (PPTGIUG, 1981) maupun di Tata Cara Perencanaan

Lebih terperinci

ANALISIS KINERJA STRUKTUR BETON BERTULANG DENGAN VARIASI PENEMPATAN BRACING INVERTED V ABSTRAK

ANALISIS KINERJA STRUKTUR BETON BERTULANG DENGAN VARIASI PENEMPATAN BRACING INVERTED V ABSTRAK VOLUME 12 NO. 2, OKTOBER 2016 ANALISIS KINERJA STRUKTUR BETON BERTULANG DENGAN VARIASI PENEMPATAN BRACING INVERTED V Julita Andrini Repadi 1, Jati Sunaryati 2, dan Rendy Thamrin 3 ABSTRAK Pada studi ini

Lebih terperinci

BAB II TINJAUAN PUSTAKA. geser membentuk struktur kerangka yang disebut juga sistem struktur portal.

BAB II TINJAUAN PUSTAKA. geser membentuk struktur kerangka yang disebut juga sistem struktur portal. BAB II TINJAUAN PUSTAKA 2.1 Sistem Struktur Bangunan Suatu sistem struktur kerangka terdiri dari rakitan elemen struktur. Dalam sistem struktur konstruksi beton bertulang, elemen balok, kolom, atau dinding

Lebih terperinci

BAB III PEMODELAN RESPONS BENTURAN

BAB III PEMODELAN RESPONS BENTURAN BAB III PEMODELAN RESPONS BENTURAN 3. UMUM Struktur suatu bangunan tidak selalu dapat dimodelkan dengan Single Degree Of Freedom (SDOF), tetapi lebih sering dimodelkan dengan sistem Multi Degree Of Freedom

Lebih terperinci

BAB II TINJAUAN PUSTAKA. aman secara konstruksi maka struktur tersebut haruslah memenuhi persyaratan

BAB II TINJAUAN PUSTAKA. aman secara konstruksi maka struktur tersebut haruslah memenuhi persyaratan BAB II TINJAUAN PUSTAKA 2.1 Dasar-dasar Pembebanan Struktur Dalam merencanakan suatu struktur bangunan tidak akan terlepas dari beban-beban yang bekerja pada struktur tersebut. Agar struktur bangunan tersebut

Lebih terperinci

KAJIAN PENGARUH KARAKTERISTIK MEKANIK DAMPER LELEH BAJA TERHADAP RESPON BANGUNAN AKIBAT GAYA GEMPA DENGAN MENGGUNAKAN ANALISIS RIWAYAT WAKTU

KAJIAN PENGARUH KARAKTERISTIK MEKANIK DAMPER LELEH BAJA TERHADAP RESPON BANGUNAN AKIBAT GAYA GEMPA DENGAN MENGGUNAKAN ANALISIS RIWAYAT WAKTU KAJIAN PENGARUH KARAKTERISTIK MEKANIK DAMPER LELEH BAJA TERHADAP RESPON BANGUNAN AKIBAT GAYA GEMPA DENGAN MENGGUNAKAN ANALISIS RIWAYAT WAKTU Eka Desy Pratiwi 1 dan Daniel Rumbi Teruna 2 1 Departemen Teknik

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA 2.1. TINJAUAN UMUM Pada Studi Pustaka ini akan membahas mengenai dasar-dasar dalam merencanakan struktur untuk bangunan bertingkat. Dasar-dasar perencanaan tersebut berdasarkan referensi-referensi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. dari pelat baja vertikal (infill plate) yang tersambung pada balok dan kolom

BAB II TINJAUAN PUSTAKA. dari pelat baja vertikal (infill plate) yang tersambung pada balok dan kolom BAB II TINJAUAN PUSTAKA II.1. Steel Plate Shear Walls Steel Plate Shear Walls adalah sistem penahan beban lateral yang terdiri dari pelat baja vertikal (infill plate) yang tersambung pada balok dan kolom

Lebih terperinci

RESPON DINAMIS STRUKTUR BANGUNAN BETON BERTULANG BERTINGKAT BANYAK DENGAN VARIASI ORIENTASI SUMBU KOLOM

RESPON DINAMIS STRUKTUR BANGUNAN BETON BERTULANG BERTINGKAT BANYAK DENGAN VARIASI ORIENTASI SUMBU KOLOM Jurnal Sipil Statik Vol. No., Oktober (-) ISSN: - RESPON DINAMIS STRUKTUR BANGUNAN BETON BERTULANG BERTINGKAT BANYAK DENGAN VARIASI SUMBU Norman Werias Alexander Supit M. D. J. Sumajouw, W. J. Tamboto,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. geser horisontal dan momen guling akibat beban lateral. Secara umum, Dinding

