Analisis Diskriminan
|
|
|
- Johan Kurniawan
- 8 tahun lalu
- Tontonan:
Transkripsi
1 Analisis Diskriminan
2 Tujuan Utama Memperoleh fungsi diskriminan, yaitu fungsi yang mampu digunakan membedakan suatu objek masuk ke dalam populasi tertentu berdasarkan pengamatan terhadap objek tersebut
3 Contoh Fungsi Diskriminan Dengan melihat gejala-gejala yang nampak pada seseorang, dokter bisa menduga penyakit apa yang diderita orang tersebut. Dengan melihat warna, merasakan, dan menghirup asap rokok, penilai bisa mengetahui kelas kualitas tembakau. Dengan mengetahui berbagai indikator yang berupa variabel derivatif keuangan sebuah bank, kita bisa menilai kesehatan bank tersebut.
4 Fungsi Diskriminan Merupakan kombinasi dari beberapa peubah, satu peubah saja umumnya tidak mencukupi Dari banyak peubah, menggunakan fungsi diskriminan diperoleh sebuah indeks Berdasarkan kriteria tertentu, dengan indeks ini kita mengklasifikasikan objek
5 Fungsi Diskriminan Tidak selalu (bahkan jarang) diperoleh fungsi diskriminan dengan tingkat ketepatan yang sempurna Fungsi Diskriminan memiliki ukuran yang menggambarkan tingkat ketepatan
6 Fungsi Diskriminan X mampu menjadi pembeda, tetapi Y tidak Y mampu menjadi pembeda, tetapi X tidak
7 Fungsi Diskriminan X dan Y saja tidak mampu menjadi pembeda, tetapi kombinasi linearnya bisa Membutuhkan fungsi nonlinear dari X dan Y untuk bisa membedakan
8 Pendekatan Fisher Hanya untuk 2 populasi pendekatan Fisher bisa dituliskan sebagai berikut: Cari a sehingga jarak antara E(a x) = a 1 di 1 dengan E(a x) = a 2 di 2 maksimum, atau memaksimumkan a 1 a 2 dengan kendala a a = 1.
9 Pendekatan Fisher a = -1 ( 1-2 ) dan kita akan mengelompokkan x ke 1 jika a x h, dan kebalikannya kita masukkan x ke dalam 2, dengan h = a ( ) / 2. Dengan kata lain, x akan dimasukkan ke populasi yang paling dekat dengannya.
10 Pendekatan Fisher -- ILUSTRASI Dalam rangka mengatur penangkapan ikan salmon, sangat diinginkan bisa mengidentifikasi apakah ikan yang tertangkap berasal dari Alaska atau Kanada. Lima puluh ikan diambil dari setiap tempat, dan pertumbuhan diameternya diukur ketika ikanikan itu hidup di air tawar dan ketika hidup di air laut. Tujuannya adalah untuk mengetahui apakah ikan yang tertangkap di kemudian hari berasal dari Alaska atau dari Kanada (Minitab, Inc).
11 Pendekatan Fisher -- ILUSTRASI
12 Pendekatan Fisher -- ILUSTRASI Dengan demikian, jika kita memiliki suatu pengamatan baru x = (x 1, x 2 ) maka kita akan memasukkannya ke populasi 1 (ikan dari Alaska) jika x x dan jika sebaliknya maka kita masukkan ke populasi ke-2. Sebagai teladan, jika diperoleh sebuah ikan dengan nilai pengamatan x = (103, 405), maka nilai a x = (103) (405) = , dan kita masukkan ke dalam populasi 1
13 Pendekatan Fisher -- ILUSTRASI
14 Pendekatan Fisher -- ILUSTRASI Cara lain untuk melakukan klasifikasi adalah menggunakan konsep jarak terhadap vektor rataan populasi yang paling dekat. Artinya jika ada suatu pengamatan baru x = (x 1, x 2 ), maka pengamatan atau objek baru ini akan kita masukkan ke dalam populasi ke-1 ( 1 ) hanya jika jarak x terhadap vektor rataan populasi ke-1 lebih dekat daripada jarak x terhadap vektor rataan populasi ke-2. Jarak antara x terhadap vektor rataan diperoleh menggunakan formula mahalanobis, yaitu:
15 Pendekatan Fisher -- ILUSTRASI Misalkan untuk pengamatan x = (103, 405) seperti pada ilustrasi sebelumnya d 1 (x) = d 2 (x) = sehingga karena d 1 (x) < d 2 (x) maka x diklasifikasikan berasal dari populasi 1 (ikan dari Alaska).
16 Pendekatan Fisher -- ILUSTRASI Pendekatan lain yang juga dapat digunakan adalah menggunakan peluang posterior. Suatu pengamatan x = (x 1, x 2 ) akan diklasifikasikan ke dalam populasi 1 hanya jika peluang posteiornya lebih besar dari pada peluang posterior masuk ke 2, dan sebaliknya. Peluang posterior masuk ke dalam j adalah P(j x) = e 1 d e 1 d 2 ( x) 2 j ( x) e 1 d ( x)
17 Pendekatan Fisher -- ILUSTRASI Kembali pada x ilustrasi di atas dihasilkan P(1 x) = dan P(2 x) = Sehingga karena P(1 x) > P(2 x) maka x sekali lagi diklasifikasikan berasal dari Alaska.
