BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1 Kawasan Agropolitan Provinsi Gorontalo Agropolitan terdiri dari kata Agro (Pertanian) dan Politan (Polis = Kota), sehingga agropolitan dapat diartikan sebagai kota pertanian yang tumbuh dan berkembang karena berjalannya sistem dan usaha agribisnis di Desa dalam kawasan sentra produksi sebagai kota pertanian yang memiliki fasilitas yang dapat mendukung lancarnya pembangunan pertanian yaitu: - Jalan-jalan akses (jalan usaha tani) - Alat alat dan mesin pertanian (traktor, alat-alat prosesing) - Pengairan/jaringan irigasi - Lembaga penyuluh dan alih teknologi - Kios-kios sarana produksi - Pemasaran Sejak provinsi Gorontalo terbentuk pembangunan pertanian terus digalakkan melalui Program Agropolitan berbasis jagung. Program agropolitan berbasis jagung adalah program unggulan daerah Gorontalo untuk memacu pembangunan pertanian sekaligus menjadi motor penggerak pembangunan perekonomian daerah. Agropolitan berbasis jagung dengan pertimbangan : (1) lahan tersedia luas dan belum dimanfaatkan secara optimal, (2) jagung sudah dikenal oleh masyarakat sejak dahulu dan menjadi sumber pendapatan secara turun temurun, (3) jagung sebagai komoditas industri serta (4) peluang pasar dalam negeri dan ekspor (Muhammad, 2007). Sejak ditetapkan sebagai daerah pengembangan agropolitan pada tahun 2002, Gorontalo mulai berbenah diri dimulai dengan penyusunan program dan sosialisasi di Tilamuta (Ibukota Kabupaten Boalemo), penetapan Kecamatan Randangan sebagai kawasan agropolitan untuk menjadi prioritas pembangunan, hingga penetapan Desa Motoluhu sebagai pusat Desa pertumbuhan. Selanjutnya 4

2 pada tahun 2003 dilaksanakan perencanaan dan penyusunan master plan dan implementasinya beserta pengawasannya dilaksanakan dengan melibatkan masyarakat di kawasan melalaui lembaga pengelolan agropolitan, pemda setempat melalui tim pokja LSM, akademi dan swasta (Jocom, 2009). 2.2 Energi Surya (Matahari) Matahari adalah sumber energi utama yang memancarkan energi yang luar biasa besarnya ke permukaan bumi. Matahari memasok energi ke bumi dalam bentuk radiasi. Tanpa radiasi dari matahari, maka kehidupan di bumi tidak akan berjalan. Setiap tahunnya ada sekitar 3.9 x Joule ~ 1.08 x kwh energi matahari yang mencapai permukaan bumi, ini berarti energi yang diterima bumi dari matahari adalah kali lebih banyak dari permintaan energi primer secara global tiap tahunnya dan lebih banyak dari cadangan ketersediaan keseluruhan energi yang ada di bumi. Intensitas radiasi matahari diluar atmosfir bumi tergantung pada jarak antara bumi dengan matahari. Sepanjang tahun, jarak antara matahari dengan bumi bervariasi antara 1,47 x 10 8 km sampai 1,52 x 10 8 km. Akibatnya, irradiance E 0 berfluktuasi antara W/m 2 sampai 1412 W/m 2. Nilai rata-rata dari irradiance ini disebut dengan solar constant (konstanta surya). Konstanta Surya E 0 = w/m 2. Nilai konstan ini bukanlah besarnya radiasi yang sampai dipermukaan bumi. Atmosfir bumi mereduksi/mengurangi radiasi matahari tersebut melalui proses pemantulan, penyerapan (oleh ozon, uap air, oksigen dan karbondioksida) dan penghamburan (oleh molekul-molekul udara, partikel debu atau polusi). Untuk cuaca yang cerah pada siang hari, irradiant yang mencapai permukaan bumi adalah w/m 2. Nilai ini relatif terhadap lokasi. Insolasi (energi radiasi) maksimum terjadi pada hari yang cerah namun berawan sebagian. Ini karena pemantulan radiasi matahari oleh awan sehingga insolasi (energi radiasinya) dapat mencapai W/m 2 untuk periode yang singkat (Muchammad dan Yuhana, 2010). 5

3 Pada keadaan cuaca cerah, permukaan bumi menerima sekitar 1000 watt energi matahari per-meter persegi. Kurang dari 30% energi tersebut dipantulkan kembali ke angkasa, 47% dikonversikan menjadi panas, 23% digunakan untuk seluruh sirkulasi kerja yang terdapat di atas permukaan bumi, sebagaian kecil 0,25% ditampung angin, gelombang dan arus dan masih ada bagian yang sangat kecil 0,025% disimpan melalui proses fotosintesis di dalam tumbuh-tumbuhan yang akhirnya digunakan dalam proses pembentukan batu bara dan minyak bumi (bahan bakar fosil, proses fotosintesis yang memakan jutaan tahun) yang saat ini digunakan secara ekstensif dan eksploratif bukan hanya untuk bahan bakar tetapi juga untuk bahan pembuat plastik, formika, bahan sintesis lainnya. Sehingga bisa dikatakan bahwa sumber segala energi adalah energi matahari. Energi matahari dapat dimanfaatkan dengan berbagai cara yang berlainan, bahan bakar minyak adalah hasil fotosintesis, tenaga hidro elektrik adalah hasil sirkulasi hujan tenaga angin adalah hasil perbedaan suhu antar daerah dan sel surya (sel fotovoltaik) yang menjanjikan masa depan yang cerah sebagai sumber energi listrik. Sebuah sel surya (sel fotovoltaik) akan menghasilkan tegangan konstan sebesar 0.5 V sampai 0.7 V dengan arus sekitar 20 ma dan jumlah energi yang diterima akan mencapai optimal jika posisi sel surya 90 0 (tegak lurus) terhadap sinar matahari selain itu juga tergantung dari konstruksi sel surya itu sendiri. Ini berarti bahwa sebuah sel surya akan menghasilkan daya 0.6 V x 20 ma = 12 mw. Jika matahari memancarkan energinya ke permukaan bumi sebesar 100 W/m 2 atau 100 mw/cm 2, maka bisa dibayangkan energi yang dihasilkan sel surya yang rata-rata mempunyai luas 1 cm 2 bandingkan dengan bahan bakar fosil (BBM) dengan proses foto-sintesis yang memakan waktu jutaan tahun (Manan, 2010). Sumber energi matahari merupakan salah satu sumber energi yang dapat dikembangkan. Energi matahari telah dimanfaatkan di banyak belahan dunia dan jika dieksploitasi dengan tepat, energi ini berpotensi mampu menyediakan kebutuhan konsumsi energi dunia saat ini dalam waktu yang lebih lama. Matahari dapat digunakan secara langsung untuk memproduksi listrik. Untuk 6

4 mengkonversi energi matahari menjadi energi listrik memerlukan sel surya yang merupakan bahan semikonduktor dengan menggunakan efek fotovoltaik. Menurut data Green Peace Indonesia sumber energi alternatif ini cukup baik. Berdasarkan proyeksi dari tingkat arus hanya 354 MW, pada tahun 2015 kapasitas total pemasangan pembangkit tenaga panas matahari akan melampaui 5000 MW. Pada tahun 2020, tambahan kapasitas akan naik pada tingkat sampai 4500 MW setiap tahunnya dan total pemasangan kapasitas tenaga panas matahari di seluruh dunia dapat mencapai hampir MW, cukup untuk memberikan daya untuk 30 juta rumah. Salah satu cara untuk mengoptimalisasi kinerja sel surya adalah dengan mencari posisi-posisi dimana bumi menerima panas yang paling maksimal oleh matahari yaitu dengan mencari posisi dimana sinar datang tegak lurus dengan bidang penampang, dalam hal ini panel surya (Anonim, 2010 dalam As ari dan Kolondam, 2012). Dengan menggunakan modul/panel surya, energi matahari dapat diubah menjadi energi listrik. Keluaran dari modul/panel surya ini adalah berupa listrik arus searah (DC) yang besar tegangan keluarnya tergantung dengan jumlah sel surya yang dipasang didalam panel surya dan banyaknya sinar matahari yang menyinari panel surya tersebut. Energi listrik yang dihasilkan dihubungkan ke rangkaian controller/regulator, yang selanjutnya energi listrik disimpan pada baterai. Jika kita menginginkan hasil keluaran listrik dari PLTS ini berupa listrik arus bolak-balik (AC) maka PLTS yang sudah dapat mengeluarkan listrik arus searah (DC) ini harus dihubungkan ke sebuah rangkaian elektronik/modul elektronik yang bernama inverter DC-AC. Setelah arus listrik searah diubah menjadi arus listrik bolak-balik, selanjutnya keluaran dari inverter ini yang telah berupa arus bolak-balik ini dapat langsung digunakan untuk mencatu peralatan listrik dan elektronika yang membutuhkan arus bolak-balik 7

5 2.2.1 Radiasi Matahari Radiasi matahari adalah sinar yang dipancarkan dari matahari kepermukaan bumi, yang disebabkan oleh adanya emisi bumi dan gas pijar panas matahari. Radiasi dan sinar matahari dipengaruhi oleh berbagai hal sehingga pancarannya yang sampai dipermukaan bumi sangat bervariasi. Penyebabnya adalah kedudukan matahari yang berubah-ubah, revolusi bumi, dan lain sebagainya. Walaupun cuaca cerah dan sinar matahari tersedia banyak, besarnya radiasi tiap harinya selalu berubah-ubah. Menurut (Bayong, 2006) Ada tiga macam cara radiasi surya sampai ke permkaan bumi yaitu: 1. Radiasi Langsung (Direct Radiation) Adalah radiasi yang mencapai bumi tanpa perubahan arah atau radiasi yang diterima oleh bumi dalam arah sejajar sinar dating. 2. Radiasi Sebaran (Diffuse Radiation) Adalah radiasi yang mengalami perubahan akibat pemantulan dan penghamburan. 3. Radiasi Total (Global Radiation) Adalah penjumlahan radiasi langsung dan radiasi hambur. Misalnya data untuk suatu permukaan miring yang menghadap tanah tertutup salju serta menerima komponen radiasi karena pemantulan harus dirinci dulu kondisi saljunya yaitu sifat pantulanya (reflektansi). Karena itu radiasi total pada suatu permukaan bidang miring biasanya dihitung. Alat yang digunakan untuk melakukan pengukuran terhadap intensitas radiasi matahari secara total adalah Actinograph, ditunjukan pada gambar 2.1 sebagai berikut: 8

