KNOWLEDGE IN TEXT (IR-2)

Ukuran: px
Mulai penontonan dengan halaman:

Download "KNOWLEDGE IN TEXT (IR-2)"

Transkripsi

1 KNOWLEDGE IN TEXT (IR-2) FIRDAUS SOLIHIN UNIVERSITAS TRUNOJOYO Teknologi for Knowledge Management Document Collection (Mengumpulkan Document/Informasi) Document Retrieval (Mengakses Document/Informasi) Text Mining (analisa berdasarkan ligusitic) Ontologies (pemodelan untuk merepresentasikan object dalam type, properties, dan relasinya) 1

2 DOCUMENT COLLECTION DOCUMENT COLLECTION 2

3 DOCUMEN COLLECTION (1) Domain (dependent or independent) Ketergantungan dgn dokumen lain Structured or Non Structured Texts Memiliki struktur khusus or tidak, ex HTML Formated or Non Formated Documents Memiliki format khusus or tidak, ex Doc vs Txt Textual or Multimedia Documents Berupa text atau multimedia DOCUMEN COLLECTION (2) Monolingual or Multilingual Documents Berupa satu bahasa or banyak bahasa Centralized or Non Centralized Document Management Lokasi dokumen satu tempat or banyak tempat Controlled or Free Additional of Doc Pengaksesannya butuh login or tidak Stable or Non Stable Collections Ketersediaannya tetap or tidak tetap. 3

4 Permasalahan dlm Documents Collection Inconsistent Document Incomplete descriptions Duplicates or Worse Different terminologies/ languange/ perspective/ abriviation DOCUMENT RETRIEVAL 4

5 DOCUMENT RETRIEVAL DOCUMENT RETRIEVAL QUERY INTERPRETATION (Menggunakan Query) DOCUMENTS INDEXING (Menggunakan Index) RANGKING OF RETRIEVED DOCUMENTS (mengurutkan sesuai rangkingn tertentu) LINGUISTIC AND STATISTICAL Contoh : Search Engine 5

6 Search Engine AllTheWeb from Fast Search & Transfer (2002) Index: 2,1 GB documents Languages supported: 52 Linguistics used: Lemmatization, language identification, phrasing, anti-phrasing, text categorization, clustering, offensive content reduction, finite-state automata 30 mill. queries per hari 6

7 Document Retrieval s problems VOLUME DATA Sangat besar dan berkembang dinamis Tersebar dibanyak tempat dan beda platform MULTITUDE OF LANGUAGES Multilingual web languages used on the web Many text encoding standart # Website 7

8 # % Multilingual web Document Retrieval s problems DOCUMENT QUALITY Missplelings (Salah eja) Spam and offensive content (isi sampah) Little text (isi tidak menggmbarkan All topics USER BEHAVIOUR Misspellings (Salah eja) Query length and query session (panjang dan seberapa sering) Document yang dilihat umumnya yang diatas 8

9 TEXT MINING TEXT MINING LINGUISTIC ANALYSIS Merubah bentuk Document or menambahkan information (memilah dalam S,O,P,Pre dls) Tagging (potongan kata yg memiliki arti), lemmatization (mengindentifikasi satu kata dari berbagai perubahan bentuk) KNOWLEDGE DISCOVERING IN TEXT Menemukan Bentuk Memisahkan Dan Menemukan Kesalahan Statistical and linguistic aproach 9

10 Lemmatization walk, walked, walks, walking walk run, runs, ran, running run go, goes, going, went, gone go Knowledge Discovering Technique Concept extraction Ontology construction TOC construction Clustering Text categorization Subtechniques: information extraction, text analysis 10

11 ONTOLOGIES HUBUNGAN ANTAR BAGIAN DALAM SUATU OBJECT YANG DIGAMBARKAN Conceptual modelling Document Analysis & Text Mining Standarization Work Membagun Ontologi model 11

12 Contoh Ontology THE END 12

Mencari dokumen yang dituliskan dalam berbagai bahasa

Mencari dokumen yang dituliskan dalam berbagai bahasa Always Siempre Mencari dokumen yang dituliskan dalam berbagai bahasa Menggunakan query yang dituliskan dalam sebuah bahasa Pengguna internet jumlahnya terus meningkat dari tahun ke tahun dan tersebar

Lebih terperinci

DATAWAREHOUSE FIRDAUS SOLIHIN UNIVERSITAS TRUNOJOYO. DATA dlm suatu ORGANISASI

DATAWAREHOUSE FIRDAUS SOLIHIN UNIVERSITAS TRUNOJOYO.  DATA dlm suatu ORGANISASI DATAWAREHOUSE FIRDAUS SOLIHIN UNIVERSITAS TRUNOJOYO www.fsolihin.co.cc DATA dlm suatu ORGANISASI Dari mana data itu berasal? Berapa tahun data customer disimpan dan digunakan? Berapa Tahun data keuangan

Lebih terperinci

Inera Firdestawati¹, Yanuar Firdaus A.w.², Kiki Maulana³. ¹Teknik Informatika, Fakultas Teknik Informatika, Universitas Telkom

Inera Firdestawati¹, Yanuar Firdaus A.w.², Kiki Maulana³. ¹Teknik Informatika, Fakultas Teknik Informatika, Universitas Telkom IMPLEMENTASI MODEL RUANG VEKTOR SEBAGAI PENERJEMAH QUERY PADA CROSS-LANGUAGE INFORMATION RETRIEVAL SISTEM IMPLEMENTATION OF VECTOR SPACE MODEL AS QUERY TRANSLATION FOR CROSS-LANGUAGE INFORMATION RETRIEVAL

Lebih terperinci

Sistem Temu Kembali Informasi/ Information Retrieval IRS VS SI LAIN

Sistem Temu Kembali Informasi/ Information Retrieval IRS VS SI LAIN Sistem Temu Kembali Informasi/ Information Retrieval IRS VS SI LAIN Dokumen Penyimpanan yang Terorganisasi Database Mahasiswa Database Buku ID Nama Buku Pengarang 001 Information Retrieval Ricardo baeza

