BAB II TINJAUAN PUSTAKA. tegangannya menjadi tegangan tinggi, tegangan ekstra tinggi, dan tegangan ultra

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA. tegangannya menjadi tegangan tinggi, tegangan ekstra tinggi, dan tegangan ultra"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1 Sistem Distribusi Tenaga Listrik Berdasarkan sistem tenaga listrik konvensional, energi listrik dibangkitkan pada pusat pembangkit dengan daya yang besar. Kemudian dinaikkan tegangannya menjadi tegangan tinggi, tegangan ekstra tinggi, dan tegangan ultra tinggi melalui transformator step-up untuk ditransmisikan. Selanjutnya tegangan diturunkan kembali menjadi tegangan menengah melalui transformator step-down untuk didistribusikan pada pusat beban, dan tegangannya diturunkan kembali menjadi tegangan rendah melalui transformator distribusi agar dapat digunakan oleh konsumen akhir. Sistem distribusi tenaga listrik merupakan bagian dari sistem tenaga listrik yang dimulai dari transformator step-down pada gardu induk jaringan transmisi sampai pada konsumen akhir. Sistem distribusi dibagi menjadi dua bagian yaitu distribusi primer dan distribusi sekunder. Jaringan distribusi yang dimulai dari transformator step-down pada gardu induk jaringan transmisi sampai pada transformator distribusi disebut jaringan distribusi primer. Sedangkan jaringan distribusi yang dimulai dari transformator distribusi sampai pada konsumen akhir disebut jaringan distribusi sekunder. Untuk lebih jelasnya dapat dilihat pada Gambar 2.1 [4]. 4

2 Gambar 2. 1 Sistem Distribusi Tenaga Listrik Sistem Distribusi Primer Sistem distribusi primer dapat berupa Saluran Udara Tegangan Menengah (SUTM) dan Saluran Kabel Tegangan Menengah (SKTM) baik hantaran udara maupun di bawah tanah. Ada berbagai macam tipe jaringan dari sistem distribusi primer [5] Jaringan Distribusi Radial Bentuk jaringan ini merupakan yang paling sederhana, banyak digunakan dan murah. Dinamakan radial karena jaringan ditarik secara radial dari suatu titik sumber jaringan dan dibagi ke dalam bentuk cabang pada setiap beban. Akibat percabangan tersebut, arus yang mengalir pada setiap saluran tidaklah sama. Adapun kelebihan dan kelemehan dari jaringan distribusi radial adalah: Kelebihan: o Bentuknya sederhana 5

3 o Biaya investasi yang relatif murah Kelemahan: o Jatuh tegangan dan rugi-rugi daya relatif besar o Kontinuitas pelayanan tidak handal, karena antara titik sumber dan tidak beban hanya ada satu saluran. Sehingga jika terjadi gangguan pada saluran tersebut maka seluruh beban sesudah titik gangguan akan mengalami pemadaman secara total. Untuk meminimumkan gangguan, pada jaringan radial ini dilengkapi dengan peralatan pengaman berupa fuse, sectionalizer, recloser, dan disconnecting switch. Peralatan tersebut berfungsi untuk membatasi daerah yang terkena gangguan. Jaringan tipe radial ini mempunyai beberapa bentuk modifikasi, antara lain: a. Jaringan Distibusi Radial Pohon Jaringan distribusi radial pohon terdiri dari satu saluran utama untuk melayani beban kemudian dibagi menjadi beberapa cabang (lateral), dan cabang ini akan dibagi lagi menjadi beberapa cabang (sublateral). Tipe jaringan distribusi radial pohon dapat dilihat pada Gambar

4 Gambar 2. 2 Jaringan Radial Tipe Pohon b. Jaringan Distribusi Radial Tie dan Switch Pemisah Jaringan distribusi radial tipe tie and switch pemisah digunakan sebagai modifikasi lanjutan dari tipe jaringan distribusi radial yang digunakan untuk pemulihan layanan yang cepat. Hal ini dilakukan dengan cara mengalihkan bagian penyulang yang tidak terganggu ke penyulang utama yang berdekatan. Gangguan ini dapat diisolasi dengan membuka peralatan pengaman pada setiap bagian penyulang yang terganggu. Jaringan distribusi radial tipe tie and switch pemisah dapat dilihat pada Gambar

5 Gambar 2. 3 Jaringan Radial Tipe Tie dan Switch Pemisah c. Jaringan Distribusi Radial dengan Tipe Pusat Beban Jaringan distribusi radial tipe ini menggunakan express feeder sebagai penyulang utama yang langsung menuju pusat beban, kemudian melalui pusat beban disebar dengan menggunakan back feeder secara radial. Pada penyulang express feeder ini tidak ada hubungan ke penyulang lain atau lateral. Jaringan distribusi radial dengan tipe pusat beban dapat dilihat pada Gambar

6 Gambar 2. 4 Jaringan Distribusi Radial dengan Tipe Pusat Beban d. Jaringan Distribusi Radial dengan Pembagian Phase Area Pada jaringan distribusi radial dengan tipe pembagian phase area ini, masing-masing fasa melayani area yang berbeda. Jaringan seperti ini dapat menyebabkan ketiga fasa menjadi tidak seimbang bila diterapkan pada daerah yang baru dan tidak merata pembagian bebannya. Oleh karenanya jaringan ini cocok untuk daerah yang bebannya stabil dan jika ada penambahan beban maka pembagiannya harus dapat diatur merata dan seimbang pada setiap fasanya. Jaringan distribusi radial dengan tipe pembagian phase area dapat dilihat pada Gambar

7 Gambar 2. 5 Jaringan Distribusi Radial Tipe Phase Area Jaringan Distribusi Loop Pada jaringan distribusi loop, jaringan distribusinya membentuk ring, dimana beban dilayani oleh dua buah jalur paralel dari gardu induk menuju beban. Umumnya, ukuran penghantar penyulang loop dibuat sama sepanjang loop. Hal ini dimaksudkan agar penghantar dapat memikul beban pada saat ditambahkan beban bagian dari bagian loop yang lain. Gangguan pada penyulang utama akan menyebabkan breaker penyulang membuka, breaker akan tetap membuka sampai gangguan dihilangkan dari kedua arah saluran. Jaringan distribusi loop menguntungkan untuk melayani beban dimana keandalan menjadi hal yang sangat penting. Sebagai tambahan untuk 10

8 jaringan distribusi loop, umumnya digunakan normally open lateral loop. Jaringan distribusi loop dapat dilihat pada Gambar 2.6. Gambar 2. 6 Jaringan Distribusi Loop Jaringan Distribusi Net Jaringan distribusi net merupakan sistem penyaluran tenaga listrik yang dilakukan secara terus menerus oleh dua atau lebih penyulang pada gardu-gardu dari berbagai pusat pembangkit tenaga listrik yang bekerja secara paralel. Jaringan ini berbentuk jaring-jaring yang merupakan gabungan antara jaringan distribusi radial dan loop. Jaringan distribusi net ini mempunyai lebih banyak saluran alternatif, sehingga jika terjadi gangguan pada salah satu penyulang maka sistem dengan cepat akan menggantikan dengan penyulang yang lain untuk membantu daerah yang terganggu tersebut. Dengan demikian kontinuitas penyaluran tenaga listrik sangat terjamin. Jaringan distribusi net dapat dilihat pada Gambar

9 Gambar 2. 7 Jaringan Distribusi Net ini adalah: Adapun kelebihan yang dimiliki dari jaringan distribusi net (jaring-jaring) Kontinuitas penyaluran yang sangat terjamin. Kualitas tegangan yang baik dan rugi-rugi daya yang kecil. Lebih fleksibel dalam mengikuti perkembangan dan pertumbuhan beban bila dibandingkan dengan jaringan distribusi lain. Sedangkan kelemahan yang dimiliki oleh jaringan distribusi net (jaringjaring) ini adalah: 12

10 Memerlukan koordinasi perencanaan yang teliti dan rumit sebelum pelaksanaan. Memerlukan biaya investasi yang cukup besar. Diperlukan tenaga ahli yang terampil dalam pengoperasian Jaringan Distribusi Spindle Jaringan distribusi spindle merupakan pengembangan dari sistem jaringan distribusi sebelumnya yang bertujuan untuk meningkatkan keandalan dan kualitas sistem. Salah satu bentuk jaringan distribusi spindle yang populer adalah jaringan spindle yang terdiri dari 6 penyulang dalam keadaan berbeban (working feeder) dan satu penyulang dalam keadaan tanpa beban (express feeder). Express feeder ini berfungsi sebagai cadangan pada saat terjadi gangguan pada salah satu working feeder dan juga berfungsi untuk memperkecil jatuh tegangan pada jaringan distribusi. Jaringan distribusi spindle ditunjukkan pada Gambar

11 Gambar 2. 8 Jaringan Distribusi Spindle Sistem Distribusi Sekunder Sistem distribusi sekunder berfungsi menyalurkan energi listrik dari transformator distribusi ke konsumen akhir. Pada sistem distribusi sekunder bentuk saluran yang sering digunakan adalah saluran distribusi radial. Sistem distribusi sekunder biasa disebut dengan jaringan distribusi tegangan rendah yang terhubung langsung dengan konsumen, seperti yang terlihat pada Gambar

12 Besar tegangan untuk jaringan distribusi sekunder ini adalah 127/220 Volt untuk sistem lama dan 220/380 Volt untuk sistem yang baru, serta 440/550 Volt untuk keperluan industri. 2.2 Distributed Generation (DG) Kebutuhan akan energi dari tahun ke tahun semakin meningkat seiring dengan pertumbuhan ekonomi. Oleh sebab itu, energi terbarukan menjadi prioritas utama untuk memenuhi kebutuhan akan energi listrik. Energi terbarukan adalah energi yang dihasilkan dari sumber energi alami yang dapat diperbarui secara terus-menerus bila dikelola dengan baik dan tidak akan pernah habis. Studi yang dilakukan oleh Electric Power Research Institute (EPRI) mengindikasikan bahwa pada tahun 2010, 25% dari pembangkit listrik baru berasal dari pembangkit distributed generation, begitu juga dengan studi yang dilakukan oleh Natural Gas Foundation menyimpulkan bahwa hal tersebut lebih tinggi lagi mencapai 30% Definisi Distributed Generation Sebutan dan definisi Distributed Generation (DG) pada berbagai negara berbeda-beda. Distributed generation dapat didefinisikan sebagai pembangkit tenaga listrik dengan skala kecil yang ditempatakan pada sisi beban dan diinterkoneksikan pada jaringan distribusi. Dewan kerja CIGRE mendefinisikan DG adalah unit pembangkit listrik yang membangkitkan maksimum tenaga listrik 50 MW MW, dan biasanya diinterkoneksikan pada jaringan distribusi tidak pada stasiun pusat pembangkit tenaga listrik. IEEE mendefinisikan DG sebagai pembangkit yang menghasilkan 15

