BAB II TEORI DASAR 2.1 Mikrokontroller ATmega Gambaran Umum Mikrokontroller ATmega Fitur Mikrokontroller ATmega 8535

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TEORI DASAR 2.1 Mikrokontroller ATmega Gambaran Umum Mikrokontroller ATmega Fitur Mikrokontroller ATmega 8535"

Transkripsi

1 BAB II TEORI DASAR 2.1 Mikrokontroller ATmega Gambaran Umum Mikrokontroller ATmega 8535 Perkembangan teknologi telah mendorong dengan pesat kemajuan perkembangan dunia elektronika khususnya dunia mikroelektronika. Dengan adanya penemuan silikon maka bidang ini telah memberikan sumbangan yang amat berharga bagi perkembangan teknologi modern. Atmel sebagai salah satu vendor yang mengembangkan dan memasarkan produk mikroelektronika telah menjadi suatu teknologi standar bagi para desainer sistem elektronika masa sekarang. Dengan perkembangan terakhir yaitu generasi AVR (Alf and Vegard s Risc processor) maka para desainer sistem elektronika telah diberikan suatu teknologi yang memiliki kapabilitas yang amat maju namun dengan biaya ekonomis yang cukup minimal. Mikrokontroler AVR memiliki arsitektur RISC 8 bit di mana semua instruksi dikemas dalam kode 16-bit (16-bits word) dan sebagian besar instruksi dieksekusi dalam 1 (satu) siklus clock. Dibandingkan dengan instruksi ASM51 yang membutuhkan 12 siklus clock. Tentu saja ini terjadi karena kedua jenis mikrokontroler tersebut memiliki arsitektur yang berbeda, yang satu RISC sedangkan yang lain CISC. Secara umum, AVR dapat dikelompokkan menjadi 4 kelas, yaitu keluarga ATtiny, keluarga AT90Sxx, keluarga ATmega, dan AT86RFxx. Pada dasarnya yang membedakan masingmasing kelas adalah memori, peripheral, dan fungsinya. Dari segi arsitektur dan instruksi yang digunakan, mereka hampir sama Fitur Mikrokontroller ATmega 8535 A. Frekuensi clock maksimum 16 MHz B. Jalur I/O 32 buah, yang terbagi dalam PortA, PortB, PortC dan Port D.

2 C. Analog to Digital Converter 10 bit sebanyak 8 input D. Timer/Counter sebanyak 3 buah E. CPU 8 bit yang terdiri dari 32 register F. Watchdog Timer dengan osilator internal G. SRAM sebesar 512 byte H. Memori Flash sebesar 8 Kbyte dengan kemampuan read while Write. I. Interrupt internal maupun eksternal J. Port komunikasi SPI K. EEPROM sebesar 512 byte yang dapat diprogram saat operasi L. Analog Comparator M. Komunikasi serial standar USART dengan kecepatan maksimal 2,5 Mbps Konfigurasi Pin ATmega 8535 Mikrokontroller ATmega 8535 mempunyai 40 kaki (pin), 32 kaki diantaranya digunakan untuk keperluan input-output, sedangkan 8 kaki lainnya digunakan untuk VCC, ground, reset, oscillator, dan tegangan referensi. 32 kaki tersebut membentuk 4 buah port, dimana setiap port terdiri dari 8 kaki. Masing-masing port biasa dikenal sebagai port A, port B, port C, dan port D. Perhatikan gambar 2.1.

3 Gambar 2.1 Konfigurasi Pin ATmega 8535 Deskripsi dari pin-pin ATmega 8535 adalah sebagai berikut : A. Vcc sebagai supply tegangan digital B. GND sebagai ground C. Port A sebagai input analog ke A/D konverter. Port A juga sebagai 8-bit directional port I/O, jika A/D konverter tidak digunakan. Pin-pin port dapat menyediakan resistor-resistor internal pull-up. Ketika port A digunakan sebagai input dan pull eksternal yang rendah akan menjadi sumber arus jika resistor-resistor pull-up diaktifkan. Pin-pin port A adalah tri-state ketika kondisi reset menjadi aktif sekalipun clock tidak aktif.

4 Tabel 2.1 Fungsi Pin pada Port A D. Port B adalah port I/O 8-bit bi-directional dengan resistor-resistor internal pull-up. Buffer output port B mempunyai karaketristik drive yang simetris dengan kemampuan keduanya sink dan source yang tinggi. Sebagai input, port B yang mempunyai pull eksternal yang rendah akan menjadi sumber arus jika resistor-resistor pull-up diaktifkan. Pin-pin port B adalah tri-state ketika kondisi reset menjadi aktif sekalipun clock tidak aktif. Tabel 2.2 Fungsi Pin pada Port B

5 E. Port C : Port C adalah port I/O 8-bit bi-directional dengan resistor-resistor internal pull-up. Buffer output port C mempunyai karaketristik drive yang simetris dengan kemampuan keduanya sink dan source yang tinggi. Sebagai input, port C yang mempunyai pull eksternal yang rendah akan menjadi sumber arus jika resistor-resistor pull-up diaktifkan. Pin-pin port C adalah tristate ketika kondisi reset menjadi aktif seklipun clock tidak aktif. Jika antarmuka JTAG enable, resistor-resistor pull-up pada pin-pin PC5(TDI), PC3(TMS), PC2(TCK) akan diktifkan sekalipun terjadi reset. Tabel 2.3 Fungsi Pin pada Port C F. Port D : Port D adalah port I/O 8-bit bit-directional dengan resistor-resistor internal pull-up. Buffer output port D mempunyai karaketristik drive yang simetris dengan kemampuan keduanya sink dan source yang tinggi. Sebagai input, port D yang mempunyai pull eksternal yang rendah akan menjadi sumber arus jika resistor-resistor pull-up diaktifkan. Pin-pin port D adalah tristate ketika kondisi reset menjadi aktif seklipun clock tidak aktif.

6 Tabel 2.4 Fungsi Pin pada Port D G. Reset : Sebuah low level pulsa yang lebih lama daripada lebar pulsa minimum pada pin ini akan menghasilkan reset meskipun clock tidak berjalan. H. XTAL1 : Input inverting penguat Oscilator dan input internal clock operasi rangkaian. I. XTAL2 : Output dari inverting penguat Oscilator. J. AVCC : Pin supply tegangan untuk PortA dan A/D converter. Sebaiknya eksternalnya dihubungkan ke VCC meskipun ADC tidak digunakan. Jika ADC digunakan seharusnya dihubungkan ke VCC melalui low pas filter. K. AREF : Pin referensi analog untuk A/D konverter.

7 2.1.4 Arsitektur Mikrokontroller ATmega8535 Gambar 2.2 Blok Diagram ATmega 8535

8 Dari gambar tersebut dapat dilihat bahwa ATmega8535 memiliki bagian sebagai berikut : 1. Saluran I/O sebanyak 32 buah yaitu Port A, Port B, Port C, dan Port D. 2. ADC 10 bit sebanyak 8 saluran. 3. Tiga buah Timer/Counter dengan kemampuan pembandingan. 4. CPU yang terdiri atas 32 buah register. 5. Watchdog Timer dengan osilator internal. 6. SRAM sebesar 512 byte. 7. Memori Flash sebesar 8 kb dengan kemampuan Read While Write. 8. Unit interupsi internal dan eksternal. 9. Port antarmuka SPI. 10. EEPROM sebesar 512 byte yang dapat diprogram saat operasi. 11. Antarmuka komparator analog. 12. Port USART untuk komunikasi serial Struktur Memori Mikrokontroller ATmega8535 AVR ATMega8535 memiliki ruang pengalamatan memori data dan memori program yang terpisah. Sebagai tambahan, ATmega8535memiliki fitur suatu EEPROM Memori untuk penyimpanan data. Semuatiga ruang memori adalah reguler dan linier. Instruksi pada memori program dieksekusi dengan pipelining single level. Sewaktu sebuah instruksi sedang dikerjakan, instruksi berikutnya diambil dari memori program. A. In-System Reprogrammable Flash Program Memory Mikrokontroler Atmega8535 memiliki 8 Kbytes On-chip In- System Reprogrammable Flash memory untuk meyimpan program. Karena semua instruksi AVR lebarnya 16 atau 32 bit, maka memory flash diorganisasi sebagai 4K x 16. Untuk keamanan software, Flash memory space dibagi dalam dua seksi, yaitu : Boot Program section dan Application Program section. Flash memory meiliki ketahanan paling sedikit 10,000 kali siklus write/erase. ATmega8535 Program Counter

9 (PC) lebarnya adalah 12 bits yang dapat mengalamati program sebesar 4K lokasi memory. Gambar 2.3 Peta Memory Program B. SRAM Data Memory 608 lokasi alamat data memory adalah Register File, I/O Memory dan internal data SRAM. 96 lokasi alamat pertama adalah Register File dan I/O Memory. 512 lokasi alamat berikutnya adalah internal data SRAM.

10 Gambar 2.4 Peta Memory Data Pengalamatan langsung dapat mencapai semua space memory data. Pengalamatan tidak langsung dengan mode displacement hanya dapat mencapai 63 lokasi memory dari alamat dasar yang diberikan oleh register Y atau Z. Ketika menggunakan register mode pengalamatan tidak langsung dengan pre-decrement dan post-increment automatis, isi register X, Y dan Z akan di-decrement atau di-increment. Dengan mode pengalamatan tersebut dapat mengakses 32 general purpose working registers, 64 I/O Registers dan the 512 bytes of internal data SRAM. C. EEPROM Data Memory ATmega8535 memiliki 512 bytes memory data EEPROM yang tahan paling sedikit kali siklus write/erase. Ketika EEPROM sedang dibaca, CPU akan berhenti bekerja selama empat siklus clock

11 sebelum instruksi berikutnya diesksekusi. Dan pada saat EEPROM sedang ditulisi CPU akan berhententi selama dua siklus clock. Untuk menulis EEPROM diperlukan waktu programming selama 8,4 ms Register yang berhubungan dengan EEPROM adalah sebagai berikut : EEPROM Address Register EEARH dan EEARL EEPROM Data Register EEDR EEPROM Control Register EECR Port Input/Output Digital ATmega8535 mempunyai empat buah port yang bernama PortA, PortB, PortC, dan PortD. Keempat port tersebut merupakan jalur bidirectional dengan pilihan internal pull-up. Tiap port mempunyai tiga buah register bit, yaitu DDxn, PORTxn, dan PINxn. Huruf x mewakili nama huruf dari port sedangkan huruf n mewakili nomor bit. Bit DDxn terdapat pada I/O address DDRx, bit PORTxn terdapat pada I/O address PORTx, dan bit PINxn terdapat pada I/O address PINx. Bit DDxn dalam regiter DDRx (Data Direction Register) menentukan arah pin. Bila DDxn diset 1 maka Px berfungsi sebagai pin output. Bila DDxn diset 0 maka Px berfungsi sebagai pin input. Bila