BAB II TINJAUAN PUSTAKA. geser horisontal dan momen guling akibat beban lateral. Secara umum, Dinding BAB II TINJAUAN PUSTAKA 2.1 Dinding Geser Pelat Baja Fungsi utama dari Dinding Geser Pelat Baja adalah untuk menahan gaya geser horisontal dan momen guling akibat beban lateral. Secara umum, Dinding Geser

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Gempa merupakan fenomena alam yang harus diterima sebagai fact of life.

BAB I PENDAHULUAN. 1.1 Latar Belakang. Gempa merupakan fenomena alam yang harus diterima sebagai fact of life. BAB I PENDAHULUAN 1.1 Latar Belakang Gempa merupakan fenomena alam yang harus diterima sebagai fact of life. Karena itu gempa bumi tidak mungkin untuk dicegah ataupun diprediksi dengan tepat kapan akan

Lebih terperinci

RESPON DINAMIS STRUKTUR PADA PORTAL TERBUKA, PORTAL DENGAN BRESING V DAN PORTAL DENGAN BRESING DIAGONAL

RESPON DINAMIS STRUKTUR PADA PORTAL TERBUKA, PORTAL DENGAN BRESING V DAN PORTAL DENGAN BRESING DIAGONAL RESPON DINAMIS STRUKTUR PADA PORTAL TERBUKA, PORTAL DENGAN BRESING V DAN PORTAL DENGAN BRESING DIAGONAL Oleh : Fajar Nugroho Jurusan Teknik Sipil dan Perencanaan,Institut Teknologi Padang fajar_nugroho17@yahoo.co.id

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Analisis Statik Beban Dorong (Static Pushover Analysis) Menurut SNI Gempa 03-1726-2002, analisis statik beban dorong (pushover) adalah suatu analisis nonlinier statik, yang

Lebih terperinci

STUDI EVALUASI KINERJA STRUKTUR BAJA BERTINGKAT RENDAH DENGAN ANALISIS PUSHOVER ABSTRAK

STUDI EVALUASI KINERJA STRUKTUR BAJA BERTINGKAT RENDAH DENGAN ANALISIS PUSHOVER ABSTRAK STUDI EVALUASI KINERJA STRUKTUR BAJA BERTINGKAT RENDAH DENGAN ANALISIS PUSHOVER Choerudin S NRP : 0421027 Pembimbing :Olga Pattipawaej, Ph.D Pembimbing Pendamping :Cindrawaty Lesmana, M.Sc. Eng FAKULTAS

Lebih terperinci

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut : 4 BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Perencanaan struktur bangunan gedung harus didasarkan pada kemampuan gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam Peraturan

Lebih terperinci

BAB IV PERMODELAN STRUKTUR

BAB IV PERMODELAN STRUKTUR BAB IV PERMODELAN STRUKTUR IV.1 Deskripsi Model Struktur Kasus yang diangkat pada tugas akhir ini adalah mengenai retrofitting struktur bangunan beton bertulang dibawah pengaruh beban gempa kuat. Sebagaimana

Lebih terperinci

BAB 1 PENDAHULUAN. hingga tinggi, sehingga perencanaan struktur bangunan gedung tahan gempa

BAB 1 PENDAHULUAN. hingga tinggi, sehingga perencanaan struktur bangunan gedung tahan gempa BAB 1 PENDAHULUAN 1.1 Latar Belakang Indonesia terletak dalam wilayah gempa dengan intensitas gempa moderat hingga tinggi, sehingga perencanaan struktur bangunan gedung tahan gempa menjadi sangat penting

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang

BAB I PENDAHULUAN A. Latar Belakang BAB I PENDAHULUAN A. Latar Belakang Gedung merupakan salah satu bangunan yang berfungsi sebagai fasilitas yang di dalamnya dihuni manusia untuk menjalankan aktivitasnya, antara lain perkantoran, hunian,

Lebih terperinci

PERBANDINGAN PERILAKU ANTARA STRUKTUR RANGKA PEMIKUL MOMEN (SRPM) DAN STRUKTUR RANGKA BRESING KONSENTRIK (SRBK) TIPE X-2 LANTAI