Lebih terperinci

PENERAPAN SEMANTIC SEARCHING BERBASIS ONTOLOGI PADA PERPUSTAKAAN DIGITAL

PENERAPAN SEMANTIC SEARCHING BERBASIS ONTOLOGI PADA PERPUSTAKAAN DIGITAL PENERAPAN SEMANTIC SEARCHING BERBASIS ONTOLOGI PADA PERPUSTAKAAN DIGITAL i SKRIPSI S U L H A N 041401025 PROGRAM STUDI S-1 ILMU KOMPUTER DEPARTEMEN ILMU KOMPUTER FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Metodologi penelitian merupakan sistematika tahap-tahap yang dilaksanakan dalam pembuatan tugas akhir. Adapun tahapan yang dilalui dalam pelaksanaan penelitian ini adalah

Lebih terperinci

Mengenal Information Retrieval

Mengenal Information Retrieval STBI-2011 Sistem Temu Balik Informasi 2011 Mengenal Information Retrieval Husni [email protected] Husni.trunojoyo.ac.id Komputasi.wordpress.com 2 3 Amazon.com 4 Amazon.com 5 6 7 8 9 Wordpress.com

Lebih terperinci

Search Engines. Information Retrieval in Practice

Search Engines. Information Retrieval in Practice Search Engines Information Retrieval in Practice All slides Addison Wesley, 2008 Search Engine Architecture Arsitektur dari mesin pencari ditentukan oleh 2 persyaratan efektivitas (kualitas hasil) efisiensi

Lebih terperinci

Text dan Web Mining. Budi Susanto Teknik Informatika UKDW Yogyakarta

Text dan Web Mining. Budi Susanto Teknik Informatika UKDW Yogyakarta Text dan Web Mining Budi Susanto Teknik Informatika UKDW Yogyakarta Deskripsi Matakuliah ini secara prinsip menekankan tentang teknik-teknik yang perlu diketahui mahasiswa dalam mengelola kumpulan dokumen

Lebih terperinci

1. Pendahuluan. 1.1 Latar belakang

1. Pendahuluan. 1.1 Latar belakang 1. Pendahuluan 1.1 Latar belakang Pada saat ini, kebutuhan setiap individu terhadap Internet semakin meningkat. Hal ini terlihat dari semakin banyaknya fasilitas yang ditawarkan dari dunia Internet itu

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Dengan berkembangnya Internet, banyak informasi tersedia dalam World Wide Web yang dapat diakses di seluruh negara. Pada saat pencarian informasi menggunakan search

Lebih terperinci

ANALISA KOMPETENSI DOSEN DALAM PENENTUAN MATAKULIAH YANG DIAMPU MENGGUNAKAN METODE CF-IDF A B S T R A K

ANALISA KOMPETENSI DOSEN DALAM PENENTUAN MATAKULIAH YANG DIAMPU MENGGUNAKAN METODE CF-IDF A B S T R A K ANALISA KOMPETENSI DOSEN DALAM PENENTUAN MATAKULIAH YANG DIAMPU MENGGUNAKAN METODE CF-IDF Oleh : Tacbir Hendro Pudjiantoro A B S T R A K Kompetensi dosen adalah salah satu bagian yang utama dalam penunjukan

Lebih terperinci

BAB I PENDAHULUAN. Dalam suatu basis data, pendekatan model data relasional masih banyak dimanfaatkan untuk penyimpanan data dan informasi terhadap

BAB I PENDAHULUAN. Dalam suatu basis data, pendekatan model data relasional masih banyak dimanfaatkan untuk penyimpanan data dan informasi terhadap BAB I PENDAHULUAN 1. 1 Latar Belakang Sistem informasi merupakan serangkaian prosedur normal dimana data dikumpulkan, diproses menjadi sebuah informasi yang valid dan kemudian didistribusikan ke para pengguna

Lebih terperinci

Text Pre-Processing. M. Ali Fauzi

Text Pre-Processing. M. Ali Fauzi Text Pre-Processing M. Ali Fauzi Latar Belakang Latar Belakang Dokumen-dokumen yang ada kebanyakan tidak memiliki struktur yang pasti sehingga informasi di dalamnya tidak bisa diekstrak secara langsung.

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Bagi perusahaan yang bergerak dalam industri manufaktur, sistem informasi produksi yang efektif merupakan suatu keharusan dan tidak lepas dari persoalan persediaan

Lebih terperinci

JULIO ADISANTOSO - ILKOM IPB 1

JULIO ADISANTOSO - ILKOM IPB 1 KOM341 Temu Kembali Informasi Proses Temu-Kembali KULIAH #5 Evaluasi IR query : sby query: flu burung Evaluasi IR Indikator yang dapat diukur: Seberapa cepat dia meng-indeks Banyaknya dokumen/jam Terkait

Lebih terperinci

Information Retrieval

Information Retrieval Information Retrieval Budi Susanto Information Retrieval Information items content Feature extraction Structured Structured Document Document representation representation Retrieval model: relevance Similarity?