18 Analisis Diskriminan untuk k Populasi yang Menyebar Normal Ada konsep sebaran prior Seringkali juga perlu mempertimbangkan biaya salah klasifikasi Mencari fungsi yang meminimumkan expected cost of missclassification k t 1 t k s 1 P( s t) c( s t)
19 Analisis Diskriminan Linear Asumsi : multivariate normal dengan matriks ragam-peragam sama di setiap populasi Asumsi : Biaya salah klasifikasi sama besar di setiap populasi
20 Analisis Diskriminan Linear aturan yang paling sederhana pada klasifikasi bisa dinyatakan dalam fungsi kuadrat jarak yaitu d t (x) = (x - t ) -1 (x - t ) 2 ln( t ) Suatu objek x diklasifikasikan kepada populasi yang terdekat, yang dihitung menggunakan formula di atas. Atau, x akan diklasifikasikan berasal dari populasi ke-t jika 2 d t2 (x) = min d ( x) j 1,..., k j
21 Analisis Diskriminan Linear Seperti halnya pada bagian terdahulu, mengklasifikasikan objek pengamatan ke populasi yang terdekat setara dengan mengklasifikasikan objek ke populasi dengan peluang posterior yang paling besar. Pada kasus k buah populasi, peluang tersebut besarnya diperoleh dari P(t x) = k e j 1 1 d 2 e 2 t 1 d 2 ( x) 2 j ( x) t = 1, 2,, k
22 Menduga Tingkat Salah Klasifikasi Error Rate, dugaan tingkat kesalahan di populasi ke-s adalah ER ˆ ( s) k t 1, t s P( t s)
23 Menduga Tingkat Salah Klasifikasi Pendugaan Tingkat Kesalahan dengan Validasi Silang jika ada n objek pengamatan, maka hanya (n 1) pengamatan yang digunakan sebagai gugus data pembentukan fungsi diskriminan satu pengamatan sisanya digunakan untuk evaluasi proses di atas diulang sebanyak n kali, satu kali untuk setiap data yang disisihkan proporsi kesalahan adalah dugaan tingkat kesalahan
24 Menduga Tingkat Salah Klasifikasi posterior probability error rate Simple PPER Stratified PPER
25 Analisis Diskriminan Kuadratik Multivariate normal namun matriks ragamperagamnya tidak sama
26 Penyeleksian Peubah pada Analisis Diskriminan Dimulai dengan memilih satu peubah yang paling penting, dan dilanjutkan dengan pemilihan peubah penting lain satu demi satu menggunakan suatu kriteria tertentu. Salah satu kriterianya adalah dengan menentukan taraf nyata tertentu sebagai batas. Kriteria lain adalah dengan menganggap peubah yang sudah terpilih bersifat tetap, dan menghitung korelasi parsial peubah yang akan dipilih, serta sebelumnya sudah ditentukan batasan besaran korelasi parsial yang bisa diterima. Proses ini akan berhenti jika tidak ada lagi peubah yang memenuhi kriteria yang telah ditentukan. Prosedur yang seperti ini dikenal sebagai prosedur forward selection.
27 Penyeleksian Peubah pada Analisis Diskriminan Dimulai dengan model penuh, yaitu memuat semua peubah. Di setiap tahap dilakukan pembauangan peubah yang paling tidak penting satu demi satu dengan kriteria yang sama dengan prosedur forward. Proses diteruskan hingga tidak ada lagi peubah yang dikeluarkan. Prosedur ini dikenal sebagai prosedur backward selection.
28 Penyeleksian Peubah pada Analisis Diskriminan Kombinasi antara kedua prosedur di atas, dikenal sebagai stepwise selection. Di setiap tahap dimungkinkan ada peuabh yang masuk sekaligus ada peubah yang dikeluarkan, berdasarkan kriteria tertentu yang ditetapkan pada awal proses.