12 PORTxn diset 1 pada saat pin terkonfigurasi sebagai pin input, maka resistor pull-up akan diaktifkan. Untuk mematikan resistor pull-up, PORTxn harus diset 0 atau pin dikonfigurasi sebagai pin output. Pin port adalah tri-state setelah kondisi reset. Bila PORTxn diset 1 pada saat pin terkonfigurasi sebagai pin output maka pin port akan berlogika 1. Dan bila PORTxn diset 0 pada saat pin terkonfigurasi sebagai pin output maka pin port akan berlogika 0. Saat mengubah kondisi port dari kondisi tri-state (DDxn=0, PORTxn=0) ke kondisi output high (DDxn=1, PORTxn=1) maka harus ada kondisi peralihan apakah itu kondisi pull-up enabled (DDxn=0, PORTxn=1)atau kondisi output low (DDxn=1, PORTxn=0). Biasanya, kondisi pull-up enabled dapat diterima sepenuhnya, selama lingkungan impedansi tinggi tidak memperhatikan perbedaan antara sebuah strong high driver dengan sebuah pull-up. Jika ini bukan suatu masalah, maka bit PUD pada register SFIOR dapat diset 1 untuk mematikan semua pull-up dalam semua port. Peralihan dari kondisi input dengan pull-up ke kondisi output low juga menimbulkan masalah yang sama. Kita harus menggunakan kondisi tri-state (DDxn=0, PORTxn=0) atau kondisi output high (DDxn=1, PORTxn=0) sebagai kondisi transisi. Tabel 2.5 Konfigurasi Pin Port Bit 2 PUD : Pull-up Disable Bila bit diset bernilai 1 maka pull-up pada port I/O akandimatikan walaupun register DDxn dan PORTxn dikonfigurasikan untuk menyalakan pull-up (DDxn=0, PORTxn=1).

13 2.1.7 Interupsi Interupsi atau interrupt adalah suatu kejadian atau peristiwa yang menyebabkan mikrokontroler berhenti sejenak untuk melayani interrupt tersebut. Yang harus diperhatikan untuk menguanakan interupsi adalah, kita harus tau sumber-sumber interupsi, vektor layanan interupsi dan yang terpenting rutin lyanan interupsi, yaitu subrutin yang akan dikerjakan bila terjadi interupsi. Analoginya adalah sebagai berikut, seseorang sedang mengetik laporan, mendadak telephone berdering dan menginterrupsi orang tersebut sehingga menghentikan pekerjaan mengetik dan mengangkat telephone. Setelah pembicaraan telephone yang dalam hal ini adalah merupakan analogi dari Interrupt Service Routine selesai maka orang tersebut kembali meneruskan pekerjaanya mengetik. Demikian pula pada sistem mikrokontroler yang sedang menjalankan programnya, saat terjadi interrupt, program akan berhenti sesaat, melayani interrupt tersebut dengan menjalankan program yang berada pada alamat yang ditunjuk oleh vektor dari interrupt yang terjadi hingga selesai dan kembali meneruskan program yang terhenti oleh interrupt tadi. Seperti yang terlihat Gambar di bawah, sebuah program yang seharusnya berjalan terus lurus, tiba-tiba terjadi interrupt dan harus melayani interrupt tersebut terlebih dahulu hingga selesai sebelum ia kembali meneruskan pekerjaannya. Gambar 2.5 Analogi Interrupt

14 Pada AVR terdapat 3 pin interupsi eksternal, yaitu INT0,INT1,dan INT2. Interupsi eksternal dapat dibangkitkan apabila ada perubahan logika atau logika 0 pada pin interupsi Pengaturan kondisi keadaan yang menyebabkan terjadinya interupsi eksternal diatur oleh register MCUCR ( MCU Control Register), yang terlihat seperti gambar ini: Bit penyusunnya: Bit ISC11 dan ISC10 bersama-sama menentukan kodisi yang dapat menyebakan interupsi eksternal pada pin INT1. keadaan selengkapnya terlihat pada table berikut : Tabel 2.6 Interrupt 1 Sense Control Bit ISC01 dan ISC00 bersama-sama menentukan kodisi yang dapat menyebakan interupsi eksternal pada pin INT0. keadaan selengkapnya terlihat pada table berikut : Tabel 2.7 Interrupt 0 Sense Control

15 Pemilihan pengaktifan interupsi eksternal diatur oleh register GICR ( General Interrupt Control Register ) yang terlihat pada gambar berikut : Bit penyusunnya dapat dijelaskan sebagai berikut: Bit INT1 adalah bit untuk mengaktifkan interupsi eksternal 1. Apabila bit tersebut diberi logika 1 dan bit I pada SREG (status register) juga satu, maka interupsi eksternal 1 akan aktif. Bit INT0 adalah bit untuk mengaktifkan interupsi eksternal 0. Apabila bit tersebut diberi logika 1 dan bit I pada SREG (status register) juga satu, maka interupsi eksternal 0 akan aktif. Bit INT2 adalah bit untuk mengaktifkan interupsi eksternal 2. Apabila bit tersebut diberi logika 1 dan bit I pada SREG (status register) juga satu, maka interupsi eksternal 2 akan aktif.

16 Tabel 2.8 Reset and Interrupt Vector

17 2.1.8 Timer/Counter Timer/counter adalah tujuan umum single channel, module 8 bit timer/counter. Beberapa fasilitas chanel dari timer/counter antara lain: Counter channel tunggal Pengosongan data timer sesuai dengan data pembanding Bebas -glitch, tahap yang tepat Pulse Width Modulator (PWM) Pembangkit frekuensi Event counter external. Gambar 2.6 Blok Diagram Timer/Counter Gambar diagram block timer/counter 8 bit ditunjukan pada gambar di atas. Untuk penempatan pin I/O telah di jelaskan pada bagian I/O di atas. CPU dapat diakses register I/O, termasuk dalam pinpin I/O dan bit I/O. Device khusus register I/O dan lokasi bit terdaftar pada deskripsi timer/counter 8 bit.

18 A. Timing Diagram Timer/Counter Timer/counter disain sinkron clock timer (clkt0) oleh karena itu ditunjukan sebagai sinyal enable clock pada gambar berikut. Gambar ini termasuk informasi ketika flag interrupt dalam kondisi set. Data timing digunakan sebagai dasar dari operasi timer/counter. Gambar 2.7 Timing diagram timer/counter, tanpa prescaling Sesuai dengan gambar dibawah timing diagram timer/counter dengan prescaling maksudnya adalah counter akan menambahkan data counter (TCNTn) ketika terjadi pulsa clock telah mencapai 8 kali pulsa dan sinyal clock pembagi aktif clock dan ketika telah mencapai nilai maksimal maka nilai TCNTn akan kembali ke nol. Dan kondisi flag timer akan aktif ketika TCNTn maksimal. Gambar 2.8 Timing diagram timer/counter, dengan prescaling Sama halnya timing timer diatas, timing timer/counter dengan seting OCFO timer mode ini memasukan data ORCn sebagai data input timer. Ketika nilai ORCn sama dengan nilaitcntn maka pulsa flag timer akan aktif. TCNTn akan bertambah nilainya ketika pulsa clock telah mencapai 8 pulsa. Dan kondisi

19 flag akan berbalik (komplemen) kondisi ketika nilai TCNTn kembali ke nilai 0 (overflow). Gambar 2.9. Timing diagram timer/counter, menyeting OCFO, dengan pescaler (fclk_i/o/8) Ketika nilai ORCn sama dengan nilai TCNTn maka pulsa flag timer akan aktif. TCNTn akan bertambah nilainya ketika pulsa clock telah mencapai 8 pulsa. Dan kondisi flag akan berbalik (komplemen) kondisi ketika nilai TCNTn kembalimkenilai 0 (overflow). Gambar 2.10 Timing diagram timer/counter, menyeting OCFO, pengosongan data timer sesuai dengan data pembanding,dengan pescaler (fclk_i/o/8)22

20 B. Deskripsi Register Timer/Counter 8 bit Gambar 2.11 Regiter timer counter 8 bit Bit 7 FOCO : perbandingan kemampuan output. FOCO hanya akan aktif ketika spesifik-spesifik bit WGM00 tanpa PWM mode. Adapun untuk meyakinkan terhadap kesesuaian dengan device-device yang akan digunakan,bit ini harus diset nol ketika TCCRO ditulisi saat mengoperasikan mode PWM. Ketika menulisi logika satu ke bit FOCO, dengan segera di paksakan untuk disesuaikan pada unit pembangkit bentuk gelombang. Output OC diubah disesuaikan pda COM01: bit 0 menentukan pengaruh daya pembanding. Sebuah FOC0 stobe tidak akan membangkitkan beberepa interrupt, juga tidak akan membersihkan timer pada mode CTC mengunakan OCR0 sebagai puncak. FOC0 selalu dibaca nol. Bit 6,3 WGM01:0: Waveform Generation Mode. Bit ini mengontrol penghitungan yang teratur pada counter, sumber untuk harga counter maksimal ( TOP ), dan tipe apa dari pembangkit bentuk gelombang yang digunakan. Mode-mode operasi didukung oleh unit timer/counter sebagai berikut : mode normal, pembersih timer pada mode penyesuaian dengan pembanding ( CTC ), dan dua tipe mode Pulse Width Modulation (PWM).

21 Tabel 2.9 Deskripsi Bit Mode Pembangkit Bentuk Gelombang catatan : definisi nama-nama bit CTC0 dan PWM0 sekarang tidak digunakan lagi. Gunakan WGM 01: 0 definisi. Bagaimanapun lokasi dan fungsional dan lokasi dari masing-masing bit sesuai dengan versi timer sebelumnya. Bit 5:4 COMO1:0 Penyesuaian Pembanding Mode Output. Bit ini mengontrol pin output compare (OCO), jika satu atau kedua bit COM01:0 diset,output OC0 melebihi fungsional port normal I/O dan keduanya terhubung juga. Bagaimanapun, catatan bahwa bit Direksi Data Register (DDR) mencocokan ke pin OC0 yang mana harus diset dengan tujuan mengaktifkan.ketika OC0 dihubungkan ke pin, fungsi dari bit COM01:0 tergantung dari pengesetan bit WGM01:0. Tabel di bawah menunjukan COM fungsionality ketika bit-bt WGM01:0 diset ke normal atau mode CTC (non PWM ). Tabel 2.10 Mode Output Pembanding tanpa PWM Tabel 2.11 menunjukan bit COM0 1:0 fungsionality ketika bit WGM01:0 diset ke mode fast PWM.