6 Gambar 2.1 Alat ukur intensitas radiasi matahari 2.3 Pembangkit Listrik Tenaga Surya Pembangkit Listrik Tenaga Surya (PLTS) adalah suatu pembangkit yang mengkonversikan energi foton dari surya menjadi energi listrik. Konversi ini terjadi pada panel surya yang terdiri dari sel-sel surya. PLTS memanfaatkan cahaya matahari untuk menghasilakan listrik DC (Direct Current), yang dapat diubah menjadi listrik AC (Alternating Current) apabila diperlukan. PLTS pada dasarnya adalah pencatu daya dan dapat dirancang untuk mencatu kebutuhan listrik dari yang kecil sampai dengan yang besar, baik secara mandiri maupun hibrida (Santiari, 2011) Sel Surya Sebuah sel surya dapat menyerap gelombang elektromagnetik dan mengubah energi foton yang diserapnya menjadi energi listrik. Bagian terbesar sel surya adalah sebuah dioda. Dioda terbuat dari suatu semikonduktor dengan jurang energi (Ec-Ev). Ketika energi foton yang datang lebih besar dari jurang energi ini, foton akan diserap oleh semikonduktor untuk membentuk pasangan elektronhole. Elektron dan hole kemudian ditarik oleh medan listrik sehingga menimbulkan photocurrent (photo current bisa juga dinamakan sebagai arus 9

7 yang dihasilkan oleh cahaya). Dalam sel surya tidak hanya photocurrent yang penting, tetapi ada beberapa parameter lain yang perlu mendapat kajian. Susunan sel surya terdiri dari dua lapisan semikonduktor dengan muatan yang berbeda. Lapisan atas sel surya bermuatan negatif sedangakan lapisan bawahnya bermuatan positif. Silikon adalah bahan semikonduktor yang paling umum digunakan untuk sel surya. Ketika cahaya mengenai permukaan sel surya, beberapa foton dari cahaya diserap oleh atom semionduktor untuk membebaskan elektron dari ikatan atomnya sehingga menjadi elektron yang bergerak bebas. Adanya perpindahan elektron-elektron inilah yang menyebabkan terjadinya arus listrik (Quaschning, 2005) Gambar 2.2 Menunjuka struktur dari sel surya. Sumber: Quaschning, 2005 Gambar 2.2 Struktur sel surya Karakteristik Sel Surya Total pengeluaran listrik (Watt) dari sel surya adalah sama dengan tegangan (V) operasi dikalikan dengan arus (I) operasi. Tegangan serta arus keluaran yang dihasilkan ketika sel surya memperoleh penyinaran merupakan karakteristik yang disajikan dalam bentuk kurva I-V pada gambar 2.3 kurva ini menunjukan bahwa pada saat arus dan tegangan berada pada titik kerja maksimal (Maximum Power Point) maka akan menghasilkan daya keluaran 10

8 maksimum (Pmpp). Tegangan di Maximum Power Point (MPP) Vmpp, lebih kecil dari tegangan rangkain terbuka (Voc) dan arus saat MPP Impp, adalah lebih rendah dari arus short circuit (Isc) (Quaschning, 2005). a) Short Circuit Current (Isc) : terjadi pada suatu titik dimana tegangannya adalah nol, sehingga pada saat ini, daya keluaran adalah nol. b) Open Circuit Voltage (Voc) : terjadi apada suatu titik dimana arusnya adalah nol, sehingga pada saat ini pun daya keluaran adalah nol. c) Maximum Power Point (MPP) : adalah titik daya output maksimum, yang sering dinyatakan sebagai knee dari kurva I-V. Suber: Quaschning, 2005 Gambar 2.3 Kurva I-V 2.4 Komponen-komponen PLTS Panel (Modul) Surya Panel surya merupakan komponen yang berfungsi untuk mengubah energi sinar matahari menjadi energi listrik. Panel ini tersusun dari beberapa sel surya yang dihubungkan secara seri maupun parallel. Sebuah panel surya umumnya terdiri dari sel surya, tergantung ukuran panel (Quaschning, 2005). Gambar dari Panel-panel Surya ini akan membentuk suatu Array. 11

9 Sumber : Patel, 1999 Gambar 2.4 Hubungan sel surya, panel surya dan array Patel, 2006: 143 dalam Afifudin dan Hananto, 2012 mengemukakan bahwa solar cell atau sel photovoltaic adalah sebuah alat semikonduktor yang terdiri dari sebagian besar dioda p-n junction dan dengan adanya cahaya matahari mampu menciptakan energi listrik. Perubahan ini disebut efek photovoltaic. Bidang riset berhubungan dengan sel surya dikenal sebagai photovoltaics. Semakin majunya teknologi dalam pembuatan panel surya, sehingga setiap panel surya memiliki jenis dan bentuk susunan atom-atom penyusun yang berfariasi yaitu: 1. Monokristal Silikon (Mono-crystalline Silicon) Monokristal Silikon merupakan panel yang paling efisien yang dihasilkan dengan teknologi terkini dan menghasilkan daya listrik persatuan luas yang paling tinggi. Monokristal dirancang untuk penggunaan yang memerlukan konsumsi listrik besar pada tempat-tempat yang beriklim ekstrim dan dengan kondisi alam yang sangat ganas. Panel surya ini memiliki efisiensi sampai dengan 14-18%. Kelemahan dari panel jenis ini adalah tidak akan berfungsi baik ditempat yang cahaya mataharinya kurang, sehingga efisiensinya akan turun drastis dalam cuaca berawan (Patel, 2006: 143 dalam Afifudin dan Hananto, 2012). 12

10 Sumber : Energy Informative Gambar 2.5 Panel surya jenis monokristal silikon 2. Polikristal Silikon (Poly-crystalline Silicon) Polikristal Silikon merupakan panel surya yang memiliki susunan kristal acak karena dipabrikasi dengan proses pengecoran. Tipe ini memerlukan luas permukaan yang lebih besar dibandingkan dengan jenis monokristal untuk menghasilkan daya listrik yang sama. Panel surya jenis ini memiliki efisiensi lebih rendah dibandingkan tipe monokristal, sehingga memiliki harga yang cenderung lebih rendah (Patel, 2006: 153 dalam Afifudin dan Hananto, 2012). Panel surya jenis ini tidak seefisiensi jenis Monokristal Silikon, karena efisiensinya sekitar 13-16%. Sumber : Energy Informative Gambar 2.6 Panel surya jenis polikristal silikon 13

11 3. Thin Film Solar Cell (TFSC) Thin Film Solar Cell ini diproduksi dengan cara menambahkan satu atau beberapa lapisan material sel surya yang tipis ke dalam lapisan dasar. Sel surya jenis ini sangat tipis karenanya sangat ringan dan fleksibel. Jenis ini dikenal juga dengan nama TFPV (Thin Film Photovoltaic) dan memiliki efisiensi mencapai sekitar 7-13%. Sumber : Pagliaro, 2008 Gambar 2.7 Panel surya jenis Thin Film Solar Cell (TFSC) Panel sel surya thin film ini digolongkan menjadi beberapa bagian yaitu: a) Amorphous Silicon (a-si) Solar Cells Sel surya dengan bahan Amorphous Silicon ini, awalnya banyak diterapkan pada kalkulator dan jam tangan. Namun seiring dengan perkembangan teknologi pembuatan dan penerapannya menjadi semakin luas. Dengan teknik produksi yang disebut "stacking" (susun lapis), dimana beberapa lapis Amorphous Silicon ditumpuk membentuk sel surya, akan memberikan efisiensi yang lebih baik antara 6% - 8%. 14

12 b) Cadmium Telluride (CdTe) Solar Cells Sel surya jenis ini mengandung bahan Cadmium Telluride yang memiliki efisiensi lebih tinggi dari sel surya Amorphous Silicon, yaitu sekitar: 9% - 11%. c) Copper Indium Gallium Selenide (CIGS) Solar Cells Dibandingkan kedua jenis sel surya thin film di atas, CIGS sel surya memiliki efisiensi paling tinggi yaitu sekitar 10% - 12%. Selalin itu jenis ini tidak mengandung bahan berbahaya Cadmium seperti pada sel surya CdTe. Efisiensi sel surya η juga dapat dinyatakan dengan perbandingan antara daya listrik maksimum sel surya atau daya output yang dikeluarkan sel surya dengan daya pancaran (radiant) atau daya input yang berasal dari cahaya matahari pada sel surya (Afifudin dan Hananto, 2012): η = P MPP G x A x 100% Dimana : η = Menunjukan nilai efisiensi dalam persen (%) P MPP = Output yang dihasilkan panel surya (Wp) G = Intensitas irradiasi matahari (1000 w/m 2 ) A = Luas permukaan modul sel surya (m 2 ) Untuk mendapatkan keluaran energi listrik yang maksimal, dalam pengoperasian panel surya dipengaruhi oleh beberapa faktor yaitu: 1. Temperatur Panel surya akan beroperasi secara maksimum jika temperatur yang diterimanya tetap normal yaitu pada temperatur 25 o C. Kenaikan temperatur 15

13 lebih tinggi dari temperatur normal pada panel surya akan mempengaruhi berkurangnya teganga (Voc) yang dihasilkan oleh panel surya. Setiap kenaikan temperatur panel surya 1 o C dari suhu normalnya (25 o C) maka kinerja panel surya akan berkurang sekitar 0,5% pada total tenaga (daya) yang dihasilkan (Foster dkk., 2010). Untuk menghitung besarnya daya yang berkurang pada saat temperatur di sekitar panel surya mengalami kenaikan o C dari temperatur standarnya, dipergunakan rumus sebagai berikut: P saat t naik o C = 0,5% / o C x P MPP x kenaikan temperatur ( o C) Dimana : o P saat t naik C = Daya pada saat temperatur naik o C dari temperatur standarnya. P MPP = Daya keluaran maksimum panel surya (Wp) Daya keluaran maksimum panel surya pada saat temperaturnya naik menjadi t o C dari temperatur standarnya diperhitungkan dengan rumus sebagai berikut : P MPP saat naik menjadi t o C = P MPP - P saat t naik o C Dimana : P MPP saat naik menjadi t o C adalah daya keluaran maksimum panel surya pada saat temperatur di sekitar panel surya naik menjadi t o C dari temperatur standarnya. Faktor koreksi temperatur (Temperature Correction Factor) diperhitungkan dengan rumus sebagai berikut : TCF = P MPP saat naik menjadi t o C / P MPP