PERBANDINGAN PERILAKU ANTARA STRUKTUR RANGKA PEMIKUL MOMEN (SRPM) DAN STRUKTUR RANGKA BRESING KONSENTRIK (SRBK) TIPE X-2 LANTAI PERBANDINGAN PERILAKU ANTARA STRUKTUR RANGKA PEMIKUL MOMEN (SRPM) DAN STRUKTUR RANGKA BRESING KONSENTRIK (SRBK) TIPE X-2 LANTAI TUGAS AKHIR Oleh : I Gede Agus Krisnhawa Putra NIM : 1104105075 JURUSAN TEKNIK

Lebih terperinci

EVALUASI METODE FBD DAN DDBD PADA SRPM DI WILAYAH 2 DAN 6 PETA GEMPA INDONESIA

EVALUASI METODE FBD DAN DDBD PADA SRPM DI WILAYAH 2 DAN 6 PETA GEMPA INDONESIA EVALUASI METODE FBD DAN DDBD PADA SRPM DI WILAYAH DAN PETA GEMPA INDONESIA Ivan William Susanto, Patrik Rantetana, Ima Muljati ABSTRAK : Direct Displacement Based Design (DDBD) merupakan sebuah metode

Lebih terperinci

BAB V ANALISIS DAN PEMBAHASAN

BAB V ANALISIS DAN PEMBAHASAN BAB V ANALISIS DAN PEMBAHASAN Pada bagian ini akan dianalisis periode struktur, displacement, interstory drift, momen kurvatur, parameter aktual non linear, gaya geser lantai, dan distribusi sendi plastis

Lebih terperinci

II. KAJIAN LITERATUR. tahan gempa apabila memenuhi kriteria berikut: tanpa terjadinya kerusakan pada elemen struktural.

II. KAJIAN LITERATUR. tahan gempa apabila memenuhi kriteria berikut: tanpa terjadinya kerusakan pada elemen struktural. 5 II. KAJIAN LITERATUR A. Konsep Bangunan Tahan Gempa Secara umum, menurut UBC 1997 bangunan dikatakan sebagai bangunan tahan gempa apabila memenuhi kriteria berikut: 1. Struktur yang direncanakan harus

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Kerusakan Struktur Kerusakan struktur merupakan pengurangan kekuatan struktur dari kondisi mula-mula yang menyebabkan terjadinya tegangan yang tidak diinginkan, displacement,

Lebih terperinci

Kata kunci : base isolator, perbandingan kinerja, dengan dan tanpa base isolator,

Kata kunci : base isolator, perbandingan kinerja, dengan dan tanpa base isolator, ABSTRAK Upaya mitigasi bencana gempa pada sebuah struktur umumnya masih menggunakan desain yang terjepit pada tanah sehingga pada saat terjadi gempa, percepatan tanah yang terjadi akan langsung memengaruhi

Lebih terperinci

ANALISIS KINERJA BANGUNAN BETON BERTULANG DENGAN LAYOUT BERBENTUK YANG MENGALAMI BEBAN GEMPA TERHADAP EFEK SOFT-STOREY SKRIPSI

ANALISIS KINERJA BANGUNAN BETON BERTULANG DENGAN LAYOUT BERBENTUK YANG MENGALAMI BEBAN GEMPA TERHADAP EFEK SOFT-STOREY SKRIPSI ANALISIS KINERJA BANGUNAN BETON BERTULANG DENGAN LAYOUT BERBENTUK YANG MENGALAMI BEBAN GEMPA TERHADAP EFEK SOFT-STOREY SKRIPSI Oleh : RONI SYALIM 07 172 043 JURUSAN TEKNIK SIPIL - FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

BAB 1 PENDAHULUAN. di wilayah Sulawesi terutama bagian utara, Nusa Tenggara Timur, dan Papua.

BAB 1 PENDAHULUAN. di wilayah Sulawesi terutama bagian utara, Nusa Tenggara Timur, dan Papua. BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Indonesia merupakan Negara kepulauan yang dilewati oleh pertemuan sistem-sistem lempengan kerak bumi sehingga rawan terjadi gempa. Sebagian gempa tersebut terjadi

Lebih terperinci

BABI PENDAHULUAN. Pendahuluan ini berisi tentang latar belakang masalah, rumusan masalah,

BABI PENDAHULUAN. Pendahuluan ini berisi tentang latar belakang masalah, rumusan masalah, BABI PENDAHULUAN Pendahuluan ini berisi tentang latar belakang masalah, rumusan masalah, batasan penelitian, tujuan penelitian, manfaat penelitian dan pendekatan masalah. Penjelasan mengenai hal-hal tersebut