22 Tabel 2.11 Mode Output Pembanding Mode fast PWM Tabel 2.12 menunjukan bit COM0 1:0 fungsionality ketika bit WGM01:0 diset ke mode phase correct PWM. Tabel 2.12 Mode Output Pembanding, Mode phase correct PWM Bit 2:0 CS02:0 : Clock Select. Tiga bit clock select sumber clock digunakan dengan timer/counter. Tabel 2.13 Deskripsi Bit Clock Select

23 Jika mode pin eksternal digunakan untuk timer counter0, perpindahan dati pin T0 akan memberi clock counter dengan tetap jika pin digunakan sebagai output. Dalam hal ini software diijinkan untuk mengontrol perhitungan. C. Register Timer/Counter TCNT0 Gambar 2.12 Register Timer TCNT0 Register timer/counter memberikan akses secara langsung, keduanya dugunakan untuk membaca dan menulis operasi, untuk penghitung unit 8-bit timer/counter. Menulis ke blok-blok register TCNT0 ( removes ) disesuaikan dengan clock timer berikutnya. Memodifikasi counter ( TCNT0 ) ketika perhitungan berjalan, memperkenalkan resiko kehilangan perbandingan antara TCNC0 dengan register OCR0. D. Register Timer/Counter OCR0 Gambar 2.13 Register Timer OCR0 Register output pembanding berisi sebuah haraga 8 bit yang mana secara terus-menerus dibandingkan dengan harga counter ( TCNT0 ). Sebuah penyesuaian dapat digunakan untuk membangkitkan output intrrupt pembanding, atau untuk membangkitakan sebuah output bentuk gelombang pada pin OC0.

24 E. Register Timer/Counter Interrupt Mask Bit 1 OCIE0: outpu timer counter menyesuaikan dengan kesesuaian interrupt yang aktif. Ketika bit OCIE0 ditulis satu, dan I-bit pada register status dalam kondisi set (satu), membandingkan timer/counter pada interrupt yang sesuai diaktifkan. Mencocokkan interrupt yang dijalankan kesesuaian pembanding pada timer/counter0 terjadi, ketika bit OCF0 diset pada register penanda timer/counter-tifr. Bit 0 TOIE0: Timer/Counter 0 Overflow Interrupt Enable. Ketika bit TOIE0 ditulis satu, dan I-bit pada register status dalam kondisi set ( satu ), timer/counter melebihi interrupt diaktifkan. Mencocokkan interrupt dijalankan jika kelebihan pada timer/counter0 terjadi, ketika bit TOV0 diset pada register penanda timer/counter-tifr. F. Register Timer/Counter Register TIFR Gambar 2.14 Register Timer TIFR Bit 1 OCF0: Output Compare Flag0. OCF0 dalam kondisi set ( satu ) kesesuaian pembanding terjadi antara timer/counter dan data pada OCRO Register 0 keluaran pembanding. OCF0 diclear oleh hardware ketika eksekusi pencocokan penangan vector interrupt. Dengan alternatif mengclearkan OCF0 dengan menuliskan logika satu pada flag. Ketika I-bit pada SREG, OCIE0 (Timer/Counter0 penyesuaian pembanding interrupt enable), dan OCF0 diset (satu ), timer/counter pembanding kesesuaian interrupt dijalankan.

25 Bit 0 TOV0: Timer/Counter Overflow Flag. Bit TOV0 di ser ( satu ) ketika kelebihan terjadi pada timer/counter0. TOV0 diclearkan dengan hardware ketika penjalanan pencocokan penanganan vector interrupt. Dengan alternatif, TOV0 diclearkan dengan jalan memberikan logika satu pada flag. Ketika I-bit pada SREG, TOIE0 ( Timer/Counter0 overflow interrupt enable), dan TOV0 diset ( satu ), timer/counter overflow interrupt dijalankan. Pada tahap mode PWM yang tepat, bit ini di set ketika timer/counter merubah bagian perhitungan pada $ Bahasa Pemograman Bahasa C Penggunaan sebuah sistem mikrokontroler AVR mengunakan sebuah software yang digunakan untuk menulis program, kompilasi, simulasi dan download program ke IC mikrokontroler AVR. Software yang digunakan adalah CodeVision AVR dalam bahasa C, Codevision memilki IDE (integrated Development Environment) yang lengkap, di mana penulisan program, compile, linkdan download program ke chip AVR dapat dilakukan oleh CodeVision, selain itu CodeVision juga memiliki fasilitas terminal, yaitu digunakan untuk melakukan komunikasi serial dengan mikrokontroler yang sudah deprogram. Proses download ke IC mikrokontroler dapat menggunakan sistem download secara ISP (In-System Programming) Header Di dalam fungsi header berisi include file (.hex), yaitu library (pustaka) yang akan digunakan dalam pemograman. File-file ini mempunyai ciri yaitu namanya diakhiri dengan ekstensi.h. Misalnya pada program #include <stdio.h> menyatakan pada kompiler agar membaca file bernama stdio.h saat pelaksanaan kompilasi. Bentuk umum #include: Contoh: #include <delay.h> #include <delay.h>

26 #include <stdio.h> Prepocessor (#): Digunakan untuk memasukkan (include) text dari file lain, mendefinisikan macro yang dapat mengurangi beban kerja pemograman dan meningkatkan legibility source code (mudah dibaca). Bentuk dari (#include <nama file>) memberikan penjelasan pencarian file dilakukan pada direktori khusus (direktori file). Bentuk lain dari header (#include nama file ) mengisyaratkan bahwa pencarian file terlebih dahulu dilakukan pada direktori aktif tempat sumber program dan bila tidak ditemukan pencarian akan dilanjutkan pada direktori lainnya yang sesuai dengan perintah pada sistem operasi Tipe Data Umumnya data yang digunakan didalam bahasa pemograman komputer dibedakan menjadi data nilai numerik dan nilai karakter. Tujuan data menjadi efisien dan efektif digunakan bahasa-bahasa pemograman komputer yang membedakan data kedalam beberapa tipe. Dalam bahasa C tersedia lima tipe data dasar, yaitu tipe data interger (nilai numeric bulat yang dideklarasikan dengan int), floatingpoint (nilai numerik pecahan ketetapan tunggal yang dideklarasikan dengan float), double-precision (nilai numerik pecahan ketetapan ganda yang dideklarasikan dengan double). Tabel 2.14 Tipe-Tipe Data Dasar Tipe Ukuran (Bit) Range Bit 1 0,1 Char to 127 Unsigned Char 8 0 to 255 Signed Char to 127 Int to Short int to Unsigned int 16 0 to Signed int to 32767

27 Long int to Unsigned long int 32 0 to Signed long int to Float 32 ±1.175e-38 to ±3.402e38 double 32 ±1.175e-38 to ±3.402e38 Karakter (dideklarasikan dengan char), dan kosong (dideklarasikan dengan void). Int,float, double dan char dapat dikombinasikan dengan pengubah (modifier) signed, unsigned, long dan short. Hasil dari kombinasi tipe data ini dapat dilihat pada tabel Operator Dalam suatu intruksi mengandung operator dan operand. Operator merupakan sebuah simbol yang menyatakan operasi mana yang harus dilakukan oleh operand tersebut. Sedangkan operand adalah variable atau konstanta yang merupakan bagian pernyataan. Adatiga operand (a,b dan c) dan dua operator (= dan +). Operator dalam c dibagi menjadi 3 kelompok. Yaitu: 1. Unary Operator yang beroperasi pada satu operand, missal:-n. 2. Binary Operator yang beroperasi padaduaoperand, missal: a-n, 3. Ternary Operator yang memerlukan tiga atau lebih operand, misal: a=(b*c)+d Tabel 2.15 Operator Kondisi Operator Kondisi Keterangan < Lebih Kecil <= Lebih kecil sama dengan < Lebih Besar >= Lebih Besar sama dengan

28 = = Sama dengan!= Tidak samadengan Tabel 2.16 Operator Aritmatika Operator Aritmatika Keterangan + Penjumlahan - Pengurangan * Perkalian / Pembagian % Sisa bagi(modulus) Tabel 2.17 Operator Logika Operator Logika Keterangan! Boolean NOT && Boolean AND Boolean OR Tabel 2.18 Operator Bitwise Operator Bitwise Keterangan ~ Komplemen Bitwise & Bitwise AND Bitwise OR ^ Bitwise Exclusive OR >> Right Shift << Left Shirft Tabel 2.19 Operator Assignment Operator Asignment Keterangan = Untuk memasukkan nilai += Untuk menambah nilai dari keadaan semula

29 -= Untuk mengurangi nilai dari keadaan semula *= Untuk mengalikan nilai dari keadaan semula /= Untuk melakukan pembagian terhadap bilangan semula %= Untuk memsukkan sisa bagi dari pembagian bilangan semula <<= Untuk memasukkan Shift left >>= Untuk memasukkan Shift right &= Untuk memasukkan bitwise AND ^= Untuk memasukkan bitwise XOR \= Untuk memasukkan bitwise OR Pernyataan Bahasa C A. Percabangan Perintah if dan if else.dilakukan untuk melakukan operasi percabangan bersyarat. Pernyataan if mempunyai bentuk umum : if (kondisi) { //pernyataan }; Contoh: if (a<0x08){ PORTC=0x50; }; Dalam contoh ini PORTC akan dikirim data 0x50 jika nilai a lebih kecil 0x08. Bentuk ini menyatakan, Jika kondisi yang diseleksi adalah benar (bernilai logika = 1), maka pernyataan yang mengikutinya akan diproses. Sebaliknya, jika kondisi yang diseleksi adalah tidak benar (bernilai logika = 0), maka pernyataan yang mengikutinya tidak akan diproses. Mengenai kodisi harus ditulis diantara tanda kurung, sedangkan pernyataan dapat berupa sebuah pernyataan tunggal, pernyataan majemuk atau pernyataan kosong. Sedangkan Pernyataan if-else memiliki bentuk : if (kondisi) { //pernyataan a

30 } else { //pernyataan b }; Artinya adalah pernyataan a akan dijalankan jika kondisi terpenuhi dan pernyataan b akan dijalankan jika kondisi tidak terpenuhi. dijalankan. Masingmasing pernyataan-a dan pernyataan-b dapat berupa sebuah pernyataan tunggal, pernyataan majemuk ataupun pernyataan kosong. Perintah percabangan if.else..dapat digantikan dengan perintah switch. Dalam pernyataan switch, sebuah variabel secara berurutan diuji oleh beberapa konstanta bilangan bulat atau konstanta karakter. Sintaks perintah switch dapat ditulis sebagai berikut: Switch(variabel) { case konstanta_1: statement; break; case konstanta_2: statement; break; case konstanta_3: statement; break; default: statement; } B. Looping (Pengulangan) Looping adalah perulangan satu atau beberapa perintah sampai mencapai keadaan tertentu. Ada tiga perintah looping, yaitu: for., dan do..while. sintaks loop for dapat dituliskan sebagai berikut: for (untuk pengulangan yang melakukan proses increment) for(nama_variabel=nilai_awal;syarat_loop;nama_variabel++) } statement_yang_diulang; } // untuk pengulangan yang melakukan proses decrement