14 \ Sumber : Satwiko, 2012 Gambar 2.8 Pengaruh intensitas temperatur terhadap panel surya 2. Intensitas Cahaya Matahari Apabila jumlah energi cahaya matahari yang diterima sel surya berkurang atau intensitas cahayanya melemah, maka besar tegangan dan arus listrik yang dihasilkan juga akan menurun. Penurunan tegangan relatif lebih kecil dibandingkan penurunan arus listriknya (Satwiko, 2012). Sumber : Satwiko, 2012 Gambar 2.9 Pengaruh intensitas radiasi matahari terhadap panel surya 17

15 3. Orientasi Panel Surya (Array) Orientasi dari rangkaian panel surya (array) ke arah matahari adalah penting, agar panel surya (array) dapat menghasilkan energi maksimum. Misalnya, untuk lokasi yang terletak di belahan bumi Utara maka panel surya (array) sebaiknya diorientasikan ke Selatan. Begitu pula untuk lokasi yang terletak di belahan bumi Selatan maka panel surya (array) diorientasikan ke Utara (Foster dkk., 2010). 4. Sudut Kemiringan Panel Surya (Array) Sudut kemiringan memiliki dampak yang besar terhadap radiasi matahari di permukaan panel surya. Untuk sudut kemiringan tetap, daya maksimum selama satu tahun akan diperoleh ketika sudut kemiringan panel surya sama dengan lintang lokasi (Foster dkk., 2010). Misalnya panel surya terpasang pada Equator (latitude 0 o ) yang diletakkan mendatar (tilt angle = 0) akan menghasilkan energi maksimum. Sumber : Foster dkk., 2010 Gambar 2.10 Pemasangan panel surya dengan sudut kemiringan 18

16 5. Kecepatan Angin Bertiup Kecepatan tiupan angin disekitar lokasi sel surya dapat membantu mendinginkan permukaan temperatur kaca-kaca sel surya (Hardianto dan Rinaldi, 2012). 6. Keadaan Atmosfir Bumi Keadaan atmosfir bumi seperti berawan, mendung, jenis partikel debu udara, asap, uap air udara (Rh), kabut dan polusi sangat menentukan hasil maksimum arus listrik dari sel surya (Hardianto dan Rinaldi, 2012) Charge Controller Dalam (Massenger dan Ventre, 2005) untuk semua sistem dengan penyimpanan baterai, controller merupakan komponen yang sangat penting. Charge controller adalah perangkat elektronik yang digunakan untuk mengatur pengisian arus searah (DC) dari panel surya ke baterai dan mengatur penyaluran arus listrik dari baterai ke peralatan elektronik (beban). Charge controller mempunyai kemampuan untuk mendeteksi kapasitas pengisian baterai. Bila baterai sudah terisi penuh maka secara otomatis pengisian arus dari panel surya ke baterai terhenti. Dengan cara pendeteksianya adalah melalui monitor level tegangan baterai. Charge Controller akan mengisi baterai sampai level tegangan tertentu, kemudian apabila level tegangan telah mencapai level terendah, maka baterai akan diisi kembali. Charge Controller adalah indikator yang akan memberikan informasi mengenai kondisi baterai sehingga pengguna PLTS dapat mengendalikan konsumsi energi menurut ketersediaan listrik yang terdapat di dalam baterai. Saat ini banyak perangkat Charge Controller yang beredar di pasaran yang memiliki efisiensi sekitar 95 % (Massenger dan Ventre, 2005). 19

17 2.4.3 Inverter Inverter merupakan peralatan elektronika yang berfungsi untuk mengubah arus listrik searah (Direct Current) dari panel surya atau baterai menjadi arus listrik bolak-balik (Alternating Current) dengan frekuensi 50Hz/60Hz. Pemilihan inverter yang tepat untuk aplikasi tertentu, tergantung pada kebutuhan beban dan juga tergantung pada apakah inverter akan menjadi bagian dari sistem yang terhubung ke jaringan listrik atau sistem yang berdiri sendiri. Efisiensi inverter pada saat pengoperasian adalah sebesar 90% (Foster dkk., 2010). Inverter memiliki keluaran gelombang yang berbeda-beda dan dapat mempengaruhi baik dan tidaknya inverter itu sendiri. Berdasarkan bentuk gelombang yang dihasilkan, inverter dikelompokkan menjadi tiga yaitu inverter dengan gelombang keluaran berbentuk square, modified, dan true sine wave. Inverter yang terbaik adalah yang mampu menghasilkan gelombang sinusoida murni atau true sine wave yaitu bentuk gelombang yang sama dengan bentuk gelombang dari jaringan listrik PLN (grid utility). Sumber : Foster dkk., 2010 Gambar 2.11 Output gelombang inverter Baterai Baterai adalah media penyimpanan yang digunakan dalam sistem PLTS yang berfungsi menyimpan energi listrik yang dihasilkan oleh panel surya pada 20

18 siang hari, untuk kemudian dipergunakan pada malam hari dan pada saat cuaca mendung. Baterai yang dipergunakan pada PLTS mengalami proses siklus mengisi (Charging) dan mengosongkan (Discharging), tergantung pada ada atau tidaknya sinar matahari. Selama ada sinar matahari, panel surya akan menghasilkan energi listrik. Apabila energi listrik yang dihasilkan tersebut melebihi kebutuhan bebannya, maka energi listrik tersebut akan segera dipergunakan untuk mengisi baterai. Sebaliknya selama matahari tidak ada, permintaan energi listrik akan disuplai oleh baterai. Proses pengisian dan pengosongan ini disebut satu siklus baterai. Menurut (Foster, 2010) ada tiga fungsi utama dari baterai pada sistem PLTS adalah: 1. Menyimpan listrik yang dihasilkan oleh sistem PLTS. 2. Untuk memenuhi pasokan daya listrik yang diperlukan untuk mengoperasikan beban (misalnya, pencahayaan, memompa) dan untuk diaplikasikan pengguna akhirlainya. 3. Sebagai penstabil tegangan pada sistem kelistrikan PLTS. Baterai menghaluskan tegangan output atau mengurangi terjadinya tegangan lebih sesaat (transient tegangan) yang mungkin terjadi pada sistem kelistrikan PLTS. Tegangan lebih transien dapat terjadi dalam sistem kelistrian PLTS (ini dapat terjadi dan membuat kerusakan pada sirkuit). Pada saat terjadi tegangan lebih baterai akan menyerap sebagian tegangan tersebut dan dapat mengurangi terjadinya tegangan lebih sehingga komponen solid-state terhindar dari yang rusak yang diakibatkan oleh hal tersebut. Saat ini banyak tersedia jenis baterai isi ulang cocok untuk diaplikakan pada sistem PLTS. Meskipun ada beberapa jenis baterai yang diproduksi dengan kemajuan teknologi, akan tetapi baterai asam-timbal masih yang paling umum digunakan untuk media penyimpanan yang relatif ekonomis dan mempunyai efisiensi tinggi dan daya penyimpanan energi listrik yang besar yang memiliki Efisiensi keseluruhan pengisian dan pemakaian baterai asam-timbal sekitar 90 %. Hal tersebut menjadikan baterai jenis asam-timbal menjadi media 21

19 penyimpan yang baik digunakan pada sistem PLTS untuk beberapa tahun ke depan (Massenger dan Ventre, 2005). 2.5 Sistem PLTS Sistem PLTS dapat dibedakan sesuai dengan pengoperasian PLTS itu sendiri. Sistem tersebut umumnya diklasifikasikan sesuai dengan kebutuhan, fungsi operasional, konfigurasi komponen, dan bagaimana PLTS terhubung ke sumber daya listrik lain (Florida Solar Energy Center (FSEC), 2007). yaitu PLTS yang berdiri sendiri (Stand Alone) dan PLTS yang terhubung dengan jaringan listrik (PLTS-Grid Connected) PLTS Stand-Alone Sistem PLTS Stand-Alone atau yang berdiri sendiri dirancang beroperasi mandiri untuk mensuplay arus listrik ke beban DC atau AC. Jenis sistem ini dapat diaktifkan oleh array photovoltaic saja, atau dapat menggunakan sumber tambahan energi lain, seperti : air, angin dan mesin diesel. Baterai digunakan pada kebanyakan sistem PLTS yang berdiri sendiri untuk penyimpanan energi. Sumber : Nafeh, 2009 Gambar 2.12 Sistem PLTS yang berdiri sendiri (Stand Alone) 22

20 2.5.2 PLTS Grid-Connected Sistem PLTS Grid-Connected pada dasarnya adalah menggabungkan PLTS dengan jaringan listrik (PLN). Komponen utama dalam sistem ini adalah inverter, atau Power Conditioning Unit (PCU). Inverter inilah yang berfungsi untuk mengubah daya DC yang dihasilkan oleh PLTS menjadi daya AC sesuai dengan persyaratan dari jaringan listrik yang terhubung (utility grid). Sumber : Patel, 2006 Gambar 2.13 Sistem PLTS Grid-Connected 2.6 Kapasitas Komponen PLTS Jumlah Panel Surya Daya (Wpeak) yang dibangkitkan PLTS untuk memenuhi kebutuhan energi, diperhitungkan dengan persamaan-persamaan sebagai berikut (Nafeh, 2009): Menghitung Area Array (PV Area) berikut: Area array (PV Area) diperhitungkan dengan menggunakan rumus sebagai 23

21 PV Area = E L G av x η PV x TCF x η out Dimana: E L G av PV TCF out = Pemakaian energi (kwh/hari) = Insolasi harian matahari rata-rata (kwh/m 2 /hari) = Efisiensi panel surya = Temperature correction factor = Efisiensi keseluruhan PLTS Dari perhitungan area array, maka besar daya yang dibangkitkan area array panel surya (Watt peak) dapat diperhitungkan dengan rumus sebagai berikut: P Watt peak = area array x PSI x η PV Dimana: PSI (Peak Solar Insolation) = adalah 1000 W/m 2 PV = Efisiensi panel surya Selanjutnya dengan besar daya yang dibangkitkan area array panel surya (Wpeak), maka jumlah penel surya yang diperlukan, diperhitungkan dengan rumus sebagai berikut: Jumlah Panel Surya = P Watt peak P MPP Dimana: P Watt peak P MPP = Daya yang dibangkitkan (Wp) = Daya maksimum keluaran (output) panel surya (W) 24