Lebih terperinci

ABSTRAK. Kata kunci: chatbot, information state, mixture-language model. v Universitas Kristen Maranatha

ABSTRAK. Kata kunci: chatbot, information state, mixture-language model. v Universitas Kristen Maranatha ABSTRAK Proses pengelolaan dialogue yang ada pada aplikasi chatbot adalah sesuatu yang sangat penting. Pengelolaan dialog menjadi bagian utama dari sistem ini. Dengan terkelolanya dialog memungkinkan sistem

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Semakin canggihnya teknologi di bidang komputasi dan telekomunikasi pada masa kini, membuat informasi dapat dengan mudah didapatkan oleh banyak orang. Kemudahan ini

Lebih terperinci

Budi Susanto Versi /08/2012. Teknik Informatika UKDW Yogyakarta

Budi Susanto Versi /08/2012. Teknik Informatika UKDW Yogyakarta Budi Susanto Versi 1.0 29/08/2012 1 Memahami pengertian dari text mining dan web mining Memahami latar belakang perlunya pengolahan dokumen teks dan web Memahami arsitektur dasar aplikasi text dan web

Lebih terperinci

Search Engine. Text Retrieval dan Image Retrieval YENI HERDIYENI

Search Engine. Text Retrieval dan Image Retrieval YENI HERDIYENI Search Engine Text Retrieval dan Image Retrieval YENI HERDIYENI 14 JUNI 2008 Search engine atau mesin pencari merupakan bagian dari teknologi inte rnet yang sangat penting untuk pencarian informasi. Dewasa

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang xi BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan ilmu pengetahuan dan teknologi informasi dewasa ini membuat perubahan perilaku dalam pencarian informasi yang berdampak bagi lembagalembaga yang bergerak

Lebih terperinci

KONTRAK PERKULIAHAN TEMU KEMBALI INFORMASI KOM431

KONTRAK PERKULIAHAN TEMU KEMBALI INFORMASI KOM431 KONTRAK PERKULIAHAN TEMU KEMBALI INFORMASI KOM431 KOORDINATOR MATA AJARAN TEMU KEMBALI INFORMASI DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR TAHUN 2011/2012 KONTRAK PERKULIAHAN Nama Matakuliah :

Lebih terperinci

TEMU KEMBALI INFORMASI

TEMU KEMBALI INFORMASI JULIO ADISANTOSO Departemen Ilmu Komputer IPB Pertemuan 1 Identitas Mata Kuliah Nama Mata Kuliah : Temu Kembali Informasi (TKI) Information Retrieval (IR) Kode Mata Kuliah : KOM431 Koordinator : Julio

Lebih terperinci

Definisi Semantic Web

Definisi Semantic Web Semantic Web 1 Definisi Semantic Web Semantic web adalah sebuah visi: ide atau pemikiran dari bagaimana memiliki data pada web yang didefinisikan dan dihubungkan dengan suatu cara dimana dapat digunakan

Lebih terperinci

Implementasi Metode Document Oriented Index Pruning pada Information Retrieval System

Implementasi Metode Document Oriented Index Pruning pada Information Retrieval System Implementasi Metode Document Oriented Index Pruning pada Information Retrieval System Hendri Priyambowo 1, Yanuar Firdaus A.W. S.T, M.T 2, Siti Sa adah S.T. M.T 3 123 Program Studi S1 Teknik Informatika,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Klasifikasi Klasifikasi merupakan suatu pekerjaan menilai objek data untuk memasukkannya ke dalam kelas tertentu dari sejumlah kelas yang tersedia. Dalam klasifikasi ada dua pekerjaan

Lebih terperinci

PERANCANGAN DAN PEMBUATAN APLIKASI PENCARIAN INFORMASI BEASISWA DENGAN MENGGUNAKAN COSINE SIMILARITY

PERANCANGAN DAN PEMBUATAN APLIKASI PENCARIAN INFORMASI BEASISWA DENGAN MENGGUNAKAN COSINE SIMILARITY Vol. 4, No. 2 Desember 2014 ISSN 2088-2130 PERANCANGAN DAN PEMBUATAN APLIKASI PENCARIAN INFORMASI BEASISWA DENGAN MENGGUNAKAN COSINE SIMILARITY Andry Kurniawan, Firdaus Solihin, Fika Hastarita Prodi Teknik

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Pencarian Pencarian adalah proses untuk menemukan suatu informasi yang kita butuhkan. Misalnya, kita ingin mencari sebuah kata didalam dokumen digital yang kita miliki. Kita

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI 1 BAB III LANDASAN TEORI 1.1 Konsep Dasar Sistem Informasi 1.1.1 Sistem Menurut Herlambang (2005:116), definisi sistem dapat dibagi menjadi dua pendekatan, yaitu pendekatan secara prosedur, sistem didefinisikan

Lebih terperinci

BAB I PERSYARATAN PRODUK

BAB I PERSYARATAN PRODUK BAB I PERSYARATAN PRODUK 1.1 PENDAHULUAN Pada saat kita melakukan pencarian melalui search engine (google.com, yahoo, dsb), kita bisa mendapatkan beberapa hasil, yang berupa dokumen - dokumen yang sama

Lebih terperinci

KOM341 Temu Kembali Informasi

KOM341 Temu Kembali Informasi KOM341 Temu Kembali Informasi KULIAH #1 Kontrak Perkuliahan Pendahuluan Matakuliah o Nama Matakuliah : Temu Kembali Informasi o Kode Matakuliah : KOM431 o Beban Kredit : 3(3-0) o Semester : Gasal, 2014/2015

Lebih terperinci

UNIVERSITAS BINA NUSANTARA. Jurusan Teknik Informatika Skripsi Sarjana Komputer Semester Ganjil tahun 2005/2006

UNIVERSITAS BINA NUSANTARA. Jurusan Teknik Informatika Skripsi Sarjana Komputer Semester Ganjil tahun 2005/2006 UNIVERSITAS BINA NUSANTARA Jurusan Teknik Informatika Skripsi Sarjana Komputer Semester Ganjil tahun 2005/2006 PERANCANGAN SEARCH ENGINE MENGGUNAKAN ALGORITMA EXTENDED BOOLEAN PADA SITUS PERPUSTAKAAN UNIVERSITAS

Lebih terperinci

Database Management. Addr : :

Database Management.  Addr : : Database Management Systems email Addr : [email protected] : [email protected] 4.1 Contact No : 081318170013 2006 by Prentice Hall The Data Hierarchy Data field adalah unit terkecil dari