13 energi listrik dengan kapasitas yang lebih kecil dibandingkan pusat-pusat pembangki konvensional dan dapat diinterkoneksikan hampir pada semua titik sistem tenaga listrik. Sedangkan IEA mendefinisikan DG sebagai unit yang menghasilkan energi listrik pada sisi beban atau jaringan distribusi, dimana energi listrik tersebut langsung disuplai ke beban [6] Rating Distributed Generation Kapasitas maximum pembangkitan energi listrik yang dapat dihasilkan distributed generation seringkali dijadikan pedoman untuk mendefinisikannya. Berdasrkan kapasitas maximum pembangkitan yang dapat dihasilkan, distributed generation dapat dibedakan menjadi empat bagian, seperti yang diperlihatkan pada Tabel 2.1 [7]. Tabel 2. 1 Jenis Distributed Generation Berdasarkan Kapasitas Pembangkitan Jenis Distributed Generation Micro Small Medium Large Kapasitas Pembangkitan Distributed Generation ~ 1 kw < 5 kw 5 kw < 5 MW 5 MW < 50 MW 50 MW < ~ 300 MW Teknologi Distributed Generation Ada begitu banyak teknologi dari distributed generation, DG dapat dibedakan berdasarkan energi utama yang digunakan, yaitu sebagai berikut [2]: Internal Combustion Engines Internal Combustion Engines (ICE) menkonversikan panas dari pembakaran bahan bakar untuk menggerakkan rotor pada sebuah generator yang 16

14 diaplikasikan untuk distributed generation. Menurut International Energy Agency (IEA) pada tahun 2002, ICE paling banyak digunakan untuk teknologi distributed generation. Teknologi ICE memerlukan biaya yang rendah, rating yang bervariasi dari kw sampai MW, efisiensinya bagus, dan handal dalam pengoperasian. ICE juga memerlukan waktu start yang cepat ketika selama melakukan proses menghidupkan ICE serta tidak memerlukan banyak tempat untuk pemasangan. Hal itulah yang membuat teknologi ICE menjadi pilihan utama baik untuk pembangkit cadangan maupun untuk pembangkit utama. Suatu kendala penggunaan ICE adalah memerlukan biaya yang tinggi untuk bahan bakar, perawatan yang sering, dan menghasilkan emisi yang tinggi serta kebisingan dibandingkan teknologi distributed generation yang lain Turbin Gas Turbin gas terdiri dari kompressor, ruang pembakaran, dan kopel turbin ke generator agar dapat merubah energi mekanik menjadi energi listrik. Teknologi turbin gas sangat banyak digunakan untuk industri, industri kecil yang menggunakan turbin gas dengan rating 1 MW sampai 20 MW yang biasanya diaplikasikan pada Combined Heat and Power (CHP). Biaya perawatan dan emisi yang dihasilkan oleh turbin lebih rendah dari yang dihasilkan oleh ICE, tetapi tingkat kebisingan yang dihasilkan masih tergolong tinggi Combined Cycle Gas Turbine Pada Combined Cycle Gas Turbine (CCGT), campuran pembuangan bahan bakar dan udara bertukar dengan air di dalam boiler yang digunakan untuk menghasilkan uap panas yang digunakan untuk menggerakkan turbin. Uap panas 17

15 tersebut masuk kedalam turbin untuk menghasilkan gaya mekanik tambahan, sehingga dapat menggerakkan rotor generator. Kemudian aliran uap dari turbin dikondensasi untuk dikembalikan lagi ke boiler. CCGT sangat populer digunakan karena efisiensinya sangat tinggi. Namun penggunaan gas turbin di bawah 10 MW tidak menggunakan combined cycle, yang menyebabkan tidak efisien lagi Microturbines Microturbines menghasilkan energi listrik AC dengan frekuensi tinggi. Sebuah konverter daya digunakan untuk merubah frekuensi yang tinggi ini ke dalam kisaran frekuensi yang dapat digunakan. Kapasitas satu unit microturbines berkisar 30 kw sampai 200 kw, tetapi beberapa microturbines dapat digabungkan menjadi beberapa unit. Temperatur pembakaran yang rendah membuat microturbines menghasilkan emisi yang rendah dan juga menghasilkan kebisingan yang rendah dibandingkan teknologi lain dengan ukuran yang sama. Kebanyakan microturbines menggunakan gas alam sebagai bahan bakar, penggunaan sumber energi terbarukan seperti ethanol juga memungkinkan untuk digunakan. Kelemahan dari microturbines adalah masa kerja yang singkat dan biaya yang tinggi dibandingkan dengan ICE Fuel Cells Fuel cells merupakan peralatan elektrokimia yang merubah energi kimia dari suatu bahan bakar menjadi energi listrik atau panas tanpa melakukan pembakaran. Fuel cells sangat berbeda dengan teknologi lainnya karena pertama kali yang dirubah adalah energi kimia dari suatu bahan bakar dirubah menjadi 18

16 energi panas, dari energi panas tersebut dihasilkan energi mekanik, kemudian dari energi mekanik tersebut dihasilkan energi listrik. Fuel cells menghasilkan energi listrik dengan efisiensi yang tinggi berkisar 40% 60% dengan tingkat emisi yang rendah dan beroperasi tanpa kebisingan. Tantangan utama penggunaan fuel cells adalah biaya investasi yang tinggi Solar Photovoltaic Solar photovoltaic (PV) melibatkan perubahan langsung cahaya matahari menjadi energi listrik tanpa mesin pemanas. Penerapan sistem PV sangat mendukung karena paparan dari sinar matahri setiap hari, siklus kerja yang lama, biaya operasi yang murah, perawatan yang mudah, ramah lingkungan, tersedia juga untuk off-grid, serta waktu desain, pemasangan, dan memulai kerja yang cepat. Kendala dari teknologi PV adalah biaya pemasangan yang tinggi dibandingkan teknologi yang lainnya. Umumnya satu modul PV mempunyai kapasitas dayanya berkisar 20 W sampai 200 kw Solar Thermal Solar thermal menghasilkan energi listrik dengan mengkonsentratkan cahaya matahari yang datang, dan kemudian menangkap cahaya matahari tersebut untuk memanaskan cairan sampai pada suhu yang sangat tinggi untuk menghasilkan uap panas dan kemudian memproduksi energi listrik. Pengembangan konsentrat cahaya matahari memungkinkan untuk pembangkitan dari beberapa kw sampai ratusan MW. Satu contoh pembangkit energi listrik solar thermal komersil dengan kapasitas 350 MW, yang berada pada California Mojave Desert dan dikoneksikan dengan jaringan transmisi Edison. 19

17 Tenaga Angin Tenga angin memainkan peranan penting dalam pembangkit listrik yang memanfaatkan energi terbarukan. Tantangan utama dari teknologi tenaga angin adalah penyaluran energi listrik yang masih terputus dan keandalan jaringan. Karena teknologi ini memanfaatkan kekuatan alam yang tidak bisa tersedia terus menerus Small Hydro Power Small hydro power memanfaatkan tenaga air sebagai sumber energi utama dengan kapasitas pembangkitan di bawah 10 MW. Istilah lain yang sering digunakan adalah miny hidropower dengan kapasitas 100 kw sampai dengan 1 MW, dan micro hidropower dengan kapasitas dibawah 100 kw Panas Bumi Panas bumi adalah energi yang dihasilkan dari emisi panas dari dalam bumi, biasanya dalam bentuk uap panas atau air panas. Pembangkit listrik tenaga panas bumi membutuhkan biaya investasi yang tinggi tetapi biaya operasional yang rendah. Teknologi panas bumi ini ramah lingkungan yang tidak menghasilkan gas emisi CO 2 selama operasinya Biomassa Sumber energi biomassa berasal dari sampah pertanian atau perkebunan, hewan yang membusuk, sampah dari hutan, limbah industri, dan lain-lain. Energi biomassa dapat menghasilkan energi listrik atau panas dari berbagai proses. Pada umumnya, untuk menghasilkan energi listrik dengan memanfaatkan sumber energi biomassa menggunakan siklus uap panas, uap panas tersebut dihasilkan 20

18 dari material sumber energi biomassa yang terlebih dahulu dikonversikan di dalam boiler. Kemudian, uap panas yang dihasilkan digunakan untuk menggerakkan turbin generator Tenaga Pasang Surut Energi pasang surut berasal dari pergerakan gaya gravitasi antara bumi dan bulan, serta bumi dan matahari. Bendungan yang panjang dibangun melintasi muara sungai, ketika air pasang surut masuk keluar maka akan melewati terowongan bendungan. Surutnya dan mengalirnya aliran air tersebut dapat digunakan untuk menggerakkan turbin. Ketika air pasang datang, air tersebut disimpan di waduk penampung yang terletak di belakang bendungan. Ketika air surut, air yang disimpan di waduk penampung tersebut digunakan untuk menggerakkan turbin, sehingga turbin dapat terus digerakkan. Seperti pembangkit energi terbarukan lainnya, pembangkit listrik tenaga pasang surut juga ramah lingkungan. Biaya perawatan dan operasi juga tidak tinggi. Namun biaya pembangunan bendungan membutuhkan biaya yang besar dan memakan banyak tempat Keuntungan Distributed Generation Dengan diinterkoneksikan distributed generation pada sistem jaringan distribusi tenaga listrik yang telah ada, dimana untuk melayani kebutuhan energi listrik, ada beberapa keuntungan pada jaringan distribusi itu sendiri, diantaranya [8]: 1. Meningkatkan ketersediaan dan kehandalan dari energi listrik. 2. Dapat mengurangi beban puncak. 21