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Beton Beton didefinisikan sebagai campuran antara sement portland atau semen hidraulik yang lain, agregat halus, agregat kasar dan air, dengan atau tanpa bahan tambahan yang

Lebih terperinci

STUDI EFEKTIFITAS PENGGUNAAN TUNED MASS DAMPER UNTUK MENGURANGI PENGARUH BEBAN GEMPA PADA STRUKTUR BANGUNAN TINGGI DENGAN LAYOUT BANGUNAN BERBENTUK U

STUDI EFEKTIFITAS PENGGUNAAN TUNED MASS DAMPER UNTUK MENGURANGI PENGARUH BEBAN GEMPA PADA STRUKTUR BANGUNAN TINGGI DENGAN LAYOUT BANGUNAN BERBENTUK U VOLUME 5 NO. 2, OKTOBER 29 STUDI EFEKTIFITAS PENGGUNAAN TUNED MASS DAMPER UNTUK MENGURANGI PENGARUH BEBAN GEMPA PADA STRUKTUR BANGUNAN TINGGI DENGAN LAYOUT BANGUNAN BERBENTUK U Jati Sunaryati 1, Rudy Ferial

Lebih terperinci

yaitu plat Philippines, plat Pasifik, plat Australia dan plat Eurasia (Widodo 2001).

yaitu plat Philippines, plat Pasifik, plat Australia dan plat Eurasia (Widodo 2001). BAB I PENDAHULUAN 1.1 Latar Belakang Gempa bumi adalah salah satu fenomena alam yang tidak dapat ditentukan dengan pasti kapan terjadinya. Pada peta seismotektonik dunia Indonesia mempunyai kondisi tektonik

Lebih terperinci

BAB I PENDAHULUAN. I.1 Latar Belakang

BAB I PENDAHULUAN. I.1 Latar Belakang BAB I PENDAHULUAN I.1 Latar Belakang Dengan adanya banyak bencana alam terutama gempa bumi yang dialami oleh beberapa daerah di Indonesia akhir-akhir ini, para ahli teknik sipil mulai memikirkan suatu

Lebih terperinci

PERENCANAAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK BIASA DAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK KHUSUS TIPE-X TUGAS AKHIR

PERENCANAAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK BIASA DAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK KHUSUS TIPE-X TUGAS AKHIR PERENCANAAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK BIASA DAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK KHUSUS TIPE-X TUGAS AKHIR Diajukan sebagai salah satu persyaratan menyelesaikan Tahap Sarjana pada

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Kajian Damper Sebagai Seismic Devices Pengaruh gempa terhadap struktur yang dibangun di atas permukaan tanah menjadi problematika yang sering dibahas oleh para ilmuwan dan engineer

Lebih terperinci

BAB I PENDAHULUAN. pesat yaitu selain awet dan kuat, berat yang lebih ringan Specific Strength yang

BAB I PENDAHULUAN. pesat yaitu selain awet dan kuat, berat yang lebih ringan Specific Strength yang BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Konstruksi Baja merupakan suatu alternatif yang menguntungkan dalam pembangunan gedung dan struktur yang lainnya baik dalam skala kecil maupun besar. Hal ini

Lebih terperinci

BAB II TINJAUAN PUSTAKA. yang aman. Pengertian beban di sini adalah beban-beban baik secara langsung

BAB II TINJAUAN PUSTAKA. yang aman. Pengertian beban di sini adalah beban-beban baik secara langsung BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencanaan struktur bangunan harus mengikuti peraturanperaturan pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman. Pengertian

Lebih terperinci

BAB III METODE ANALISIS

BAB III METODE ANALISIS BAB III METODE ANALISIS Pada tugas akhir ini, model struktur yang telah dibuat dengan bantuan software ETABS versi 9.0.0 kemudian dianalisis dengan metode yang dijelaskan pada ATC-40 yaitu dengan analisis

Lebih terperinci

PERHITUNGAN INTER STORY DRIFT PADA BANGUNAN TANPA SET-BACK DAN DENGAN SET-BACK AKIBAT GEMPA

PERHITUNGAN INTER STORY DRIFT PADA BANGUNAN TANPA SET-BACK DAN DENGAN SET-BACK AKIBAT GEMPA PERHITUNGAN INTER STORY DRIFT PADA BANGUNAN TANPA SET-BACK DAN DENGAN SET-BACK AKIBAT GEMPA Berny Andreas Engelbert Rumimper S. E. Wallah, R. S. Windah, S. O. Dapas Fakultas Teknik, Jurusan Teknik Sipil,