Lebih terperinci

BAB IV PREPROCESSING DATA MINING

BAB IV PREPROCESSING DATA MINING BAB IV PREPROCESSING DATA MINING A. Konsep Sebelum diproses data mining sering kali diperlukan preprocessing. Data preprocessing menerangkan tipe-tipe proses yang melaksanakan data mentah untuk mempersiapkan

Lebih terperinci

TEMU KEMBALI INFORMASI

TEMU KEMBALI INFORMASI Pendahuluan JULIO ADISANTOSO Departemen Ilmu Komputer IPB Pertemuan 1 PENDAHULUAN Pendahuluan Identitas Mata Kuliah Nama Mata Kuliah : Temu Kembali Informasi Kode Mata Kuliah : KOM431 Koordinator : Julio

Lebih terperinci

APLIKASI PENCARIAN HEWAN BERKAKI EMPAT DENGAN MENGGUNAKAN WEB SEMANTIK. : Faizal Wijayanto NPM :

APLIKASI PENCARIAN HEWAN BERKAKI EMPAT DENGAN MENGGUNAKAN WEB SEMANTIK. : Faizal Wijayanto NPM : APLIKASI PENCARIAN HEWAN BERKAKI EMPAT DENGAN MENGGUNAKAN WEB SEMANTIK NAMA : Faizal Wijayanto NPM : 12112697 PEMBIMBING : Dr. Metty Mustikasari, Skom., MSc LATAR BELAKANG MASALAH Masih kurangnya informasi

Lebih terperinci

BAB I PENDAHULUAN. penunjang Al-Quran untuk memudahkan untuk mempelajarinya, yang bisa

BAB I PENDAHULUAN. penunjang Al-Quran untuk memudahkan untuk mempelajarinya, yang bisa BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dengan kemajuan teknologi yang sangat pesat ini sudah banyak aplikasi penunjang Al-Quran untuk memudahkan untuk mempelajarinya, yang bisa disebut atau di artikan

Lebih terperinci

INFORMATION RETRIEVAL SYSTEM PADA PENCARIAN FILE DOKUMEN BERBASIS TEKS DENGAN METODE VECTOR SPACE MODEL DAN ALGORITMA ECS STEMMER

INFORMATION RETRIEVAL SYSTEM PADA PENCARIAN FILE DOKUMEN BERBASIS TEKS DENGAN METODE VECTOR SPACE MODEL DAN ALGORITMA ECS STEMMER INFORMATION RETRIEVAL SSTEM PADA PENCARIAN FILE DOKUMEN BERBASIS TEKS DENGAN METODE VECTOR SPACE MODEL DAN ALGORITMA ECS STEMMER Muhammad asirzain 1), Suswati 2) 1,2 Teknik Informatika, Fakultas Teknik,

Lebih terperinci

Teknik Informatika UKDW Yogyakarta

Teknik Informatika UKDW Yogyakarta Budi Susanto Versi 1.1 15/01/2013 1 Memahami pengertian dari text mining dan web mining Memahami latar belakang perlunya pengolahan dokumen teks dan web Memahami arsitektur dasar aplikasi text dan web

Lebih terperinci

ANALISIS PENGGUNAAN ALGORITMA STEMMING VEGA PADA INFORMATION RETRIEVAL SYSTEM

ANALISIS PENGGUNAAN ALGORITMA STEMMING VEGA PADA INFORMATION RETRIEVAL SYSTEM ANALISIS PENGGUNAAN ALGORITMA STEMMING VEGA PADA INFORMATION RETRIEVAL SYSTEM Lusianto Marga Nugraha¹, Arie Ardiyanti Suryani², Warih Maharani³ ¹Teknik Informatika,, Universitas Telkom Abstrak Stemming

Lebih terperinci

IMPLEMENTASI DAN ANALISIS STRUKTUR DATA INDEX SB-TREE PADA TEXT RETRIEVAL SYSTEM

IMPLEMENTASI DAN ANALISIS STRUKTUR DATA INDEX SB-TREE PADA TEXT RETRIEVAL SYSTEM Powered by TCPDF (www.tcpdf.org) Tugas Akhir - 2010 IMPLEMENTASI DAN ANALISIS STRUKTUR DATA INDEX SB-TREE PADA TEXT RETRIEVAL SYSTEM Ardanariswari Skripiyanti¹, Yanuar Firdaus A.w.², Warih Maharani³ ¹Teknik

Lebih terperinci

Aplikasi Pencarian Karya Tulis Ilmiah Berbasis Web Menggunakan Sistem Rekomendasi

Aplikasi Pencarian Karya Tulis Ilmiah Berbasis Web Menggunakan Sistem Rekomendasi Aplikasi Pencarian Karya Tulis Ilmiah Berbasis Web Menggunakan Sistem Rekomendasi Husni Program Studi Teknik Informatika, Universitas Trunojoyo Jl. Telang Raya PO BOX 2 Kamal, Bangkalan 69162 E-mail: [email protected]

Lebih terperinci

JULIO ADISANTOSO - ILKOM IPB 1

JULIO ADISANTOSO - ILKOM IPB 1 KOM341 Temu Kembali Informasi KULIAH #1 Kontrak Perkuliahan Pendahuluan Matakuliah Nama Matakuliah : Temu Kembali Informasi Kode Matakuliah : KOM431 Beban Kredit : 3(3-0) Semester : Gasal, 2009/2010 Koordinator

Lebih terperinci

ABSTRAK. Kata kunci : Information Retrieval system, Generalized Vector Space Model. Universitas Kristen Maranatha

ABSTRAK. Kata kunci : Information Retrieval system, Generalized Vector Space Model. Universitas Kristen Maranatha ABSTRAK Information retrieval (IR) system adalah sistem yang secara otomatis melakukan pencarian atau penemuan kembali informasi yang relevan terhadap kebutuhan pengguna. Kebutuhan pengguna, diekspresikan

Lebih terperinci

ABSTRAK. Kata Kunci: dokumen digitalisasi, manajemen dokumen, sistem informasi. Universitas Kristen Maranatha