19 3. Dapat menghemat energi, karena sumber energi utama distributed generation memanfaatkan energi yang terbarukan. 4. Dapat menjadi alternatif untuk kompensasi daya reaktif, karena jika diinterkoneksikan pada jaringan yang telah ada dapat mengurangi rugirugi daya. 5. Mengurangi harmonisa dan tegangan kedip. 6. Dalam proses pembangkitan energi listrik, distributed generation bersifat ramah lingkungan, karena emisi CO 2 yang dihasilkan rendah Dampak Interkoneksi Distributed Generation Seiring dengan kenaikan akan kebutuhan energi listrik, sistem tenaga listrik telah berkembang dari tahun ke tahun. Pada saat sekarang, pembangkit listrik energi terbarukan menjadi salah satu pilihan dengan berkurangnya sumber energi yang tidak dapat diperbarui. Biasanya suatu sistem pembangkit energi terbarukan diinterkoneksikan dengan jaringan distribusi pada sisi beban, dimana sistem tersebut telah meninggalkan sistem tenaga listrik konvensional. Pada sistem tenaga listrik konvensional energi listrik dibangkitkan pada stasiun pusat pembangkit dengan daya yang besar. Kemudian pada stasiun ini, tegangan dinaikkan menjadi tegangan tinggi, ekstra tinggi, dan ultra tinggi untuk ditransmisikan dengan jarak yang jauh dan diinterkoneksikan dengan sistem transmisi tenaga listrik. Kemudian tegangan tinggi tersebut diturunkan menjadi tegangan menengah untuk didistribusikan pada jaringan distribusi, dan diturunkan lagi menjadi tegangan rendah yang menuju beban. Sistem tenaga listrik yang 22

20 demikian disebut dengan sistem tenaga listrik konvensional dan dapat dilihat pada Gambar 2.2 [1]. Gambar 2. 9 Sistem tenaga listrik konvensional Dengan ditinggalkannya sistem tenaga listrik konvensional, tentu saja akan merubah operasi sistem dan kontrol pada sistem tenaga listrik. Tanpa diinterkoneksikan DG pada jaringan distribusi, arah aliran daya pada sistem selalu bergerak satu arah dari stasiun pusat pembangkit sampai pada beban, dengan diinterkoneksikan DG pada jaringan distribusi akan berdampak pada pola aliran daya. Aliran daya yang satu arah pada sistem tenaga listrik konvensional tidak dapat dianggap lagi dengan adanya DG pada jaringan distribusi. Akibatnya, dengan adanya DG pada jaringan distribusi akan berdampak pada operasi sistem dan kontrol jaringan distribusi. Interkoneksi DG pada jaringan distribusi dapat dilihat pada Gambar 2.3 [1]. 23

21 Gambar Interkoneksi DG pada jaringan distribusi Pada jaringan distribusi radial, tegangan akan turun pada akhir penyulang jaringan distribusi, hal ini dikarenakan jatuh tegangan. Dengan adanya DG pada jaringan distribusi hal tersebut akan berubah. DG akan menaikkan tegangan pada pada titik interkoneksi DG, sehingga tegangan pada sepanjang penyulang jaringan distribusi juga akan mengalami kenaikan. Untuk itu perlu dilakukan studi aliran daya pada jaringan distribusi yang diinterkoneksikan DG, agar operasi sistem distribusi dapat berjalan dengan baik. 2.3 Studi Aliran Daya Studi aliran daya sangat penting dalam perencanaan pengembangan suatu sistem untuk masa yang akan datang, karena pengoperasian yang baik dari sistem tersebut banyak tergantung pada diketahuinya efek interkoneksi dengan sistem yang lain, seperti beban yang baru, stasiun pembangkit yang baru, saluran 24

22 transmisi yang baru, serta saluran distribusi yang baru. Sehingga dengan dilakukan studi aliran daya kita dapat mengetahui kondisi operasional sistem tenaga listrik. Informasi yang diperoleh dari studi aliran daya adalah besar dan sudut fasa tegangan pada setiap bus dan daya aktif dan reaktif yang mengalir pada setiap saluran Konsep Perhitungan Aliran Daya Perhitungan aliran daya pada dasarnya adalah menghitung besar tegangan dan sudut fasa setiap bus pada kondisi tunak dan dengan beban seimbang. Hasil perhitungan ini dilakukan untuk mengukur daya aktif dan daya reaktif yang mengalir pada jaringan, besarnya daya aktif dan daya reaktif yang harus dibangkitkan pada stasiun pembangkit, serta rugi-rugi daya pada jaringan. Pada setiap bus ada 4 variabel operasi yang terkait, yaitu daya aktif, daya reaktif, besar tegangan, dan sudut fasa tegangan. Supaya persamaan aliran daya dapat dihitung 2 dari 4 variabel diatas harus diketahui untuk setiap bus, sedangkan variabel yang lainnya dihitung. Setiap bus dalam sistem tenaga listrik dikelompokkan menjadi 3 tipe bus, yaitu [9]: 1. Bus beban, pada bus beban variabel yang diketahui adalah daya aktif P dan daya Reaktif Q, sedangkan besar tegangan (V) dan sudut fasanya δ dihitung. Bus beban sering juga disebut bus P-Q. 2. Bus generator, pada bus generator variabel yang diketahui adalah besar tegangan (V) dan daya aktif P, sedangkan sudut fasa tegangan δ dan daya reaktif dihitung. Bus generator sering juga disebut bus P-V. 25

23 3. Bus referensi, pada bus referensi variabel yang diketahui adalah besar tegangan (V) dan sudut fasanya δ, sudut fasa δ pada bus referensi menjadi acuan untuk sudut fasa tegangan pada bus yang lain. Untuk lebih jelasnya dari pembagian tipe bus, dapat dilihat dari tabel berikut: Tabel 2. 2 Tipe Bus Pada Sistem Tenaga Listrik Tipe Bus Nilai yang Diketahui Nilai yang Dihitung Bus beban P, Q V, δ Bus generator P, V Q, δ Bus referensi V, δ P, Q Persamaan Aliran Daya Suatu sistem tenaga listrik tidak hanya terdiri dari 2 bus tetapi terdiri dari beberap bus yang saling diinterkoneksikan satu sama lain. Diagram satu garis beberapa bus dari suatu sistem tenaga diperlihatkan pada Gambar 2.11 [9] [10]. I i V i y i1 y i2 V 1 V 2 y in V n y i0 Gambar Diagram satu garis dari n-bus dalam suatu sistem tenaga Arus pada bus i dapat ditulis: 26

24 = ( ) = ( ) (2.1) Kemudian kita definisikan: = = = = Admitansi Y dapat kita tulis dalam bentuk persamaan matriks sebagai berikut: = (2.2) Sehingga I i pada Persamaan (2.1) dapat ditulis: = (2.3) Atau dapat ditulis: = + (2.4) Persamaan daya pada bus i adalah: = ; dimana adalah V conjugate pada bus i = (2.5) Dengan mensubsitusikan Persamaan (2.5) ke Persamaan (2.4), maka diperoleh: 27

25 = + (2.6) Dari Persamaan (2.6) terlihat bahwa persamaan aliran daya bersifat tidak linear dan harus diselesaikan dengan metode iterasi Metode Penyelesaian Aliran Daya Pada sistem n-bus, penyelesaian aliran daya menggunakan persamaan aliran daya. Metode yang umum digunakan untuk menyelesaikan aliran daya adalah metode Gauss-Seidel, Newton-Raphson, dan Fast Decoupled. Tetapi metode yang dibahas pada Tugas Akhir ini adalah Newton-Raphson Metode Newton-Raphson Pada suatu bus, dimana diberikan besaranya tegangan dan daya reaktif tidak diketahui, unsur nyata dan khayal tegangan untuk setiap iterasi didapatkan dengan pertama-tama menghitung nilai daya aktif dan reaktif. Dari Persamaan (2.6) kita peroleh: = ( + ) (2.7) Dimana =, sehingga diperoleh: = (2.8) = { } (2.9) Untuk menerapkan metode Newton-Raphson pada penyelesaian persamaan aliran daya kita menyatakan tegangan bus dan admitansi saluran dalam bentuk polar. Jika kita pilih bentuk polar dan kita uraikan Persamaan (2.7) kedalam unsur nyata dan khayalnya dengan: 28

26 = = = Sehingga didapat: = + (2.10) = cos( + ) (2.11) = sin( + ) (2.12) Persamaan (2.11) dan (2.12) merupakan langkah awal perhitungan aliran daya dengan metode Newton-Raphson. Penyelesaian aliran menggunkan proses iterasi (k+1), untuk iterasi pertama nilai k = 0, pada itersi merupakan nilai perkiraan awal yang ditetapkan sebelum dimulai perhitungan aliran daya. Hasil perhitungan daya menggunakan Persamaan (2.11) dan (2.12) akan diperoleh nilai dan. Hasil ini digunakan untuk menghitung nilai dan menggunakan persamaan berikut: = (2.13) = (2.14) Hasil perhitungan Persamaan (2.13) dan (2.14) digunakan untuk membentuk matriks Jacobian, persamaan matriks Jacobian dapat dilihat pada Persamaan (2.15). 29

27 : : = : : : : : : : : : : : : : : (2.15) Seacara umum Persamaan (2.15) dapat kita sederhanakan ke dalam Persamaan (2.16). = (2.16) Unsur Jacobian diperoleh dengan membuat turunan parsial dari Persamaan (2.11) dan (2.12) dan memasukkan nilai tegangan perkiraan pada iterasi pertama atau yang diperhitungkan dalam yang terdahulu dan terakhir. Dari Persamaan (2.11) dan (2.12) kita dapat menulis matriks Jacobian sebagai berikut: Elemen J 1 adalah: = sin( + ) (2.17) = sin( + ) (2.18) Elemen J 2 adalah: = 2 cos + cos + (2.19) = cos + (2.20) 30

28 Elemen J 3 adalah: = cos + (2.21) = cos + (2.22) Elemen J 4 adalah: = 2 sin sin + (2.23) = sin + (2.24) Setelah nilai matriks Jacobian didapat, maka kita dapat menghitung nilai dan dengan cara menginvers matriks Jacobian. Sehingga diperoleh Persamaan (2.19). = (2.25) Setelah nilai dan didapat, kita dapat menghitung nilai tersebut untuk iterasi berikutnya, yaitu dengan menambahkan nilai dan, sehingga diperoleh Persamaan (2.26) dan (2.27). = + (2.26) = + (2.27) Hasil perhitungan Persamaan (2.26) dan (2.27) digunakan lagi untuk proses iterasi selanjutnya, yaitu dengan memasukkan nilai ini ke dalam Persamaan 31