22 Untuk memperoleh besar tegangan, arus dan daya yang sesuai dengan kebutuhan, maka penel-panel surya tersebut harus dikombinasikan secara seri dan parallel dengan aturan sebagai berikut: 1) Untuk memperoleh tegangan keluaran yang lebih besar dari tegangan keluaran panel surya, maka dua buah (lebih) panel surya harus dihubungkan secara seri. 2) Untuk memperoleh arus keluaran yang lebih besar dari aurs keluaran panel surya, maka dua buah (lebih) panel surya harus dihubungkan secara paralel. 3) Untuk memperoleh daya keluaran yang lebih besar dari daya keluaran panel surya dengan tegangan yang konstan maka penel-panel surya haurs dihubungkan secara seri dan paralel. Sumber: Kaltschmitt dkk., 2007 Gambar 2.14 Hubungan panel surya Kapasitas Charge Controller Charge controller diperlukan untuk melindungi baterai dari pengosongan dan pengisian berlebih. Untuk menghitung kepasitas charge controller yang akan digunakan dalam sistem PLTS stand-alone, haruslah mengetahui karakteristik dan spesifikasi dari panel surya yang akan digunakan, yaitu dengan memperhatikan angka Isc (short circuit current) pada panel surya dan nilainya dikalikan dengan jumlah panel surya yang akan digunakan. 25

23 2.6.3 Kapasitas Inverter Pada pemilihan inverter, diupayakan kapasitas kerjanya mendekati kapasitas daya yang dilayani. Hal ini agar efisiensi kerja inverter menjadi maksimal (Foster dkk., 2010) Kapasitas Baterai Besar kapasitas baterai yang dibutuhkan untuk memenuhi konsumsi energi harian menurut Lynn (2010), dapat dihitung dengan rumus sebagai berikut : C = N x Ed / DOD x η inv Dimana : C = Kapasitas baterai (Ah) N = Hari-hari otonomi (hari) Ed = Konsumsi energi harian (kwh) DOD = Kedalaman maksimum untuk pengosongan baterai η = Efisiensi inverter 26

BAB I PENDAHULUAN. Energi listrik adalah energi yang mudah dikonversikan ke dalam bentuk

BAB I PENDAHULUAN. Energi listrik adalah energi yang mudah dikonversikan ke dalam bentuk BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik adalah energi yang mudah dikonversikan ke dalam bentuk energi yang lain. Saat ini kebutuhan energi, khususnya energi listrik terus meningkat dengan pesat,

Lebih terperinci

Available online at Website

Available online at Website Available online at Website http://ejournal.undip.ac.id/index.php/rotasi PENGARUH SUHU PERMUKAAN PHOTOVOLTAIC MODULE 50 WATT PEAK TERHADAP DAYA KELUARAN YANG DIHASILKAN MENGGUNAKAN REFLEKTOR DENGAN VARIASI

Lebih terperinci

Muchammad, Eflita Yohana, Budi Heriyanto. Jurusan Teknik Mesin Fakultas Teknik Universitas Diponegoro. Phone: , FAX: ,

Muchammad, Eflita Yohana, Budi Heriyanto. Jurusan Teknik Mesin Fakultas Teknik Universitas Diponegoro. Phone: , FAX: , Pengaruh Suhu Permukaan Photovoltaic Module 50 Watt Peak Terhadap Daya Keluaran yang Dihasilkan Menggunakan Reflektor Dengan Variasi Sudut Reflektor 0 0, 50 0, 60 0, 70 0, 80 0. Muchammad, Eflita Yohana,

Lebih terperinci

pusat tata surya pusat peredaran sumber energi untuk kehidupan berkelanjutan menghangatkan bumi dan membentuk iklim

pusat tata surya pusat peredaran sumber energi untuk kehidupan berkelanjutan menghangatkan bumi dan membentuk iklim Ari Susanti Restu Mulya Dewa 2310100069 2310100116 pusat peredaran pusat tata surya sumber energi untuk kehidupan berkelanjutan menghangatkan bumi dan membentuk iklim Tanpa matahari, tidak akan ada kehidupan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1 PENDAHULUAN Pada bab ini akan menjelaskan pengertian energi surya, potensi energi surya di Indonesia, teori tentang panel surya, komponen - komponen utama Pembangkit Listrik

Lebih terperinci

PENGARUH FILTER WARNA KUNING TERHADAP EFESIENSI SEL SURYA ABSTRAK

PENGARUH FILTER WARNA KUNING TERHADAP EFESIENSI SEL SURYA ABSTRAK PENGARUH FILTER WARNA KUNING TERHADAP EFESIENSI SEL SURYA ABSTRAK Penelitian ini bertujuan untuk mengetahui pengaruh filter warna kuning terhadap efesiensi Sel surya. Dalam penelitian ini menggunakan metode

Lebih terperinci

INTENSITAS CAHAYA MATAHARI TERHADAP DAYA KELUARAN PANEL SEL SURYA

INTENSITAS CAHAYA MATAHARI TERHADAP DAYA KELUARAN PANEL SEL SURYA INTENSITAS CAHAYA MATAHARI TERHADAP DAYA KELUARAN PANEL SEL SURYA Hasyim Asy ari 1, Jatmiko 2, Angga 3 1,2,3 Jurusan Teknik Elektro, Fakultas Teknik, Universitas Muhammadiyah Surakarta Jl. A. Yani Tromol

Lebih terperinci

STUDI TERHADAP UNJUK KERJA PEMBANGKIT LISTRIK TENAGA SURYA 1,9 KW DI UNIVERSITAS UDAYANA BUKIT JIMBARAN

STUDI TERHADAP UNJUK KERJA PEMBANGKIT LISTRIK TENAGA SURYA 1,9 KW DI UNIVERSITAS UDAYANA BUKIT JIMBARAN STUDI TERHADAP UNJUK KERJA PEMBANGKIT LISTRIK TENAGA SURYA 1,9 KW DI UNIVERSITAS UDAYANA BUKIT JIMBARAN I.W.G.A Anggara 1, I.N.S. Kumara 2, I.A.D Giriantari 3 1,2,3 Jurusan Teknik Elektro, Fakultas Teknik,

Lebih terperinci

PERBEDAAN EFISIENSI DAYA SEL SURYA ANTARA FILTER WARNA MERAH, KUNING DAN BIRU DENGAN TANPA FILTER

PERBEDAAN EFISIENSI DAYA SEL SURYA ANTARA FILTER WARNA MERAH, KUNING DAN BIRU DENGAN TANPA FILTER PERBEDAAN EFISIENSI DAYA SEL SURYA ANTARA FILTER WARNA MERAH, KUNING DAN BIRU DENGAN TANPA FILTER Oleh: Muhammad Anwar Widyaiswara BDK Manado ABSTRAK Penelitian ini bertujuan untuk mengetahui perbedaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Sel Surya Sel surya di definisikan sebagai teknologi yang menghasilkan listrik dc dari suatu bahan semikonduktor ketika dipaparkan oleh cahaya. Selama bahan semikonduktor tersebut

Lebih terperinci

PENGARUH SERAPAN SINAR MATAHARI OLEH KACA FILM TERHADAP DAYA KELUARAN PLAT SEL SURYA

PENGARUH SERAPAN SINAR MATAHARI OLEH KACA FILM TERHADAP DAYA KELUARAN PLAT SEL SURYA PENGARUH SERAPAN SINAR MATAHARI OLEH KACA FILM TERHADAP DAYA KELUARAN PLAT SEL SURYA Ricko Mahindra*, Awitdrus, Usman Malik Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau

Lebih terperinci

12/18/2015 ENERGI BARU TERBARUKAN ENERGI BARU TERBARUKAN ENERGI BARU TERBARUKAN

12/18/2015 ENERGI BARU TERBARUKAN ENERGI BARU TERBARUKAN ENERGI BARU TERBARUKAN Demi matahari dan cahaya siangnya. (QS Asy Syams :1) Dialah yang menjadikan matahari bersinar dan bulan bercahaya dan ditetapkan-nya manzilah-manzilah (tempattempat) bagi perjalanan bulan itu, supaya kamu

Lebih terperinci

STUDI ORIENTASI PEMASANGAN PANEL SURYA POLY CRYSTALLINE SILICON DI AREA UNIVERSITAS RIAU DENGAN RANGKAIAN SERI-PARALEL

STUDI ORIENTASI PEMASANGAN PANEL SURYA POLY CRYSTALLINE SILICON DI AREA UNIVERSITAS RIAU DENGAN RANGKAIAN SERI-PARALEL STUDI ORIENTASI PEMASANGAN PANEL SURYA POLY CRYSTALLINE SILICON DI AREA UNIVERSITAS RIAU DENGAN RANGKAIAN SERI-PARALEL Ridho Ravita Wardy, Krisman, Cahyo Budi Nugroho Mahasiswa Program Studi S1 Fisika

Lebih terperinci

PANEL SURYA dan APLIKASINYA

PANEL SURYA dan APLIKASINYA PANEL SURYA dan APLIKASINYA Suplai energi surya dari sinar matahari yang diterima oleh permukaan bumi sebenarnya sangat luar biasa besarnya yaitu mencapai 3 x 10 24 joule pertahun. Jumlah energi sebesar

Lebih terperinci

BAB III PERANCANGAN SISTEM PEMBANGKIT LISTRIK TENAGA SURYA (PLTS) SEBAGAI CATU DAYA PADA BTS MAKROSEL TELKOMSEL

BAB III PERANCANGAN SISTEM PEMBANGKIT LISTRIK TENAGA SURYA (PLTS) SEBAGAI CATU DAYA PADA BTS MAKROSEL TELKOMSEL BAB III PERANCANGAN SISTEM PEMBANGKIT LISTRIK TENAGA SURYA (PLTS) SEBAGAI CATU DAYA PADA BTS MAKROSEL TELKOMSEL 3.1 Survey Lokasi Langkah awal untuk merancang dan membuat Pembangkit Listrik Tenaga Surya

Lebih terperinci

DASAR TEORI. Kata kunci: grid connection, hybrid, sistem photovoltaic, gardu induk. I. PENDAHULUAN

DASAR TEORI. Kata kunci: grid connection, hybrid, sistem photovoltaic, gardu induk. I. PENDAHULUAN PERANCANGAN HYBRID SISTEM PHOTOVOLTAIC DI GARDU INDUK BLIMBING-MALANG Irwan Yulistiono 1, Teguh Utomo, Ir., MT. 2, Unggul Wibawa, Ir., M.Sc. 3 ¹Mahasiswa Teknik Elektro, ² ³Dosen Teknik Elektro, Universitas

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Energi Surya Energi surya atau matahari telah dimanfaatkan di banyak belahan dunia dan jika dieksplotasi dengan tepat, energi ini berpotensi mampu menyediakan kebutuhan konsumsi