29 Terima Kasih atas perhatiannya
aljabar geo g metr me i
Pertemuan 12 & 13 ANALIS KOMPONEN UTAMA & FUNGSI DISCRIMINAN Obyektif : Reduksi variabel Interpretasi Aplikasi AKU dalam Anls Regresi Discrimination Fisher and Classification Classification with two Multivariate
BAB III ANALISIS KORELASI KANONIK ROBUST DENGAN METODE MINIMUM COVARIANCE DETERMINAN
BAB III ANALISIS KORELASI KANONIK ROBUST DENGAN METODE MINIMUM COVARIANCE DETERMINAN 3.1 Deteksi Pencilan Multivariat Pengidentifikasian pencilan pada kasus multivariat tidaklah mudah untuk dilakukan,
PENANGANAN MULTIKOLINEARITAS (KEKOLINEARAN GANDA) DENGAN ANALISIS REGRESI KOMPONEN UTAMA. Tatik Widiharih Jurusan Matematika FMIPA UNDIP
PENANGANAN MULTIKOLINEARITAS (KEKOLINEARAN GANDA) DENGAN ANALISIS REGRESI KOMPONEN UTAMA Tatik Widiharih Jurusan Matematika FMIPA UNDIP Abstrak Multikolinearitas yang tinggi diantara peubah-peubah bebas,
Minggu II STATISTIKA MULTIVARIATE TERAPAN
Minggu II STATISTIKA MULTIVARIATE TERAPAN (PENDAHULUAN) Herni U Universitas Gadjah Mada Outline 1 Analisis Statistika Multivariat 2 Contoh Kasus Multivariat 3 Organisasi Data Outline 1 Analisis Statistika
HASIL DAN PEMBAHASAN. dengan hipotesis nolnya adalah antar peubah saling bebas. Statistik ujinya dihitung dengan persamaan berikut:
. Menyiapkan gugus data pencilan dengan membangkitkan peubah acak normal ganda dengan parameter µ yang diekstrimkan dari data contoh dan dengan matriks ragam-peragam yang sama dengan data contoh. Proses
ANALISIS KORELASI KANONIK PERILAKU BELAJAR TERHADAP PRESTASI BELAJAR SISWA SMP (STUDI KASUS SISWA SMPN I SUKASARI PURWAKARTA)
Prosiding Seminar Matematika dan Pendidikan Matematika ISBN: 978-60-61-0-9 hal 693-703 November 016 ANALISIS KORELASI KANONIK PERILAKU BELAJAR TERHADAP PRESTASI BELAJAR SISWA SMP (STUDI KASUS SISWA SMPN
MATERI DAN METODE. Tabel 2. Jumlah Kuda yang Diamati Berdasarkan Lokasi dan Jenis Kelamin
MATERI DAN METODE Lokasi dan Waktu Penelitian ini dilakukan di Laboratorium Pemuliaan dan Genetika Ternak, Departemen Ilmu Produksi dan Teknologi Peternakan, Fakultas Peternakan, Institut Pertanian Bogor.
BAB. IX ANALISIS REGRESI FAKTOR (REGRESSION FACTOR ANALYSIS)
BAB. IX ANALII REGREI FAKTOR (REGREION FACTOR ANALYI) 9. PENDAHULUAN Analisis regresi faktor pada dasarnya merupakan teknik analisis yang mengkombinasikan analisis faktor dengan analisis regresi linier
JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 2, 71-81, Agustus 2001, ISSN :
PENANGANAN MULTIKOLINEARITAS (KEKOLINEARAN GANDA) DENGAN ANALISIS REGRESI KOMPONEN UTAMA Tatik Widiharih Jurusan Matematika FMIPA UNDIP Abstrak Multikolinearitas yang tinggi diantara peubah-peubah bebas,
VI. ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI USAHA PEMBESARAN LELE DUMBO DI CV JUMBO BINTANG LESTARI
VI. ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI USAHA PEMBESARAN LELE DUMBO DI CV JUMBO BINTANG LESTARI 6.1. Analisis Fungsi Produksi Model fungsi produksi yang digunakan adalah fungsi Cobb Douglas. Faktor-faktor
BAB III METODE PENELITIAN
digilib.uns.ac.id BAB III METODE PENELITIAN Metode yang digunakan dalam penelitian ini adalah kajian pustaka dari buku referensi karya ilmiah. Karya ilmiah yang digunakan adalah hasil penelitian serta
II. TINJAUAN PUSTAKA 2.1 Analisis Korelasi Kanonik
3 II. TINJAUAN PUSTAKA 2.1 Analisis Korelasi Kanonik Menurut Gittins (1985) analisis korelasi kanonik adalah salah satu teknik analisis statistik yang digunakan untuk melihat hubungan antara segugus peubah
: Analisis Diskriminan pada Klasifikasi Desa di Kabupaten. Tabanan Menggunakan Metode K-Fold Cross Validation. 2. I Gusti Ayu Made Srinadi, S.Si, M.
Judul : Analisis Diskriminan pada Klasifikasi Desa di Kabupaten Tabanan Menggunakan Metode K-Fold Cross Validation Nama : Ida Ayu Made Supartini Pembimbing : 1. Ir. I Komang Gde Sukarsa, M.Si 2. I Gusti
ANALISIS DISKRIMINAN FISHER POPULASI GANDA UNTUK KLASIFIKASI NASABAH KREDIT
ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 5, Nomor 3, Tahun 2016, Halaman 575-581 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian ANALISIS DISKRIMINAN FISHER POPULASI GANDA UNTUK KLASIFIKASI
PENDUGA PENCILAN BOGOR 2013
PERBANDINGAN PENDUGA MINIMUM COVARIANCE DETERMINANT (MCD) DENGAN MAXIMUMM LIKELIHOOD ESTIMATION (MLE) PADA ANALISIS DISKRIMINANN UNTUK DATA YANG MENGANDUNGG PENCILAN TRI HARDI PUTRA DEPARTEMEN STATISTIK
Canonical Correlation. I Made Sumertajaya
Canonical Correlation I Made Sumertajaya Pendahuluan Hubungan antar variabel yang telah dikenal: Dua arah 1 var dependen vs 1 var independen korelasi sederhana (simple correlation): pearson, spearman,
MODEL MODEL LEBIH RUMIT
08/0/06 MODEL MODEL LEBIH RUMIT Di susun oleh Nurul Hani Ulvatunnisa Kanthi Wulandari Sri Siska Wirdaniyati Kamal Adyasa Unib Sedya Pramuji 08/0/06 Model Polinom Berbagai Ordo Model Yang Melibatkan Transformasi