29 (2.11) dan (2.12) sebagai langkah awal perhitungan aliran daya. Proses ini dilakukan terus menerus yaitu n-iterasi sampai diperoleh nilai yang konvergen. Secara ringkas metode perhitungan aliran daya menggunkan metode Newton-Raphson dapat dilakukan dengan langkah-langkah sebagai berikut: 1. Hitung nilai dan yang mengalir ke dalam sistem pada setiap bus untuk nilai yang diperkirakan dari besar tegangan (V) dan sudut fasanya δ untuk iterasi pertama atau nilai tegangan yang ditentukan paling akhir untuk iterasi berikutnya. 2. Hitung pada setiap rel. 3. Hitunglah nilai-nilai untuk Jacobian dengan menggunakan nilai-nilai perkiraan atau yang ditentukan dari besar dan sudut fasa tegangan dalam persamaan untuk turunan parsial yang ditentukan dengan persamaan diferensial Persamaan (2.11) dan (2.12). 4. Invers matriks Jacobian dan hitung koreksi-koreksi tegangan dan pada setiap rel. 5. Hitung nilai yang baru dari dan dengan menambahkan nilai dan pada nilai sebelumnya. 6. Kembali ke langkah 1 dan ulangi proses itu dengan menggunakan nilai besar dan sudut fasa tegangan yang ditentukan paling akhir sehingga semua nilai yang diperoleh lebih kecil dari indeks ketepatan yang telah dipilih. 32

30 2.3.4 Contoh Perhitungan Aliran Daya Menggunakan Metode Newton- Raphson [11] Untuk melihat bagaimana penggunaaan metode Newton-Raphson untuk perhitungan aliran daya yang dilakukan pada sistem tenaga listrik terdiri dari dua bus, yaitu bus 1 sebagai bus slack, bus 2 sebagai bus beban, bus 3 sebagai bus generator seperti yang diperlihatkan pada Gambar Gambar Single Line Diagram Sistem Tenaga Listrik yang Terdiri dari 3 Bus Dari Gambar 2.12 diatas kita dapat memperoleh matriks Y berdasarkan Persamaan (2.2) sebagai berikut: = = 53,85 1,18 22,36 2,03 31,62 1,89 22,36 2,03 58,13 1,10 35,77 2,03 31,62 1,89 35,77 2,03 67,24 1,17 Langkah awal dari perhitungan aliran daya adalah menghitung nilai dan, dimana kita estimasikan nilai V 2 = 1,0 0 pu dan δ 3 = 0. Untuk menghitung nilai dan digunakan Persamaan (2.11), sehingga diperoleh: 33

31 = ( + ) (2.28) = 1,0.1,05.22,36. cos(2, ) + 1,0. 58,13. cos 1,10 + 1,0.1,04.33,77. cos 2, = 1,18 = (2.29) = 1,04.1,0.31,62. cos(1, ) + 1,04.1,0.35,77. cos 2, ,04. 67,24. cos 1,17 = 1,42 Untuk menghitung nilai digunakan Persamaan (2.12), sehingga diperoleh: = + ( + ) (2.30) = 1,0.1,05.22,36. sin(2, ) + 1,0. 58,13. sin 1,10 + 1,0.1,04.33,77. sin 2, = 0,032 Setelah didapatkan nilai,, dan, selanjutnya dilakukan perhitungan untuk mendapatkan nilai dan sesuai Persamaan (2.13) dan (2.14) sebagai berikut: = = 4 1,18 = 5,18 = = 2 1,42 = 0,5723 = = 2,5 0,032 = 2,532 34

32 Selanjutnya dibentuk matriks Jacobian sesuai Persamaan (2.15), sehingga didapatkan Persamaan (2.27). = (2.27) Dimana matriks Jacobian dibentuk dari turunan parsial dari Persamaan (2.28), (2.29), dan (2.30), yaitu: = = 0,0211 = + = 0,0132 = cos + + = 1,769 = + = 0,01322 = = 0,0246 = + = 0,

33 = + + = 0,6064 = + = 0,3718 = + 2 ( + ) = 0,4028 Sehingga kita peroleh matriks Jacobian sebagai berikut: = = 0,0211 0,0132 1,769 0,0132 0,0246 0,3718 0,6064 0,3718 0,402 5,18 0,5723 2,532 = 10,56 53,689 3,177 18,118 88,991 2,569 0,882 2,569 0,057 5,18 0,5723 2,532 = 7,0181 6,5313 4,

34 Dengan memasukkan nilai, dan ke dalam Persamaan (2.26) dan Persamaan (2.27), maka didapatkan: = + = 0 + 7,0181 = 7,0118 = + = 0 + 6,5313 = 6,5313 = + = 0 + 4,0956 = 4,0956 Maka didapatkan bahwa nilai tegangan dan sudut fasa tegangan pada bus 2 pada iterasi ke-1 dengan menggunakan metode Newton-rhapson adalah sebesar = 4,0956, = 7,0118, dan = 6,5313. Hasil perhitungan tersebut masih belum akurat sepenuhnya dan dibutuhkan iterasi lanjutan untuk menghasilkan data yang konvergen, besar nilai,, dimasukkan kembali lagi pada Persamaan (2.28), (2.29), dan (2.30). Perhitungan iterasi yang terlalu banyak menjadi alasan digunakan simulasi menggunakan program komputer dalam melihat aliran daya pada suatu sistem kelistrikan. 37

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Sistem Tenaga Listrik Sistem tenaga listrik merupakan kumpulan peralatan listrik yang saling terhubung membentuk suatu sistem yang digunakan untuk membangkitkan tenaga listrik pada

Lebih terperinci

2 BAB II TINJAUAN PUSTAKA

2 BAB II TINJAUAN PUSTAKA 2 BAB II TINJAUAN PUSTAKA 2.1 Sistem Distribusi Listrik Bagian dari sistem tenaga listrik yang paling dekat dengan pelanggan adalah sistem distribusi. Sistem distribusi juga merupakan bagian yang paling

Lebih terperinci

Pengelompokan Sistem Tenaga Listrik

Pengelompokan Sistem Tenaga Listrik SISTEM DISTRIBUSI Sistem Distribusi Sistem distribusi ini berguna untuk menyalurkan tenaga listrik dari sumber daya listrik besar (Bulk Power Source) sampai ke konsumen. Jadi fungsi distribusi tenaga listrik

Lebih terperinci

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. karena terdiri atas komponen peralatan atau mesin listrik seperti generator,

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. karena terdiri atas komponen peralatan atau mesin listrik seperti generator, BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK II.1. Sistem Tenaga Listrik Struktur tenaga listrik atau sistem tenaga listrik sangat besar dan kompleks karena terdiri atas komponen peralatan atau mesin listrik

Lebih terperinci

BAB II TINJAUAN PUSTAKA. dibangkitkan oleh pembangkit harus dinaikkan dengan trafo step up. Hal ini

BAB II TINJAUAN PUSTAKA. dibangkitkan oleh pembangkit harus dinaikkan dengan trafo step up. Hal ini 2.1 Sistem Transmisi Tenaga Listrik BAB II TINJAUAN PUSTAKA Sistem transmisi adalah sistem yang menghubungkan antara sistem pembangkitan dengan sistem distribusi untuk menyalurkan tenaga listrik yang dihasilkan

Lebih terperinci

BAB II DASAR TEORI. Universitas Sumatera Utara

BAB II DASAR TEORI. Universitas Sumatera Utara BAB II DASAR TEORI 2.1.Studi Aliran Daya Studi aliran daya di dalam sistem tenaga listrik merupakan studi yang penting.studi aliran daya merupakan studi yang mengungkapkan kinerja dan aliran daya (nyata

Lebih terperinci

BAB II SISTEM DISTRIBUSI TENAGA LISTRIK

BAB II SISTEM DISTRIBUSI TENAGA LISTRIK BAB II SISTEM DISTRIBUSI TENAGA LISTRIK Awalnya energi listrik dibangkitkan di pusat-pusat pembangkit listrik seperti PLTA, PLTU, PLTG, PLTGU, PLTP dan PLTD dengan tegangan menengah 13-20 kv. Umumnya pusat

Lebih terperinci

JARINGAN DISTRIBUSI TENAGA LISTRIK

JARINGAN DISTRIBUSI TENAGA LISTRIK JARINGAN DISTRIBUSI TENAGA LISTRIK Pengertian dan fungsi distribusi tenaga listrik : Pembagian /pengiriman/pendistribusian/pengiriman energi listrik dari instalasi penyediaan (pemasok) ke instalasi pemanfaatan

Lebih terperinci

STUDI ALIRAN DAYA PADA JARINGAN DISTRIBUSI 20 KV YANG TERINTERKONEKSI DENGAN DISTRIBUTED GENERATION (STUDI KASUS: PENYULANG PM.6 GI PEMATANG SIANTAR)

STUDI ALIRAN DAYA PADA JARINGAN DISTRIBUSI 20 KV YANG TERINTERKONEKSI DENGAN DISTRIBUTED GENERATION (STUDI KASUS: PENYULANG PM.6 GI PEMATANG SIANTAR) STUDI ALIRAN DAYA PADA JARINGAN DISTRIBUSI 20 KV YANG TERINTERKONEKSI DENGAN DISTRIBUTED GENERATION (STUDI KASUS: PENYULANG PM.6 GI PEMATANG SIANTAR) Rimbo Gano (1), Zulkarnaen Pane (2) Konsentrasi Teknik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Proses Penyaluran Tenaga Listrik Gambar 2.1. Proses Tenaga Listrik Energi listrik dihasilkan dari pusat pembangkitan yang menggunakan energi potensi mekanik (air, uap, gas, panas

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Distributed Generation Distributed Generation adalah sebuah pembangkit tenaga listrik yang bertujuan menyediakan sebuah sumber daya aktif yang terhubung langsung dengan jaringan