Lebih terperinci

ANALISIS BEBAN GEMPA TERHADAP KEKUATAN STRUKTUR BANGUNAN MULTI DEGRRE OF FREEDOME

ANALISIS BEBAN GEMPA TERHADAP KEKUATAN STRUKTUR BANGUNAN MULTI DEGRRE OF FREEDOME DINAMIKA ANALISIS BEBAN GEMPA TERHADAP KEKUATAN STRUKTUR BANGUNAN MULTI DEGRRE OF FREEDOME Almufid, Prodi Tehnik SipilFakultas Teknik Universitas Muhammadiyah Tangerang email : almufid_st@yahoo.com Abstract

Lebih terperinci

Prinsip Desain Bangunan Tinggi Di Wilayah dengan Resiko Gempa Tinggi

Prinsip Desain Bangunan Tinggi Di Wilayah dengan Resiko Gempa Tinggi Prinsip Desain Bangunan Tinggi Di Wilayah dengan Resiko Gempa Tinggi BY PROFESSOR ISWANDI IMRAN DAN M. RIYANSYAH, PHD. DEPT. TEKNIK SIPIL ITB 2016 Tantangan Konstruksi Masa Kini Tantangan Konstruksi Masa

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Beban Struktur Pada suatu struktur bangunan, terdapat beberapa jenis beban yang bekerja. Struktur bangunan yang direncanakan harus mampu menahan beban-beban yang bekerja pada

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Beton berlulang merupakan bahan konstruksi yang paling penting dan merupakan

BAB II TINJAUAN PUSTAKA. Beton berlulang merupakan bahan konstruksi yang paling penting dan merupakan BAB II TINJAUAN PUSTAKA 2.1 Umum Beton berlulang merupakan bahan konstruksi yang paling penting dan merupakan suatu kombinasi antara beton dan baja tulangan. Beton bertulang merupakan material yang kuat

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Dalam perencanaan struktur bangunan harus mengikuti peraturanperaturan pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman. Pengertian

Lebih terperinci

BAB I PENDAHULUAN. dengan struktur beton, baja dinilai memiliki sifat daktilitas yang dapat dimanfaatkan

BAB I PENDAHULUAN. dengan struktur beton, baja dinilai memiliki sifat daktilitas yang dapat dimanfaatkan BAB I PENDAHULUAN 1.1 Latar Belakang Bangunan yang berada di daerah rawan gempa seperti Indonesia, harus direncanakan untuk dapat memikul gaya lateral yang disebabkan oleh gempa. Baja merupakan alternative

Lebih terperinci

Laporan Tugas Akhir Pemodelan Numerik Respons Benturan Tiga Struktur Akibat Gempa BAB I PENDAHULUAN

Laporan Tugas Akhir Pemodelan Numerik Respons Benturan Tiga Struktur Akibat Gempa BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 LATAR BELAKANG Saat ini lahan untuk pembangunan gedung yang tersedia semakin lama semakin sedikit sejalan dengan bertambahnya waktu. Untuk itu, pembangunan gedung berlantai banyak

Lebih terperinci

BAB II TINJAUAN PUSTAKA TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA TINJAUAN PUSTAKA Komputer menjadi alat bantu yang menakjubkan dalam menyelesaikan problem-problem numerik maupun non-numerik (teks, grafis, suara, dan gambar) pada setiap aspek

Lebih terperinci

BAB III UJI LABORATORIUM. Pengujian bahan yang akan diuji merupakan bangunan yang terdiri dari 3

BAB III UJI LABORATORIUM. Pengujian bahan yang akan diuji merupakan bangunan yang terdiri dari 3 BAB III UJI LABORATORIUM 3.1. Benda Uji Pengujian bahan yang akan diuji merupakan bangunan yang terdiri dari 3 dimensi, tiga lantai yaitu dinding penumpu yang menahan beban gempa dan dinding yang menahan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut.