31 syarat_loop adalah pernyataan yang menyatakan syarat berhentinya pengulangan; biasanya berkaitan dengan variabel kontrol, nama_variabel++ dan nama_variabel--, menyatakan proses increment dan proses decrement pada variabel kontrol. Sedangkan perintah while dapat melakukan looping apabila persyaratannya benar. Sintaks perintah while dapat dituliskan sebagai berikut: nama_variabel=nilai_awal; while(syarat_loop) { Statement_yang_akan_diulang: Nama_variabel++; } Perintah while terlebih dahulu melakukan pengujian persyaratan sebelum melakukan looping. Perulangan yang belum diketahui berapa kali akan diulangi maka dapat menggunakan while atau do while.pada pernyatan while, pemeriksaan terhadap loop dilakukan di bagian awal (sebelum tubuh loop). Pernyataan while akan diulangi terus menerus selama kondisi bernilai benar, jika kondisinya salah maka perulangan dianggap selesai. nama_variabel=nilai_awal; while(syarat_loop) { Statement_yang_akan_diulang: Nama_variabel++; } While(syarat_loop) 2.3 Teori Motor DC Prinsip Kerja Motor DC Gaya listrik dapat menimbulkan medan magnet. Konversi energi listrik menjadi energi mekanik secara sederhana dapat dilihat pada gambar berikut ini.

32 Gambar 2.15 Interaksi garis gaya magnetik dengan arus listrik. Pada gambar (a) terlihat adanya medan magnet yang timbul searah jarum jam di sekitar penghantar yang dialiri arus listrik ke arah menjauhi pembaca. Pada gambar (b) garis gaya magnet mengalir dari arah kutub utara ke kutub selatan. Gambar (c) menunjukkan bila penghantar diberi arus listrik menjauhi pembaca dan berada pada medan magnet permanen dengan arah kiri ke kanan pembaca, maka resultan gaya yang terjadi arahnya ke bawah. Gambar(d) menunjukkan bila penghantar diberi arus listrik menuju pembaca dan berada pada medan magnet permanen dengan arah kiri ke kanan pembaca, maka resultan gaya yang terjadi arahnya ke atas. Pada dasarnya motor DC merupakan tranduser torsi yang mengubah energi listrik ke energi mekanik. Prinsip kerja motor DC berdasarkan pada penghantar yang membawa arus listrik yang ditempatkan dalam suatu medan magnet akibatnya penghantar tersebut akan mengalami gaya. Gambar Prinsip kerja motor DC

33 Gaya menimbulkan torsi yang akan menghasilkan rotasi mekanik, sehingga rotor akan berputar. Ringkasnya prinsip kerja dari motor membutuhkan: Adanya garis-garis gaya medan magnet (fluks), antara kutub yang berada distator. Penghantar yang dialiri arus listrik ditempatkan pada jangkar yang berada dalam medan magnet tadi. Pada penghantar timbul gaya yang menghasilkan torsi Kecepatan Motor DC berikut, Secara umum motor DC berlaku persamaan GGL lawan, yang ada hubungannya dengan kecepatan sebagai E b = K m.φ. ω dengan: ω = kecepatan motor dalam putaran perdetik (pps) E b = GGL lawan yang dibangkitkan oleh jangkar (volt) φ = fluks perkutub (weber) Motor DC magnet permanen mempunyai medan magnet yang konstan (φ) sehingga kecepatan motor dipengaruhi dan berbanding lurus dengan tegangan belitan jangkar. Kurva tegangan-kecepatan dari suatu motor DC ada saat beban nol terlihat pada Gambar. E b Karakteristik linear Gambar 2.17 Karakteristik linear motor DC

34 Motor DC mempunyai dua bagian dasar yaitu : 1. Bagian diam/tetap (stasioner) yang disebut stator. Stator ini menghasilkan medan magnet, baik yang dibangkitkan dari sebuah koil (elektromagnetik) atau magnet permanen. Bagian stator terdiri dari bodi motor yang memiliki magnet yang melekat padanya. Untuk motor kecil, magnet tersebut adalah magnet permanen sedangkan untuk motor besar menggunakan elektromagnetik. Kumparan yang dililitkan pada lempeng-lempeng magnet disebut kumparan medan. 2. Bagian berputar (rotor). Rotor ini berupa sebuah koil dimana arus listrik mengalir. Suatu kumparan motor akan berfungsi apabila mempunyai : Kumparan medan,berfungsi sebagai pengahsil medan magnet. Kumparan jangkar, berfungsi sebagai pengimbas GGL pada konduktor yang terletak pada laur-alur jangkar. Celah udara yang memungkinkan berputarnya jangkar dalam medan magnet Torsi Torsi adalah putaran dari suatu gaya terhadap suatu poros. Hal ini dapat diukur dengan hasil kali gaya itu dengan jari-jari lingkaran, dimana gaya itu bekerja. Pada suatu pulley dengan jari-jari r meterbekerja suatu gaya F Newton yang menyebabkan pulley berputar dengankecepatan n putaran per detik. Torsi (T) = F x r Newton meter (N-m) Usaha yang dilakukan oleh gaya tersebut pada suatu putaran adalah : Daya yang dibangkitkan adalah : Usaha = gaya x jarak = F x 2Πr Daya = Usaha x n

35 2.3.4 Konstruksi Motor DC Konstruksi dari sebuah motor DC ditunjukkan seperti pada gambar 2.36 di bawah ini. Pada motor arus searah rotornya mempunyai kumparan tidak hanya satu, terdiri kumparan dan komulator yang banyak untuk mendapatkan torsi yang terus menerus. Rotor terdiri dari jangkar yang intinya terbuat dari lempenganlempengan yang ditakik.susunan lempengan membentuk celah-celah tersebut dimasuki konduktor kumparan jangkar. Ujung tiap-tiap kumparan dihubungkan pada satu segment komutator. Tiap segmen merupakan pertemuan dua ujung kumparan yang terhubung. Gambar 2.18 Bagian-Bagian Motor DC Kumparan penguat dihubungkan seri, jangkar merupakan bagian bergerak yang terbuat dari besi berlaminasi untuk mengurangi rugi-rugi arus Eddy. Kumparan jangkar diletakkan pada slot besi di sebelah luar permukaan jangkar. Pada jangkar terdapat komulator yang berbentuk silinder masing-masing diisolasi. Sisi kumparan dihubungkan dengan segmen komulator pada beberapa bagian yang berbeda, tergantung dari tipe lilitan yang diperlukan. 2.4 Relay Relay merupakan piranti kontrol untuk membuka dan menutup kontak. Ada dua macam relay, yaitu relay AC dan relay DC. Perbedaan antar relay AC dengan relay DC secara fisik adalah pada shadded pole untuk relay AC yang berguna untuk memperluas permukaan medan magnet sehingga jumlah fluks yang

36 melintasi gap bertambah banyak. Relay AC lebih lambat daripada relay DC. Relay mempunyai kontak yang bermacam-macam bahan dan rating arus yang digunakan untuk arus yang lebih besar biasanya dengan tipe kontak single button atau bifurcated (mempunyai dua permukaan dengan tahanan kontak kecil) dan unutk arus yang kecil menggunakan tipe kontak crossbar. Kontak crossbar dibuat dari bahan emas untuk mengurangi oksidasi. Pada rangkaian tingkat rendah (milivolt ataumikrovolt). Kontak dengan bahan campuran logam mulia digunakan untuk mengurangi oksidasi. Gambar 2.19 Relay Pancaran bunga api kontak sering terjadi pada rangkaian DC daripada rangkaian AC. Karena pada rangkaian AC tegangan pada setiap setengah siklus dan akan mengantarkan pancaran yang terjadi.an bunga api ini akan menyebabkan terjadinya penyempitan pada permukaan kontak (metal). Untuk memperkecil pancaran bunga api ini digunakan rangkaian kapasitor atau rangkaian serial kapasitor dengan resistor. Dengan menggunakan rangkaian ini, bila kontaknya terbuka beban induktifnya akan membangkitkan tegangan yang menyebabkan hilangnya medan listrik. Tegangan ini mengakibatkan kapasitor terisi dan pancaran bunga api dapat dihindari. Penempatan resistor digunakan untul membatasi arus pelepasan kapasitor bila kontak tertutup kembali. Untuk menentukan besarnya harga kapasitor (C) dan besarnya tahanan (R) adalah sebagai berikut : C = I2/10 dan R = 0.1V/F

37 Dimana : I : Besarnya arus listrik maksimum yang melalui kontak (Amp) V : Besarnya tegangan pada rangkaian terbuka (Volt) C : Besarnya kapasitas kapasitor (F) Masalah lain yang perlu diperhatikan dalam menginstalasi relay adalah menghilangkan medan magnet pada kumparan relay yang akan menimbulkan tegangan transient. Untuk menghilangkan tegangan transient ini maka digunakan rangkaian dioda, zener dioda atau rangkaian RC. 2.5 Transistor Sebagai Saklar Transistor berasal dari kata transfor-resistor, yang artinya tahanan pengalih. Tahanan pengalih disini artinya transistor mampu untuk mengalihkan arus masukan bertahanan rendah ke keluaran tahanan tinggi.transistor bipolar biasanya digunakan sebagai saklar dan penguat pada rangkaian elektronika digital. Ada tiga terminal yang dimiliki transistor. Tiga kaki yang berlainan tersebut membentuk transistor bipolar, yaitu emiter, basis, colector. Tugas emiter adalah mencatu pembawa muatan ke sambungan dengan basis, sedangkan colector tugasnya memindahkan pembawa muatan dari sambungannya dengan basis dan basis sebagai trigger atau pemicunya. Transistor terdiri dari logam semikonduktor dengan lapisan tipe N dan tipe P secara bergantian yang banyak terbuat dari bahan silikon. Kedua tipe itu dapat dikombinasikan menjadi transistor berjenis N-P-N atau P-N-P. Gambar 2.20 (a). Simbol Transistor NPN (b). Simbol Transistor PNP

38 Pada rangkaian saklar/switching elektronik, sinyal inputnya berlogika 1 (5 volt) atau 0 (0 volt). Nilai ini selalu dipakai pada basis transistor dengan kolektor dan emiter sebagai penghubung untuk pemutus (short) atau sebagai pembuka rangkaian (open circuit). Aturan / prosedur transistor adalah sebagai berikut : Pada transistor NPN, pemberian tegangan positif dari basis ke emitor menyebabkan kolektor dan emitor terhubung singkat sehingga transistor aktif (on). Dengan memberikan tegangan negatif atau 0 volt dari basis ke emitor menyebabkan hubungan kolektor dan emitor terbuka atau OFF sehingga dapat dikatakan transistor ini merupakan transistor active high. Pada transistor PNP, memberikan tegangan negatif dari basis ke emoitor akan menyalakan transistor (on), sedangkan pemberian tegangan positif dari basis ke emitor akan menyebabkan transistor mati (OFF) sehingga dapat dikatakan transistor active low.