Lebih terperinci

Bab V JARINGAN DISTRIBUSI

Bab V JARINGAN DISTRIBUSI Bab V JARINGAN DISTRIBUSI JARINGAN DISTRIBUSI Pengertian: bagian dari sistem tenaga listrik yang berupa jaringan penghantar yang menghubungkan antara gardu induk pusat beban dengan pelanggan. Fungsi: mendistribusikan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1.Tinjauan Pustaka Semakin pesatnya pertumbuhan suatu wilayah menuntut adanya jaminan ketersediaannya energi listrik serta perbaikan kualitas dari energi listrik, menuntut para

Lebih terperinci

TINJAUAN PUSTAKA. Dalam menyalurkan daya listrik dari pusat pembangkit kepada konsumen

TINJAUAN PUSTAKA. Dalam menyalurkan daya listrik dari pusat pembangkit kepada konsumen TINJAUAN PUSTAKA 2.1. Sistem Distribusi Sistem distribusi merupakan keseluruhan komponen dari sistem tenaga listrik yang menghubungkan secara langsung antara sumber daya yang besar (seperti gardu transmisi)

Lebih terperinci

STUDI PENGATURAN TEGANGAN PADA JARINGAN DISTRIBUSI 20 KV YANG TERHUBUNG DENGAN DISTRIBUTED GENERATION (STUDI KASUS: PENYULANG TR 5 GI TARUTUNG)

STUDI PENGATURAN TEGANGAN PADA JARINGAN DISTRIBUSI 20 KV YANG TERHUBUNG DENGAN DISTRIBUTED GENERATION (STUDI KASUS: PENYULANG TR 5 GI TARUTUNG) STUDI PENGATURAN TEGANGAN PADA JARINGAN DISTRIBUSI 20 KV YANG TERHUBUNG DENGAN DISTRIBUTED GENERATION (STUDI KASUS: PENYULANG TR 5 GI TARUTUNG) Andika Handy (1), Zulkarnaen Pane (2) Konsentrasi Teknik

Lebih terperinci

BAB II DASAR TEORI. Gardu Induk, Jaringan Distribusi, dan Beban seperti yang ditunjukkan Gambar 2.1

BAB II DASAR TEORI. Gardu Induk, Jaringan Distribusi, dan Beban seperti yang ditunjukkan Gambar 2.1 BAB II DASAR TEORI 2.1 UMUM Sistem Tenaga Listrik terdiri dari Pusat Pembangkit, Jaringan Transmisi, Gardu Induk, Jaringan Distribusi, dan Beban seperti yang ditunjukkan Gambar 2.1 di bawah ini. Gambar

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan salah satu kebutuhan yang paling penting untuk menunjang kehidupan manusia saat ini. Penyaluran energi listrik konvensional dalam memenuhi

Lebih terperinci

BAB II DASAR TEORI. a. Pusat pusat pembangkit tenaga listrik, merupakan tempat dimana. ke gardu induk yang lain dengan jarak yang jauh.

BAB II DASAR TEORI. a. Pusat pusat pembangkit tenaga listrik, merupakan tempat dimana. ke gardu induk yang lain dengan jarak yang jauh. BAB II DASAR TEORI 2.1. Sistem Jaringan Distribusi Pada dasarnya dalam sistem tenaga listrik, dikenal 3 (tiga) bagian utama seperti pada gambar 2.1 yaitu : a. Pusat pusat pembangkit tenaga listrik, merupakan

Lebih terperinci

2 BAB II TINJAUAN PUSTAKA

2 BAB II TINJAUAN PUSTAKA 2 BAB II TINJAUAN PUSTAKA 2.1 Sistem Distribusi Listrik Bagian dari sistem tenaga listrik yang paling dekat dengan pelanggan adalah sistem distribusi. Sistem distribusi juga merupakan bagian yang paling

Lebih terperinci

ANALISIS DAMPAK PEMASANGAN DISTIBUTED GENERATION (DG) TERHADAP PROFIL TEGANGAN DAN RUGI-RUGI DAYA SISTEM DISTRIBUSI STANDAR IEEE 18 BUS

ANALISIS DAMPAK PEMASANGAN DISTIBUTED GENERATION (DG) TERHADAP PROFIL TEGANGAN DAN RUGI-RUGI DAYA SISTEM DISTRIBUSI STANDAR IEEE 18 BUS F.10. Analisis dampak pemasangan distributed generation (DG)... (Agus Supardi dan Romdhon Prabowo) ANALISIS DAMPAK PEMASANGAN DISTIBUTED GENERATION (DG) TERHADAP PROFIL TEGANGAN DAN RUGI-RUGI DAYA SISTEM

Lebih terperinci

BAB II SALURAN DISTRIBUSI

BAB II SALURAN DISTRIBUSI BAB II SALURAN DISTRIBUSI 2.1 Umum Jaringan distribusi adalah salah satu bagian dari sistem penyaluran tenaga listrik dari pembangkit listrik ke konsumen. Secara umum, sistem penyaluran tenaga listrik

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Static VAR Compensator Static VAR Compensator (SVC) pertama kali dipasang pada tahun 1978 di Gardu Induk Shannon, Minnesota Power and Light system dengan rating 40 MVAR. Sejak

Lebih terperinci

2.1 Distributed Generation

2.1 Distributed Generation BAB II TINJAUAN PUSTAKA 2.1 Distributed Generation Distributed Generation adalah semua jenis pembangkit skala kecil yang menghasilkan daya listrik di atau sekitar lokasi beban, baik terhubung langsung

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan salah satu energi primer yang tidak dapat dilepaskan penggunaannya dalam kehidupan sehari-hari. Peningkatan jumlah penduduk dan pertumbuhan

Lebih terperinci

BAB I PENDAHULUAN. Semakin bertambahnya permintaan konsumen terhadap energi listrik dari

BAB I PENDAHULUAN. Semakin bertambahnya permintaan konsumen terhadap energi listrik dari BAB I PENDAHULUAN 1.1 Latar Belakang Semakin bertambahnya permintaan konsumen terhadap energi listrik dari tahun ketahun tentu semakin besar pula daya listrik yang harus disediakan. Karena itu perlu adanya

Lebih terperinci

BAB I PENDAHULUAN. pembangunan dan penghematan disegala bidang. Selaras dengan laju

BAB I PENDAHULUAN. pembangunan dan penghematan disegala bidang. Selaras dengan laju 1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pada saat sekarang ini Indonesia khususnya sedang melaksanakan pembangunan dan penghematan disegala bidang. Selaras dengan laju pertumbuhan pembangunan,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Sistem Jaringan Distribusi Sistem Tenaga listrik di Indonesia tersebar dibeberapa tempat, maka dalam penyaluran tenaga listrik dari tempat yang dibangkitkan sampai ke tempat

Lebih terperinci

BAB I PENDAHULUAN. reasonable, karena kekurangan pasokan daya tentu paling tepat diatasi

BAB I PENDAHULUAN. reasonable, karena kekurangan pasokan daya tentu paling tepat diatasi BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ada beberapa persoalan pelik yang sekarang ini dihadapi sistem kelistrikan di Indonesia. Persoalan kekurangan pasokan daya listrik merupakan salah satu persoalan

Lebih terperinci

ANALISIS ALIRAN BEBAN SISTEM DISTRIBUSI MENGGUNAKAN ETAP POWER STATION TUGAS AKHIR. Jurusan Teknik Elektro Fakultas Teknik

ANALISIS ALIRAN BEBAN SISTEM DISTRIBUSI MENGGUNAKAN ETAP POWER STATION TUGAS AKHIR. Jurusan Teknik Elektro Fakultas Teknik ANALISIS ALIRAN BEBAN SISTEM DISTRIBUSI MENGGUNAKAN ETAP POWER STATION 4. 0. 0 TUGAS AKHIR Disusun Sebagai Salah Satu Syarat Menyelesaikan Program Studi Strata 1 Jurusan Teknik Elektro Fakultas Teknik

Lebih terperinci

PENENTUAN SLACK BUS PADA JARINGAN TENAGA LISTRIK SUMBAGUT 150 KV MENGGUNAKAN METODE ARTIFICIAL BEE COLONY

PENENTUAN SLACK BUS PADA JARINGAN TENAGA LISTRIK SUMBAGUT 150 KV MENGGUNAKAN METODE ARTIFICIAL BEE COLONY PENENTUAN SLACK BUS PADA JARINGAN TENAGA LISTRIK SUMBAGUT 150 KV MENGGUNAKAN METODE ARTIFICIAL BEE COLONY Tommy Oys Damanik, Yulianta Siregar Konsentrasi Teknik Energi Listrik, Departemen Teknik Elektro

Lebih terperinci

STUDI KESTABILAN SISTEM BERDASARKAN PREDIKSI VOLTAGE COLLAPSE PADA SISTEM STANDAR IEEE 14 BUS MENGGUNAKAN MODAL ANALYSIS

STUDI KESTABILAN SISTEM BERDASARKAN PREDIKSI VOLTAGE COLLAPSE PADA SISTEM STANDAR IEEE 14 BUS MENGGUNAKAN MODAL ANALYSIS STUDI KESTABILAN SISTEM BERDASARKAN PREDIKSI VOLTAGE COLLAPSE PADA SISTEM STANDAR IEEE 14 BUS MENGGUNAKAN MODAL ANALYSIS OLEH : PANCAR FRANSCO 2207100019 Dosen Pembimbing I Prof.Dr. Ir. Adi Soeprijanto,

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Di era modern saat ini, energi lisrik merupakan salah satu elemen yang menjadi kebutuhan pokok masyarakat dalam beraktifitas, baik digunakan untuk keperluan rumah

Lebih terperinci

ANALISIS PEHITUNGAN RUGI-RUGI DAYA PADA GARDU INDUK PLTU 2 SUMUT PANGKALAN SUSU DENGAN MENGGUNAKAN PROGRAM SIMULASI ELECTRICAL TRANSIENT ANALYZER

ANALISIS PEHITUNGAN RUGI-RUGI DAYA PADA GARDU INDUK PLTU 2 SUMUT PANGKALAN SUSU DENGAN MENGGUNAKAN PROGRAM SIMULASI ELECTRICAL TRANSIENT ANALYZER ANALISIS PEHITUNGAN RUGI-RUGI DAYA PADA GARDU INDUK PLTU SUMUT PANGKALAN SUSU DENGAN MENGGUNAKAN PROGRAM SIMULASI ELECTRICAL TRANSIENT ANALYZER Asri Akbar, Surya Tarmizi Kasim Konsentrasi Teknik Energi