ABSTRAK. Kata Kunci: dokumen digitalisasi, manajemen dokumen, sistem informasi. Universitas Kristen Maranatha ABSTRAK Sistem Informasi Manajemen Dokumen dirancang untuk mengelola dan mengolah dokumen digitalisasi yang ada di Fakultas Teknologi Informasi. Dokumen yang diolah pada aplikasi ini berupa dokumen yang

Lebih terperinci

PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK PENCARIAN WEB SERVICE MENGGUNAKAN LUCENE

PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK PENCARIAN WEB SERVICE MENGGUNAKAN LUCENE PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK PENCARIAN WEB SERVICE MENGGUNAKAN LUCENE OLGA CERIA SARI NRP 5106 100 618 DOSEN PEMBIMBING: Sarwosri,S.Kom,MT. Umi Laili Yuhana, S.Kom, M.Sc LATAR BELAKANG Kebutuhan

Lebih terperinci

BAB V PERANCANGAN MOXIE

BAB V PERANCANGAN MOXIE BAB V PERANCANGAN MOXIE Bab ini berisi penjabaran dari hasil perancangan Moxie. Pembahasan pada bab ini mencakup perancangan arsitektur dan model skenario untuk Moxie. Model skenario merupakan produk dari

Lebih terperinci

Aplikasi Aljabar Vektor pada Sistem Temu-balik Informasi (Information Retrieval System)

Aplikasi Aljabar Vektor pada Sistem Temu-balik Informasi (Information Retrieval System) Aplikasi Aljabar Vektor pada Sistem Temu-balik Informasi (Information Retrieval System) IF3 Aljabar Geometri Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB Rinaldi Munir - IF3 Aljabar Geometri

Lebih terperinci

APLIKASI MESIN PENCARI DOKUMEN CROSS LANGUAGE BAHASA INGGRIS BAHASA INDONESIA MENGGUNAKAN VECTOR SPACE MODEL

APLIKASI MESIN PENCARI DOKUMEN CROSS LANGUAGE BAHASA INGGRIS BAHASA INDONESIA MENGGUNAKAN VECTOR SPACE MODEL APLIKASI MESIN PENCARI DOKUMEN CROSS LANGUAGE BAHASA INGGRIS BAHASA INDONESIA MENGGUNAKAN VECTOR SPACE MODEL SKRIPSI Disusun Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Komputer pada Jurusan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Unit Dinas Pendidikan dan Kebudayaan Unit Dinas Pendidikan dan Kebudayaan adalah lembaga yang melaksanakan kebijakan Pemerintah Kabupaten / Kota dalam bidang pendidikan dan merupakan

Lebih terperinci

UNIVERSITAS MERCU BUANA FAKULTAS : ILMU KOMPUTER PROGRAM STUDI : SISTEM INFORMASI

UNIVERSITAS MERCU BUANA FAKULTAS : ILMU KOMPUTER PROGRAM STUDI : SISTEM INFORMASI UNIVERSITAS MERCU BUANA FAKULTAS : ILMU KOMPUTER PROGRAM STUDI : SISTEM INFORMASI No. Dokumen 02-3.04.1.02 Distribusi Tgl. Efektif RENCANA PEMBELAJARAN SEMESTER Mata Kuliah Kode Rumpun MK Bobot (SKS) Semester

Lebih terperinci

QUERY EXPANSION DENGAN MENGGABUNGKAN METODE RUANG VEKTOR DAN WORDNET PADA SISTEM INFORMATION RETRIEVAL

QUERY EXPANSION DENGAN MENGGABUNGKAN METODE RUANG VEKTOR DAN WORDNET PADA SISTEM INFORMATION RETRIEVAL QUERY EXPANSION DENGAN MENGGABUNGKAN METODE RUANG VEKTOR DAN WORDNET PADA SISTEM INFORMATION RETRIEVAL Susetyo Adi Nugroho () Abstrak: Salah satu metode yang sering digunakan dalam mengukur relevansi dokumen

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Kebutuhan informasi dan perkembangan teknologi yang semakin tinggi meningkatkan jumlah artikel atau berita yang terpublikasikan, terutama pada media online. Untuk

Lebih terperinci

INDEXING AND RETRIEVAL ENGINE UNTUK DOKUMEN BERBAHASA INDONESIA DENGAN MENGGUNAKAN INVERTED INDEX

INDEXING AND RETRIEVAL ENGINE UNTUK DOKUMEN BERBAHASA INDONESIA DENGAN MENGGUNAKAN INVERTED INDEX INDEXING AND RETRIEVAL ENGINE UNTUK DOKUMEN BERBAHASA INDONESIA DENGAN MENGGUNAKAN INVERTED INDEX Wahyu Hidayat 1 1 Departemen Teknologi Informasi, Fakultas Ilmu Terapan, Telkom University 1 [email protected]

Lebih terperinci

CASE TOOL UNTUK PEMODELAN SEMANTIK DATA DALAM WEB ONTOLOGY LAGUANGE (OWL)

CASE TOOL UNTUK PEMODELAN SEMANTIK DATA DALAM WEB ONTOLOGY LAGUANGE (OWL) CASE TOOL UNTUK PEMODELAN SEMANTIK DATA DALAM WEB ONTOLOGY LAGUANGE (OWL) Catur Bawa 1), Daniel Siahaan 2) Jurusan Teknik Informatika Fakultas Teknologi Informasi Institut Teknologi Sepuluh Nopember Surabaya

Lebih terperinci

ANALISIS DAN PERANCANGAN SEARCH ENGINE DOKUMEN PAPER BERBASIS WEB NASKAH PUBLIKASI. diajukan oleh Aldrik Saddermi