Lebih terperinci

Analisis Performa Modul Solar Cell Dengan Penambahan Reflector Cermin Datar

Analisis Performa Modul Solar Cell Dengan Penambahan Reflector Cermin Datar Analisis Performa Modul Solar Cell Dengan Penambahan Reflector Cermin Datar Made Sucipta1,a*, Faizal Ahmad2,b dan Ketut Astawa3,c 1,2,3 Program Studi Teknik Mesin, Fakultas Teknik, Universitas Udayana,

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dengan meningkatnya kebutuhan akan energi listrik yang terus meningkat dan semakin menipisnya cadangan minyak bumi maka dibutuhkan pula sumber-sumber energi listrik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas mengenai penjelasan dari sel surya, struktur, dan cara kerjanya, membahas mengenai fitur dan fungsi Arduino, LDR, Motor servo, Battery Charge Regulator (BCR),

Lebih terperinci

PENINGKATAN EFISIENSI MODUL SURYA 50 WP DENGAN PENAMBAHAN REFLEKTOR

PENINGKATAN EFISIENSI MODUL SURYA 50 WP DENGAN PENAMBAHAN REFLEKTOR PENINGKATAN EFISIENSI MODUL SURYA 50 WP DENGAN PENAMBAHAN REFLEKTOR Muchammad dan Hendri Setiawan Jurusan Teknik Mesin Fakultas Teknik Universitas Diponegoro Kampus Undip Tembalang, Semarang 50275, Indonesia

Lebih terperinci

DAYA KELUARAN PANEL SURYA SILIKON POLI KRISTALIN PADA CUACA NORMAL DAN CUACA BERASAP DENGAN SUSUNAN ARRAY PARALEL

DAYA KELUARAN PANEL SURYA SILIKON POLI KRISTALIN PADA CUACA NORMAL DAN CUACA BERASAP DENGAN SUSUNAN ARRAY PARALEL DAYA KELUARAN PANEL SURYA SILIKON POLI KRISTALIN PADA CUACA NORMAL DAN CUACA BERASAP DENGAN SUSUNAN ARRAY PARALEL 1 Andrian Budi Pratomo, 2 Erwin, 3 Awitdrus 1 Mahasiswa Jurusan Fisika 2 Bidang Medan Elektromagnetik

Lebih terperinci

Uji Karakteristik Sel Surya pada Sistem 24 Volt DC sebagai Catudaya pada Sistem Pembangkit Tenaga Hybrid

Uji Karakteristik Sel Surya pada Sistem 24 Volt DC sebagai Catudaya pada Sistem Pembangkit Tenaga Hybrid 208 Satwiko S / Uji Karakteristik Sel Surya Pada Sistem 24 Volt Dc Sebagai Catudaya Pada Sistem Pembangkit Tenaga Uji Karakteristik Sel Surya pada Sistem 24 Volt DC sebagai Catudaya pada Sistem Pembangkit

Lebih terperinci

SOAL DAN TUGAS PEMBANGKIT LISTRIK TENAGA SURYA. Mata Kuliah Manajemen Energi & Teknologi Dosen : Totok Herwanto

SOAL DAN TUGAS PEMBANGKIT LISTRIK TENAGA SURYA. Mata Kuliah Manajemen Energi & Teknologi Dosen : Totok Herwanto SOAL DAN TUGAS PEMBANGKIT LISTRIK TENAGA SURYA Mata Kuliah Manajemen Energi & Teknologi Dosen : Totok Herwanto DISUSUN OLEH : IID MOH. ABDUL WAHID 250120140017 MAGISTER ILMU LINGKUNGAN UNIVERSITAS PADJAJARAN

Lebih terperinci

PEMANFAATAN SEL SURYA DAN LAMPU LED UNTUK PERUMAHAN

PEMANFAATAN SEL SURYA DAN LAMPU LED UNTUK PERUMAHAN PEMANFAATAN SEL SURYA DAN LAMPU LED UNTUK PERUMAHAN Jatmiko, Hasyim Asy ari, Mahir Purnama Jurusan Teknik Elektro, Fakultas Teknik Universitas Muhammadiyah Surakarta Jl. A. Yani Tromol Pos 1 Pabelan Kartasura,

Lebih terperinci

Sistem Pembangkit Listrik Alternative Menggunakan Panel Surya Untuk Penyiraman Kebun Salak Di Musim Kemarau

Sistem Pembangkit Listrik Alternative Menggunakan Panel Surya Untuk Penyiraman Kebun Salak Di Musim Kemarau Seminar Nasional Teknologi Informasi dan Komunikasi Terapan (SEMANTIK) 2015 209 Sistem Pembangkit Listrik Alternative Menggunakan Panel Surya Untuk Penyiraman Kebun Salak Di Musim Kemarau Muhammad Suyanto*

Lebih terperinci

LAPORAN PRAKTIKUM ENERGI PERTANIAN PENGUKURAN TEGANGAN DAN ARUS DC PADA SOLAR CELL

LAPORAN PRAKTIKUM ENERGI PERTANIAN PENGUKURAN TEGANGAN DAN ARUS DC PADA SOLAR CELL LAPORAN PRAKTIKUM ENERGI PERTANIAN PENGUKURAN TEGANGAN DAN ARUS DC PADA SOLAR CELL Kelompok 4: 1. Andi Hermawan (05021381419085) 2. Debora Geovanni (05021381419072) 3. Ruby Hermawan (05021381419073) 4.

Lebih terperinci

BAB III DESKRIPSI DAN PERENCANAAN RANCANG BANGUN SOLAR TRACKER

BAB III DESKRIPSI DAN PERENCANAAN RANCANG BANGUN SOLAR TRACKER BAB III DESKRIPSI DAN PERENCANAAN RANCANG BANGUN SOLAR TRACKER 3.1 Deskripsi Plant Sistem solar tracker yang penulis buat adalah sistem yang bertujuan untuk mengoptimalkan penyerapan cahaya matahari pada

Lebih terperinci

DESAIN SISTEM HIBRID PHOTOVOLTAIC-BATERAI MENGGUNAKAN BI-DIRECTIONAL SWITCH UNTUK CATU DAYA KELISTRIKAN RUMAH TANGGA 900VA, 220 VOLT, 50 HZ

DESAIN SISTEM HIBRID PHOTOVOLTAIC-BATERAI MENGGUNAKAN BI-DIRECTIONAL SWITCH UNTUK CATU DAYA KELISTRIKAN RUMAH TANGGA 900VA, 220 VOLT, 50 HZ G.17 DESAIN SISTEM HIBRID PHOTOVOLTAICBATERAI MENGGUNAKAN BIDIRECTIONAL SWITCH UNTUK CATU DAYA KELISTRIKAN RUMAH TANGGA 900VA, 220 VOLT, 50 HZ Soedibyo 1*, Dwiana Hendrawati 2 1 Jurusan Teknik Elektro,

Lebih terperinci

ENERGI TERBARUKAN DENGAN MEMANFAATKAN SINAR MATAHARI UNTUK PENYIRAMAN KEBUN SALAK. Subandi 1, Slamet Hani 2

ENERGI TERBARUKAN DENGAN MEMANFAATKAN SINAR MATAHARI UNTUK PENYIRAMAN KEBUN SALAK. Subandi 1, Slamet Hani 2 ENERGI TERBARUKAN DENGAN MEMANFAATKAN SINAR MATAHARI UNTUK PENYIRAMAN KEBUN SALAK Subandi 1, Slamet Hani 2 1,2 Jurusan Teknik Elektro Institut Sains & Teknologi AKPRIND Yogyakarta Kampus ISTA Jl. Kalisahak

Lebih terperinci

JOBSHEET SENSOR CAHAYA (SOLAR CELL)

JOBSHEET SENSOR CAHAYA (SOLAR CELL) JOBSHEET SENSOR CAHAYA (SOLAR CELL) A. TUJUAN 1. Merancang sensor sel surya terhadap besaran fisis. 2. Menguji sensor sel surya terhadap besaran fisis. 3. Menganalisis karakteristik sel surya. B. DASAR

Lebih terperinci

OPTIMALISASI TEGANGAN KELUARAN DARI SOLAR CELL MENGGUNAKAN LENSA PEMFOKUS CAHAYA MATAHARI

OPTIMALISASI TEGANGAN KELUARAN DARI SOLAR CELL MENGGUNAKAN LENSA PEMFOKUS CAHAYA MATAHARI OPTIMALISASI TEGANGAN KELUARAN DARI SOLAR CELL MENGGUNAKAN LENSA PEMFOKUS CAHAYA MATAHARI Oleh: Faslucky Afifudin 1, Farid Samsu Hananto 2 ABSTRAK: Studi optimalisasi tegangan keluaran dari solar sel menggunakan

Lebih terperinci

TINJAUAN PUSTAKA. Efek photovoltaic pertama kali ditemukan oleh ahli Fisika berkebangsaan

TINJAUAN PUSTAKA. Efek photovoltaic pertama kali ditemukan oleh ahli Fisika berkebangsaan 4 II. TINJAUAN PUSTAKA 2.1. Perkembangan Sel Surya Efek photovoltaic pertama kali ditemukan oleh ahli Fisika berkebangsaan Perancis Alexandre Edmond Becquerel pada tahun 1839. Tahun 1876, William Grylls

Lebih terperinci

ENERGI SURYA DAN PEMBANGKIT LISTRIK TENAGA SURYA. TUGAS ke 5. Disusun Untuk Memenuhi Salah Satu Tugas Mata Kuliah Managemen Energi dan Teknologi

ENERGI SURYA DAN PEMBANGKIT LISTRIK TENAGA SURYA. TUGAS ke 5. Disusun Untuk Memenuhi Salah Satu Tugas Mata Kuliah Managemen Energi dan Teknologi ENERGI SURYA DAN PEMBANGKIT LISTRIK TENAGA SURYA TUGAS ke 5 Disusun Untuk Memenuhi Salah Satu Tugas Mata Kuliah Managemen Energi dan Teknologi Oleh : ZUMRODI NPM. : 250120150017 MAGISTER ILMU LINGKUNGAN

Lebih terperinci

NASKAH PUBLIKASI DESAIN SISTEM PARALEL ENERGI LISTRIK ANTARA SEL SURYA DAN PLN UNTUK KEBUTUHAN PENERANGAN RUMAH TANGGA

NASKAH PUBLIKASI DESAIN SISTEM PARALEL ENERGI LISTRIK ANTARA SEL SURYA DAN PLN UNTUK KEBUTUHAN PENERANGAN RUMAH TANGGA NASKAH PUBLIKASI DESAIN SISTEM PARALEL ENERGI LISTRIK ANTARA SEL SURYA DAN PLN UNTUK KEBUTUHAN PENERANGAN RUMAH TANGGA Diajukan oleh: FERI SETIA PUTRA D 400 100 058 JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK

Lebih terperinci

Sistem PLTS Off Grid Komunal

Sistem PLTS Off Grid Komunal PT. REKASURYA PRIMA DAYA Jl. Terusan Jakarta, Komp Ruko Puri Dago no 342 kav.31, Arcamanik, Bandung 022-205-222-79 Sistem PLTS Off Grid Komunal PREPARED FOR: CREATED VALID UNTIL 2 2 mengapa menggunakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 State of The Art Review on Application The Feasibility of Renewable Energy

BAB II TINJAUAN PUSTAKA. 2.1 State of The Art Review on Application The Feasibility of Renewable Energy 6 BAB II TINJAUAN PUSTAKA 2.1 State of The Art Review on Application The Feasibility of Renewable Energy Case Study Feasibility Analysis of Renewable Energy Supply Options for Small to Medium-Sized Tourist

Lebih terperinci

Perencanaan Pembangkit Listrik Tenaga Surya Secara Mandiri Untuk Rumah Tinggal

Perencanaan Pembangkit Listrik Tenaga Surya Secara Mandiri Untuk Rumah Tinggal Perencanaan Pembangkit Listrik Tenaga Surya Secara Mandiri Untuk Rumah Tinggal Sandro Putra 1) ; Ch. Rangkuti 2) 1), 2) Jurusan Teknik Mesin, Fakultas Teknologi Industri, Universitas Trisakti E-mail: xsandroputra@yahoo.co.id

Lebih terperinci

Sistem PLTS OffGrid. TMLEnergy. TMLEnergy Jl Soekarno Hatta no. 541 C, Bandung, Jawa Barat. TMLEnergy. We can make a better world together CREATED

Sistem PLTS OffGrid. TMLEnergy. TMLEnergy Jl Soekarno Hatta no. 541 C, Bandung, Jawa Barat. TMLEnergy. We can make a better world together CREATED TMLEnergy TMLEnergy Jl Soekarno Hatta no. 541 C, Bandung, Jawa Barat Jl Soekarno Hatta no. W: 541 www.tmlenergy.co.id C, Bandung, Jawa Barat W: www.tmlenergy.co.id E: marketing@tmlenergy.co.id E: marketing@tmlenergy.co.id

Lebih terperinci

NASKAH PUBLIKASI PEMANFAATAN SEL SURYA UNTUK KONSUMEN RUMAH TANGGA DENGAN BEBAN DC SECARA PARALEL TERHADAP LISTRIK PLN

NASKAH PUBLIKASI PEMANFAATAN SEL SURYA UNTUK KONSUMEN RUMAH TANGGA DENGAN BEBAN DC SECARA PARALEL TERHADAP LISTRIK PLN NASKAH PUBLIKASI PEMANFAATAN SEL SURYA UNTUK KONSUMEN RUMAH TANGGA DENGAN BEBAN DC SECARA PARALEL TERHADAP LISTRIK PLN Diajukan Oleh: ABDUR ROZAQ D 400 100 051 JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

KOMPARASI ENERGI SURYA DENGAN LAMPU HALOGEN TERHADAP EFISIENSI MODUL PHOTOVOLTAIC TIPE MULTICRYSTALLINE

KOMPARASI ENERGI SURYA DENGAN LAMPU HALOGEN TERHADAP EFISIENSI MODUL PHOTOVOLTAIC TIPE MULTICRYSTALLINE KOMPARASI ENERGI SURYA DENGAN LAMPU HALOGEN TERHADAP EFISIENSI MODUL PHOTOVOLTAIC TIPE MULTICRYSTALLINE Asrul, Reyhan Kyai Demak, Rustan Hatib Jurusan Teknik Mesin, Fakultas Teknik Universitas Tadulako

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Energi Matahari Matahari adalah salah satu contoh dari energi terbarukan (renewable energy) dan merupakan salah satu energi yang penting dalam kehidupan manusia. Berikut ini

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA 2.1 Tinjauan Mutakhir Terdapat beberapa penelitian yang mendukung Tugas Akhir ini, dimana pada penelitian tersebut dijadikan dasar acuan pada penelitian pada tugas akhir ini. Jurnal

Lebih terperinci

BAB II SEL SURYA. Simulator algoritma..., Wibeng Diputra, FT UI., 2008.

BAB II SEL SURYA. Simulator algoritma..., Wibeng Diputra, FT UI., 2008. BAB II SEL SURYA 2.1 PRINSIP KERJA SEL SURYA Sel surya bekerja berdasarkan efek fotoelektrik pada material semikonduktor untuk mengubah energi cahaya menjadi energi listrik. Berdasarkan teori Maxwell tentang

Lebih terperinci

5 HASIL DAN PEMBAHASAN

5 HASIL DAN PEMBAHASAN 5 HASIL DAN PEMBAHASAN 5.1 Rangkaian Elektronik Lampu Navigasi Energi Surya Rangkaian elektronik lampu navigasi energi surya mempunyai tiga komponen utama, yaitu input, storage, dan output. Komponen input

Lebih terperinci

NASKAH PUBLIKASI EVALUASI PENGGUNAAN SEL SURYA DAN INTENSITAS CAHAYA MATAHARI PADA AREA GEDUNG K.H. MAS MANSYUR SURAKARTA

NASKAH PUBLIKASI EVALUASI PENGGUNAAN SEL SURYA DAN INTENSITAS CAHAYA MATAHARI PADA AREA GEDUNG K.H. MAS MANSYUR SURAKARTA NASKAH PUBLIKASI EVALUASI PENGGUNAAN SEL SURYA DAN INTENSITAS CAHAYA MATAHARI PADA AREA GEDUNG K.H. MAS MANSYUR SURAKARTA Diajukan oleh : ANGGA AGUNG PRIHARTOMO D 400 060 067 JURUSAN ELEKTRO FAKULTAS TEKNIK

Lebih terperinci

Politeknik Negeri Sriwijaya

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA 2.1 Definisi Sumber Energi Menurut Purwadarminta energi adalah tenaga, atau gaya untuk berbuat sesuatu. Definisi ini merupakan perumusan yang lebih luas daripada pengertianpengertian

Lebih terperinci

BAB I PENDAHULUAN. dilihat dari teknologi yang terus berkembang [1]. seperti halnya teknologi mobil

BAB I PENDAHULUAN. dilihat dari teknologi yang terus berkembang [1]. seperti halnya teknologi mobil BAB I PENDAHULUAN 1.1 Latar Belakang. Ketergantungan dunia terhadap energi listrik sangat besar. Hal ini bisa dilihat dari teknologi yang terus berkembang [1]. seperti halnya teknologi mobil yang saat

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang Wida Lidiawati, 2014

BAB I PENDAHULUAN A. Latar Belakang Wida Lidiawati, 2014 BAB I PENDAHULUAN A. Latar Belakang Pertumbuhan penduduk dan ekonomi menyebabkan kebutuhan energi listrik saat ini terus mengalami peningkatan. Untuk memenuhi kebutuhan energi listrik tersebut eksploitasi

Lebih terperinci

PERANCANGAN ALAT PENYEMPROT HAMA TANAMAN TIPE KNAPSACK BERBASIS SOLAR PANEL 20 WP

PERANCANGAN ALAT PENYEMPROT HAMA TANAMAN TIPE KNAPSACK BERBASIS SOLAR PANEL 20 WP PERANCANGAN ALAT PENYEMPROT HAMA TANAMAN TIPE KNAPSACK BERBASIS SOLAR PANEL 20 WP Efrizal, Johan Sainima Program Studi Teknik mesin, Fakultas teknik, Universitas Muhammadiyah Tangerang, Jl. Perintis Kemerdekaan

Lebih terperinci

Pengaruh Intensitas Cahaya terhadap Efisiensi Sel Solar pada Mono- Crystalline Silikon Sel Solar. Abstract

Pengaruh Intensitas Cahaya terhadap Efisiensi Sel Solar pada Mono- Crystalline Silikon Sel Solar. Abstract Pengaruh Intensitas Cahaya terhadap Efisiensi Sel Solar pada Mono- Crystalline Silikon Sel Solar Rifani Magrissa Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Padang,

Lebih terperinci

Tenaga Surya sebagai Sumber Energi. Oleh: DR. Hartono Siswono

Tenaga Surya sebagai Sumber Energi. Oleh: DR. Hartono Siswono Tenaga Surya sebagai Sumber Energi Oleh: DR Hartono Siswono Energi memiliki peranan penting dalam kehidupan manusia Bangsa yang tidak menguasai energi akan menjadi bangsa yang tidak merdeka seutuhnya Adalah

Lebih terperinci

Tugas Makalah Pembangkit Listrik Tenaga Surya (PLTS)

Tugas Makalah Pembangkit Listrik Tenaga Surya (PLTS) Tugas Makalah Pembangkit Listrik Tenaga Surya (PLTS) DI SUSUN OLEH KELOMPOK IV 1. AHMAD 102504014 2. ACHMAD RIFAI 102504005 3. NURSI 102504022 4. RENRA RIANDA H. 102504034 5. MUKHLIS 092504015 JURUSAN

Lebih terperinci

BAB 1 PENDAHULUAN 1.1. Latar Belakang

BAB 1 PENDAHULUAN 1.1. Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Indonesia merupakan salah satu negara yang beriklim tropis karena terletak dikawasan khatulistiwa, dan setiap tahunnya mendapat intensitas cahaya matahari lebih banyak

Lebih terperinci

MEMBUAT SISTEM PEMBANGKIT LISTRIK GABUNGAN ANGIN DAN SURYA KAPASITAS 385 WATT. Mujiburrahman

MEMBUAT SISTEM PEMBANGKIT LISTRIK GABUNGAN ANGIN DAN SURYA KAPASITAS 385 WATT. Mujiburrahman MEMBUAT SISTEM PEMBANGKIT LISTRIK GABUNGAN ANGIN DAN SURYA KAPASITAS 385 WATT Mujiburrahman Fakultas Teknik Universitas Islam Kalimantan MAAB Jl. Adhyaksa No 2 Kayu Tangi Banjarmasin Email : Mujiburrahman.4646@gmail.com

Lebih terperinci

BAB I PENDAHULUAN. I.I Latar Belakang

BAB I PENDAHULUAN. I.I Latar Belakang BAB I PENDAHULUAN I.I Latar Belakang Perkembangan era globalisasi saat ini berdampak pada kebutuhan konsumsi energi listrik yang semakin meningkat. Saat ini energi listrik menjadi energi yang sangat dibutuhkan