Lebih terperinci

BAB IV DATA DAN PEMBAHASAN. Pengumpulan data dilaksanakan di PT Pertamina (Persero) Refinery

BAB IV DATA DAN PEMBAHASAN. Pengumpulan data dilaksanakan di PT Pertamina (Persero) Refinery BAB IV DATA DAN PEMBAHASAN 4.1 Pengumpulan Data Pengumpulan data dilaksanakan di PT Pertamina (Persero) Refinery Unit V Balikpapan selama 2 bulan mulai tanggal 1 November 2016 sampai tanggal 30 Desember

Lebih terperinci

1. BAB I PENDAHULUAN

1. BAB I PENDAHULUAN 1. BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan salah satu kebutuhan penting pada saat ini. Energi listrik dikonsumsi oleh semua kalangan, yaitu kalangan rumah tangga, industri, komersial,

Lebih terperinci

PERENCANAAN SISTEM TENAGA LISTRIK. Oleh : Bambang Trisno, MSIE

PERENCANAAN SISTEM TENAGA LISTRIK. Oleh : Bambang Trisno, MSIE PERENCANAAN SISTEM TENAA LISTRIK Oleh : Bambang Trisno, MSIE PRORAM STUDI LISTRIK TENAA JURUSAN PENDIDIKAN TEKNIK ELEKTRO FPTK UPI BANDUN 19 JUNI 2006 PERENCANAAN SISTEM TENAA LISTRIK I. PENDAHULUAN Struktur

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA 2.1 Sistem Tenaga Listrik Sistem Tenaga Listrik dikatakan sebagai kumpulan/gabungan yang terdiri dari komponen-komponen atau alat-alat listrik seperti generator, transformator,

Lebih terperinci

: Distributed Generation, Voltage Profile, Power Losses, Load Flow Analysis, EDSA 2000

: Distributed Generation, Voltage Profile, Power Losses, Load Flow Analysis, EDSA 2000 ABSTRAK Salah satu teknik untuk memperbaiki jatuh tegangan adalah dengan pemasangan (DG) Distributed Generation. Salah satu teknologi Distributed Generation yang ada di Bali adalah PLTS Kubu Karangasem

Lebih terperinci

SINGUDA ENSIKOM VOL. 7 NO. 2/Mei 2014

SINGUDA ENSIKOM VOL. 7 NO. 2/Mei 2014 PERBANDINGAN METODE FAST-DECOUPLE DAN METODE GAUSS-SEIDEL DALAM SOLUSI ALIRAN DAYA SISTEM DISTRIBUSI 20 KV DENGAN MENGGUNAKAN ETAP POWER STATION DAN MATLAB (Aplikasi Pada PT.PLN (Persero Cab. Medan) Ken

Lebih terperinci

MAKALAH PEMBANGKIT LISTRIK TENAGA GAS (PLTG)

MAKALAH PEMBANGKIT LISTRIK TENAGA GAS (PLTG) MAKALAH PEMBANGKIT LISTRIK TENAGA GAS (PLTG) Di Susun Oleh: 1. VENDRO HARI SANDI 2013110057 2. YOFANDI AGUNG YULIO 2013110052 3. RANDA MARDEL YUSRA 2013110061 4. RAHMAT SURYADI 2013110063 5. SYAFLIWANUR

Lebih terperinci

A. SALURAN TRANSMISI. Kategori saluran transmisi berdasarkan pemasangan

A. SALURAN TRANSMISI. Kategori saluran transmisi berdasarkan pemasangan A. SALURAN TRANSMISI Kategori saluran transmisi berdasarkan pemasangan Berdasarkan pemasangannya, saluran transmisi dibagi menjadi dua kategori, yaitu: 1. saluran udara (overhead lines); saluran transmisi

Lebih terperinci

Jurnal Media Elektro Vol. V No. 2 ISSN: ANALISIS RUGI-RUGI DAYA JARINGAN DISTRIBUSI 20 kv PADA SISTEM PLN KOTA KUPANG

Jurnal Media Elektro Vol. V No. 2 ISSN: ANALISIS RUGI-RUGI DAYA JARINGAN DISTRIBUSI 20 kv PADA SISTEM PLN KOTA KUPANG ANALISIS RUGI-RUGI DAYA JARINGAN DISTRIBUSI 20 kv PADA SISTEM PLN KOTA KUPANG Sri Kurniati. A, Sudirman. S Jurusan Teknik Elektro, Fakultas Sains dan Teknik, Undana, AdiSucipto Penfui, Kupang, Indonesia,

Lebih terperinci

STUDI ALIRAN DAYA PADA SISTEM KELISTRIKAN SUMATERA BAGIAN UTARA (SUMBAGUT) 150 kv DENGAN MENGGUNAKAN SOFTWARE POWERWORLD VERSI 17

STUDI ALIRAN DAYA PADA SISTEM KELISTRIKAN SUMATERA BAGIAN UTARA (SUMBAGUT) 150 kv DENGAN MENGGUNAKAN SOFTWARE POWERWORLD VERSI 17 STUDI ALIRAN DAYA PADA SISTEM KELISTRIKAN SUMATERA BAGIAN UTARA (SUMBAGUT) 50 kv DENGAN MENGGUNAKAN SOFTWARE POWERWORLD VERSI 7 Adly Lidya, Yulianta Siregar Konsentrasi Teknik Energi Listrik, Departemen

Lebih terperinci

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang. Energi listrik merupakan suatu element penting dalam masyarakat

BAB I PENDAHULUAN Latar Belakang. Energi listrik merupakan suatu element penting dalam masyarakat 1 BAB I PENDAHULUAN 1.1. Latar Belakang Energi listrik merupakan suatu element penting dalam masyarakat modern saat ini. Pemanfaatannya yang secara tepat guna adalah salah satu cara ampuh untuk dapat mendongkrak

Lebih terperinci

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK 2.1 Umum BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK Kehidupan moderen salah satu cirinya adalah pemakaian energi listrik yang besar. Besarnya pemakaian energi listrik itu disebabkan karena banyak dan beraneka

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Umum Gambar 2.1 dibawah ini menunjukkan diagram segaris suatu sistem tenaga listrik yang sederhana. Gambar ini menunjukkan bahwa sistem tenaga listrik terdiri atas lima sub-sistem

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 34 BAB III METODE PENELITIAN Penelitian ini bertujuan untuk mengetahui kondisi tegangan tiap bus, perubahan rugi-rugi daya pada masing-masing saluran dan indeks kestabilan tegangan yang terjadi dari suatu

Lebih terperinci

BAB II STRUKTUR JARINGAN DAN PERALATAN GARDU INDUK SISI 20 KV

BAB II STRUKTUR JARINGAN DAN PERALATAN GARDU INDUK SISI 20 KV BAB II STRUKTUR JARINGAN DAN PERALATAN GARDU INDUK SISI 20 KV 2.1. UMUM Gardu Induk adalah suatu instalasi tempat peralatan peralatan listrik saling berhubungan antara peralatan yang satu dengan peralatan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 34 BAB III METODE PENELITIAN Penelitian ini bertujuan untuk mengetahui kondisi tegangan tiap bus, perubahan rugi-rugi daya pada masing-masing saluran dan indeks kestabilan tegangan yang terjadi dari suatu

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Proses Penyaluran Tenaga Listrik Ke Konsumen Didalam dunia kelistrikan sering timbul persoalan teknis, dimana tenaga listrik dibangkitkan pada tempat-tempat tertentu, sedangkan

Lebih terperinci

Static Line Rating untuk Integrasi PLTB di Jaringan Tegangan Menengah : Studi Kasus Master Plan Pembangkit Hibrid di Krueng Raya

Static Line Rating untuk Integrasi PLTB di Jaringan Tegangan Menengah : Studi Kasus Master Plan Pembangkit Hibrid di Krueng Raya Static Line Rating untuk Integrasi PLTB di Jaringan Tegangan Menengah : Studi Kasus Master Plan Pembangkit Hibrid di Krueng Raya Idraki Sariyan #1, Hafidh Hasan #2, Syahrizal Syahrizal #3 # Jurusan Teknik

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA 2.1 Pendahuluan Gambar 1. Diagram Satu Garis Sistem Daya Listrik [2] Gambar 2 menunjukkan bahwa sistem tenaga listrik terdiri dari tiga kelompok jaringan yaitu pembangkitan, transmisi

Lebih terperinci

BAB I PENDAHULUAN. Energi listrik merupakan salah satu energi yang sangat penting dalam

BAB I PENDAHULUAN. Energi listrik merupakan salah satu energi yang sangat penting dalam BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan salah satu energi yang sangat penting dalam menjalankan kehidupan sehari-hari. Faktor pertumbuhan baik itu pertumbuhan ekonomi, industri serta

Lebih terperinci

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG 1. SIKLUS PLTGU 1.1. Siklus PLTG Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG Proses yang terjadi pada PLTG adalah sebagai berikut : Pertama, turbin gas berfungsi

Lebih terperinci

BAB I PENDAHULUAN. kebutuhan energi listrik tersebut terus dikembangkan. Kepala Satuan

BAB I PENDAHULUAN. kebutuhan energi listrik tersebut terus dikembangkan. Kepala Satuan BAB I PENDAHULUAN 1. 1. Latar Belakang Masalah Energi merupakan kebutuhan penting bagi manusia, khususnya energi listrik, energi listrik terus meningkat seiring dengan bertambahnya jumlah populasi manusia

Lebih terperinci

BAB 1 KONSEP DASAR JARINGAN DISTRIBUSI

BAB 1 KONSEP DASAR JARINGAN DISTRIBUSI KONSEP DASAR JARINGAN DISTRIBUSI 1 BAB 1 KONSEP DASAR JARINGAN DISTRIBUSI A. Pendahuluan Sistem penyaluran tenaga listrik dari pembangkit tenaga listrik ke konsumen (beban), merupakan hal penting untuk

Lebih terperinci

BAB 1 PENDAHULUAN. Load Flow atau studi aliran daya di dalam sistem tenaga merupakan studi

BAB 1 PENDAHULUAN. Load Flow atau studi aliran daya di dalam sistem tenaga merupakan studi BAB 1 PENDAHULUAN 1.1 Latar Belakang Load Flow atau studi aliran daya di dalam sistem tenaga merupakan studi yang mengungkapkan kinerja dan aliran daya (nyata dan reaktif) untuk keadaan tertentu ketika