ANALISIS DAN PERANCANGAN SEARCH ENGINE DOKUMEN PAPER BERBASIS WEB NASKAH PUBLIKASI. diajukan oleh Aldrik Saddermi ANALISIS DAN PERANCANGAN SEARCH ENGINE DOKUMEN PAPER BERBASIS WEB NASKAH PUBLIKASI diajukan oleh Aldrik Saddermi 10.11.4055 kepada SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER AMIKOM YOGYAKARTA YOGYAKARTA

Lebih terperinci

Sistem Temu Kembali Informasi pada Dokumen Teks Menggunakan Metode Term Frequency Inverse Document Frequency (TF-IDF)

Sistem Temu Kembali Informasi pada Dokumen Teks Menggunakan Metode Term Frequency Inverse Document Frequency (TF-IDF) Sistem Temu Kembali Informasi pada Dokumen Teks Menggunakan Metode Term Frequency Inverse Document Frequency (TF-IDF) 1 Dhony Syafe i Harjanto, 2 Sukmawati Nur Endah, dan 2 Nurdin Bahtiar 1 Jurusan Matematika,

Lebih terperinci

JULIO ADISANTOSO - ILKOM IPB 1

JULIO ADISANTOSO - ILKOM IPB 1 KOM341 Temu Kembali Informasi KULIAH #3 Inverted Index Inverted index construction Kumpulan dokumen Token Modifikasi token Tokenizer Linguistic modules perkebunan, pertanian, dan kehutanan perkebunan pertanian

Lebih terperinci

DATAMULTIDIMENSI. DATAWAREHOUSE vs DATAMART FIRDAUS SOLIHIN UNIVERSITAS TRUNOJOYO

DATAMULTIDIMENSI. DATAWAREHOUSE vs DATAMART FIRDAUS SOLIHIN UNIVERSITAS TRUNOJOYO DATAMULTIDIMENSI FIRDAUS SOLIHIN UNIVERSITAS TRUNOJOYO DATAWAREHOUSE vs DATAMART DATAWAREHOUSE Perusahaan, melingkupi semua proses Gabungan datamart Data didapat dari proses Staging Merepresentasikan data

Lebih terperinci

SISTEM PENGKOREKSIAN KATA KUNCI DENGAN MENGGUNAKAN METODE LEVENSHTEIN DISTANCE Studi Kasus Pada Website Universitas Halmahera.

SISTEM PENGKOREKSIAN KATA KUNCI DENGAN MENGGUNAKAN METODE LEVENSHTEIN DISTANCE Studi Kasus Pada Website Universitas Halmahera. SISTEM PENGKOREKSIAN KATA KUNCI DENGAN MENGGUNAKAN METODE LEVENSHTEIN DISTANCE Studi Kasus Pada Website Universitas Halmahera Oleh : Benisius Sejumlah penelitian terhadap mesin pencari (search engine)

Lebih terperinci

Ekstraksi Informasi Halaman Web Menggunakan Pendekatan Bootstrapping pada Ontology-Based Information Extraction

Ekstraksi Informasi Halaman Web Menggunakan Pendekatan Bootstrapping pada Ontology-Based Information Extraction IJCCS, Vol.9, No.2, July 2015, pp. 111~120 ISSN: 1978-1520 111 Ekstraksi Informasi Halaman Web Menggunakan Pendekatan Bootstrapping pada Ontology-Based Information Extraction Erma Susanti* 1, Khabib Mustofa

Lebih terperinci

URi. Program Studi Sistem Informasi Universitas Gunadarma.

URi. Program Studi Sistem Informasi Universitas Gunadarma. APLIKASI PENCARIAN PARIWISATA PERAIRAN DI INDONESIA DENGAN MENGGUNAKAN PENDEKATAN WEB SEMANTIK ABSTRAK Aplikasi pencarian Pariwisata berbasis Web dengan menggunakan pendekatan Semantic Web ini bertujuan

Lebih terperinci

APLIKASI PENGKATEGORIAN DOKUMEN DAN PENGUKURAN TINGKAT SIMILARITAS DOKUMEN MENGGUNAKAN KATA KUNCI PADA DOKUMEN PENULISAN ILMIAH UNIVERSITAS GUNADARMA

APLIKASI PENGKATEGORIAN DOKUMEN DAN PENGUKURAN TINGKAT SIMILARITAS DOKUMEN MENGGUNAKAN KATA KUNCI PADA DOKUMEN PENULISAN ILMIAH UNIVERSITAS GUNADARMA APLIKASI PENGKATEGORIAN DOKUMEN DAN PENGUKURAN TINGKAT SIMILARITAS DOKUMEN MENGGUNAKAN KATA KUNCI PADA DOKUMEN PENULISAN ILMIAH UNIVERSITAS GUNADARMA Adhit Herwansyah Jurusan Sistem Informasi, Fakultas

Lebih terperinci

RELEVANCE FEEDBACK PADA INFORMATION RETRIEVAL DENGAN SUPPORT VECTOR MACHINE

RELEVANCE FEEDBACK PADA INFORMATION RETRIEVAL DENGAN SUPPORT VECTOR MACHINE RELEVANCE FEEDBACK PADA INFORMATION RETRIEVAL DENGAN SUPPORT VECTOR MACHINE Sri Ulinar Romatua N B¹, Yanuar Firdaus A.w.², Warih Maharani³ ¹Teknik Informatika,, Universitas Telkom Abstrak Dengan semakin

Lebih terperinci

BAB II DASAR TEORI Crawler Definisi Focused Crawler dengan Algoritma Genetik [2]

BAB II DASAR TEORI Crawler Definisi Focused Crawler dengan Algoritma Genetik [2] BAB II DASAR TEORI Pada bab ini dibahas teori mengenai focused crawler dengan algoritma genetik, text mining, vector space model, dan generalized vector space model. 2.1. Focused Crawler 2.1.1. Definisi

Lebih terperinci

Penelusuran Informasi (Information Retrieval)

Penelusuran Informasi (Information Retrieval) Introduction to Information Retrieval Penelusuran Informasi (Information Retrieval) Sumber: CS276: Information Retrieval and Web Search Pandu Nayak and Prabhakar Raghavan Taufik Fuadi Abidin Link Analysis

Lebih terperinci

PERTEMUAN 6 PROMOSI DAN PEMELIHARAAN WEB

PERTEMUAN 6 PROMOSI DAN PEMELIHARAAN WEB PERTEMUAN 6 PROMOSI DAN PEMELIHARAAN WEB Promosi Website Bagaimana user dapat menemukan dan mendapatkan informasi dari website adalah tujuan dari promosi web, terutama untuk aplikasi web yang komersil.