Lebih terperinci

MODEL PEMBANGKIT LISTRIK TENAGA ANGIN DAN SURYA SKALA KECIL UNTUK DAERAH PERBUKITAN

MODEL PEMBANGKIT LISTRIK TENAGA ANGIN DAN SURYA SKALA KECIL UNTUK DAERAH PERBUKITAN MODEL PEMBANGKIT LISTRIK TENAGA ANGIN DAN SURYA SKALA KECIL UNTUK DAERAH PERBUKITAN Jurusan Teknik Elektro, Fakultas Teknik, Universitas Negeri Semarang Email: isdiyarto@yahoo.co.id Abstrak. Energi terbarukan

Lebih terperinci

BAB I PENDAHULUAN. yang akan di ubah menjadi energi listrik, dengan menggunakan sel surya. Sel

BAB I PENDAHULUAN. yang akan di ubah menjadi energi listrik, dengan menggunakan sel surya. Sel 1 BAB I PENDAHULUAN 1.1 Latar Belakang Energi Surya adalah sumber energi yang tidak akan pernah habis ketersediaannya dan energi ini juga dapat di manfaatkan sebagai energi alternatif yang akan di ubah

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Diagram Alir Penelitian Pada peneliatian ini langkah-langkah yang dilakukan mengacu pada diagram alir di bawah ini: Mulai Persiapan Alat dan Bahan Menentukan Sudut Deklinasi,

Lebih terperinci

BAB I PENDAHULUAN. sumber energi tenaga angin, sumber energi tenaga air, hingga sumber energi tenaga

BAB I PENDAHULUAN. sumber energi tenaga angin, sumber energi tenaga air, hingga sumber energi tenaga BAB I PENDAHULUAN 1.1 Latar Belakang Saat ini, penelitian mengenai sumber energi terbarukan sangat gencar dilakukan. Sumber-sumber energi terbarukan yang banyak dikembangkan antara lain sumber energi tenaga

Lebih terperinci

BAB I PENDAHULUAN 1.1 L atar Belakang Masalah

BAB I PENDAHULUAN 1.1 L atar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pembangkit-pembangkit tenaga listrik yang ada saat ini sebagian besar masih mengandalkan kepada sumber energi yang tidak terbarukan dalam arti untuk mendapatkannya

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Bab ini meliputi waktu dan tempat penelitian, alat dan bahan, rancangan alat, metode penelitian, dan prosedur penelitian. Pada prosedur penelitian akan dilakukan beberapa

Lebih terperinci

P R O P O S A L. Pembangkit Listrik Tenaga Surya (PLTS), LPG Generator System

P R O P O S A L. Pembangkit Listrik Tenaga Surya (PLTS), LPG Generator System P R O P O S A L CV. SURYA SUMUNAR adalah perusahaan swasta yang bergerak dibidang pengadaan dan penjualan energi listrik dengan menggunakan tenaga surya (matahari) sebagai sumber energi utamanya. Kami

Lebih terperinci

PENGARUH PERUBAHAN INTENSITAS MATAHARI TERHADAP DAYA KELUARAN PANEL SURYA

PENGARUH PERUBAHAN INTENSITAS MATAHARI TERHADAP DAYA KELUARAN PANEL SURYA Jurnal Pengabdian LPPM Untag Surabaya Nopember 2015, Vol. 01, No. 02, hal 193-202 PENGARUH PERUBAHAN INTENSITAS MATAHARI TERHADAP DAYA KELUARAN PANEL SURYA Subekti Yuliananda 1, Gede Sarya 2, RA Retno

Lebih terperinci

PENINGKATAN SUHU MODUL DAN DAYA KELUARAN PANEL SURYA DENGAN MENGGUNAKAN REFLEKTOR

PENINGKATAN SUHU MODUL DAN DAYA KELUARAN PANEL SURYA DENGAN MENGGUNAKAN REFLEKTOR PENINGKATAN SUHU MODUL DAN DAYA KELUARAN PANEL SURYA DENGAN MENGGUNAKAN REFLEKTOR I h s a n Dosen pada Jurusan Fisika Fakultas Sains dan Teknologi UIN Alauddin Makassar Email: ihsan_physics@ymail.com Abstract.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini di bahas mengenai teori-teori dasar yang digunakan untuk menunjang perencanaan dan pembuatan alat. 2.1. Pembangkit Listrik Tenaga Surya Pembangkit Listrik Tenaga Surya

Lebih terperinci

BAB II TINJAUAN UMUM

BAB II TINJAUAN UMUM BAB II TINJAUAN UMUM 2.1 Solar Cell Solar Cell atau panel surya adalah suatu komponen pembangkit listrik yang mampu mengkonversi sinar matahari menjadi arus listrik atas dasar efek fotovoltaik. untuk mendapatkan

Lebih terperinci

Analisis Sistem Fotovoltaik Menggunakan Respon Dinamika Induksi pada Lilitan Kawat Tembaga

Analisis Sistem Fotovoltaik Menggunakan Respon Dinamika Induksi pada Lilitan Kawat Tembaga Analisis Sistem Fotovoltaik Menggunakan Respon Dinamika Induksi pada Lilitan Kawat Tembaga Rocky Alfanz 1, Riza Sumaedi 2, Suhendar 3 Jurusan Teknik Elektro, Universitas Sultan Ageng Tirtayasa Jln. Jendral

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Balai Rakyat Arti balai dari KBBI merupakan gedung. Balai rakyat merupakan gedung pertemuan untuk kegiatan warga (seperti rapat, pesta dsb). Berikut beberapa perbandingan balai

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Sel Surya (Photovoltaic) Sel surya merupakan suatu sel yang terbuat dari semikonduktor dan berfungsi untuk mengkonversi cahaya matahari menjadi energi listrik.konversi energi

Lebih terperinci

II. Tinjauan Pustaka. A. State of the Art Review

II. Tinjauan Pustaka. A. State of the Art Review Perbandingan Penggunaan Motor DC Dengan AC Sebagai Penggerak Pompa Air Yang Disuplai Oleh Sistem Pembangkit Listrik Tenaga Surya (PLTS) Agus Teja Ariawan* Tjok. Indra. P, I. W. Arta. Wijaya. Jurusan Teknik

Lebih terperinci

Jurnal Ilmiah TEKNIKA ISSN: STUDI PENGARUH PENGGUNAAN BATERAI PADA KARAKTERISTIK PEMBANGKITAN DAYA SOLAR CELL 50 WP

Jurnal Ilmiah TEKNIKA ISSN: STUDI PENGARUH PENGGUNAAN BATERAI PADA KARAKTERISTIK PEMBANGKITAN DAYA SOLAR CELL 50 WP Jurnal Ilmiah TEKNIKA ISSN: 2355-3553 STUDI PENGARUH PENGGUNAAN BATERAI PADA KARAKTERISTIK PEMBANGKITAN DAYA SOLAR CELL 50 WP Ambo Intang Program Studi Teknik Mesin, Fakultas Teknik, Universitas Tamansiswa,

Lebih terperinci

Ribuan tahun yang silam radiasi surya dapat menghasilkan bahan bakar fosil yang dikenal dengan sekarang sebagai minyak bumi dan sangat bermanfaat bagi

Ribuan tahun yang silam radiasi surya dapat menghasilkan bahan bakar fosil yang dikenal dengan sekarang sebagai minyak bumi dan sangat bermanfaat bagi PENGISI BATERAI OTOMATIS DENGAN MENGGUNAKAN SOLAR CELL Nama: Heru Nugraha. E-mail: benjamin_hometown@yahoo.com Dosen Pembimbing 1: Prof. Busono Soerowirdjo., Ph.D. E-mail: busonos@gmail.com Dosen Pembimbing

Lebih terperinci

PEMANFAATAN SOLAR CELL DENGAN PLN SEBAGAI SUMBER ENERGI LISTRIK RUMAH TINGGAL ABSTRAKSI

PEMANFAATAN SOLAR CELL DENGAN PLN SEBAGAI SUMBER ENERGI LISTRIK RUMAH TINGGAL ABSTRAKSI Jurnal Emitor Vol. 14 No. 01 ISSN 1411-8890 PEMANFAATAN SOLAR CELL DENGAN PLN SEBAGAI SUMBER ENERGI LISTRIK RUMAH TINGGAL Hasyim Asy ari, Abdul Rozaq, Feri Setia Putra Jurusan Teknik Elektro Fakultas Teknik

Lebih terperinci

BAB I PENDAHULUAN. daya yang berpotensi sebagai sumber energi. Potensi sumber daya energi

BAB I PENDAHULUAN. daya yang berpotensi sebagai sumber energi. Potensi sumber daya energi 1 BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia secara geografis terletak di daerah tropis yaitu 6 0 LU 11 0 LS dan 95 0 BT 141 0 BT. Indonesia dianugerahi berbagai jenis sumber daya yang berpotensi sebagai

Lebih terperinci

I. PENDAHULUAN. Pengembangan energi ini di beberapa negara sudah dilakukan sejak lama.

I. PENDAHULUAN. Pengembangan energi ini di beberapa negara sudah dilakukan sejak lama. I. PENDAHULUAN A. Latar Belakang Seiring perkembangan zaman, ketergantungan manusia terhadap energi sangat tinggi. Sementara itu, ketersediaan sumber energi tak terbaharui (bahan bakar fosil) semakin menipis

Lebih terperinci

Muhamad Fahri Iskandar Teknik Mesin Dr. RR. Sri Poernomo Sari, ST., MT

Muhamad Fahri Iskandar Teknik Mesin Dr. RR. Sri Poernomo Sari, ST., MT ANALISIS INTENSITAS CAHAYA MATAHARI DENGAN SUDUT KEMIRINGAN PANEL SURYA PADA SOLAR WATER PUMP Muhamad Fahri Iskandar 24411654 Teknik Mesin Dr. RR. Sri Poernomo Sari, ST., MT Latar Belakang Konversi energi

Lebih terperinci

BAB II LANDASAN TEORI Defenisi Umum Solar Cell

BAB II LANDASAN TEORI Defenisi Umum Solar Cell 4 BAB II LANDASAN TEORI 2.1. Defenisi Umum Solar Cell Photovoltaic adalah teknologi yang berfungsi untuk mengubah atau mengkonversi radiasi matahari menjadi energi listrik secara langsung. Photovoltaic

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN 4.1 ALAT PRAKTIKUM PEMBANGKIT LISTRIK TENAGA SURYA

BAB IV HASIL DAN PEMBAHASAN 4.1 ALAT PRAKTIKUM PEMBANGKIT LISTRIK TENAGA SURYA BAB IV HASIL DAN PEMBAHASAN 4.1 ALAT PRAKTIKUM PEMBANGKIT LISTRIK TENAGA SURYA Sesuai pembahasan pada bab sebelumnya, dan dengan mengikuti tahapantahapan yang telah dicantumkan hasil akhir alat yang di