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. 5 BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Komponen Struktur Perencanaan suatu struktur bangunan gedung didasarkan pada kemampuan gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Pengertian

Lebih terperinci

BAB 1 PENDAHULUAN. metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan

BAB 1 PENDAHULUAN. metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG PENULISAN Umumnya, pada masa lalu semua perencanaan struktur direncanakan dengan metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan dipikul

Lebih terperinci

PENGARUH SENSITIFITAS DIMENSI DAN PENULANGAN KOLOM PADA KURVA KAPASITAS GEDUNG 7 LANTAI TIDAK BERATURAN

PENGARUH SENSITIFITAS DIMENSI DAN PENULANGAN KOLOM PADA KURVA KAPASITAS GEDUNG 7 LANTAI TIDAK BERATURAN Konferensi Nasional Teknik Sipil 3 (KoNTekS 3) Jakarta, 6 7 Mei 2009 PENGARUH SENSITIFITAS DIMENSI DAN PENULANGAN KOLOM PADA KURVA KAPASITAS GEDUNG 7 LANTAI TIDAK BERATURAN Nurlena Lathifah 1 dan Bernardinus

Lebih terperinci

Pengaruh Core terhadap Kinerja Seismik Gedung Bertingkat

Pengaruh Core terhadap Kinerja Seismik Gedung Bertingkat Reka Racana Teknik Sipil Itenas Vol. 2 No. 1 Jurnal Online Institut Teknologi Nasional Maret 2016 Pengaruh Core terhadap Kinerja Seismik Gedung Bertingkat MEKY SARYUDI 1, BERNARDINUS HERBUDIMAN 2, 1 Mahasiswa,

Lebih terperinci

DAFTAR ISI. BAB II TINJAUAN PUSTAKA Umum Beban Gempa Menurut SNI 1726: Perkuatan Struktur Bresing...

DAFTAR ISI. BAB II TINJAUAN PUSTAKA Umum Beban Gempa Menurut SNI 1726: Perkuatan Struktur Bresing... DAFTAR ISI PERNYATAAN... i ABSTRAK... ii UCAPAN TERIMA KASIH... iii DAFTAR ISI... v DAFTAR GAMBAR... vii DAFTAR TABEL... ix BAB I PENDAHULUAN... 1 1.1 Latar Belakang... 1 1.2 Rumusan Masalah... 2 1.3 Tujuan...

Lebih terperinci

PEMODELAN STRUKTUR RANGKA BAJA DENGAN BALOK BERLUBANG

PEMODELAN STRUKTUR RANGKA BAJA DENGAN BALOK BERLUBANG PEMODELAN STRUKTUR RANGKA BAJA DENGAN BALOK BERLUBANG TUGAS AKHIR Oleh : Komang Haria Satriawan NIM : 1104105053 JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS UDAYANA 2015 NPERNYATAAN Yang bertanda

Lebih terperinci

PRESENTASI TUGAS AKHIR

PRESENTASI TUGAS AKHIR PRESENTASI TUGAS AKHIR STUDI PERILAKU STRUKTUR BAJA MENGGUNAKAN SISTEM SELF CENTERING DENGAN SISTEM PRATEKAN PADA BALOK DAN KOLOM AKIBAT BEBAN GEMPA Oleh Syaiful Rachman 3105 100 093 Dosen Pembimbing:

Lebih terperinci

PENGARUH PASIR TERHADAP PENINGKATAN RASIO REDAMAN PADA PERANGKAT KONTROL PASIF (238S)

PENGARUH PASIR TERHADAP PENINGKATAN RASIO REDAMAN PADA PERANGKAT KONTROL PASIF (238S) PENGARUH PASIR TERHADAP PENINGKATAN RASIO REDAMAN PADA PERANGKAT KONTROL PASIF (238S) Daniel Christianto 1, Yuskar Lase 2 dan Yeospitta 3 1 Jurusan Teknik Sipil, Universitas Tarumanagara, Jl. S.Parman

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Konsep Pemilihan Struktur Desain struktur harus memperhatikan beberapa aspek, diantaranya : Aspek Struktural ( kekuatan dan kekakuan struktur) Aspek ini merupakan aspek yang

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Umum. Berkembangnya kemajuan teknologi bangunan bangunan tinggi disebabkan

BAB I PENDAHULUAN. 1.1 Umum. Berkembangnya kemajuan teknologi bangunan bangunan tinggi disebabkan BAB I PENDAHULUAN 1.1 Umum Berkembangnya kemajuan teknologi bangunan bangunan tinggi disebabkan oleh kebutuhan ruang yang selalu meningkat dari tahun ke tahun. Semakin tinggi suatu bangunan, aksi gaya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