Aplikasi Model Black Litterman dengan Pendekatan Bayes (Studi kasus : portofolio dengan 4 saham dari S&P500) 1. Retno Subekti 2
Aplikasi Model Black Litterman dengan Pendekatan Bayes (Studi kasus : portofolio dengan 4 saham dari S&P5) 1 Retno Subekti 2 [email protected] Abstrak Model Black Litterman (BLM), model yang berkembang
BAB II TINJAUAN PUSTAKA. konsep-konsep dasar pada QUEST dan CHAID, algoritma QUEST, algoritma
BAB II TINJAUAN PUSTAKA Bab ini akan membahas pengertian metode klasifikasi berstruktur pohon, konsep-konsep dasar pada QUEST dan CHAID, algoritma QUEST, algoritma CHAID, keakuratan dan kesalahan dalam
BAB 1 PENDAHULUAN. 1.1 Latar belakang
BAB 1 PENDAHULUAN 1.1 Latar belakang Metode klasifikasi merupakan salah satu metode statistika untuk mengelompok atau mengklasifikasi suatu data yang disusun secara sistematis ke dalam suatu kelompok sehingga
TINJAUAN PUSTAKA. bebas digunakan jarak euclidean - sedangkan bila terdapat. korelasi antar peubah digunakan jarak mahalanobis - -
3 TINJAUAN PUSTAKA Gambaran Umum Analisis Gerombol Analisis gerombol merupakan salah satu metode analisis peubah ganda yang bertujuan untuk mengelompokkan objek kedalam kelompok kelompok tertentu yang
PENDAHULUAN. Latar Belakang. Tujuan Penelitian
PENDAHULUAN Latar Belakang Fungsi Cobb-Douglas dengan galat aditif merupakan salah satu fungsi produksi yang dapat digunakan untuk menganalisis hubungan antara hasil produksi dan faktor-faktor produksi.
MATERI DAN METODE. Gambar 2. Ayam Kampung Jantan (a) dan Ayam Kampung Betina (b) dari Daerah Ciamis
MATERI DAN METODE Lokasi dan Waktu Penelitian ini dilaksanakan di Ciamis (Jawa Barat), Tegal (Jawa Tengah) dan Blitar (Jawa Timur). Waktu penelitian dibagi menjadi tiga periode. Periode pertama yaitu pengukuran
HASIL DAN PEMBAHASAN
HASIL DAN PEMBAHASAN Karakteristik Siswa Gambar 1 memperlihatkan Karakteristik siswa SMA Negeri Ulu Siau berdasarkan jurusan. Berdasarkan Gambar 1 umumya siswa lebih memilih jurusan IPA daripada jurusan
BAB III KALMAN FILTER DISKRIT. Kalman Filter adalah rangkaian teknik perhitungan matematika (algoritma)
BAB III KALMAN FILTER DISKRIT 3.1 Pendahuluan Kalman Filter adalah rangkaian teknik perhitungan matematika (algoritma) yang memberikan perhitungan efisien dalam mengestimasi state proses, yaitu dengan
BAB I PENDAHULUAN. Analisis regresi merupakan sebuah alat statistik yang memberi penjelasan
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analisis regresi merupakan sebuah alat statistik yang memberi penjelasan tentang pola hubungan (model) antara dua peubah atau lebih (Draper dan Smith, 1992).
Oleh: Agus Mohamad Soleh. Departemen Statistika FMIPA IPB. Abstrak
Seminar Nasional Statistika IX Institut Teknologi Sepuluh Nopember, 7 November 009 Analisis Diskriminan Linier untuk Klasifikasi Komponen Obat Bahan Alam Berdasarkan Spektrum Inframerah. Studi Kasus :
Analisis Regresi: Regresi Linear Berganda
Analisis Regresi: Regresi Linear Berganda Pengantar Pada sesi sebelumnya kita hanya menggunakan satu buah X, dengan model Y = b 0 + b 1 X 0 1 Dalam banyak hal, yang mempengaruhi X bisa lebih dari satu.
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Analisis Regresi adalah analisis statistik yang mempelajari bagaimana memodelkan sebuah model fungsional dari data untuk dapat menjelaskan ataupun meramalkan suatu
Lampiran 1. Perhitungan Manual Uji T 2 Hotelling Berbagai Ukuran Tubuh pada Kuda Delman Jantan Manado vs Tomohon. Rumus: T 2 = X X S X X
LAMPIRAN Lampiran 1. Perhitungan Manual Uji T 2 Hotelling Berbagai Ukuran Tubuh pada Kuda Delman Jantan Manado vs Tomohon Rumus: T 2 = X X S X X Selanjutnya: F = n + n p 1 (n + n 2) P T akan terdistribusi
Oleh : Fuji Rahayu W ( )
Oleh : Fuji Rahayu W (1208 100 043) JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2012 Indonesia sebagai negara maritim Penduduk Indonesia
Analisis Regresi 1. Pokok Bahasan Pengujian pada Regresi Ganda
Analisis Regresi Pokok Bahasan Pengujian pada Regresi Ganda Model Regresi Linier Berganda Model Regresi Linier Berganda, dengan k peubah penjelas : Y β β X β X β X k k Parameter regresi sebanyak k+ diduga
Bab 2 LANDASAN TEORI
17 Bab 2 LANDASAN TEORI 2.1 Aljabar Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemen-elemen yang disusun secara teratur menurut baris dan kolom sehingga
Penerapan Garis Berat Segitiga Centroid untuk Menentukan Kelompok pada Analisis Diskriminan
Penerapan Garis Berat Segitiga Centroid untuk Menentukan Kelompok pada Analisis Diskriminan I Komang Gede Sukarsa, I Putu Eka Nila Kencana 2, NM. Dwi Kusumawardani 3 Laboratorium Statistika Jurusan Matematika
menggunakan analisis regresi dengan metode kuadrat terkecil. Model analisis data panel yang dievaluasi kemudian adalah model gabungan, model
4 kurang dari 10, maka peubah bebas tersebut tidak mengalami masalah multikolinearitas dengan peubah bebas lainnya. Selanjutnya Uji ARCH atau White digunakan untuk menguji asumsi kehomogenan ragam sisaan.