Lebih terperinci

ANALISIS HUBUNG SINGKAT 3 FASA PADA SISTEM DISTRIBUSI STANDAR IEEE 18 BUS DENGAN ADANYA PEMASANGAN DISTRIBUTED GENERATION (DG)

ANALISIS HUBUNG SINGKAT 3 FASA PADA SISTEM DISTRIBUSI STANDAR IEEE 18 BUS DENGAN ADANYA PEMASANGAN DISTRIBUTED GENERATION (DG) ANALISIS HUBUNG SINGKAT 3 FASA PADA SISTEM DISTRIBUSI STANDAR IEEE 18 BUS DENGAN ADANYA PEMASANGAN DISTRIBUTED GENERATION (DG) Agus Supardi 1, Tulus Wahyu Wibowo 2, Supriyadi 3 1,2,3 Jurusan Teknik Elektro,

Lebih terperinci

Generation Of Electricity

Generation Of Electricity Generation Of Electricity Kelompok 10 : Arif Budiman (0906 602 433) Junedi Ramdoner (0806 365 980) Muh. Luqman Adha (0806 366 144) Saut Parulian (0806 366 352) UNIVERSITAS INDONESIA FAKULTAS TEKNIK ELEKTRO

Lebih terperinci

BAB I PENDAHULUAN. kehidupan manusia saat ini, dimana hampir semua aktivitas manusia berhubungan

BAB I PENDAHULUAN. kehidupan manusia saat ini, dimana hampir semua aktivitas manusia berhubungan BAB I PENDAHULUAN Latar Belakang Listrik merupakan salah satu kebutuhan pokok yang sangat penting dalam kehidupan manusia saat ini, dimana hampir semua aktivitas manusia berhubungan dengan listrik. Tenaga

Lebih terperinci

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. Pusat tenaga listrik umumnya terletak jauh dari pusat bebannya. Energi listrik

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. Pusat tenaga listrik umumnya terletak jauh dari pusat bebannya. Energi listrik BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK 2.1. Umum Pusat tenaga listrik umumnya terletak jauh dari pusat bebannya. Energi listrik yang dihasilkan pusat pembangkitan disalurkan melalui jaringan transmisi.

Lebih terperinci

BAB III METODELOGI PENELITIAN

BAB III METODELOGI PENELITIAN BAB III METODELOGI PENELITIAN 3.1 Kinerja Distribusi PT. PLN (Persero) Area Jaringan Tangerang Secara umum kinerja distribusi di PT. PLN (Persero) Area Jaringan Tangerang mengalami penurunan yang baik

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Gambar 2.1 Tiga Bagian Utama Sistem Tenaga Listrik untuk Menuju Konsumen

BAB II TINJAUAN PUSTAKA. Gambar 2.1 Tiga Bagian Utama Sistem Tenaga Listrik untuk Menuju Konsumen BAB II TINJAUAN PUSTAKA 2.1 Sistem Distribusi Pada dasarnya, definisi dari sebuah sistem tenaga listrik mencakup tiga bagian penting, yaitu pembangkitan, transmisi, dan distribusi, seperti dapat terlihat

Lebih terperinci

PERBAIKAN REGULASI TEGANGAN

PERBAIKAN REGULASI TEGANGAN JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER PERBAIKAN REGULASI TEGANGAN Distribusi Tenaga Listrik Ahmad Afif Fahmi 2209 100 130 2011 REGULASI TEGANGAN Dalam Penyediaan

Lebih terperinci

II. TINJAUAN PUSTAKA. utama yaitu pembangkit, penghantar (saluran transmisi), dan beban. Pada sistem

II. TINJAUAN PUSTAKA. utama yaitu pembangkit, penghantar (saluran transmisi), dan beban. Pada sistem II. TINJAUAN PUSTAKA A. Aliran Daya Tiga Fasa Menurut Marsudi, proses penyaluran tenaga listrik terdiri dari tiga komponen utama yaitu pembangkit, penghantar (saluran transmisi), dan beban. Pada sistem

Lebih terperinci

SISTEM TENAGA LISTRIK

SISTEM TENAGA LISTRIK SISTEM TENAGA LISTRIK SISTEM TENAGA LISTRIK Sistem Tenaga Listrik : Sekumpulan Pusat Listrik dan Gardu Induk (Pusat Beban) yang satu sama lain dihubungkan oleh Jaringan Transmisi sehingga merupakan sebuah

Lebih terperinci

Kata kunci Kabel Laut; Aliran Daya; Susut Energi; Tingkat Keamanan Suplai. ISBN: Universitas Udayana

Kata kunci Kabel Laut; Aliran Daya; Susut Energi; Tingkat Keamanan Suplai. ISBN: Universitas Udayana Efek Beroperasinya Kabel Laut Bali Nusa Lembongan Terhadap Sistem Kelistrikan Tiga Nusa Yohanes Made Arie Prawira, Ida Ayu Dwi Giriantari, I Wayan Sukerayasa Jurusan Teknik Elektro Fakultas Teknik Universitas

Lebih terperinci

BAB I PENDAHULUAN. Perkembangan permintaan energi dalam kurun waktu menurut

BAB I PENDAHULUAN. Perkembangan permintaan energi dalam kurun waktu menurut BAB I PENDAHULUAN 1.1. Latar Belakang Perkembangan permintaan energi dalam kurun waktu 2011-2030 menurut skenario BAU (Business As Usual) meningkat seperti pada gambar 1.1. Dalam gambar tersebut diperlihatkan

Lebih terperinci

ANALISIS RUGI DAYA SISTEM DISTRIBUSI DENGAN PENINGKATAN INJEKSI JUMLAH PEMBANGKIT TERSEBAR. Publikasi Jurnal Skripsi

ANALISIS RUGI DAYA SISTEM DISTRIBUSI DENGAN PENINGKATAN INJEKSI JUMLAH PEMBANGKIT TERSEBAR. Publikasi Jurnal Skripsi ANALISIS RUGI DAYA SISTEM DISTRIBUSI DENGAN PENINGKATAN INJEKSI JUMLAH PEMBANGKIT TERSEBAR Publikasi Jurnal Skripsi Disusun Oleh : RIZKI TIRTA NUGRAHA NIM : 070633007-63 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

Lebih terperinci

MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU)

MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU) MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU) DEFINISI PLTGU PLTGU merupakan pembangkit listrik yang memanfaatkan tenaga gas dan uap. Jadi disini sudah jelas ada dua mode pembangkitan. yaitu pembangkitan

Lebih terperinci

II. TINJAUAN PUSTAKA. alternatif seperti matahari, angin, mikro/minihidro dan biomassa dengan teknologi

II. TINJAUAN PUSTAKA. alternatif seperti matahari, angin, mikro/minihidro dan biomassa dengan teknologi II. TINJAUAN PUSTAKA 2.1 Sistem Pembangkit Hibrid Sistem pembangkit hibrid adalah kombinasi dari satu atau lebih sumber energi alternatif seperti matahari, angin, mikro/minihidro dan biomassa dengan teknologi

Lebih terperinci

BAB I PENDAHULUAN. panas yang dihasilkan oleh pembakaran bahan bakar menjadi energi mekanik, dan

BAB I PENDAHULUAN. panas yang dihasilkan oleh pembakaran bahan bakar menjadi energi mekanik, dan BAB I PENDAHULUAN 1.1. Latar Belakang Dalam menghasilkan energi listrik, terjadi konversi energi dari energi mekanik menjadi energi listrik melalui suatu alat konversi energi, dalam hal ini disebut dengan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang. PT Indonesia Asahan Aluminium (Persero) adalah Badan Usaha Milik Negara

BAB I PENDAHULUAN Latar Belakang. PT Indonesia Asahan Aluminium (Persero) adalah Badan Usaha Milik Negara BAB I PENDAHULUAN 1.1. Latar Belakang PT Indonesia Asahan Aluminium (Persero) adalah Badan Usaha Milik Negara yang memproduksi aluminium batangan terletak di Desa Kuala Tanjung, Kecamatan Sei Suka, Kabupaten

Lebih terperinci

BAB II DASAR TEORI. beberapa studi dan penelitian telah dilakukan. Robi (2008) melakukan studi

BAB II DASAR TEORI. beberapa studi dan penelitian telah dilakukan. Robi (2008) melakukan studi BAB II DASAR TEORI 2.1 Tinjauan Pustaka Terkait dengan analisis susut energi pada sistem jaringan distribusi 20 kv beberapa studi dan penelitian telah dilakukan. Robi (2008) melakukan studi dengan pendekatan

Lebih terperinci

BAB 1 PENDAHULUAN. serta dalam pengembangan berbagai sektor ekonomi. Dalam kenyataan ekonomi

BAB 1 PENDAHULUAN. serta dalam pengembangan berbagai sektor ekonomi. Dalam kenyataan ekonomi BAB 1 PENDAHULUAN 1.1 Latar Belakang. Daya listrik memberikan peran sangat penting dalam kehidupan masyarakat serta dalam pengembangan berbagai sektor ekonomi. Dalam kenyataan ekonomi modren sangat tergantung

Lebih terperinci

Panduan Praktikum Sistem Tenaga Listrik TE UMY

Panduan Praktikum Sistem Tenaga Listrik TE UMY 42 UNIT 4 PERBAIKAN UNJUK KERJA SALURAN DENGAN SISTEM INTERKONEKSI A. TUJUAN PRAKTIKUM a. Mengetahui fungsi switch pada jaringan interkoneksi b. Mengetahui setting generator dan interkoneksinya dengan

Lebih terperinci

1 BAB I PENDAHULUAN. energi yang memproduksi minyak bumi dan produksi sampingan berupa gas alam

1 BAB I PENDAHULUAN. energi yang memproduksi minyak bumi dan produksi sampingan berupa gas alam 1 BAB I PENDAHULUAN 1.1 Latar Belakang Sistem tenaga listrik merupakan faktor utama yang mendukung sistem produksi dari perusahaan industri, terutama pada industri besar di Indonesia. Khususnya pada perusahaan

Lebih terperinci

1 Universitas Indonesia

1 Universitas Indonesia BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG Dari sudut pandang enjinering, pengoperasian sebuah hotel tidak terlepas dari kebutuhan akan sumber daya energi antara lain untuk penerangan dan pengoperasian alat-alat