39 HALAMAN INI SENGAJA DIKOSONGKAN

Mikrokontroler AVR. Hendawan Soebhakti 2009

Mikrokontroler AVR. Hendawan Soebhakti 2009 Mikrokontroler AVR Hendawan Soebhakti 2009 Tujuan Mampu menjelaskan arsitektur mikrokontroler ATMega 8535 Mampu membuat rangkaian minimum sistem ATMega 8535 Mampu membuat rangkaian downloader ATMega 8535

Lebih terperinci

Sistem Mikrokontroler FE UDINUS

Sistem Mikrokontroler FE UDINUS Minggu ke 2 8 Maret 2013 Sistem Mikrokontroler FE UDINUS 2 Jenis jenis mikrokontroler Jenis-jenis Mikrokontroller Secara teknis, hanya ada 2 macam mikrokontroller. Pembagian ini didasarkan pada kompleksitas

Lebih terperinci

BAB II DASAR TEORI. Current Transformer atau yang biasa disebut Trafo arus adalah tipe instrument

BAB II DASAR TEORI. Current Transformer atau yang biasa disebut Trafo arus adalah tipe instrument BAB II DASAR TEORI 2.1 Trafo Arus ( Current Transformer ) Current Transformer atau yang biasa disebut Trafo arus adalah tipe instrument trafo yang didesain untuk mendukung arus yang mengalir pada kumparan

Lebih terperinci

MICROCONTROLER AVR AT MEGA 8535

MICROCONTROLER AVR AT MEGA 8535 MICROCONTROLER AVR AT MEGA 8535 Dwisnanto Putro, S.T., M.Eng. MIKROKONTROLER AVR Jenis Mikrokontroler AVR dan spesifikasinya Flash adalah suatu jenis Read Only Memory yang biasanya diisi dengan program

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Atmel AVR adalah jenis mikrokontroler yang paling sering dipakai dalam

BAB II TINJAUAN PUSTAKA. Atmel AVR adalah jenis mikrokontroler yang paling sering dipakai dalam BAB II TINJAUAN PUSTAKA 2.1 Mikrokontroler ATMega 8535 Atmel AVR adalah jenis mikrokontroler yang paling sering dipakai dalam bidang elektronika dan instrumentasi. Mikrokontroler AVR ini memiliki arsitektur

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Motor DC dan Motor Servo 2.1.1. Motor DC Motor DC berfungsi mengubah tenaga listrik menjadi tenaga gerak (mekanik). Berdasarkan hukum Lorenz bahwa jika suatu kawat listrik diberi

Lebih terperinci

Sistem Minimum Mikrokontroler. TTH2D3 Mikroprosesor

Sistem Minimum Mikrokontroler. TTH2D3 Mikroprosesor Sistem Minimum Mikrokontroler TTH2D3 Mikroprosesor MIKROKONTROLER AVR Mikrokontroler AVR merupakan salah satu jenis arsitektur mikrokontroler yang menjadi andalan Atmel. Arsitektur ini dirancang memiliki

Lebih terperinci

BAB II TEORI PENUNJANG

BAB II TEORI PENUNJANG BAB II TEORI PENUNJANG 2.1 Mikrokontroler 2.1.1 Gambaran Umum Microcontroller pada dasarnya adalah rangkaian terintregrasi (Integrated Circuit-IC) yang telah mengandung secara lengkap berbagai komponen

Lebih terperinci

II. TINJAUAN PUSTAKA. Mikrokontroler ATmega8535 merupakan salah satu jenis mikrokontroler keluarga AVR

II. TINJAUAN PUSTAKA. Mikrokontroler ATmega8535 merupakan salah satu jenis mikrokontroler keluarga AVR II. TINJAUAN PUSTAKA A. Mikrokontroler ATmega8535 Mikrokontroler ATmega8535 merupakan salah satu jenis mikrokontroler keluarga AVR (Alf and Vegard s Risc Processor) yang diproduksi oleh Atmel Corporation.

Lebih terperinci

MICROCONTROLER AVR AT MEGA 8535

MICROCONTROLER AVR AT MEGA 8535 MICROCONTROLER AVR AT MEGA 8535 Dwisnanto Putro, S.T., M.Eng. MIKROKONTROLER AVR Mikrokontroler AVR merupakan salah satu jenis arsitektur mikrokontroler yang menjadi andalan Atmel. Arsitektur ini dirancang

Lebih terperinci

BAB 2 LANDASAN TEORI. Mikrokontroler AVR (Alf and Vegard s RISC Processor) dari Atmel ini

BAB 2 LANDASAN TEORI. Mikrokontroler AVR (Alf and Vegard s RISC Processor) dari Atmel ini BAB 2 LANDASAN TEORI 2.1 Mikrokontroller ATMega 8535 Mikrokontroler AVR (Alf and Vegard s RISC Processor) dari Atmel ini menggunakan arsitektur RISC (Reduced Instruction Set Computing) yang artinya proses

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Dasar Mikrokontroller ATMega8535 Perkembangan teknologi telah maju dengan pesat dalam perkembangan dunia elektronika, khususnya dunia mikroelektronika. Penemuan silicon

Lebih terperinci

BAB II DASAR TEORI. open-source, diturunkan dari Wiring platform, dirancang untuk. memudahkan penggunaan elektronik dalam berbagai

BAB II DASAR TEORI. open-source, diturunkan dari Wiring platform, dirancang untuk. memudahkan penggunaan elektronik dalam berbagai BAB II DASAR TEORI 2.1 Arduino Uno R3 Arduino adalah pengendali mikro single-board yang bersifat open-source, diturunkan dari Wiring platform, dirancang untuk memudahkan penggunaan elektronik dalam berbagai

Lebih terperinci

DAFTAR ISI. Daftar Pustaka P a g e

DAFTAR ISI. Daftar Pustaka P a g e DAFTAR ISI Halaman I. DASAR TEORI Mikrokontroler ATmega16 1. Pengertian Mikrokontroler... 2 2. Arsitektur ATmega16... 2 3. Konfigurasi Pena (PIN) ATmega16... 4 4. Deskripsi PIN Mikrokontroler ATmega16...

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian dan perancangan tugas akhir ini telah dimulai sejak bulan Juli 2009

III. METODOLOGI PENELITIAN. Penelitian dan perancangan tugas akhir ini telah dimulai sejak bulan Juli 2009 III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian dan perancangan tugas akhir ini telah dimulai sejak bulan Juli 2009 dilakukan di Laboratorium Konversi Energi Elektrik dan Laboratorium

Lebih terperinci

BAB II LANDASAN TEORI. pada itu dapat juga dijadikan sebagai bahan acuan didalam merencanakan suatu system.

BAB II LANDASAN TEORI. pada itu dapat juga dijadikan sebagai bahan acuan didalam merencanakan suatu system. BAB II LANDASAN TEORI Landasan teori sangat membantu untuk dapat memahami suatu sistem. Selain dari pada itu dapat juga dijadikan sebagai bahan acuan didalam merencanakan suatu system. Dengan pertimbangan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.2.1.1 Sensor Load Cell Prinsip kerja dari sensor tekanan ini adalah mengubah tegangan mekanis menjadi sinyal listrik. Ukuran ketegangan didasarkan pada prinsip bahwa tahanan pengantar

Lebih terperinci

MENGENAL MIKROKONTROLER AVR ATMega16

MENGENAL MIKROKONTROLER AVR ATMega16 MENGENAL MIKROKONTROLER AVR ATMega16 Mokh. Sholihul Hadi m_sholihul_hadi@yahoo.com Lisensi Dokumen: Seluruh dokumen di IlmuKomputer.Com dapat digunakan, dimodifikasi dan disebarkan secara bebas untuk tujuan

Lebih terperinci

BAB III TEORI PENUNJANG. arsitektur Reduced Instruction Set Computer (RISC). Hampir semua instruksi

BAB III TEORI PENUNJANG. arsitektur Reduced Instruction Set Computer (RISC). Hampir semua instruksi BAB III TEORI PENUNJANG Pada bab tiga penulis menjelaskan tentang teori penunjang kerja praktek yang telah dikerjakan. 3.1 Mikrokontroler ATMega16 AVR merupakan seri mikrokontroler CMOS 8-bit buatan Atmel,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 1.1 Penelitian Terdahulu Sebagai bahan pertimbangan dalam penelitian ini akan dicantumkan beberapa hasil penelitian terdahulu : Penelitian yang dilakukan oleh Universitas Islam

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dibahas mengenai perancangan dan realisasi dari perangkat keras maupun perangkat lunak dari setiap modul yang dipakai pada skripsi ini. 3.1. Perancangan dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Gambar 2.1. Simbol LED [8]

BAB II TINJAUAN PUSTAKA. Gambar 2.1. Simbol LED [8] BAB II TINJAUAN PUSTAKA 2.1. Light Emiting Dioda Light Emiting Diode (LED) adalah komponen yang dapat memancarkan cahaya. Sstruktur LED sama dengan dioda. Untuk mendapatkan pancaran cahaya pada semikonduktor,

Lebih terperinci

BAB II DASAR TEORI. ATmega8535 merupakan IC CMOS 8-bit berdaya rendah yang berdasar pada

BAB II DASAR TEORI. ATmega8535 merupakan IC CMOS 8-bit berdaya rendah yang berdasar pada 5 BAB II DASAR TEORI 2.1. Mikrokontroler ATMega 8535 Pada tugas akhir ini digunakan mikrokontroller ATmega8535. ATmega8535 merupakan IC CMOS 8-bit berdaya rendah yang berdasar pada AVR, yaitu arsitektur

Lebih terperinci

BAB II DASAR TEORI. mikrokontroler yang berbasis chip ATmega328P. Arduino Uno. memiliki 14 digital pin input / output (atau biasa ditulis I/O, dimana

BAB II DASAR TEORI. mikrokontroler yang berbasis chip ATmega328P. Arduino Uno. memiliki 14 digital pin input / output (atau biasa ditulis I/O, dimana BAB II DASAR TEORI 2.1 Arduino Uno R3 Arduino Uno R3 adalah papan pengembangan mikrokontroler yang berbasis chip ATmega328P. Arduino Uno memiliki 14 digital pin input / output (atau biasa ditulis I/O,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 16 BAB II LANDASAN TEORI 2.1. Sensor Optocoupler Optocoupler adalah suatu piranti yang terdiri dari 2 bagian yaitu transmitter dan receiver, yaitu antara bagian cahaya dengan bagian deteksi sumber cahaya

Lebih terperinci

BAB III TEORI PENUNJANG. Microcontroller adalah sebuah sistem fungsional dalam sebuah chip. Di

BAB III TEORI PENUNJANG. Microcontroller adalah sebuah sistem fungsional dalam sebuah chip. Di BAB III TEORI PENUNJANG 3.1. Microcontroller ATmega8 Microcontroller adalah sebuah sistem fungsional dalam sebuah chip. Di dalamnya terkandung sebuah inti proccesor, memori (sejumlah kecil RAM, memori

Lebih terperinci

BAB II DASAR TEORI. open-source, diturunkan dari Wiring platform, dirancang untuk. software arduino memiliki bahasa pemrograman C.