STUDI KINERJA SENDI PLASTIS PADA GEDUNG DAKTAIL PARSIAL DENGAN ANALISIS BEBAN DORONG

STUDI KINERJA SENDI PLASTIS PADA GEDUNG DAKTAIL PARSIAL DENGAN ANALISIS BEBAN DORONG STUDI KINERJA SENDI PLASTIS PADA GEDUNG DAKTAIL PARSIAL DENGAN ANALISIS BEBAN DORONG Muhammad Ujianto 1, Wahyu Ahmat Hasan Jaenuri 2, Yenny Nurchasanah 3 1,2,3 Prodi Teknik Sipil, Fakultas Teknik, Universitas

Lebih terperinci

PERENCANAAN STRUKTUR RANGKA BAJA DENGAN BRESING TAHAN TEKUK

PERENCANAAN STRUKTUR RANGKA BAJA DENGAN BRESING TAHAN TEKUK PERENCANAAN STRUKTUR RANGKA BAJA DENGAN BRESING TAHAN TEKUK Rhonita Dea Andarini 1), Muslinang Moestopo 2) 1. Pendahuluan Masalah tekuk menjadi perhatian dalam desain bangunan baja. Tekuk menyebabkan hilangnya

Lebih terperinci

APLIKASI METODE RESPON SPEKTRUM DENGAN METODE TEORITIS DENGAN EXCEL DIBANDINGKAN DENGAN PROGRAM SOFTWARE

APLIKASI METODE RESPON SPEKTRUM DENGAN METODE TEORITIS DENGAN EXCEL DIBANDINGKAN DENGAN PROGRAM SOFTWARE APLIKASI METODE RESPON SPEKTRUM DENGAN METODE TEORITIS DENGAN EXCEL DIBANDINGKAN DENGAN PROGRAM SOFTWARE Tugas Akhir Diajukan untuk melengkapi tugas-tugas dan memenuhi Syarat untuk menempuh ujian sarjana

Lebih terperinci

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang BAB II TINJAUAN PUSTAKA 2.1 Umum Struktur bangunan bertingkat tinggi memiliki tantangan tersendiri dalam desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang memiliki faktor resiko

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Dalam perencanaan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman secara konstruksi berdasarkan

Lebih terperinci

BAB V ANALISIS DAN PEMBAHASAN

BAB V ANALISIS DAN PEMBAHASAN BAB V ANALISIS DAN PEMBAHASAN 5.1 Periode Alami dan Modal Mass Participation Mass Ratio Periode alami struktur mencerminkan tingkat kefleksibelan sruktur tersebut. Untuk mencegah penggunaan struktur gedung

Lebih terperinci

Pengujian Tahan Gempa Sistem Struktur Beton Pracetak

Pengujian Tahan Gempa Sistem Struktur Beton Pracetak Pengujian Tahan Gempa Sistem Struktur Beton Pracetak Oleh : Yoga Megantara Balai Struktur dan Konstruksi Bangunan KEMENTERIAN PEKERJAAN UMUM DAN PERUMAHAN RAKYAT B A D A N P E N E L I T I A N D A N P E

Lebih terperinci

MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER

MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER MAKALAH TUGAS AKHIR PS 1380 MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER FERRY INDRAHARJA NRP 3108 100 612 Dosen Pembimbing Ir. SOEWARDOYO, M.Sc. Ir.

Lebih terperinci

ANALISIS PERENCANAAN DINDING GESER DENGAN METODE STRUT AND TIE MODEL RIDWAN H PAKPAHAN

ANALISIS PERENCANAAN DINDING GESER DENGAN METODE STRUT AND TIE MODEL RIDWAN H PAKPAHAN ANALISIS PERENCANAAN DINDING GESER DENGAN METODE STRUT AND TIE MODEL TUGAS AKHIR RIDWAN H PAKPAHAN 05 0404 130 BIDANG STUDI STRUKTUR DEPARTEMEN TEKNIK SIPIL FAKULTAS TEKNIK USU 2009 1 ANALISIS PERENCANAAN

Lebih terperinci

PEMODELAN DINDING GESER PADA GEDUNG SIMETRI

PEMODELAN DINDING GESER PADA GEDUNG SIMETRI PEMODELAN DINDING GESER PADA GEDUNG SIMETRI Nini Hasriyani Aswad Staf Pengajar Jurusan Teknik Sipil Fakultas Teknik Universitas Haluoleo Kampus Hijau Bumi Tridharma Anduonohu Kendari 93721 niniaswad@gmail.com