BAB III ANALISIS FAKTOR. berfungsi untuk mereduksi dimensi data dengan cara menyatakan variabel asal
BAB III ANALISIS FAKTOR 3.1 Definisi Analisis faktor Analisis faktor adalah suatu teknik analisis statistika multivariat yang berfungsi untuk mereduksi dimensi data dengan cara menyatakan variabel asal
Forum Statistika dan Komputasi, Oktober 2009 p : ISSN :
, Oktober 2009 p : 26-34 ISSN : 0853-8115 Vol 14 No.2 METODE PENDUGAAN MATRIKS RAGAM-PERAGAM DALAM ANALISIS REGRESI KOMPONEN UTAMA (RKU) (Variance-Covariance Matrix Estimation Method for Principal Component
ANALISIS DISKRIMINAN PADA KLASIFIKASI DESA DI KABUPATEN TABANAN MENGGUNAKAN METODE K-FOLD CROSS VALIDATION
E-Jurnal Matematika Vol 6 (2), Mei 2017, pp 106-115 ISSN: 2303-1751 ANALISIS DISKRIMINAN PADA KLASIFIKASI DESA DI KABUPATEN TABANAN MENGGUNAKAN METODE K-FOLD CROSS VALIDATION Ida Ayu Made Supartini 1,
BAB 2 LANDASAN TEORI. bebas X yang dihubungkan dengan satu peubah tak bebas Y.
BAB 2 LANDASAN TEORI 2.1 Regresi Linier Sederhana Regresi linier sederhana merupakan suatu prosedur untuk mendapatkan hubungan matematis dalam bentuk suatu persamaan antara variabel tak bebas tunggal dengan
PENDAHULUAN TINJAUAN PUSTAKA
1 PENDAHULUAN Latar Belakang Analisis regresi berguna dalam menelaah hubungan antara sepasang peubah atau lebih, dan terutama untuk menelusuri pola hubungan yang modelnya belum diketahui sempurna sehingga
TINJAUAN PUSTAKA Analisis Biplot Biasa
TINJAUAN PUSTAKA Analisis Biplot Biasa Analisis biplot merupakan suatu upaya untuk memberikan peragaan grafik dari matriks data dalam suatu plot dengan menumpangtindihkan vektor-vektor dalam ruang berdimensi
BAB III REGRESI LOGISTIK BINER DAN CLASSIFICATION AND REGRESSION TREES (CART) Odds Ratio
21 BAB III REGRESI LOGISTIK BINER DAN CLASSIFICATION AND REGRESSION TREES (CART) 3.1 Regresi Logistik Biner Regresi logistik berguna untuk meramalkan ada atau tidaknya karakteristik berdasarkan prediksi
BAB 4 HASIL DAN PEMBAHASAN. Pada bab ini dijelaskan dan disajikan tentang RSUP Fatmawati Jakarta secara
BAB 4 HASIL DAN PEMBAHASAN Pada bab ini dijelaskan dan disajikan tentang RSUP Fatmawati Jakarta secara singkat, keterbatasan penelitian, hasil pengumpulan data, hasil analisa data, dan pembahasan hasil
BAB II LANDASAN TEORI
perpustakaanunsacid digilibunsacid BAB II LANDASAN TEORI Pada bagian pertama bab kedua ini diberikan tinjuan pustaka yang berisi penelitian sebelumnya yang mendasari penelitian ini Pada bagian kedua bab
Minimum Variance Unbiased Estimator (MVUE) K-Fold Cross Validation
6 Individu kemudian diseleksi dengan metode Roulette Wheel, dengan peluang suatu individu untuk terpilih dinyatakan dengan persamaan sebagai berikut: 4. Pindah silang (cross-over) Metode pindah silang
ISSN: JURNAL GAUSSIAN, Volume 4, Nomor 4, Tahun 2015, Halaman Online di:
ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 4, Nomor 4, Tahun 2015, Halaman 907-916 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PEMODELAN REGRESI LINIER MULTIVARIAT DENGAN METODE PEMILIHAN
Analisis Regresi 2. Pokok Bahasan : Review Regresi Linier Sederhana dan Berganda
Analisis Regresi Pokok Bahasan : Review Regresi Linier Sederhana dan Berganda Tuuan Instruksional Khusus : Mahasiswa dapat menelaskan regresi linier sederhana dan berganda dan asumsi-asumsi yang mendasarinya
TINJAUAN PUSTAKA Analisis Gerombol
3 TINJAUAN PUSTAKA Analisis Gerombol Analisis gerombol merupakan analisis statistika peubah ganda yang digunakan untuk menggerombolkan n buah obyek. Obyek-obyek tersebut mempunyai p buah peubah. Penggerombolannya
BAB II LANDASAN TEORI. : Ukuran sampel telah memenuhi syarat. : Ukuran sampel belum memenuhi syarat