BAB II DASAR TEORI. open-source, diturunkan dari Wiring platform, dirancang untuk. software arduino memiliki bahasa pemrograman C. BAB II DASAR TEORI 2.1 ARDUINO Arduino adalah pengendali mikro single-board yang bersifat open-source, diturunkan dari Wiring platform, dirancang untuk memudahkan penggunaan elektronik dalam berbagai bidang.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Sistem Minimum AVR USB Sistem minimum ATMega 8535 yang didesain sesederhana mungkin yang memudahkan dalam belajar mikrokontroller AVR tipe 8535, dilengkapi internal downloader

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Mikrokontroler Atmega8535 Mikrokontroler adalah IC yang dapat diprogram berulang kali, baik ditulis atau dihapus (Agus Bejo, 2007). Biasanya digunakan untuk pengontrolan otomatis

Lebih terperinci

MIKROKONTROLER Arsitektur Mikrokontroler AT89S51

MIKROKONTROLER Arsitektur Mikrokontroler AT89S51 MIKROKONTROLER Arsitektur Mikrokontroler AT89S51 Ringkasan Pendahuluan Mikrokontroler Mikrokontroler = µp + Memori (RAM & ROM) + I/O Port + Programmable IC Mikrokontroler digunakan sebagai komponen pengendali

Lebih terperinci

BAB 2 LANDASAN TEORI. Mikrokontroler AT89S51 hanya memerlukan tambahan 3 kapasitor, 1 resistor dan 1

BAB 2 LANDASAN TEORI. Mikrokontroler AT89S51 hanya memerlukan tambahan 3 kapasitor, 1 resistor dan 1 BAB 2 LANDASAN TEORI 2.1 Defenisi AT89S51 Mikrokontroler AT89S51 hanya memerlukan tambahan 3 kapasitor, 1 resistor dan 1 kristal serta catu daya 5 Volt. Kapasitor 10 mikro-farad dan resistor 10 Kilo Ohm

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Water Flow Sensor Yf-S201 Sensor aliran air ini terbuat dari palstik dimana didalamnya terdapat rotor dan sensor hall effect.saat mengalir melewati rotor, rotor akan berputar.

Lebih terperinci

BAB II KONSEP DASAR PERANCANGAN

BAB II KONSEP DASAR PERANCANGAN BAB II KONSEP DASAR PERANCANGAN Pada bab ini akan dijelaskan konsep dasar sistem keamanan rumah nirkabel berbasis mikrokontroler menggunakan modul Xbee Pro. Konsep dasar sistem ini terdiri dari gambaran

Lebih terperinci

BAB III TEORI PENUNJANG. dihapus berulang kali dengan menggunakan software tertentu. IC ini biasanya

BAB III TEORI PENUNJANG. dihapus berulang kali dengan menggunakan software tertentu. IC ini biasanya BAB III TEORI PENUNJANG 3.1 Mikrokontroler ATmega8535 Mikrokontroler adalah IC (Integrated Circuit) yang dapat di program dan dihapus berulang kali dengan menggunakan software tertentu. IC ini biasanya

Lebih terperinci

BAB III PERANCANGAN ALAT DAN PROGRAM MIKROKONTROLER. program pada software Code Vision AVR dan penanaman listing program pada

BAB III PERANCANGAN ALAT DAN PROGRAM MIKROKONTROLER. program pada software Code Vision AVR dan penanaman listing program pada BAB III PERANCANGAN ALAT DAN PROGRAM MIKROKONTROLER Pada tahap perancangan ini dibagi menjadi 2 tahap perancangan. Tahap pertama adalah perancangan perangkat keras (hardware), yang meliputi rangkaian rangkaian

Lebih terperinci

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM. Dari diagram sistem dapat diuraikan metode kerja sistem secara global.

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM. Dari diagram sistem dapat diuraikan metode kerja sistem secara global. BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM 3.1 Perancangan Perangkat Keras 3.1.1 Blok Diagram Dari diagram sistem dapat diuraikan metode kerja sistem secara global. Gambar

Lebih terperinci

BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM

BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM III.1. Analisa Masalah Dalam perancangan sistem otomatisasi pemakaian listrik pada ruang belajar berbasis mikrokontroler terdapat beberapa masalah yang harus

Lebih terperinci

BAB II LANDASAN TEORI. ATMega 8535 adalah mikrokontroller kelas AVR (Alf and Vegard s Risc

BAB II LANDASAN TEORI. ATMega 8535 adalah mikrokontroller kelas AVR (Alf and Vegard s Risc BAB II LANDASAN TEORI 2.1. Mikrokontroller ATMega 8535 ATMega 8535 adalah mikrokontroller kelas AVR (Alf and Vegard s Risc Processor) keluarga ATMega. Mikrokontroller AVR memiliki arsitektur 8 bit, dimana

Lebih terperinci

BAB II TEORI DASAR 2.1 Mekatronika

BAB II TEORI DASAR 2.1 Mekatronika BAB II TEORI DASAR Pada bab ini dibahas tentang mekatronika, robotika, beberapa komponen robotika, dan bahasa C. Komponen robotika yang dibahas meliputi: motor servo, sensor GP2D12 dan mikrokontroler ATMEGA

Lebih terperinci

II. TINJAUAN PUSTAKA. menjadi sumber tegangan arus searah yang bersifat variable. Pengubah daya DC-

II. TINJAUAN PUSTAKA. menjadi sumber tegangan arus searah yang bersifat variable. Pengubah daya DC- II. TINJAUAN PUSTAKA A. Pengenalan DC Chopper Chopper adalah suatu alat yang mengubah sumber tegangan arus searah tetap menjadi sumber tegangan arus searah yang bersifat variable. Pengubah daya DC- DC

Lebih terperinci

Blok sistem mikrokontroler MCS-51 adalah sebagai berikut.

Blok sistem mikrokontroler MCS-51 adalah sebagai berikut. Arsitektur mikrokontroler MCS-51 diotaki oleh CPU 8 bit yang terhubung melalui satu jalur bus dengan memori penyimpanan berupa RAM dan ROM serta jalur I/O berupa port bit I/O dan port serial. Selain itu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Dasar Breastpump ASI (Air Susu Ibu) adalah makanan bayi yang paling penting terutama pada bulan-bulan pertama kehidupan. ASI merupakan sumber gizi yang sangat ideal dengan komposisi

Lebih terperinci

RANCANGAN SISTEM PARKIR TERPADU BERBASIS SENSOR INFRA MERAH DAN MIKROKONTROLER ATMega8535

RANCANGAN SISTEM PARKIR TERPADU BERBASIS SENSOR INFRA MERAH DAN MIKROKONTROLER ATMega8535 RANCANGAN SISTEM PARKIR TERPADU BERBASIS SENSOR INFRA MERAH DAN MIKROKONTROLER ATMega8535 Masriadi dan Frida Agung Rakhmadi Program Studi Fisika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Jl. Marsda

Lebih terperinci

BAB II DASAR TEORI Arduino Mega 2560

BAB II DASAR TEORI Arduino Mega 2560 BAB II DASAR TEORI Pada bab ini akan dijelaskan teori-teori penunjang yang diperlukan dalam merancang dan merealisasikan skripsi ini. Bab ini dimulai dari pengenalan singkat dari komponen elektronik utama

Lebih terperinci

BAB II TEORI DASAR. beberapa komponen utama yang digunakan pada simulasi Pengendali Lampu. Jarak Jauh dan Dekat pada Kendaraan Secara Otomatis.

BAB II TEORI DASAR. beberapa komponen utama yang digunakan pada simulasi Pengendali Lampu. Jarak Jauh dan Dekat pada Kendaraan Secara Otomatis. BAB II TEORI DASAR Pada bab ini akan dibahas secara singkat tentang sistem pengendalian dan beberapa komponen utama yang digunakan pada simulasi Pengendali Lampu Jarak Jauh dan Dekat pada Kendaraan Secara

Lebih terperinci

BAB II LANDASAN TEORI. merealisasikan suatu alat pengawas kecepatan pada forklift berbasis mikrokontroler.