Lebih terperinci

Foundation of Bussiness Inteligence : Database and Information Management. Ayu Mentari Tania Rizqy Amalia Nisa Tri Lestari Oktarina Yurika Anggesty

Foundation of Bussiness Inteligence : Database and Information Management. Ayu Mentari Tania Rizqy Amalia Nisa Tri Lestari Oktarina Yurika Anggesty Foundation of Bussiness Inteligence : Database and Information Management Ayu Mentari Tania Rizqy Amalia Nisa Tri Lestari Oktarina Yurika Anggesty FILE ORGANIZATION TERMS AND CONCEPTS Database File Record

Lebih terperinci

PENERAPAN RELATIONAL DATA MENGGUNAKAN XQUERY PADA PEMROGRAMAN XML. Abstraksi

PENERAPAN RELATIONAL DATA MENGGUNAKAN XQUERY PADA PEMROGRAMAN XML. Abstraksi PENERAPAN RELATIONAL DATA MENGGUNAKAN XQUERY PADA PEMROGRAMAN XML Heri Sismoro 1 dan Ahmad Luthfi 2 1 Dosen STMIK AMIKOM Yogyakarta 2 Dosen Universitas Bina Darma Palembang. Abstraksi Saat ini hampir setiap

Lebih terperinci

1. BAB I PENDAHULUAN 1.1 Latar Belakang

1. BAB I PENDAHULUAN 1.1 Latar Belakang 1. BAB I PENDAHULUAN 1.1 Latar Belakang Perpustakaan digital merupakan aplikasi praktis yang mengelola koleksi berbagai macam dokumen dalam bentuk digital dan dapat diakses melalui komputer. Melalui aplikasi

Lebih terperinci

BAB I Pendahuluan I - 1 UNIVERSITAS KRISTEN MARANATHA

BAB I Pendahuluan I - 1 UNIVERSITAS KRISTEN MARANATHA BAB I Pendahuluan I.1. Latar Belakang Masalah Sistem informasi geografis ( SIG ), hingga saat ini, merupakan sistem yang sangat menarik. Sistem ini cenderung selalu dibuat untuk interaktif ini dapat mengintegrasikan

Lebih terperinci

PENERAPAN TEXT MINING DAN VECTOR SPACE MODEL PADA WEB-BASE KNOWLEDGE MANAGEMENT SYSTEM ( STUDI KASUS TEKNIK INFORMATIKA UPN ) TUGAS AKHIR

PENERAPAN TEXT MINING DAN VECTOR SPACE MODEL PADA WEB-BASE KNOWLEDGE MANAGEMENT SYSTEM ( STUDI KASUS TEKNIK INFORMATIKA UPN ) TUGAS AKHIR PENERAPAN TEXT MINING DAN VECTOR SPACE MODEL PADA WEB-BASE KNOWLEDGE MANAGEMENT SYSTEM ( STUDI KASUS TEKNIK INFORMATIKA UPN ) TUGAS AKHIR Disusun Oleh : VIVIN SOFI AMALIAH NPM. 0534010296 JURUSAN TEKNIK

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Metodologi penelitian menjelaskan bagaimana langkah-langkah atau tahapan-tahapan yang akan dilakukan dalam penelitian agar rumusan masalah penelitian dapat terselesaikan.

Lebih terperinci

HASIL DAN PEMBAHASAN. 4. Menghitung fungsi objektif pada iterasi ke-t, 5. Meng-update derajat keanggotaan. 6. Mengecek kondisi berhenti:

HASIL DAN PEMBAHASAN. 4. Menghitung fungsi objektif pada iterasi ke-t, 5. Meng-update derajat keanggotaan. 6. Mengecek kondisi berhenti: 2. v kj merupakan centroid term ke-j terhadap cluster ke-k 3. μ ik merupakan derajat keanggotaan dokumen ke-i terhadap cluster ke-k 4. i adalah indeks dokumen 5. j adalah indeks term 6. k adalah indeks

Lebih terperinci

PENGEMBANGAN MODEL DAN STRUKTUR INFORMASI UNTUK KONTEN BERBASIS TEKS PADA SISTEM NOTEBOX TESIS DEBBY. E. SONDAKH NIM:

PENGEMBANGAN MODEL DAN STRUKTUR INFORMASI UNTUK KONTEN BERBASIS TEKS PADA SISTEM NOTEBOX TESIS DEBBY. E. SONDAKH NIM: PENGEMBANGAN MODEL DAN STRUKTUR INFORMASI UNTUK KONTEN BERBASIS TEKS PADA SISTEM NOTEBOX TESIS Karya tulis sebagai salah satu syarat untuk memperoleh gelar Magister dari Institut Teknologi Bandung Disusun

Lebih terperinci

BAB II LANDASAN TEORI. bidang media komunikasi dan informasi. Internet adalah suatu jaringan komputer

BAB II LANDASAN TEORI. bidang media komunikasi dan informasi. Internet adalah suatu jaringan komputer BAB II LANDASAN TEORI 2.1 World Wide Web Dunia internet semakin berkembang, terutama penggunaanya dalam bidang media komunikasi dan informasi. Internet adalah suatu jaringan komputer global, sedangkan

Lebih terperinci

BAB 3 PERANCANGAN SISTEM

BAB 3 PERANCANGAN SISTEM BAB 3 PERANCANGAN SISTEM Perancangan sistem bertujuan untuk memberikan gambaran secara umum tentang sistem yang akan dibuat. Rancangan sistem ini secara umum mengidentifikasi komponen-komponen sistem yang