Lebih terperinci

PERENCANAAN PERKAMPUNGAN SURYA (SOLAR RURAL) 20 kwp SISTEM SENTRALISASI DI KABUPATEN BENGKALIS

PERENCANAAN PERKAMPUNGAN SURYA (SOLAR RURAL) 20 kwp SISTEM SENTRALISASI DI KABUPATEN BENGKALIS PERENCANAAN PERKAMPUNGAN SURYA (SOLAR RURAL) 20 kwp SISTEM SENTRALISASI DI KABUPATEN BENGKALIS Zulkifli Teknik Mesin Politeknik Bengkalis Jl. Batin Alam Sei-Alam, Bengkalis -Riau zulkifli@polbeng.ac.id

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian tentang pemanfaatan Pembangkit Listrik Tenaga Surya (PLTS)

BAB III METODE PENELITIAN. Penelitian tentang pemanfaatan Pembangkit Listrik Tenaga Surya (PLTS) 42 BAB III METODE PENELITIAN 3.1 Tempat dan Waktu Penelitian Penelitian tentang pemanfaatan Pembangkit Listrik Tenaga Surya (PLTS) sebagai catu daya tambahan dilaksanakan pada industri perhotelan di kawasan

Lebih terperinci

SISTEM KONVERTER PADA PLTS 1000 Wp SITTING GROUND TEKNIK ELEKTRO-UNDIP

SISTEM KONVERTER PADA PLTS 1000 Wp SITTING GROUND TEKNIK ELEKTRO-UNDIP MAKALAH SEMINAR KERJA PRAKTEK SISTEM KONVERTER PADA PLTS 1000 Wp SITTING GROUND TEKNIK ELEKTRO-UNDIP Novio Mahendra Purnomo (L2F008070) 1, DR. Ir. Joko Windarto,MT. 2 1 Mahasiswa dan 2 Dosen Jurusan Teknik

Lebih terperinci

Prof.Dr. Ir. Mochamad Ashari, M.Eng. Vita Lystianingrum B.P, ST., M.Sc.

Prof.Dr. Ir. Mochamad Ashari, M.Eng. Vita Lystianingrum B.P, ST., M.Sc. Sistem MPPT Untuk PV dan Inverter Tiga Fasa yang Terhubung Jala-Jala Menggunakan Voltage-Oriented Control Andi Novian L. 2210 106 027 Dosen Pembimbing : Prof.Dr. Ir. Mochamad Ashari, M.Eng. Vita Lystianingrum

Lebih terperinci

I. PENDAHULUAN. Pemanasan global (global warming) semakin terasa di zaman sekarang ini.

I. PENDAHULUAN. Pemanasan global (global warming) semakin terasa di zaman sekarang ini. 1 I. PENDAHULUAN A. Latar Belakang Pemanasan global (global warming) semakin terasa di zaman sekarang ini. Matahari memancarkan gelombang radiasinya menembus lapisan atmosfir dan sebagiannya terperangkap

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Kebutuhan energi yang terus meningkat dan semakin menipisnya cadangan minyak bumi dan gas alam menjadi pendorong bagi manusia untuk mencari sumber energi alternatif.

Lebih terperinci

BAB III PRINSIP KERJA ALAT DAN RANGKAIAN PENDUKUNG

BAB III PRINSIP KERJA ALAT DAN RANGKAIAN PENDUKUNG BAB III PRINSIP KERJA ALAT DAN RANGKAIAN PENDUKUNG 3.1 RANGKAIAN SOLAR HOME SISTEM Secara umum sistem pemabangkit daya listrik fotovoltaik dapat dibedakan atas 2 (dua) jenis[2]: a. Sistem langsung, yaitu

Lebih terperinci

BAB I PENDAHULUAN. Dengan kebutuhan akan energi listrik yang terus meningkat dan semakin

BAB I PENDAHULUAN. Dengan kebutuhan akan energi listrik yang terus meningkat dan semakin BAB I PENDAHULUAN 1.1 Latar Belakang Dengan kebutuhan akan energi listrik yang terus meningkat dan semakin menipisnya cadangan minyak bumi maka dibutuhkan pula sumber-sumber energi listrik alternatif.

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA 2.1 Tinjauan Mutakhir Terdapat beberapa penelitian yang mendukung dari tugas akhir ini, dimana pada penelitian tersebut dijadikan dasar acuan pada penelitian pada tugas akhir ini.

Lebih terperinci

Makalah Seminar Kerja Praktek PROSES PENYIMPANAN ENERGI PADA PLTS 1000 Wp SITTING GROUND TEKNIK ELEKTRO-UNDIP

Makalah Seminar Kerja Praktek PROSES PENYIMPANAN ENERGI PADA PLTS 1000 Wp SITTING GROUND TEKNIK ELEKTRO-UNDIP Makalah Seminar Kerja Praktek PROSES PENYIMPANAN ENERGI PADA PLTS 1000 Wp SITTING GROUND TEKNIK ELEKTRO-UNDIP Mira Erviana 1, Dr.Ir. Joko Windarto, M.T 2 1 Mahasiswa dan 2 Dosen Jurusan Teknik Elektro,

Lebih terperinci

PENGUJIAN SISTEM SIRKULASI AIR UNTUK TANAMAN HIDROPONIK MENGGUNAKAN LISTRIK DARI PANEL SURYA

PENGUJIAN SISTEM SIRKULASI AIR UNTUK TANAMAN HIDROPONIK MENGGUNAKAN LISTRIK DARI PANEL SURYA PENGUJIAN SISTEM SIRKULASI AIR UNTUK TANAMAN HIDROPONIK MENGGUNAKAN LISTRIK DARI PANEL SURYA Fadilah Rahmad 1), Chalilullah Rangkuti 2) 1 2)Jurusan Teknik Mesin Fakultas Teknologi Industri Universitas

Lebih terperinci

PERANCANGAN SISTEM HIBRID PEMBANGKIT LISTRIK TENAGA SURYA DENGAN JALA-JALA LISTRIK PLN UNTUK RUMAH PERKOTAAN

PERANCANGAN SISTEM HIBRID PEMBANGKIT LISTRIK TENAGA SURYA DENGAN JALA-JALA LISTRIK PLN UNTUK RUMAH PERKOTAAN PERANCANGAN SISTEM HIBRID PEMBANGKIT LISTRIK TENAGA SURYA DENGAN JALA-JALA LISTRIK PLN UNTUK RUMAH PERKOTAAN Liem Ek Bien, Ishak Kasim & Wahyu Wibowo* Dosen-Dosen Jurusan Teknik Elektro - Fakultas Teknologi

Lebih terperinci

TEORI DASAR. 2.1 Pengertian

TEORI DASAR. 2.1 Pengertian TEORI DASAR 2.1 Pengertian Dioda adalah piranti elektronik yang hanya dapat melewatkan arus/tegangan dalam satu arah saja, dimana dioda merupakan jenis VACUUM tube yang memiliki dua buah elektroda. Karena

Lebih terperinci

PENGUJIAN PEMBANGKIT LISTRIK TENAGA SURYA DENGAN POSISI PLAT PHOTOVOLTAIC HORIZONTAL

PENGUJIAN PEMBANGKIT LISTRIK TENAGA SURYA DENGAN POSISI PLAT PHOTOVOLTAIC HORIZONTAL TUGAS AKHIR PENGUJIAN PEMBANGKIT LISTRIK TENAGA SURYA DENGAN POSISI PLAT PHOTOVOLTAIC HORIZONTAL Diajukan Untuk Memenuhi Tugas dan Syarat-syarat Guna Memperoleh Gelar Sarjana Teknik Jurusan Mesin Fakultas

Lebih terperinci

PENGUJIAN PANEL FOTOVOLTAIK DENGAN VARIASI SUDUT KEMIRINGAN

PENGUJIAN PANEL FOTOVOLTAIK DENGAN VARIASI SUDUT KEMIRINGAN PENGUJIAN PANEL FOTOVOLTAIK DENGAN VARIASI SUDUT KEMIRINGAN Dohardo P.H. Simanullang 1, Azriyenni Azhari Zakri 2 1 TeknikElektro S1, FakultasTeknik, Universitas Riau 2 Dosen JurusanTeknik Elektro, FakultasTeknik,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 State of The Art Review Hanif M., M.Ramzam, dan M. Rahman dalam tulisannya yang berjudul Studying Power Output of PV Solar Panels at Different Temperatures and Tilt Angles di

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Energi Surya Energi surya adalah radiasi yang di produksi oleh reaksi fusi nuklir pada inti matahari. Matahari mensuplai hampir semua panas dan cahaya yang diterima bumi untuk

Lebih terperinci

PERKEMBANGAN SEL SURYA

PERKEMBANGAN SEL SURYA PERKEMBANGAN SEL SURYA Generasi Pertama Teknologi pertama yang berhasil dikembangkan oleh para peneliti adalah teknologi yang menggunakan bahan silikon kristal tunggal. Teknologi ini dalam mampu menghasilkan

Lebih terperinci

KAJIAN EKONOMIS ENERGI LISTRIK TENAGA SURYA DESA TERTINGGAL TERPENCIL

KAJIAN EKONOMIS ENERGI LISTRIK TENAGA SURYA DESA TERTINGGAL TERPENCIL KAJIAN EKONOMIS ENERGI LISTRIK TENAGA SURYA DESA TERTINGGAL TERPENCIL Oleh Aditya Dewantoro P (1) Hendro Priyatman (2) Universitas Muhammadiyah Pontianak Fakultas Teknik, Jurusan Teknik Mesin Tel/Fax 0561

Lebih terperinci

BAB II DASAR TEORI. manusia untuk memperoleh energi listrik tanpa perlu membakar bahan bakar fosil

BAB II DASAR TEORI. manusia untuk memperoleh energi listrik tanpa perlu membakar bahan bakar fosil BAB II DASAR TEORI 2.1. Pengenalan Tentang Sel surya Sel surya, solar cell, photovoltaic, atau fotovoltaik sejak tahun 1970-an telah mengubah cara pandang kita tentang energi dan memberi jalan baru bagi

Lebih terperinci

Latar Belakang dan Permasalahan!

Latar Belakang dan Permasalahan! Latar Belakang dan Permasalahan!! Sumber energi terbarukan sangat bergantung pada input yang fluktuatif sehingga perilaku sistem tersebut tidak mudah diprediksi!! Profil output PV dan Load yang jauh berbeda

Lebih terperinci