BAB II LANDASAN TEORI. merealisasikan suatu alat pengawas kecepatan pada forklift berbasis mikrokontroler. BAB II LANDASAN TEORI Pada bab ini penulis akan membahas teori teori dasar yang digunakan untuk merealisasikan suatu alat pengawas kecepatan pada forklift berbasis mikrokontroler. 2.1 Gerak Melingkar Beraturan

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan mengenai perancangan dari perangkat keras, serta perangkat lunak dari alat akuisisi data termokopel 8 kanal. 3.1. Gambaran Sistem Alat yang direalisasikan

Lebih terperinci

II. TINJAUAN PUSTAKA. kondisi cuaca pada suatu daerah. Banyak hal yang sangat bergantung pada kondisi

II. TINJAUAN PUSTAKA. kondisi cuaca pada suatu daerah. Banyak hal yang sangat bergantung pada kondisi II. TINJAUAN PUSTAKA A. Temperatur dan Kelembaban Temperatur dan kelembaban merupakan aspek yang penting dalam menentukan kondisi cuaca pada suatu daerah. Banyak hal yang sangat bergantung pada kondisi

Lebih terperinci

Sistem Tertanam. Pengantar Atmega328 dan Arduino Uno. Dennis Christie - Universitas Gunadarma

Sistem Tertanam. Pengantar Atmega328 dan Arduino Uno. Dennis Christie - Universitas Gunadarma Sistem Tertanam Pengantar Atmega328 dan Arduino Uno 1 Arsitektur Atmega328 Prosesor atau mikroprosesor adalah suatu perangkat digital berupa Chip atau IC (Integrated Circuit) yang digunakan untuk memproses

Lebih terperinci

BAB II KONSEP DASAR SISTEM MONITORING TEKANAN BAN

BAB II KONSEP DASAR SISTEM MONITORING TEKANAN BAN BAB II KONSEP DASAR SISTEM MONITORING TEKANAN BAN Konsep dasar sistem monitoring tekanan ban pada sepeda motor secara nirkabel ini terdiri dari modul sensor yang terpasang pada tutup pentil ban sepeda

Lebih terperinci

TUGAS AKHIR LINE FOLLOWER ROBOT PENIUP LILIN BERLENGAN SATU BERBASIS MICROCONTROLLER ATMEGA16

TUGAS AKHIR LINE FOLLOWER ROBOT PENIUP LILIN BERLENGAN SATU BERBASIS MICROCONTROLLER ATMEGA16 TUGAS AKHIR LINE FOLLOWER ROBOT PENIUP LILIN BERLENGAN SATU BERBASIS MICROCONTROLLER ATMEGA16 Disusun Untuk Memenuhi Syarat Guna Memperoleh Gelar Kesarjanaan Strata Satu Disusun Oleh : NAMA : NENDI ARDIANSYAH

Lebih terperinci

TUGAS MATAKULIAH APLIKASI KOMPUTER DALAM SISTEM TENAGA LISTRIK FINAL REPORT : Pengendalian Motor DC menggunakan Komputer

TUGAS MATAKULIAH APLIKASI KOMPUTER DALAM SISTEM TENAGA LISTRIK FINAL REPORT : Pengendalian Motor DC menggunakan Komputer TUGAS MATAKULIAH APLIKASI KOMPUTER DALAM SISTEM TENAGA LISTRIK FINAL REPORT : Pengendalian Motor DC menggunakan Komputer disusun oleh : MERIZKY ALFAN ADHI HIDAYAT AZZA LAZUARDI JA FAR JUNAIDI 31780 31924

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Sensor MLX 90614[5]

BAB II DASAR TEORI. Gambar 2.1 Sensor MLX 90614[5] BAB II DASAR TEORI Dalam bab ini dibahas beberapa teori pendukung yang digunakan sebagai acuan dalam merealisasikan skripsi yang dibuat. Teori-teori yang digunakan dalam pembuatan skripsi ini adalah sensor

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Hidroponik Hidroponik merupakan pertanian masa depan sebab hidroponik dapat diusahakan di berbagai tempat, baik di desa, di kota maupun di lahan terbuka, atau di

Lebih terperinci

III. METODE PENELITIAN. Teknik Elektro Universitas Lampung dilaksanakan mulai bulan Desember 2011

III. METODE PENELITIAN. Teknik Elektro Universitas Lampung dilaksanakan mulai bulan Desember 2011 III. METODE PENELITIAN A. Waktu dan Tempat Penelitian dan perancangan tugas akhir dilakukan di Laboratorium Terpadu Teknik Elektro Universitas Lampung dilaksanakan mulai bulan Desember 2011 sampai dengan

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Mikrokontroler ATMega16

BAB II DASAR TEORI. Gambar 2.1 Mikrokontroler ATMega16 BAB II DASAR TEORI Pada bab ini akan dibahas as mengenai teori-teori yang mendukung. Materi yang akan dibahas adalah mikrokontroler atmega 16, solenoid, LCD (Liquid Crystal Display), RTC (Real Time Clock),

Lebih terperinci

TUGAS AKHIR SIMULATOR PENGHITUNG JUMLAH ORANG PADA PINTU MASUK DAN KELUAR GEDUNG

TUGAS AKHIR SIMULATOR PENGHITUNG JUMLAH ORANG PADA PINTU MASUK DAN KELUAR GEDUNG TUGAS AKHIR SIMULATOR PENGHITUNG JUMLAH ORANG PADA PINTU MASUK DAN KELUAR GEDUNG Diajukan Guna Melengkapi Sebagian Syarat Dalam mencapai gelar Sarjana Strata Satu (S1) Disusun Oleh : Nama : Dian Kardianto

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT 1.1 Blok Diagram Sensor Kunci kontak Transmiter GSM Modem Recivier Handphone Switch Aktif Sistem pengamanan Mikrokontroler Relay Pemutus CDI LED indikator aktif Alarm Buzzer Gambar

Lebih terperinci

BAB II LANDASAN TEORI. telur,temperature yang diperlukan berkisar antara C. Untuk hasil yang optimal dalam

BAB II LANDASAN TEORI. telur,temperature yang diperlukan berkisar antara C. Untuk hasil yang optimal dalam BAB II LANDASAN TEORI Temperatur merupakan faktor utama yang menentukan keberhasilan mesin penetas telur,temperature yang diperlukan berkisar antara 38-39 0 C. Untuk hasil yang optimal dalam Pembuatan

Lebih terperinci

DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN P EMBIMBING... HALAMAN PENGESAHAN P ENGUJI... HALAMAN PERSEMBAHAN... HALAMAN MOTTO... KATA PENGANTAR...

DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN P EMBIMBING... HALAMAN PENGESAHAN P ENGUJI... HALAMAN PERSEMBAHAN... HALAMAN MOTTO... KATA PENGANTAR... DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN P EMBIMBING... HALAMAN PENGESAHAN P ENGUJI... HALAMAN PERSEMBAHAN... HALAMAN MOTTO... KATA PENGANTAR... ABSTRAKSI... TAKARIR... DAFTAR ISI... DAFTAR TABEL...

Lebih terperinci

BAB 2 LANDASAN TEORI. Mikrokontroler AT89S52 termasuk kedalam keluarga MCS-51 merupakan suatu. dua macam memori yang sifatnya berbeda yaitu:

BAB 2 LANDASAN TEORI. Mikrokontroler AT89S52 termasuk kedalam keluarga MCS-51 merupakan suatu. dua macam memori yang sifatnya berbeda yaitu: BAB 2 LANDASAN TEORI 2.1 Perangkat Keras 2.1.1 Mikrokontroler AT89S52 Mikrokontroler AT89S52 termasuk kedalam keluarga MCS-51 merupakan suatu mikrokomputer CMOS 8 bit dengan daya rendah, kemampuan tinggi,

Lebih terperinci

Apa itu timer/counter?

Apa itu timer/counter? Timer/Counter Apa itu timer/counter? Merupakan suatu pencacah(counter) yang bisa menghitung naik/turun Pencacah berupa register 8 bit/16 bit Nilai cacahan yg tersimpan di register tersebut akan naik/turun

Lebih terperinci

BAB II LANDASAN TEORI. Dalam merancang sebuah peralatan yang cerdas, diperlukan suatu

BAB II LANDASAN TEORI. Dalam merancang sebuah peralatan yang cerdas, diperlukan suatu BAB II LANDASAN TEORI 2.1. Perangkat Keras Dalam merancang sebuah peralatan yang cerdas, diperlukan suatu perangkat keras (hardware) yang dapat mengolah data, menghitung, mengingat dan mengambil pilihan.

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada Bab III ini akan diuraikan mengenai perancangan perangkat keras dan perangkat lunak yang digunakan untuk membangun sistem keamanan rumah nirkabel berbasis mikrokontroler

Lebih terperinci

BAB 3 PERANCANGAN SISTEM. pada sistem pengendali lampu telah dijelaskan pada bab 2. Pada bab ini akan dijelaskan

BAB 3 PERANCANGAN SISTEM. pada sistem pengendali lampu telah dijelaskan pada bab 2. Pada bab ini akan dijelaskan BAB 3 PERANCANGAN SISTEM Konsep dasar mengendalikan lampu dan komponen komponen yang digunakan pada sistem pengendali lampu telah dijelaskan pada bab 2. Pada bab ini akan dijelaskan perancangan sistem

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Mikrokontroller ATMEGA 8535 Mikrokontroller merupakan sebuah single chip yang didalamnya telah dilengkapi dengan CPU (Central Processing Unit), RAM (Random Acces Memory), ROM

Lebih terperinci

Gambar 2.1 Mikrokontroler ATMega 8535 (sumber :Mikrokontroler Belajar AVR Mulai dari Nol)

Gambar 2.1 Mikrokontroler ATMega 8535 (sumber :Mikrokontroler Belajar AVR Mulai dari Nol) BAB II TINJAUAN PUSTAKA 2.1 Mikrokontroler Mikrokontroler merupakan keseluruhan sistem komputer yang dikemas menjadi sebuah chip di mana di dalamnya sudah terdapat Mikroprosesor, I/O Pendukung, Memori

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras elektronik (hardware) dan pembuatan mekanik robot. Sedangkan untuk pembuatan perangkat

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini membahas perencanaan dan pembuatan dari alat yang akan dibuat yaitu Perencanaan dan Pembuatan Pengendali Suhu Ruangan Berdasarkan Jumlah Orang ini memiliki 4 tahapan

Lebih terperinci

KONFIGURASI PIN AT MEGA 16A

KONFIGURASI PIN AT MEGA 16A KONFIGURASI PIN AT MEGA 16A Gambar Deskripsi Pin AT Mega 16A Deskripsi Mikrokontroller ATmega16A VCC (power supply) GND (ground) Port A (PA7..PA0) Port A berfungsi sebagai input analog pada A/D Konverter.