BAB II LANDASAN TEORI 2.1. Uji Kecukupan Sampel Dalam melakukan penelitian ini yang berhubungan dengan kecukupan sampel maka langkah awal yang harus dilakukan adalah pengujian terhadap jumlah sampel. Pengujian
VI. PEMBAHASAN. dengan metode kemungkinan maksimum, tetapi terhadap
89 VI. PEMBAHASAN Pada analisis yang menggunakan pendekatan model acak satu faktor (model persamaan 4.1), metode kuadrat terkecil secara umum memberikan hasil dugaan yang berbeda dengan metode kemungkinan
SILABUS PERKULIAHAN METODE STATISTIKA MULTIVARIAT 3 SKS KODE :
SILABUS PERKULIAHAN METODE STATISTIKA MULTIVARIAT 3 SKS KODE : JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PENDIDIKAN INDONESIA 2005-2006 MATAKULIAH
Analisis Regresi 2. Pokok Bahasan : Asumsi sisaan dan penanganannya
Analisis Regresi 2 Pokok Bahasan : Asumsi sisaan dan penanganannya Tujuan Instruksional Khusus : Mahasiswa dapat menjelaskan asumsi-asumsi yang melandasi analisis regresi linier sederhana dan berganda,
PEMODELAN DENGAN REGRESI LOGISTIK. Secara umum, kedua hasil dilambangkan dengan (sukses) dan (gagal)
PEMODELAN DENGAN REGRESI LOGISTIK 1. Data Biner Data biner merupakan data yang hanya memiliki dua kemungkinan hasil. Secara umum, kedua hasil dilambangkan dengan (sukses) dan (gagal) dengan peluang masing-masing
, dengan. Karakteristik dari vektor peubah acak X dan Y sebagai berikut:
3 TINJAUAN PUSTAKA Analisis Korelasi Kanonik Analisis korelasi kanonik (AKK) yang diperkenalkan oleh Hotelling pada tahun 1936, bertujuan untuk mengidentifikasi dan menghitung hubungan linier antara dua
BAB III REGRESI TERSENSOR (TOBIT) Model regresi yang didasarkan pada variabel terikat tersensor disebut
BAB III REGRESI TERSENSOR (TOBIT) 3.1 Model Regresi Tersensor (Tobit) Model regresi yang didasarkan pada variabel terikat tersensor disebut model regresi tersensor (tobit). Untuk variabel terikat yang
Algoritme Least Angle Regression untuk Model Geographically Weighted Least Absolute Shrinkage and Selection Operator
SEMINAR MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2017 Algoritme Least Angle Regression untuk Model Geographically Weighted Least Absolute Shrinkage and Selection Operator S-20 Yuliana 1, Dewi Retno Sari
Teknik Reduksi Dimensi Menggunakan Komponen Utama Data Partisi Pada Pengklasifikasian Data Berdimensi Tinggi dengan Ukuran Sampel Kecil
Teknik Reduksi Dimensi Menggunakan Komponen Utama Data Partisi Pada Pengklasifikasian Data Berdimensi Tinggi dengan Ukuran Sampel Kecil Ronny Susetyoko, Elly Purwantini Politeknik Elektronika Negeri Surabaya
PEMODELAN KINERJA LEMBAGA PERANGKAT DAERAH
Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 6 Mei 009 PEMODELAN KINERA LEMBAGA PERANGKA DAERAH KARIYAM enaga Pengaar urusan Statistika
TINJAUAN PUSTAKA Perilaku Pemilih Partai Politik
3 TINJAUAN PUSTAKA Perilaku Pemilih Agustino (2009) menyebutkan terdapat tiga pendekatan teori yang sering digunakan oleh banyak ahli politik untuk memahami perilaku pemilih diantaranya pendekatan sosiologis,
BAB II TINJAUAN PUSTAKA. (b) Variabel independen yang biasanya dinyatakan dengan simbol
BAB II TINJAUAN PUSTAKA A. Regresi Regresi adalah suatu studi statistik untuk menjelaskan hubungan dua variabel atau lebih yang dinyatakan dalam bentuk persamaan. Salah satu variabel merupakan variabel
(R.14) METODE MINIMUM COVARIANCE DETERMINANT PADA ANALISIS REGRESI LINIER BERGANDA DENGAN KASUS PENCILAN
(R.14) MEODE MINIMUM COVARIANCE DEERMINAN PADA ANALISIS REGRESI LINIER BERGANDA DENGAN KASUS PENCILAN Dini Aderlina, Firdaniza, Nurul Gusriani Jurusan Matematika FMIPA Universitas Padjadjaran Jl. Raya
BAB V HASIL DAN PEMBAHASAN