Lebih terperinci

PENERAPAN ALGORITMA DEPTH FIRST SEARCH PADA SISTEM PENCARIAN DOKUMEN APPLYING DEPTH FIRST ALGORITHM ON DOCUMENT SEARCHING SYSTEM

PENERAPAN ALGORITMA DEPTH FIRST SEARCH PADA SISTEM PENCARIAN DOKUMEN APPLYING DEPTH FIRST ALGORITHM ON DOCUMENT SEARCHING SYSTEM PENERAPAN ALGORITMA DEPTH FIRST SEARCH PADA SISTEM PENCARIAN DOKUMEN APPLYING DEPTH FIRST ALGORITHM ON DOCUMENT SEARCHING SYSTEM Siti Lailiyah 1*, Amelia Yusnita 2, Twom Ali Panotogomo 3 1,2,3 STMIK Widya

Lebih terperinci

PERANCANGAN LibraryUMS-CMS MENGGUNAKAN CODEIGNITER

PERANCANGAN LibraryUMS-CMS MENGGUNAKAN CODEIGNITER PERANCANGAN LibraryUMS-CMS MENGGUNAKAN CODEIGNITER TUGAS AKHIR Diajukan Untuk Memenuhi Tugas dan Syarat-syarat Guna Memperoleh Gelar Sarjana Teknik pada Fakultas Teknik Jurusan Teknik Elektro Universitas

Lebih terperinci

Integrasi Peringkas Dokumen Otomatis Dengan Penggabungan Metode Fitur dan Metode Latent Semantic Analysis (LSA) Sebagai Feature Reduction

Integrasi Peringkas Dokumen Otomatis Dengan Penggabungan Metode Fitur dan Metode Latent Semantic Analysis (LSA) Sebagai Feature Reduction Integrasi Peringkas Dokumen Otomatis Dengan Penggabungan Metode Fitur dan Metode Latent Semantic Analysis (LSA) Sebagai Feature Reduction Junta Zeniarja 1, Abu Salam 2, Ardytha Luthfiarta 3, L Budi Handoko

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka Document summarization adalah proses pengambilan teks dari sebuah dokumen dan membuat sebuah ringkasan yang mempunyai informasi yang lebih berguna bagi user

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Seiring dengan perkembangan teknologi informasi, maka proses dan media penyimpanan data pun semakin berkembang. Dengan adanya personal computer (PC), orang dapat menyimpan,

Lebih terperinci

DAFTAR ISI. SKRIPSI... ii

DAFTAR ISI. SKRIPSI... ii DAFTAR ISI SKRIPSI... i SKRIPSI... ii HALAMAN PENGESAHAN... ii PERNYATAAN... iii HALAMAN MOTO DAN PERSEMBAHAN... iv PRAKATA... v DAFTAR ISI... vii DAFTAR GAMBAR... x DAFTAR TABEL... xiii INTISARI... xiv

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1. Internet Menurut Prakoso (2007), Internet adalah sebuah kumpulan jaringan komputer lokal yang menggunakan perangkat lunak internet dan protokol TCP/IP atau HTTP. Oleh karena

Lebih terperinci

DAFTAR ISI 2. PENGENALAN INTERFACE 7 1. PERSIAPAN 3 2. PENGENALAN INTERFACE (MENU) 7

DAFTAR ISI 2. PENGENALAN INTERFACE 7 1. PERSIAPAN 3 2. PENGENALAN INTERFACE (MENU) 7 DAFTAR ISI Panduan Manajemen Website UMM 1. PERSIAPAN 3 1.1. Manajemen Website UMM... 3 1.1.1. Manajer Website... 3 1.1.2. Admin... 3 1.1.3. Operator... 3 1.2. Manajemen File & Direktori... 3 1.2.1. Manajemen

Lebih terperinci

SISTEM PEMANTAUAN DISTRIBUSI PEMBAYARAN PARKIR MELALUI INTERNET

SISTEM PEMANTAUAN DISTRIBUSI PEMBAYARAN PARKIR MELALUI INTERNET SISTEM PEMANTAUAN DISTRIBUSI PEMBAYARAN PARKIR MELALUI INTERNET Kartika Megasari Jurusan Sistem Informasi Fakultas Ilmu Komputer Universitas Gunadarma [email protected] 29 September 2009 ABSTRAKSI

Lebih terperinci

BAB III TINJAUAN PUSTAKA

BAB III TINJAUAN PUSTAKA BAB III TINJAUAN PUSTAKA 3.1. Internet Menurut Prakoso (2007 : 119) Internet adalah sebuah kumpulan jaringan komputer lokal yang menggunakan perangkat lunak internet dan protokol TCP/IP atau HTTP. Oleh

Lebih terperinci

BAB I PENDAHULUAN. Begitu juga halnya pada perkembangan Internet, hampir semua bidang teknologi

BAB I PENDAHULUAN. Begitu juga halnya pada perkembangan Internet, hampir semua bidang teknologi BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi di dunia komputer saat ini sangatlah pesat. Begitu juga halnya pada perkembangan Internet, hampir semua bidang teknologi berbasis Internet. Salah

Lebih terperinci

PERANCANGAN WEB RANK MENGGUNAKAN COLLABORATIVE FILTERING BERDASARKAN KEMIRIPAN KONTEN

PERANCANGAN WEB RANK MENGGUNAKAN COLLABORATIVE FILTERING BERDASARKAN KEMIRIPAN KONTEN PERANCANGAN WEB RANK MENGGUNAKAN COLLABORATIVE FILTERING BERDASARKAN KEMIRIPAN KONTEN Eka Budhi Prasetya Teknik Informatika Fakultas Teknik Universitas Muhammadiyah Jakarta Jl. Cempaka Putih Tengah 27

Lebih terperinci