Lebih terperinci

BAB II DASAR TEORI Water Bath. Water Bath merupakan peralatan yang berisi air yang bisa

BAB II DASAR TEORI Water Bath. Water Bath merupakan peralatan yang berisi air yang bisa 5 BAB II DASAR TEORI 2.1. Water Bath Water Bath merupakan peralatan yang berisi air yang bisa mempertahankan suhu air pada kondisi tertentu selama selang waktu yang ditentukan. Gambar 2.1 General Water

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. MOSFET MOSFET atau Metal Oxyde Semiconductor Field Effect Transistor merupakan salah satu jenis transistor efek medan (FET). MOSFET memiliki tiga pin yaitu gerbang (gate), penguras

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN PERANGKAT KERAS

BAB III PERANCANGAN DAN PEMBUATAN PERANGKAT KERAS BAB III PERANCANGAN DAN PEMBUATAN PERANGKAT KERAS 3.1. Pendahuluan Perangkat pengolah sinyal yang dikembangkan pada tugas sarjana ini dirancang dengan tiga kanal masukan. Pada perangkat pengolah sinyal

Lebih terperinci

BAB IV ANALISIS RANGKAIAN ELEKTRONIK

BAB IV ANALISIS RANGKAIAN ELEKTRONIK BAB IV ANALISIS RANGKAIAN ELEKTRONIK 4.1 Rangkaian Pengontrol Bagian pengontrol sistem kontrol daya listrik, menggunakan mikrokontroler PIC18F4520 seperti yang ditunjukkan pada Gambar 30. Dengan osilator

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Frequency and Identification (RFID). Teknologi RFID menggunakan

BAB II TINJAUAN PUSTAKA. Frequency and Identification (RFID). Teknologi RFID menggunakan BAB II TINJAUAN PUSTAKA Sistem penyusunan parkir sebenarnya sudah ada sebelumnya, Menurut darwin pada jurnalnya yang berjudul System manajemen parkir menggunakan teknologi RFid menyatakan bahwa penelitian

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas dasar teori yang berhubungan dengan perancangan skripsi antara lain fungsi dari function generator, osilator, MAX038, rangkaian operasional amplifier, Mikrokontroler

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan menjelaskan mengenai teori yang mendukung dalam pembuatan dan perealisasian proyek akhir. Teori yang akan dibahas yaitu Mikrokontroler Atmega 8535, transistor, relay,

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Bab ini akan membahas tentang perancangan sistem deteksi keberhasilan software QuickMark untuk mendeteksi QRCode pada objek yang bergerak di conveyor. Garis besar pengukuran

Lebih terperinci

BAB II. Motor induksi tiga fasa adalah mesin arus bolak balik (AC) yang. berfungsi mengubah atau mengkonversi sumber tenaga listrik AC menjadi tenaga

BAB II. Motor induksi tiga fasa adalah mesin arus bolak balik (AC) yang. berfungsi mengubah atau mengkonversi sumber tenaga listrik AC menjadi tenaga BAB II 2.1 Motor Induksi Tiga Fasa TINJAUAN PUSTAKA 5 Motor induksi tiga fasa adalah mesin arus bolak balik (AC) yang berfungsi mengubah atau mengkonversi sumber tenaga listrik AC menjadi tenaga mekanik

Lebih terperinci

MIKROKONTROLER Yoyo Somantri dan Egi Jul Kurnia

MIKROKONTROLER Yoyo Somantri dan Egi Jul Kurnia MIKROKONTROLER Yoyo Somantri dan Egi Jul Kurnia Mikrokontroler Mikrokontroler adalah sistem komputer yang dikemas dalam sebuah IC. IC tersebut mengandung semua komponen pembentuk komputer seperti CPU,

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT Pada bab ini menjelaskan tentang perancangan sistem alarm kebakaran menggunakan Arduino Uno dengan mikrokontroller ATmega 328. yang meliputi perancangan perangkat keras (hardware)

Lebih terperinci

PELATIHAN: Pemrograman Mikrokontroler Tipe AVR bagi Guru-guru SMK

PELATIHAN: Pemrograman Mikrokontroler Tipe AVR bagi Guru-guru SMK PELATIHAN: Pemrograman Mikrokontroler Tipe AVR bagi Guru-guru SMK Disusun oleh: Bekti Wulandari, M.Pd Fakultas Teknik UNIVERSITAS NEGERI YOGYAKARTA 2015 Mikrokontroler AVR ATmega MATERI 1 PENGENALAN MIKROKONTROLER

Lebih terperinci

BAB II TEORI DASAR Sistem Pengendalian Lingkar Terbuka. Gambar 2.1. Diagram kotak sistem pengendalian lingkar terbuka

BAB II TEORI DASAR Sistem Pengendalian Lingkar Terbuka. Gambar 2.1. Diagram kotak sistem pengendalian lingkar terbuka 4 BAB II TEORI DASAR Pada bab ini akan di bahas secara singkat tentang sistem pengendalian dan beberapa komponen utama yang digunakan pada simulasi penghitung jumlah orang pada pintu masuk dan keluar gedung

Lebih terperinci

BAB II TINJAUAN PUSTAKA. [10]. Dengan pengujian hanya terbatas pada remaja dan didapatkan hasil rata-rata

BAB II TINJAUAN PUSTAKA. [10]. Dengan pengujian hanya terbatas pada remaja dan didapatkan hasil rata-rata BAB II TINJAUAN PUSTAKA 2.1 Penelitian Terdahulu Sebelumnya pernah dilakukan penelitian terkait dengan alat uji kekuatan gigit oleh Noviyani Agus dari Poltekkes Surabaya pada tahun 2006 dengan judul penelitian

Lebih terperinci

BAB II DASAR TEORI Bentuk Fisik Sensor Gas LPG TGS 2610 Bentuk fisik sensor TGS 2610 terlihat pada gambar berikut :

BAB II DASAR TEORI Bentuk Fisik Sensor Gas LPG TGS 2610 Bentuk fisik sensor TGS 2610 terlihat pada gambar berikut : BAB II DASAR TEORI 2.1 SENSOR TGS 2610 2.1.1 Gambaran Umum Sensor gas LPG TGS 2610 adalah sebuah sensor gas yang dapat mendeteksi adanya konsentrasi gas LPG di sekitar sensor tersebut. Sensor gas LPG TGS

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas mengenai teori-teori dasar yang digunakan untuk pembuatan pintu gerbang otomatis berbasis Arduino yang dapat dikontrol melalui komunikasi Transifer dan Receiver

Lebih terperinci

BAB IV PENGUJIAN ALAT DAN ANALISA

BAB IV PENGUJIAN ALAT DAN ANALISA BAB IV PENGUJIAN ALAT DAN ANALISA 4.1 Tujuan Tujuan dari pengujian alat pada tugas akhir ini adalah untuk mengetahui sejauh mana kinerja sistem yang telah dibuat dan untuk mengetahui penyebabpenyebab ketidaksempurnaan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI PLC (Programable Logic Control) adalah kontroler yang dapat diprogram. PLC didesian sebagai alat kontrol dengan banyak jalur input dan output. Pengontrolan dengan menggunakan PLC

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan microkomputer,

BAB 2 TINJAUAN TEORITIS. Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan microkomputer, BAB 2 TINJAUAN TEORITIS 2.1.Hardware 2.1.1 Mikrokontroler AT89S51 Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan microkomputer, hadir memenuhi kebutuhan pasar (market need) dan teknologi

Lebih terperinci

MIKROKONTROLER AT89S52

MIKROKONTROLER AT89S52 MIKROKONTROLER AT89S52 Mikrokontroler adalah mikroprosessor yang dirancang khusus untuk aplikasi kontrol, dan dilengkapi dengan ROM, RAM dan fasilitas I/O pada satu chip. AT89S52 adalah salah satu anggota

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT 39 BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras elektronik (hardware) dan pembuatan mekanik Eskalator. Sedangkan untuk pembuatan

Lebih terperinci

BAB III DESKRIPSI MASALAH

BAB III DESKRIPSI MASALAH BAB III DESKRIPSI MASALAH 3.1 Perancangan Hardware Perancangan hardware ini meliputi keseluruhan perancangan, artinya dari masukan sampai keluaran dengan menghasilkan energi panas. Dibawah ini adalah diagram

Lebih terperinci

BAB II LANDASAN TEORI. Selain dari pada itu dapat juga dijadikan sebagai bahan acuan didalam

BAB II LANDASAN TEORI. Selain dari pada itu dapat juga dijadikan sebagai bahan acuan didalam BAB II LANDASAN TEORI Landasan teori sangat membantu untuk dapat memahami suatu sistem. Selain dari pada itu dapat juga dijadikan sebagai bahan acuan didalam merencanakan suatu system. Dengan pertimbangan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI 2.1. SENSOR Pengertian sensor secara umum adalah alat yang digunakan untuk mendeteksi dan mengukur magnitudo sesuatu. Dapat didefinisikan sensor merupakan jenis tranduser yang digunakan

Lebih terperinci

BAB II TEORI DASAR. peralatan input / output ( I / O ) pendukung di dalamnya. Suatu sistem mikroprosesor

BAB II TEORI DASAR. peralatan input / output ( I / O ) pendukung di dalamnya. Suatu sistem mikroprosesor BAB II TEORI DASAR 2. 1 Sistem Mikrokontroler AT89S52 Mikrokontroller adalah suatu perangkat keras yang memiliki memori dan peralatan input / output ( I / O ) pendukung di dalamnya. Suatu sistem mikroprosesor

Lebih terperinci

BAB III MIKROKONTROLER

BAB III MIKROKONTROLER BAB III MIKROKONTROLER Mikrokontroler merupakan sebuah sistem yang seluruh atau sebagian besar elemennya dikemas dalam satu chip IC, sehingga sering disebut single chip microcomputer. Mikrokontroler merupakan

Lebih terperinci

Desain Tracker Antena Parabola Berbasis Mikrokontroler

Desain Tracker Antena Parabola Berbasis Mikrokontroler Desain Tracker Antena Parabola Berbasis Mikrokontroler Sri Wahyuni Dali #1, Iskandar Z. Nasibu #2, Syahrir Abdussamad #3 #123 Teknik Elektro Universitas Negeri Gorontalo Abstrak Makalah ini membahas desain

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA DATA

BAB IV PENGUJIAN DAN ANALISA DATA BAB IV PENGUJIAN AN ANALISA ATA Pada bab ini akan dibahas tentang pengujian dan pengoperasian Sistem Pendeteksi Kebocoran Gas pada Rumah Berbasis Layanan Pesan Singkat yang telah selesai dirancang. Pengujian

Lebih terperinci

MIKROPENGENDALI C TEMU 2b AVR ARCHITECTURE. Oleh : Danny Kurnianto,S.T.,M.Eng Sekolah Tinggi Teknologi Telematika Telkom

MIKROPENGENDALI C TEMU 2b AVR ARCHITECTURE. Oleh : Danny Kurnianto,S.T.,M.Eng Sekolah Tinggi Teknologi Telematika Telkom MIKROPENGENDALI C TEMU 2b AVR ARCHITECTURE Oleh : Danny Kurnianto,S.T.,M.Eng Sekolah Tinggi Teknologi Telematika Telkom SECTION 1. The Feature of AVR Prosesor Family On-chip and In System Programmable

Lebih terperinci

PEMROGRAMAN ROBOT PENJEJAK GARIS BERBASIS MIKROKONTROLER

PEMROGRAMAN ROBOT PENJEJAK GARIS BERBASIS MIKROKONTROLER PEMROGRAMAN ROBOT PENJEJAK GARIS BERBASIS MIKROKONTROLER Oleh : Ihyauddin, S.Kom Disampaikan pada : Pelatihan Pemrograman Robot Penjejak Garis bagi Siswa SMA Negeri 9 Surabaya Tanggal 3 Nopember 00 S SISTEM

Lebih terperinci