Lebih terperinci

5 Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA

5 Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Sistem Tenaga Listrik Sistem tenaga listrik merupakan suatu sistem terpadu yang terbentuk oleh hubungan-hubungan peralatan dan komponen - komponen listrik, seperti generator,

Lebih terperinci

BAB III PENGGUNAAN KAPASITOR SHUNT UNTUK MEMPERBAIKI FAKTOR DAYA. daya aktif (watt) dan daya nyata (VA) yang digunakan dalam sirkuit AC atau beda

BAB III PENGGUNAAN KAPASITOR SHUNT UNTUK MEMPERBAIKI FAKTOR DAYA. daya aktif (watt) dan daya nyata (VA) yang digunakan dalam sirkuit AC atau beda 25 BAB III PENGGUNAAN KAPASITOR SHUNT UNTUK MEMPERBAIKI FAKTOR DAYA 3.1 Pengertian Faktor Daya Listrik Faktor daya (Cos φ) dapat didefinisikan sebagai rasio perbandingan antara daya aktif (watt) dan daya

Lebih terperinci

STUDI ALIRAN DAYA AKTIF 3 FASA PADA SISTEM DISTRIBUSI RADIAL DENGAN PENENTUAN LOKASI DAN KAPASITAS DG OPTIMAL MENGGUNAKAN METODE K-MEANS CLUSTERING

STUDI ALIRAN DAYA AKTIF 3 FASA PADA SISTEM DISTRIBUSI RADIAL DENGAN PENENTUAN LOKASI DAN KAPASITAS DG OPTIMAL MENGGUNAKAN METODE K-MEANS CLUSTERING TUGAS AKHIR - TE 141599 STUDI ALIRAN DAYA AKTIF 3 FASA PADA SISTEM DISTRIBUSI RADIAL DENGAN PENENTUAN LOKASI DAN KAPASITAS DG OPTIMAL MENGGUNAKAN METODE K-MEANS CLUSTERING Taufani Kurniawan NRP 2213100024

Lebih terperinci

BAB IV ANALISA DAN PEMBAHASAN

BAB IV ANALISA DAN PEMBAHASAN BAB IV ANALISA DAN PEMBAHASAN 4.1 Informasi Umum 4.1.1 Profil Kabupaten Bantul Kabupaten Bantul merupakan salah satu kabupaten yang berada di provinsi Daerah Istimewa Yogyakarta (DIY) terletak antara 07

Lebih terperinci

BAB IV HASIL DAN ANALISIS

BAB IV HASIL DAN ANALISIS BAB IV HASIL DAN ANALISIS Gambar 4.1 Lokasi PT. Indonesia Power PLTP Kamojang Sumber: Google Map Pada gambar 4.1 merupakan lokasi PT Indonesia Power Unit Pembangkitan dan Jasa Pembangkitan Kamojang terletak

Lebih terperinci

BAB I PENDAHULUAN I.1

BAB I PENDAHULUAN I.1 BAB I PENDAHULUAN I.1 Latar Belakang Penelitian Energi memiliki peranan penting dalam menunjang kehidupan manusia. Seiring dengan perkembangan zaman, kebutuhan akan energi terus meningkat. Untuk dapat

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Metode Penelitian Metodologi yang digunakan dalam penelitian skripsi ini antara lain adalah: 1. Studi literatur, yaitu cara menelaah, menggali, serta mengkaji teoremateorema

Lebih terperinci

Penempatan Dan Penentuan Kapasitas Optimal Distributed Generator (DG) Menggunakan Artificial Bee Colony (ABC)

Penempatan Dan Penentuan Kapasitas Optimal Distributed Generator (DG) Menggunakan Artificial Bee Colony (ABC) JURNAL TEKNIK ITS Vol. 1, No. 1, (Sept. 2012) ISSN: 2301-9271 B-16 Penempatan Dan Penentuan Kapasitas Optimal Distributed Generator (DG) Menggunakan Artificial Bee Colony (ABC) Ahmad Zakaria H, Sjamsjul

Lebih terperinci

I. PENDAHULUAN. pertumbuhan ekonomi dan industri serta pertambahan penduduk. Listrik

I. PENDAHULUAN. pertumbuhan ekonomi dan industri serta pertambahan penduduk. Listrik I. PENDAHULUAN 1.1. Latar Belakang Kebutuhan tenaga listrik di Indonesia terus meningkat sesuai dengan laju pertumbuhan ekonomi dan industri serta pertambahan penduduk. Listrik merupakan bentuk energi

Lebih terperinci

Jurnal Media Elektro, Vol. 1, No. 3, April 2013 ISSN

Jurnal Media Elektro, Vol. 1, No. 3, April 2013 ISSN Analisis Jatuh Pada Penyulang 20 kv Berdasarkan pada Perubahan Beban (Studi Kasus Penyulang Penfui dan Penyulang Oebobo PT. PLN Persero Rayon Kupang) Agusthinus S. Sampeallo, Wellem F. Galla, Rendi A.

Lebih terperinci

MODUL PRAKTIKUM SISTEM TENAGA LISTRIK II

MODUL PRAKTIKUM SISTEM TENAGA LISTRIK II MODUL PRAKTIKUM SISTEM TENAGA LISTRIK II LABORATORIUM SISTEM TENAGA LISTRIK PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNIK UNTAG 2016 PERCOBAAN I PENGENALAN ETAP I. Tujuan Percobaan 1. Mempelajari fungsi

Lebih terperinci

BAB IV ANALISA PERANCANGAN INSTALASI DAN EFEK EKONOMIS YANG DIDAPAT

BAB IV ANALISA PERANCANGAN INSTALASI DAN EFEK EKONOMIS YANG DIDAPAT BAB IV ANALISA PERANCANGAN INSTALASI DAN EFEK EKONOMIS YANG DIDAPAT 4.1. Perancangan Instalasi dan Jenis Koneksi (IEEE std 18-1992 Standard of shunt power capacitors & IEEE 1036-1992 Guide for Application

Lebih terperinci

PENGARUH KOMBINASI PEMBEBANAN INDUKTIF DAN NON LINIER TERHADAP KARAKTERISTIK HARMONIK GENERATOR INDUKSI 3 FASE TEREKSITASI DIRI

PENGARUH KOMBINASI PEMBEBANAN INDUKTIF DAN NON LINIER TERHADAP KARAKTERISTIK HARMONIK GENERATOR INDUKSI 3 FASE TEREKSITASI DIRI PENGARUH KOMBINASI PEMBEBANAN INDUKTIF DAN NON LINIER TERHADAP KARAKTERISTIK HARMONIK GENERATOR INDUKSI 3 FASE TEREKSITASI DIRI TUGAS AKHIR Tugas Akhir Diajukan Untuk Melengkapi Tugas-tugas Dan Memenuhi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Sistem Distribusi 1 Bagian dari sistem tenaga listrik yang paling dekat dengan pelanggan adalah sistem distribusi. Sistem distribusi adalah bagian sistem tenaga listrik yang

Lebih terperinci

Pratama Akbar Jurusan Teknik Sistem Perkapalan FTK ITS

Pratama Akbar Jurusan Teknik Sistem Perkapalan FTK ITS Pratama Akbar 4206 100 001 Jurusan Teknik Sistem Perkapalan FTK ITS PT. Indonesia Power sebagai salah satu pembangkit listrik di Indonesia Rencana untuk membangun PLTD Tenaga Power Plant: MAN 3 x 18.900

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Turbin gas adalah suatu unit turbin dengan menggunakan gas sebagai fluida kerjanya. Sebenarnya turbin gas merupakan komponen dari suatu sistem pembangkit. Sistem turbin gas paling

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Pengukuran dan Pengambilan Data Pengambilan data dengan cara melakukan monitoring di parameter yang ada dan juga melakukan pengukuran ke lapangan. Di PT.Showa Indonesia Manufacturing

Lebih terperinci

EVALUASI LOSSES DAYA PADA SISTEM TRANSMISI 150 KV SUMATERA BARAT

EVALUASI LOSSES DAYA PADA SISTEM TRANSMISI 150 KV SUMATERA BARAT EVALUASI LOSSES DAYA PADA SISTEM TRANSMISI 150 KV SUMATERA BARAT Rahmadhian (1), Ir. Cahayahati, MT (2), Ir. Ija Darmana, MT (2) (1) Mahasiswa dan (2) Dosen Jurusan Teknik Elektro, Fakultas Teknologi Industri,

Lebih terperinci

PERBAIKAN KEANDALAN SISTEM MELALUI PEMASANGAN DISTRIBUTED GENERATION

PERBAIKAN KEANDALAN SISTEM MELALUI PEMASANGAN DISTRIBUTED GENERATION PERBAIKAN KEANDALAN SISTEM MELALUI PEMASANGAN DISTRIBUTED GENERATION Wahri Sunanda 1 1) Fakultas Teknik Jurusan Teknik Elektro Universitas Bangka Belitung Email: wahrisunanda@ubb.ac.id Abstract - The reliability

Lebih terperinci

APLIKASI METODE NEWTON-RAPHSON UNTUK MENGHITUNG ALIRAN BEBAN MENGGUNAKAN PROGRAM MATLAB 7.0.1

APLIKASI METODE NEWTON-RAPHSON UNTUK MENGHITUNG ALIRAN BEBAN MENGGUNAKAN PROGRAM MATLAB 7.0.1 APLIKASI METODE NEWTON-RAPHSON UNTUK MENGHITUNG ALIRAN BEBAN MENGGUNAKAN PROGRAM MATLAB 7.0.1 TUGAS AKHIR Diajukan Untuk Memenuhi Salah Satu Syarat Menyelesaikan Pendidikan Strata 1 Fakultas Teknik Jurusan

Lebih terperinci

Analisa Pengaruh Pemasangan Distributed Generation Terhadap Profil Tegangan Pada Penyulang Abang Karangasem

Analisa Pengaruh Pemasangan Distributed Generation Terhadap Profil Tegangan Pada Penyulang Abang Karangasem Teknologi Elektro, Vol. 16, No. 3,September - Desember 217 79 Analisa Pengaruh Pemasangan Distributed Generation Terhadap Profil Pada Penyulang Abang Karangasem I Nyoman Cita Artawa 1, I Wayan Sukerayasa

Lebih terperinci