2 5. Pemilihan Pohon Contoh BAB V HASIL DAN PEMBAHASAN Pohon contoh yang digunakan dalam penyusunan tabel volume ini adalah jenis nyatoh (Palaquium spp.). Berikut disajikan tabel penyebaran pohon contoh
ANALISIS DISKRIMINAN KUADRATIK PADA PENJURUSAN MADRASAH ALIYAH NEGERI (MAN) 1 JEMBER SKRIPSI. Oleh. Puphus Inda Wati NIM
i ANALISIS DISKRIMINAN KUADRATIK PADA PENJURUSAN MADRASAH ALIYAH NEGERI (MAN) 1 JEMBER SKRIPSI Oleh Puphus Inda Wati NIM 081810101031 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS
BAB 2 LANDASAN TEORI
BAB LANDASAN TEORI.1 Konsep Dasar Statistika Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, menyusun atau mengatur, menyajikan, menganalisa dan memberi interpretasi terhadap
Syarat Fritz John pada Masalah Optimasi Berkendala Ketaksamaan. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak
Syarat Fritz John pada Masalah Optimasi Berkendala Ketaksamaan Caturiyati 1 Himmawati Puji Lestari 2 1,2 Jurusan Pendidikan Matematika FMIPA UNY 1 [email protected] 2 [email protected] Abstrak
BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan
BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Analisis regresi adalah analisis yang dilakukan terhadap dua jenis variabel yaitu variabel independen (prediktor) dan variabel dependen (respon). Analisis
6. PENGGUNAAN REGRESI SPLINES ADAPTIF BERGANDA UNTUK STATISTICAL DOWNSCALING LUARAN GCM
6. PENGGUNAAN REGRESI SPLINES ADAPTIF BERGANDA UNTUK STATISTICAL DOWNSCALING LUARAN GCM 6.1 Pendahuluan Model regresi SD dinyatakan y = f(x) ε dimana y adalah peubah respon (curah hujan observasi, beresolusi
Analisis Komponen Utama (Principal component analysis)
Analisis Komponen Utama (Principal component analysis) A. LANDASAN TEORI Misalkan χ merupakan matriks berukuran nxp, dengan baris-baris yang berisi observasi sebanyak n dari p-variat variabel acak X. Analisis
TINJAUAN PUSTAKA. i dari yang terkecil ke yang terbesar. Tebaran titik-titik yang membentuk garis lurus menunjukkan kesesuaian pola
TINJAUAN PUSTAKA Analisis Diskriminan Analisis diskriminan (Discriminant Analysis) adalah salah satu metode analisis multivariat yan bertujuan untuk memisahkan beberapa kelompok data yan sudah terkelompokkan
BAB III PEREDUKSIAN RUANG INDIVIDU DENGAN ANALISIS KOMPONEN UTAMA. Analisis komponen utama adalah metode statistika multivariat yang
BAB III PEREDUKSIAN RUANG INDIVIDU DENGAN ANALISIS KOMPONEN UTAMA Analisis komponen utama adalah metode statistika multivariat yang bertujuan untuk mereduksi dimensi data dengan membentuk kombinasi linear
PROSIDING SEMINAR NASIONAL STATISTIKA UNIVERSITAS DIPONEGORO 2013 ISBN:
APLIKASI SISTEM PERSAMAAN SEEMINGLY UNRELATED REGRESSIONS PADA MODEL PERMINTAAN PANGAN Kim Budiwinarto 1 1 Progdi Manajemen Fakultas Ekonomi Universitas Surakarta Abstrak Fenomena ekonomi yang kompleks
ANALISIS FAKTOR (FACTOR ANALYSIS)
ANALISIS FAKTOR (FACTOR ANALYSIS) PENDAHULUAN Analisis faktor: mengkaji hubungan internal dari gugus variabel Data: peubah-peubah yang dianalisis berkorelasi tinggi didalam grupnya sendiri dan berkorelasi
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Populasi dan Sampel Populasi adalah kelompok besar individu yang mempunyai karakteristik umum yang sama atau kumpulan dari individu dengan kualitas serta ciri-ciri yang telah ditetapkan.
Analisis Peubah Ganda
Analisis Peubah Ganda Analisis Komponen Utama Dr. Ir. I Made Sumertajaya, M.Si Pengamatan Peubah Ganda - memerlukan sumberdaya lebih, dalam analisis - informasi tumpang tindih pada beberapa peubah Apa
BAB 2 LANDASAN TEORI. teknik yang umum digunakan untuk menganalisis. hubungan antara dua atau lebih variabel adalah analisis regresi.
8 BAB 2 LANDASAN TEORI 2.1 Analisis Regresi Dalam ilmu statistika, teknik yang umum digunakan untuk menganalisis hubungan antara dua atau lebih variabel adalah analisis regresi. Regresi pertama kali digunakan
REGRESI LINIER GANDA. Fitriani Agustina, Math, UPI
REGRESI LINIER GANDA 1 Pengertian Regresi Linier Ganda Merupakan metode yang digunakan untuk memodelkan hubungan linear antara variabel terikat dengan dua/lebih variabel bebas. Regresi linier untuk memprediksi
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pada suatu eksperimen atau pengamatan terhadap suatu keadaan, pengambilan data merupakan salah satu bagian terpenting, agar hasil dari eksperimen dapat lebih
BAB 1 PENDAHULUAN. memperoleh solusi yang optimal (Eddy Herjanto, 2007: 43). kendala dan fungsi tujuan yang digunakan untuk mendiskripsikan
BAB 1 PENDAHULUAN A. Latar Belakang Setiap perusahaan atau organisasi memiliki keterbatasan atas sumber daya, baik keterbatasan dalam jumlah bahan baku, mesin dan peralatan, ruang, tenaga kerja, jam-kerja,
BAB 2 LANDASAN TEORI Pengertian Data Deret Berkala
BAB 2 LANDASAN TEORI 2.1. Pengertian Data Deret Berkala Suatu deret berkala adalah himpunan observasi yang terkumpul atau hasil observasi yang mengalami peningkatan waktu. Data deret berkala adalah serangkaian
BAB III EXTENDED KALMAN FILTER DISKRIT. Extended Kalman Filter adalah perluasan dari Kalman Filter. Extended
26 BAB III EXTENDED KALMAN FILTER DISKRIT 3.1 Pendahuluan Extended Kalman Filter adalah perluasan dari Kalman Filter. Extended Kalman Filter merupakan algoritma yang digunakan untuk mengestimasi variabel
PORTFOLIO EFISIEN & OPTIMAL
Bahan ajar digunakan sebagai materi penunjang Mata Kuliah: Manajemen Investasi Dikompilasi oleh: Nila Firdausi Nuzula, PhD Portofolio Efisien PORTFOLIO EFISIEN & OPTIMAL Portofolio efisien diartikan sebagai
Perbandingan Analisis Diskriminan dan Analisis Regresi Logistik Ordinal dalam Prediksi Klasifikasi Kondisi Kesehatan Bank
Perbandingan Analisis Diskriminan dan Analisis Regresi Logistik Ordinal dalam Prediksi Klasifikasi Kondisi Kesehatan Bank Fajri Zufa Alumni Program Studi Statistika, FMIPA, Universitas Bengkulu e-mail
MODEL-MODEL LEBIH RUMIT
MAKALAH MODEL-MODEL LEBIH RUMIT DISUSUN OLEH : SRI SISKA WIRDANIYATI 65 JURUSAN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 04 BAB I PENDAHULUAN. Latar Belakang
STK 511 Analisis statistika. Materi 7 Analisis Korelasi dan Regresi
STK 511 Analisis statistika Materi 7 Analisis Korelasi dan Regresi 1 Pendahuluan Kita umumnya ingin mengetahui hubungan antar peubah Analisis Korelasi digunakan untuk melihat keeratan hubungan linier antar
ANALISIS DISKRIMINAN LINEAR MENGGUNAKAN LIKELIHOOD RATIO TEST. (Skripsi) Oleh. Meri Handayani
ANALISIS DISKRIMINAN LINEAR MENGGUNAKAN LIKELIHOOD RATIO TEST (Skripsi) Oleh Meri Handayani FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG BANDAR LAMPUNG 2016 ABSTRAK ANALISIS DISKRIMINAN
III RELAKSASI LAGRANGE
III RELAKSASI LAGRANGE Relaksasi Lagrange merupakan salah satu metode yang terus dikembangkan dalam aplikasi pemrograman matematik. Sebagian besar konsep teoretis dari banyak aplikasi menggunakan metode
PENERAPAN ANALISIS FAKTOR DAN ANALISIS DISKRIMINAN UNTUK MENENTUKAN KUALITAS PRODUK SUSU BALITA DENGAN GRAFIK KENDALI Z-MR
PENERAPAN ANALISIS FAKTOR DAN ANALISIS DISKRIMINAN UNTUK MENENTUKAN KUALITAS PRODUK SUSU BALITA DENGAN GRAFIK KENDALI Z-MR Inge Ratih Puspitasari, Hendro Permadi, dan Trianingsih Eni Lestari Universitas
TINJAUAN PUSTAKA. Matriks adalah suatu susunan bilangan berbentuk segi empat. Bilangan-bilangan
4 II. TINJAUAN PUSTAKA 2.1 Konsep Dasar Matriks 2.1.1 Matriks Matriks adalah suatu susunan bilangan berbentuk segi empat. Bilangan-bilangan dalam susunan itu disebut anggota dalam matriks tersebut. Suatu
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Pendahuluan Pada bab ini akan diuraikan mengenai beberapa teori dan metode yang mendukung serta mempermudah dalam melakukan perhitungan dan dapat membantu di dalam pembahasan
(α = 0.01). Jika D i > , maka x i atau pengamatan ke-i dianggap pencilan (i = 1, 2,..., 100). HASIL DAN PEMBAHASAN
4 karena adanya perbedaan satuan pengukuran antar peubah. 1.. Memastikan tidak adanya pencilan pada data dengan mengidentifikasi adanya pencilan pada data. Pengidentifikasian pencilan dilakukan dengan
BAB I PENDAHULUAN. melalui pos. Ada beberapa keuntungan yang dapat diperoleh, diantaranya
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam melakukan survei, seringkali digunakan angket yang dikirimkan melalui pos. Ada beberapa keuntungan yang dapat diperoleh, diantaranya adalah hemat biaya,
MANAJEMEN DATA PENCILAN PADA ANALISIS REGRESI KOMPONEN UTAMA MAGRI HANDOKO
MANAJEMEN DATA PENCILAN PADA ANALISIS REGRESI KOMPONEN UTAMA MAGRI HANDOKO DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR 2011 RINGKASAN MAGRI HANDOKO. Manajemen
Resume Regresi Linear dan Korelasi
Rendy Dwi Ardiansyah Putra 7410040018 / 2 D4 IT A Statistika Resume Regresi Linear dan Korelasi 1. Regresi Linear Regresi linear merupakan suatu metode analisis statistik yang mempelajari pola hubungan