Lebih terperinci

DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI ps f c adalah kuat tekan beton yang diisyaratkan f y

DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI ps f c adalah kuat tekan beton yang diisyaratkan f y DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI 03-2847-2002 ps. 12.2.7.3 f c adalah kuat tekan beton yang diisyaratkan BAB III A cv A tr b w d d b adalah luas bruto penampang beton yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Gempa di Indonesia Tahun 2004, tercatat tiga gempa besar di Indonesia yaitu di kepulauan Alor (11 Nov. skala 7.5), gempa Papua (26 Nov., skala 7.1) dan gempa Aceh (26 Des.,skala

Lebih terperinci

BIDANG STUDI STRUKTUR DEPARTEMEN TEKNIK SIPIL FAKULTAS TEKNIK USU MEDAN 2013

BIDANG STUDI STRUKTUR DEPARTEMEN TEKNIK SIPIL FAKULTAS TEKNIK USU MEDAN 2013 i PERBANDINGAN RESPON STRUKTUR BERATURAN DAN KETIDAKBERATURAN HORIZONTAL SUDUT DALAM AKIBAT GEMPA DENGAN MENGGUNAKAN ANALISIS STATIK EKIVALEN DAN TIME HISTORY TUGAS AKHIR Diajukan untuk Melengkapi Tugas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencaaan struktur bangunan harus mengikuti peraturan pembebanan yang berlaku untuk mendapatkan struktur bangunan yang aman. Pengertian beban adalah

Lebih terperinci

jenis bahan yang dipakai akan berpengaruh terhadap pola goyangan yang

jenis bahan yang dipakai akan berpengaruh terhadap pola goyangan yang BAB III LANDASAN TEORI Landasan teori yang digunakan dalam penelitian ini antara lain, prinsip bangunan geser, distribusi dinding geser, koefisien distribusi untuk dinding geser berlubang, simpangan relatif,

Lebih terperinci

BAB 1 PENDAHULUAN. mengingat sebagian besar wilayahnya terletak dalam wilayah gempa dengan intensitas

BAB 1 PENDAHULUAN. mengingat sebagian besar wilayahnya terletak dalam wilayah gempa dengan intensitas BAB 1 PENDAHULUAN I.1 Latar Belakang Masalah Perencanaan struktur bangunan gedung tahan gempa sangat penting di Indonesia, mengingat sebagian besar wilayahnya terletak dalam wilayah gempa dengan intensitas

Lebih terperinci

BAB 1 PENDAHULUAN Umum

BAB 1 PENDAHULUAN Umum 1.1. Umum BAB 1 PENDAHULUAN Dewasa ini, Indonesia merupakan salah satu Negara yang memiliki perkembangan yang pesat. Hal ini ditandai dengan peningkatan ekonomi Indonesia yang cukup stabil setiap tahunnya,

Lebih terperinci

BABI PENDAHULUAN. Perancangan bangunan sipil terutama gedung tingkat tinggi harus

BABI PENDAHULUAN. Perancangan bangunan sipil terutama gedung tingkat tinggi harus 1 BABI PENDAHULUAN 1.1 Latar Belakang Perancangan bangunan sipil terutama gedung tingkat tinggi harus memperhitungkan beban-beban yang dominan di kawasan tempat gedung itu dibangun. Selain beban tetap

Lebih terperinci

DAFTAR ISI Annisa Candra Wulan, 2016 Studi Kinerja Struktur Beton Bertulang dengan Analisis Pushover

DAFTAR ISI Annisa Candra Wulan, 2016 Studi Kinerja Struktur Beton Bertulang dengan Analisis Pushover DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERNYATAAN... iii KATA PENGANTAR... iv UCAPAN TERIMAKASIH... v ABSTRAK... vii ABSTRACT... viii DAFTAR ISI... ix DAFTAR TABEL... xi DAFTAR

Lebih terperinci

ANALISIS PERIODA BANGUNAN DINDING GESER DENGAN BASE ISOLATOR AKIBAT GAYA GEMPA

ANALISIS PERIODA BANGUNAN DINDING GESER DENGAN BASE ISOLATOR AKIBAT GAYA GEMPA ANALISIS PERIODA BANGUNAN DINDING GESER DENGAN BASE ISOLATOR AKIBAT GAYA GEMPA Muliadi 1, M. Kabir Ihsan 2 Jurusan Teknik Sipil, Universitas Malikussaleh email: muliadi.eng@gmail.com 1), ihsankb@gmail.com

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci