PERANCANGAN ALAT PENGIRIM DAN PENERIMA DATA TEMPERATUR DENGAN MENGGUNAKAN SINAR INFRA MERAH BERBASIS MIKROKONTROLER AT89S51 TUGAS AKHIR

Ukuran: px
Mulai penontonan dengan halaman:

Download "PERANCANGAN ALAT PENGIRIM DAN PENERIMA DATA TEMPERATUR DENGAN MENGGUNAKAN SINAR INFRA MERAH BERBASIS MIKROKONTROLER AT89S51 TUGAS AKHIR"

Transkripsi

1 PERANCANGAN ALAT PENGIRIM DAN PENERIMA DATA TEMPERATUR DENGAN MENGGUNAKAN SINAR INFRA MERAH BERBASIS MIKROKONTROLER AT89S51 TUGAS AKHIR Diajukan untuk melengkapi tugas dan memenuhi syarat mencapai gelar ahli madya HERMAN TAMBUNAN FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA INSTRUMENTASI UNIVERSITAS SUMATERA UTARA MEDAN 2009 Herman Tambunan : Perancangan Alat Pengirim Dan Penerima Data Temperatur Dengan Menggunakan Sinar Infra Merah Berbasis Mikrokontroler AT89S51, USU Repository 2009

2 i PERSETUJUAN JuduI : PERANCANGAN ALAT PENGIRIM DAN PENERIMA DATA TEMPERATUR DENGAN MENGGUNAKAN SINAR INFRA MERAH BERBASIS MIKROKONTROLER AT89S51 Kategori : TUGAS AKHIR Nama : HERMAN TAMBUNAN Nomor Induk Mahasiswa : Program Studi : D3 FISIKA INSTRUMENTASI Departemen : FISIKA Fakultas : MATEMATIKA DAN ILMU PENGETAHUAN ALAM (FMIPA) UNIVERSITAS SUMATERA UTARA Diluluskan di Medan, 29 juni 2009 Ketua Program Studi D3 Fisika Instrumentasi Pembimbing (Drs. Syahrul Humaidi, MSc) (Drs. Syahrul Humaidi, MSc) NIP NIP Herman Tambunan : Perancangan Alat Pengirim Dan Penerima Data Temperatur Dengan Menggunakan Sinar Infra Merah Berbasis Mikrokontroler AT89S51, USU Repository 2009

3 ii PERNYATAAN PERANCANGAN ALAT PENGIRIM DAN PENERIMA DATA TEMPERATUR DENGAN MENGGUNAKAN SINAR INFRA MERAH BERBASIS MIKROKONTROLER AT89S51 TUGAS AKHIR Saya mengakui bahwa tugas akhir ini adalah hasil kerja saya sendiri, kecuali beberapa kutipan dan ringkasan yang masing-masing disebutkan sumbernya. Medan, Mei 2009 HERMAN TAMBUNAN Herman Tambunan : Perancangan Alat Pengirim Dan Penerima Data Temperatur Dengan Menggunakan Sinar Infra Merah Berbasis Mikrokontroler AT89S51, USU Repository 2009

4 iii PENGHARGAAN Puji dan syukur penulis panjatkan kepada Tuhan Yang Maha Esa atas segala anugerah dan rahmatnya sehingga penulis dapat menyelesaikan tugas akhir ini. Ucapan terimakasih saya sampaikan kepada Bapak Drs.Tenang Ginting,MS selaku Dosen pembimbing pada penyelesaian tugas akhir ini yang telah memberikan panduan dan perhatian kepada penulis untuk menyempurnakan tugas akhir ini. Ucapan terimakasih juga ditujukan kepada ketua Departemen Fisika Bapak Dr. Marhaposan Situmorang dan ketua jurusan Fisika Instrumentasi Bapak Drs. Syahrul Humaidi,M.Sc serta Dosen-dosen pengajar pada jurusan Fisika Instrumentasi,dan kawan-kawan stambuk 2006 khususnya adek tersayang atas segala bantuan dan motivasinya sehingga penulis dapat menyelesaikan tugas akhir ini dengan baik. Dan saya juga tidak lupa mengucapkan terimakasih yang sebesar-besarnya kepada kedua orang tua penulis yang begitu banyak memberikan dukungan berupa materil maupun spirituil pada penulis sehingga penulis dapat menyelesaikan tugas akhir ini hingga selesai. Semoga Tuhan Yang Maha Esa memberikan berkat yang berlimpah kepada kita semua. Herman Tambunan : Perancangan Alat Pengirim Dan Penerima Data Temperatur Dengan Menggunakan Sinar Infra Merah Berbasis Mikrokontroler AT89S51, USU Repository 2009

5 iv ABSTRAK Salah satu alat yang cerdas yang dibutuhkan oleh manusia adalah alat pengirim data jarak jauh dengan menggunakan infra merah. Alat ini akan mengirimkan data dari jarak tertentu melalui transmitter dan akan diterima oleh receiver pada jarak tertentu juga. Pada alat ini akan digunakan dua buah mikrokontroler AT89S51, sebuah pemancar infra merah, sebuah penerima sinar infra merah ( TSOP 1738 ). Beberapa buah penguat sinyal dan Beberapa buah seven segmen, Mikrokontroler AT89S51 sebagai otak dari system, dimana yang satu berfungsi mengolah data yang akan dikirimkan, kemudian menampilkannya pada seven segmen sekaligus mengirimkan data tersebut ke rangkaian penerima. Sedangkan mikrokontroler yang kedua berfungsi untuk mengolah data yang dikirimkan oleh mikrokontroler pertama melalui infra merah, kemudian menampilkannya pada seven segmen. Pemancar infra merah berfungsi untuk mengirimkan data ke rangkaian penerima. Penerima infra merah berfungsi untuk menerima data yang dipancarkan oleh pemancar infra merah. Seven segmen berfungsi sebagai display dari nilai yang dikirimkan atau yang diterima. Herman Tambunan : Perancangan Alat Pengirim Dan Penerima Data Temperatur Dengan Menggunakan Sinar Infra Merah Berbasis Mikrokontroler AT89S51, USU Repository 2009

6 v DAFTAR ISI Persetujuan Pernyataaan Penghargaan Abstrak Daftar Isi Daftar Tabel Daftar Gambar Halaman ii iii iv v vi viii ix BAB 1 BAB 2 BAB 3 PENDAHULUAN 1.1 Latar Belakang Penulisan Rumusan Masalah Tujuan Penulisan Batasan Masalah Sistematika Penulisan 4 LANDASAN TEORI 2.1 Perangkat Keras Arsitektur Mikrokontroler AT89S Konstruksi AT89S Perangkat Lunak Bahasa Assembly MCS Software 8051 Editor,Assembler,Simulator (IDE) Software Downloader Komponen Pendukung Resistor Fixed Resistor Variabel Resistor Kapasitor Elktrolytic Capasitor Ceramic Capasitor Transistor 24 PERANCANGAN ALAT DAN PROGRAM 3.1 Diagram Blok Rangkaian Rangkaian Power Supplay (PSA) Rangkaian Mikrokontroler AT89S Rangkaian Display Seven segment Rangkaian Pengirim Data melalui Infrared Rangkaian Penerima Data Rangkaian ADC 44 BAB 4 ANALISA RANGKAIAN DAN SISTEM KERJA ALAT 4.1 Pengujian Rangkaian Power Supplay (PSA) Pengujian Rangkaian Mikrokontroller AT89S51 46 Herman Tambunan : Perancangan Alat Pengirim Dan Penerima Data Temperatur Dengan Menggunakan Sinar Infra Merah Berbasis Mikrokontroler AT89S51, USU Repository 2009

7 vi 4.3 Pengujian Rangkaian Display Sevn segment Pengujian Rangkaian Pengirim Data melalui Infra Merah Pengujian Rangkaian Penerima Infra Merah Pengujian Rangkaian ADC 56 BAB 5 KESIMPULAN DAN SARAN 5.1 Kesimpulan Saran 58 DAFTAR PUSTAKA LAMPIRAN Herman Tambunan : Perancangan Alat Pengirim Dan Penerima Data Temperatur Dengan Menggunakan Sinar Infra Merah Berbasis Mikrokontroler AT89S51, USU Repository 2009

8 vii DAFTAR TABEL Halaman Tabel 2.1 Port 3 dan Fungsi Masing-Masing Pin 9 Tabel 2.2 Gelang Resistor 17 Tabel 2.3 Nilai Kapasitor ` 23 Tabel 3.1 Waktu Mikrokontroler AT89S51 Mengerjakan Perintah 37 Tabel 4.1 Waktu Tunda Mikrokontroler AT89S51 Mengeksekusi Program 47 Tabel 4.2 Data Hasil Pengujian Rangkaian Display Seven Segment 50 Tabel 4.3 Data Hasil Pengujian Rangkaian ADC 57 Herman Tambunan : Perancangan Alat Pengirim Dan Penerima Data Temperatur Dengan Menggunakan Sinar Infra Merah Berbasis Mikrokontroler AT89S51, USU Repository 2009

9 viii DAFTAR GAMBAR Halaman Gambar 2.1 IC mikrokontroller AT 89S51 8 Gambar 2.2 Softwer 8051 Editor,Assembler,Simulator (IDE) 14 Gambar 2.3 ISP. Flash Programmer 3.a 15 Gambar 2.4 Resistor Karbon 17 Gambar 2.5 Potensiometer 19 Gambar 2.6 Grafik Perubahan Pada Nilai Potensiometer 19 Gambar 2.7 Skema Kapasitor 20 Gambar 2.8 Electrolytic Capacitor (ELCO) 21 Gambar 2.9 Ceramic Capasitor 22 Gambar 2.10 Simbol Tipe Transistor 24 Gambar 2.11 Transistor Sebagai Saklar ON 25 Gambar 2.12 Karakteristik Daerah Saturasi Pada Transistor 26 Gambar 2.13 Transistor Sebagai Saklar OFF 27 Gambar 3.1 Diagram Blok Rangkaian 28 Gambar 3.2 Rangkaian Power Supply(PSA) 29 Gambar 3.3 Rangkaian Minimum AT89S51 31 Gambar 3.4 Rangkaian Display Seven Segment 32 Gambar 3.5 Rangkaian Pengirim Data Melalui Infra Merah 35 Gambar 3.6 Rangkaian Penerima Infra Merah 41 Gambar 3.7 Rangkaian ADC 44 Gambar 4.1 Pengujian Rangkaian Display Seven Segment 49 Herman Tambunan : Perancangan Alat Pengirim Dan Penerima Data Temperatur Dengan Menggunakan Sinar Infra Merah Berbasis Mikrokontroler AT89S51, USU Repository 2009

10 BAB I PENDAHULUAN I.1. Latar Belakang Masalah Kebutuhan manusia terhadap peralatan yang cerdas dan dapat bekerja secara otomatis semakin meningkat, disamping cara kerjanya yang teliti juga peralatan ini tidak perlu dipantau setiap saat, tetapi mengaktifkan peralatan tersebut dan kemudian mengaturnya sesuai keinginan, maka peralatan tersebut akan mengerjakan tugasnya sesuai dengan program yang telah diberikan. Untuk merancang sebuah peralatan yang cerdas dan dapat bekerja secara otomatis tesebut, dibutuhkan sebuah alat/komponen yang dapat menghitung, mengingat, dan mengambil pilihan. Kemampuan ini dimiliki oleh sebuah komputer (PC), namun tidaklah efisien jika harus menggunakan komputer hanya untuk keperluan tersebut diatas. Untuk itu komputer dapat digantikan dengan sebuah mikrokontroler. Mikrokontroler merupakan sebuah chip atau IC yang di dalamnya terdapat sebuah prosessor dan flash memori yang dapat dibaca/tulis sampai 1000 kali, sehingga biaya pengembangan menjadi murah karena dapat dihapus kemudian diisi kembali dengan program lain sesuai dengan kebutuhan. Salah satu alat yang cerdas yang dibutuhkan oleh manusia adalah alat pengirim data jarak jauh dengan menggunakan infra merah. Alat ini akan mengirimkan data dari jarak tertentu melalui transmitter dan akan diterima oleh receiver pada jarak tertentu juga. Alat seperti ini dibutuhkan untuk mengefisiensikan dalam hal pengiriman data karena dengan adanya alat ini kita tidak perlu lagi menggunakan dua computer atau dua alat yang saling terhubung untuk pengiriman data.

11 2 I.2. Rumusan Masalah Berdasarkan uraian yang terdapat dalam latar belakang di atas, maka dalam tugas akhir ini akan dibuat sebuah Perancangan Alat Pengirim dan Penerima Data Temperatur Dengan Menggunakan Sinar Infra Merah Berbasis Mikrokontroler AT89S51 Pada alat ini akan digunakan dua buah mikrokontroler AT89S51, sebuah pemancar infra merah, sebuah penerima sinar infra merah. Beberapa buah penguat sinyal dan beberapa buah seven segmen, Mikrokontroler AT89S51 sebagai otak dari system, dimana yang satu berfungsi mengolah data yang akan dikirimkan, kemudian menampilkannya pada seven segmen sekaligus mengirimkan data tersebut ke rangkaian penerima. Sedangkan mikrokontroler yang kedua berfungsi untuk mengolah data yang dikirimkan oleh mikrokontroler pertama melalui infra merah, kemudian menampilkannya pada seven segmen. Pemancar infra merah berfungsi untuk mengirimkan data ke rangkaian penerima. Penerima infra merah berfungsi untuk menerima data yang dipancarkan oleh pemancar infra merah. Seven segmen berfungsi sebagai display dari nilai yang dikirimkan atau yang diterima. I.3 Tujuan Penulisan Adapun tujuan dari penelitian ini adalah sebagai berikut: 1. Memanfaatkan mikrokontroler sebagai alat pengiriman dan penerimaan data secara wireless, dengan menggunakan infra merah. 2. Membuat alat sederhana yang dapat mengirim data secara jarak jauh.

12 3 I.4 Batasan Masalah Mengacu pada hal diatas, saya membuat alat yang dapat mengirimkan data secara jarak jauh dengan menggunakan infra merah. Alat ini akan menggunakan mikrokontroler AT89S51, sebagai pusat dari semua operasi, meliputi pengolahan data, penampilan data, pengiriman dan penerimaan data. Alat ini akan memanfaatkan sinar infra merah sebagai media pengiriman data, dan menggunakan IC TSOP 1738 sebagai penerima sinar infra merah. Alat ini akan menggunakan seven segmen sebagai penampil nilai yang dikirimkan atau nilai yang diterima. I.5 Sistematika Penulisan Untuk mempermudah pembahasan dan pemahaman, maka penulis membuat sistematika pembahasan bagaimana sebenarnya prinsip kerja dari alat yang dapat mengontrol temperatur ruangan secara otomatis sekaligus dapat mengirimkan data temperaturnya ke tempat lain, maka penulis menulis laporan ini sebagai berikut: BAB I. PENDAHULUAN Dalam bab ini berisikan mengenai latar belakang, tujuan penulisan, batasan masalah, serta sistematika penulisan. BAB II. LANDASAN TEORI Landasan teori, dalam bab ini dijelaskan tentang teori pendukung yang digunakan untuk pembahasan dan cara kerja dari rangkaian teori pendukung

13 4 itu antara lain tentang mikrokontroler AT89S51 (hardware dan software), bahasa program yang digunakan. BAB III. PERANCANGAN ALAT DAN PROGRAM Pada bagian ini akan dibahas perancangan dari alat, yaitu diagram blok dari rangkaian, diagram alir dari program yang akan diisikan ke mikrokontroler AT89S51. BAB IV. ANALISA RANGKAIAN DAN SISTEM KERJA ALAT Pada bab ini akan dibahas hasil analisa dari rangkaian dan sistem kerja alat, penjelasan mengenai rangkaian-rangkaian yang digunakan, penjelasan mengenai program yang diisikan ke mikrokontroler AT89S51. BAB V. KESIMPULAN DAN SARAN Bab ini merupakan penutup yang meliputi tentang kesimpulan dari pembahasan yang dilakukan dari tugas akhir ini serta saran, apakah rangkaian ini dapat dibuat lebih efisien dan dikembangkan perakitannya pada suatu metode lain yang mempunyai sistem kerja yang sama.

14 BAB II LANDASAN TEORI 2.1 PERANGKAT KERAS Arsitektur Mikrokontroler AT89S51 Mikrokontroler, sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer, hadir memenuhi kebutuhan pasar (market need) dan teknologi baru. Sebagai teknologi baru, yaitu teknologi semikonduktor dengan kandungan transistor yang lebih banyak namun hanya membutuhkan ruang kecil serta dapat diproduksi secara massal (dalam jumlah banyak) sehingga harga menjadi lebih murah (dibandingkan mikroprosesor). Sebagai kebutuhan pasar, mikrokontroler hadir untuk memenuhi selera industri dan para konsumen akan kebutuhan dan keinginan alat-alat bantu dan mainan yang lebih canggih. Ilustrasi yang mungkin bisa memberikan gambaran yang jelas dalam penggunaan mikrokontroler adalah aplikasi mesin tiket dalam arena permainan yang saat ini terkenal di Indonesia. Jika kita sudah selesai bermain, maka akan diberikan suatu nilai, nilai inilah yang menentukan berapa jumlah tiket yang bisa diperoleh dan jika dikumpulkan dapat ditukar dengan berbagai macam hadiah. Sistem tiket ini ditangani dengan mikrokontroler, karena tidak mungkin menggunakan computer PC yang harus dipasang disamping (atau di belakang) mesin permainan yang bersangkutan. Selain sistem tiket, kita juga dapat menjumpai aplikasi mikrokontroler dalam bidang pengukuran jarak jauh atau ynag dikenal dengan sistem telemetri. Misalnya pengukuran disuatu tempat yang membahayakan manusia, maka akan lebih nyaman jika dipasang suatu sistem pengukuran yang bisa mengirimkan data lewat pemancar dan diterima oleh stasiun pengamatan dari jarak yang cukup aman dari sumbernya. Sistem pengukuran jarak jauh ini

15 6 jelas membutuhkan suatu sistem akuisisi data sekaligus sistem pengiriman data secara serial (melalui pemancar), yang semuanya itu bisa diperoleh dari mikrokontroler yang digunakan. Tidak seperti sistem komputer, yang mampu menangani berbagai macam program aplikasi (misalnya pengolah kata, pengolah angka dan lain sebagainya), mikrokontroler hanya bisa digunakan untuk satu aplikasi tertentu saja. Perbedaan lainnya terletak pada perbandingan RAM-nya dan ROM. Pada sistem computer perbandingan RAM dan ROM-nya besar, artinya program-program pengguna disimpan dalam ruang RAM yang relative besar, sedangkan rutin-rutin antarmuka perangkat keras disimpan dalam ruang ROM yang kecil. Sedangkan pada mikrokontroler, perbandingan ROM dan RAM-nya yang besar artinya program control disimpan dalam ROM (bisa Masked ROM atau Flash PEROM) yang ukurannya relatif lebih besar, sedangkan RAM digunakan sebagai tempat penyimpanan sementara, termasuk register-register yang digunakan pada mikrokontroler yang bersangkutan Kontruksi AT89S51 Mikrokontroler AT89S51 hanya memerlukan tambahan 3 kapasitor, 1 resistor dan 1 kristal serta catu daya 5 Volt. Kapasitor 10 mikro-farad dan resistor 10 Kilo Ohm dipakai untuk membentuk rangkaian reset. Dengan adanya rangkaian reset ini AT89S51 otomatis direset, begitu rangkaian menerima catu daya. Kristal dengan frekuensi maksimum 24 MHz dan kapasitor 30 piko-farad dipakai untuk melengkapi rangkaian oscilator pembentuk clock yang menentukan kecepatan kerja mikrokontroler. Memori merupakan bagian yang sangat penting pada mikrokontroler. Mikrokontroler memiliki dua macam memori yang sifatnya berbeda.

16 7 Read Only Memory (ROM) yang isinya tidak berubah meskipun IC kehilangan catu daya. Sesuai dangan keperluannya, dalam susunan MCS-51 memori penyimpanan program ini dinamakan sebagai memori program. Random Access Memori (RAM) isinya akan sirna begitu IC kehilangan catu daya, dipakai untuk menyimpan data pada saat progam bekerja. RAM yang dipakai untuk menyimpan data ini disebut sebagai memori data. Ada berbagai jenis ROM. Untuk mikrokontroler dengan program yang sudah baku dan diproduksi secara massal, program diisikan ke dalam ROM pada saat IC mikrokontroler dicetak di pabrik IC. Untuk keperluan tertentu mikrokontroler mengunakan ROM yang dapat diisi ulang atau Programble-Eraseable ROM yang disingkat menjadi PEROM atau PROM. Dulu banyak dipakai UV-EPROM (Ultra Violet Eraseable Progamble ROM) yang kemudian dinilai mahal dan ditinggalkan setelah ada flash PEROM yang harganya jauh lebih murah. Jenis memori yang dipakai untuk Memori Program AT89S51 adalah Flash PEROM, program untuk mengendalikan mikrokontroler diisikan ke memori itu lewat bantuan alat yang dinamakan sebagai AT89S51 Flash PEROM Programmer. Memori Data yang disediakan dalam chip AT89S51 sebesar 128 byte, meskipun hanya kecil saja tapi untuk banyak keperluan memori kapasitas itu sudah cukup. Sarana Input/Ouput yang disediakan cukup banyak dan bervariasi. AT89S51 mempunyai 32 jalur Input/Ouput. Jalur Input/Ouput paralel dikenal sebagai Port 1 (P1.0..P1.7) dan Port 3 (P3.0..P3.5 dan P3.7).

17 8 Gambar 2.1 IC Mikrokontroler AT89S51 Deskripsi pin-pin pada mikrokontroler AT89S51 : VCC (Pin 40) Suplai tegangan GND (Pin 20) Ground Port 0 (Pin 39-Pin 32) Port 0 dapat berfungsi sebagai I/O biasa, low order multiplex address/data ataupun penerima kode byte pada saat flash programming. Pada fungsi sebagai I/O biasa port ini dapat memberikan output sink ke delapan buah TTL input atau dapat diubah sebagai input dengan memberikan logika 1 pada port tersebut.

18 9 Pada fungsi sebagai low order multiplex address/data, port ini akan mempunyai internal pull up. Pada saat flash progamming diperlukan eksternal pull up, terutama pada saat verifikasi program. Port 2 (Pin 21 pin 28) Port 2 berfungsi sebagai I/O biasa atau high order address, pada saat mengakses memori secara 16 bit. Pada saat mengakses memori 8 bit, port ini akan mengeluarkan isi dari P2 special function register. Port ini mempunyai internal pull up dan berfungsi sebagai input dengan memberikan logika 1. Sebagai output, port ini dapat memberikan output sink keempat buah input TTL. Port 3 (Pin 10 pin 17) Port 3 merupakan 8 bit port I/O. Port 3 juga mempunyai fungsi pin masing-masing, yaitu sebagai berikut : Tabel 2.1 Port 3 dan fungsi masing-masing Pin Nama pin Fungsi P3.0 (pin 10) RXD (Port input serial) P3.1 (pin 11) TXD (Port output serial) P3.2 (pin 12) INTO (interrupt 0 eksternal) P3.3 (pin 13) INT1 (interrupt 1 eksternal) P3.4 (pin 14) T0 (input eksternal timer 0) P3.5 (pin 15) T1 (input eksternal timer 1) P3.6 (pin 16) WR (menulis untuk eksternal data memori) P3.7 (pin 17) RD (untuk membaca eksternal data memori)

19 10 RST (pin 9) Reset akan aktif dengan memberikan input high selama 2 cycle. ALE/PROG (pin 30) Address latch Enable adalah pulsa output untuk me-latch byte bawah dari alamat selama mengakses memori eksternal. Selain itu, sebagai pulsa input program (PROG) selama memprogram Flash. PSEN (pin 29) Program store enable digunakan untuk mengakses memori program eksternal. EA (pin 31) Pada kondisi low, pin ini akan berfungsi sebagai EA yaitu mikrokontroler akan menjalankan program yang ada pada memori eksternal setelah sistem direset. Jika kondisi high, pin ini akan berfungsi untuk menjalankan program yang ada pada memori internal. Pada saat flash programming, pin ini akan mendapat tegangan 12 Volt. XTAL1 (pin 19) Input untuk clock internal. XTAL2 (pin 18) Output dari osilator. 2.2 PERANGKAT LUNAK Bahasa Assembly MCS-51 Bahasa yang digunakan untuk memprogram IC mikrokontroler AT89S51 adalah bahasa assembly untuk MCS-51. angka 51 merupakan jumlah instruksi pada bahasa ini

20 11 hanya ada 51 instruksi. Dari 51 instruksi, yang sering digunakan orang hanya 10 instruksi. Instruksi instruksi tersebut antara lain : 1. Instruksi MOV Perintah ini merupakan perintah untuk mengisikan nilai ke alamat atau register tertentu. Pengisian nilai dapat secara langsung atau tidak langsung. Contoh pengisian nilai secara langsung MOV R0,#20h Perintah di atas berarti : isikan nilai 20 Heksadesimal ke register 0 (R0). Tanda # sebelum bilangan menunjukkan bahwa bilangan tersebut adalah nilai. Contoh pengisian nilai secara tidak langsung MOV 20h,#80h MOV R0,20h Perintah di atas berarti : isikan nilai yang terdapat pada alamat 20 Heksadesimal ke register 0 (R0). Tanpa tanda # sebelum bilangan menunjukkan bahwa bilangan tersebut adalah alamat. 2. Instruksi DJNZ Decreament Jump If Not Zero (DJNZ) ini merupakan perintah untuk mengurangi nilai register tertentu dengan 1 dan lompat jika hasil pengurangannya belum nol. Contoh, MOV R0,#80h Loop:......

21 12 DJNZ R0,Loop... R0-1, jika belum 0 lompat ke loop, jika R0 = 0 maka program akan meneruskan ke perintah pada baris berikutnya. 3. Instruksi ACALL Instruksi ini berfungsi untuk memanggil suatu rutin tertentu. Contoh : DJNZ R0, Loop... ACALL TUNDA... TUNDA: Instruksi RET Instruksi RETURN (RET) ini merupakan perintah untuk kembali ke rutin pemanggil setelah instruksi ACALL dilaksanakan. Contoh, ACALL TUNDA... TUNDA:... RET 5. Instruksi JMP (Jump) Instruksi ini merupakan perintah untuk lompat ke alamat tertentu. Contoh, Loop: JMP Loop

22 13 6. Instruksi JB (Jump if bit) Instruksi ini merupakan perintah untuk lompat ke alamat tertentu, jika pin yang dimaksud berlogika high (1). Contoh, Loop: JB P1.0,Loop Instruksi JNB (Jump if Not bit) Instruksi ini merupakan perintah untuk lompat ke alamat tertentu, jika pin yang dimaksud berlogika Low (0). Contoh, Loop: JNB P1.0,Loop Instruksi CJNE (Compare Jump If Not Equal) Instruksi ini berfungsi untuk membandingkan nilai dalam suatu register dengan suatu nilai tertentu. Contoh, Loop:... CJNE R0,#20h,Loop... Jika nilai R0 tidak sama dengan 20h, maka program akan lompat ke rutin Loop. Jika nilai R0 sama dengan 20h,maka program akan melanjutkan instruksi selanjutnya.. 9. Instruksi DEC (Decreament) Instruksi ini merupakan perintah untuk mengurangi nilai register yang dimaksud dengan 1. Contoh, MOV R0,#20h R0 = 20h

23 14... DEC R0 R0 = R Instruksi INC (Increament) Instruksi ini merupakan perintah untuk menambahkan nilai register yang dimaksud dengan 1. Contoh, MOV R0,#20h R0 = 20h... INC R0 R0 = R Dan lain sebagainya Software 8051 Editor, Assembler, Simulator (IDE) Instruksi-instruksi yang merupakan bahasa assembly tersebut dituliskan pada sebuah editor, yaitu 8051 Editor, Assembler, Simulator (IDE). Tampilannya seperti di bawah ini. Gambar Editor, Assembler, Simulator (IDE)

24 15 Setelah program selesai ditulis, kemudian di-save dan kemudian di-assemble (di-compile). Pada saat di-assemble akan tampil pesan peringatan dan kesalahan. Jika masih ada kesalahan atau peringatan, itu berarti ada kesalahan dalam penulisan perintah atau ada nama subrutin yang sama, sehingga harus diperbaiki terlebih dahulu sampai tidak ada pesan kesalahan lagi. Software 8051IDE ini berfungsi untuk merubah program yang kita tuliskan ke dalam bilangan heksadesimal, proses perubahan ini terjadi pada saat peng-compile-an. Bilangan heksadesimal inilah yang akan dikirimkan ke mikrokontroler Software Downloader Untuk mengirimkan bilangan-bilangan heksadesimal ini ke mikrokontroler digunakan software ISP- Flash Programmer 3.0a yang dapat didownload dari internet. Tampilannya seperti gambar di bawah ini Gambar 2.3 ISP- Flash Programmer 3.a Cara menggunakannya adalah dengan meng-klik Open File untuk mengambil file heksadesimal dari hasil kompilasi 8051IDE, kemudian klik Write untuk mengisikan hasil kompilasi tersebut ke mikrokontroler.

25 Komponen-Komponen Pendukung Resistor Resistor komponen pasif elektronika yang berfungsi untuk membatasi arus listrik yang mengalir. Berdasarkan kelasnya resistor dibagi menjadi 2 yaitu : Fixed Resistor dan Variable R esistor Dan umumnya terbuat dari carbon film atau metal film, tetapi tidak menutup kemungkinan untuk dibuat dari material yang lain. Pada dasarnya semua bahan memiliki sifat resistif namun beberapa bahan tembaga perak emas dan bahan metal umumnya memiliki resistansi yang sangat kecil. Bahan bahan tersebut menghantar arus listrik dengan baik, sehingga dinamakan konduktor. Kebalikan dari bahan yang konduktif, bahan material seperti karet, gelas, karbon memiliki resistansi yang lebih besar menahan aliran elektron dan disebut sebagai insulator Fixed Resistor Resistor adalah komponen dasar elektronika yang digunakan untuk membatasi jumlah arus yang mengalir dalam satu rangkaian. Sesuai dengan namanya resistor bersifat resistif dan umumnya terbuat dari bahan karbon. Tipe resistor yang umum berbentuk tabung porselen kecil dengan dua kaki tembaga dikiri dan kanan. Pada badannya terdapat lingkaran membentuk gelang kode warna untuk memudahkan pemakai mengenali besar resistansi tanpa

26 17 mengukur besarnya dengan ohm meter. Kode warna tersebut adalah standar menufaktur yang dikeluarkan oleh ELA (Electronic Industries Association). Gambar 2.4. Resistor karbon Tabel 2.2 Gelang Resistor WARNA GELANG I GELANG II GELANG III NILAI TOLERANSI Hitam Coklat Merah Jingga Kuning Hijau Biru Violet Abu-abu Putih Emas - - 0,1 5% Perak - - 0,01 10% Tanpa Warna %

27 18 Resitansi dibaca dari warna gelang yang paling depan ke arah gelang toleransi berwarna coklat, emas, atau perak. Biasanya warna gelang toleransi ini berada pada bahan resistor yang paling pojok atau juga dengan lebar yang lebih menonjol, sedangkan warna gelang yang keempat agak sedikit ke dalam. Dengan demikian pemakai sudah langsung mengetahui berapa toleransi dari resitor tersebut. Kalau anda telah bisa menentukan mana gelang pertama selanjutnya adalah membaca nilai resistansinya. Biasanya resistor dengan toleransi 5%, 10% atau 20% memiliki gelang (tidak termasuk gelang toleransi). Tetapi resistor dengan toleransi 1% atau 2% (toleransi kecil) memiliki 4 gelang (tidak termasuk gelang toleransi). Gelang pertama dan seterusnya berturut-turut menunjukkan besar nilai satuan, dan gelang terakhir adalah faktor penggalinya Variable Resistor Untuk kelas resistor yang kedua ini terdapat 2 tipe. Untuk tipe pertama dinamakan variable resistor dan nilainya dapat diubah sesuai keinginan dengan mudah dan sering digunakan untuk pengaturan volume, bass, balance, dll. Sedangkan yang kedua adalah semifixed resistor. Nilai dari resistor ini biasanya hanya diubah pada kondisi tertentu saja. Contoh penggunaan dari semi-fixed resistor adalah tegangan referensi yang digunakan untuk ADC, fine tune circuit, dll. Ada beberapa model pengaturan nilai Variable resistor, yang sering digunakan adalah dengan cara nya terbatas sampai 300 derajat putaran. Ada beberapa model variable resistor yang harus diputar berkali kali untuk mendapatkan semua nilai resistor. Model ini dinamakan Potentiometers atau Trimmer Potentiometers.

28 19 Gambar 2.5 Potensio meter Pada gambar 2.5 di atas untuk bentuk 3 biasanya digunakan untuk volume kontrol. Bentuk yang ke 2 merupakan semi fixed resistor dan biasanya di pasang pada PCB (Printed Circuit Board). Sedangkan bentuk 1 dpotentiometers. Ada 3 tipe didalam perubahan nilai dari resistor variabel, perubahan tersebut dapat dilihat pada gambar 2.6. Nilai hambatan (ohm) Sudut Putaran Gambar 2.6 Grafik Perubahan nilai pada potensiometer Pada saat tipe A diputar searah jarum jam, awalnya perubahan nilai resistansi lambat tetapi ketika putarannya mencapai setengah atau lebih nilai perubahannya menjadi sangat cepat. Tipe ini sangat cocok dengan karakteristik telinga ma. Karena telinga sangat peka ketika membedakan suara dengan volume yang lemah, tetapi tidak terlalu sensitif untuk membedakan perubahan suara yang keras. Biasanya tipe A ini juga disebut sebagai Audio

29 20 Taper potensiometer. Untuk tipe B perubahan resistansinya adalah linier dan cocok digunakan untuk Aplikasi Balance Control, resistance value adjustment in circuit, dll. Sedangkan untuk tipe C perubahan resistansinya kebalikan dati tipe A Kapasitor Kapasitor adalah komponen elektronika yang dapat menyimpan muatan listrik. Struktur sebuah kapasitor terbuat dari 2 buah plat metal yang dipisahkan oleh suatu bahan dielektrik. Bahan-bahan dielektrik yang umum dikenal misalnya udara vakum, keramik, gelas dan lainlain. Jika kedua ujung plat metal diberi tegangan listrik, maka muatan-muatan positif akan mengumpul pada salah satu kaki elektroda metalnya dan pada saat yang sama muatan-muatan negatif terkumpul pada ujung metal yang satu lagi. Muatan positif tidak dapat mengalir menuju ujung kutup negatif dan sebaliknya muatan negatif tidak bisa menuju ke ujung kutup positif karena terpisah oleh bahan elektrik yang non-konduktif. Muatan elektrik ini tersimpan selama tidak ada konduktif pada ujung- ujung kakinya. Di alam bebas phenomena kapasitor terjadi pada saat terkumpulnya muatan-muatan positif dan negatif diawan. dielektrik Elektroda Elektroda Gambar 2.7 Skema kapasitor. Kapasitor merupakan komponen pasif elektronika yang sering dipakai didalam merancang suatu sistem yang berfungsi untuk mengeblok arus DC, Filter, dan penyimpan

30 21 energi listrik. Didalamnya 2 buah pelat elektroda yang saling berhadapan dan dipisahkan oleh sebuah insulator. Sedangkan bahan yang digunakan sebagai insulator dinamakan dielektrik. Ketika kapasitor diberikan tegangan DC maka energi listrik disimpan pada tiap elektrodanya. Selama kapasitor melakukan pengisian, arus mengalir. Aliran arus tersebut akan berhenti bila kapasitor telah penuh. Yang membedakan tiap - tiap kapasitor adalah dielektriknya. Berikut ini adalah jenis jenis kapasitor yang dipergunakan dalam perancangan ini Electrolytic Capacitor (ELCO) Gambar 2.8 Electrolytic Capacitor (ELCO) Elektroda dari kapasitor ini terbuat dari alumunium yang menggunakan membrane oksidasi yang tipis. Karakteristik utama dari Electrolytic Capacitor adalah perbedaan polaritas pada kedua kakinya. Dari karakteristik tersebut kita harus berhati- hati di dalam pemasangannya pada rangkaian, jangan sampai terbalik. Bila polaritasnya terbalik maka akan menjadi rusak bahkan meledak. Biasanya jenis kapasitor ini digunakan pada rangkaian power supply. Kapasitor ini tidak bisa digunakan pada rangkaian frekuensi tinggi. Biasanya tegangan kerja dari kapasitor dihitung dengan cara mengalikan tegangan catu daya dengan 2.

31 22 Misalnya kapasitor akan diberikan catu daya dengan tegangan 5 Volt, berarti kapasitor yang dipilih harus memiliki tegangan kerja minimum 2 x 5Volt = 10 Volt Ceramic Capacitor Kapasitor menggunakan bahan titanium acid barium untuk dielektriknya. Karena tidak dikonstruksi seperti koil maka komponen ini dapat digunakan pada rangkaian frekuensi tinggi. Biasanya digunakan untuk melewatkan sinyal frekuensi tinggi menuju ke ground. Kapasitor ini tidak baik digunakan untuk rangkaian analog, karena dapat mengubah bentuk sinyal. Jenis ini tidak mempunyai polaritas dan hanya tersedia dengan nilai kapasitor yang sangat kecil dibandingkan dengan kedua kapasitor diatas. Gambar 2.9 Ceramic Capacitor Untuk mencari nilai dari kapasitor biasanya dilakukan dengan melihat angka/kode yang tertera pada badan kapasitor tersebut. Untuk kapasitor jenis elektrolit memang mudah, karena nilai kapasitansinya telah tertera dengan jelas pada tubuhnya. Sedangkan untuk kapasitor keramik dan beberapa jenis yang lain nilainya dikodekan. Biasanya kode tersebut terdiri dari 4 digit, dimana 3 digit pertama merupakan angka dan digit terakhir berupa huruf yang menyatakan toleransinya. Untuk 3 digit pertama angka yang terakhir berfungsi untuk menentukan 10n, nilai n dapat dilihat pada tabel dibawah.

32 23 Tabel 2.3 Nilai Kapasitor 3rd Digit Multiplier Letter Tolerance 0 1 D 0.5 pf 1 10 F 1 % G 2 % 3 1,000 H 3 % 4 10,000 J 5 % 5 100,000 K 10 % 6,7 Not Used M 20 % 8.01 P +100, -0 % 9 1 Z +80, -20 % Misalnya suatu kapasitor pada badannya tertulis kode 474J, berarti nilai kapasitansinya adalah 47 * 10 4 = pf = 0.47µF sedangkan toleransinya 5%. Yang harus diingat didalam mencari nilai kapasitor adalah satuannya dalam pf (Pico Farad).

33 Transistor Transistor adalah komponen elektronika yang mempunyai tiga buah terminal. Terminal itu disebut emitor, basis, dan kolektor. Transistor seakan-akan dibentuk dari penggabungan dua buah dioda. Dioda satu dengan yang lain saling digabungkan dengan cara menyambungkan salah satu sisi dioda yang senama. Dengan cara penggabungan seperti dapat diperoleh dua buah dioda sehingga menghasilkan transistor NPN. Bahan mentah yang digunakan untuk menghasilkan bahan N dan bahan P adalah silikon dan germanium. Oleh karena itu, dikatakan : 1. Transistor germanium PNP. 2. Transistor silikon NPN. 3. Transistor silikon PNP. 4. Transistor germanium NPN. Semua komponen di dalam rangkaian transistor dengan simbol. Anak panah yang terdapat di dalam simbol menunjukkan arah yang melalui transistor. C C B B E E NPN PNP Gambar 2.10 simbol tipe transistor

34 25 Keterangan : C = kolektor E = emiter B = basis Didalam pemakaiannya transistor dipakai sebagai komponen saklar (switching) dengan memanfaatkan daerah penjenuhan (saturasi) dan daerah penyumbatan (cut off) yang ada pada karakteristik transistor. Pada daerah penjenuhan nilai resistansi persambungan kolektor emiter secara ideal sama dengan nol atau kolektor dan emiter terhubung langsung (short). Keadaan ini menyebabkan tegangan kolektor emiter (V CE ) = 0 Volt pada keadaan ideal, tetapi pada kenyataannya V CE bernilai 0 sampai 0,3 Volt. Dengan menganalogikan transistor sebagai saklar, transistor tersebut dalam keadaan on seperti pada gambar Vcc Vcc I C R R B Saklar On V CE V B I B V BE Gambar 2.11 Transistor sebagai Saklar ON Saturasi pada transistor terjadi apabila arus pada kolektor menjadi maksimum dan untuk mencari besar arus basis agar transistor saturi adalah :

35 26 Vcc I max =...(2.1) Rc Vcc hfe.i B =..(2.2) Rc I B = Vcc hfe.rc.(2.3) Hubungan antara tegangan basis (V B ) dan arus basis (I B ) adalah : I V V B BE B =.(2.4) R B V B = I B. R B + V BE..(2.5) Vcc.R = VBE (2.5) hfe.rc B V B + Jika tegangan V B telah mencapai Vcc.R = VBE, maka transistor akan saturasi, hfe.rc B V B + dengan Ic mencapai maksimum. Gambar 2.12 dibawah ini menunjukkan apa yang dimaksud dengan V CE (sat) adalah harga V CE pada beberapa titik dibawah knee dengan posisi tepatnya ditentukan pada lembar data. Biasanya V CE (sat) hanya beberapa perpuluhan volt, walaupun pada arus kolektor sangat besar bisa melebihi 1 volt. Bagian dibawah knee pada gambar 2.12 dikenal sebagai daerah saturasi. I C Penjenuhan (saturation) I B > I B (sat) I B = I B (sat) Titik setimbang Q I B Titik Sumbat (Cut off) I B = 0 Gambar 2.12 Karakteristik daerah saturasi pada transistor V CE

36 27 Pada daerah penyumbatan,nilai resistansi persambungan kolektor emiter secara ideal sama dengan tak terhitung atau terminal kolektor dan emiter terbuka (open). Keadaan ini menyebabkan tegangan (V CB ) sama dengan tegangan sumber (Vcc). Tetapi pada kenyataannya Vcc pada saat ini kurang dari Vcc karena terdapat arus bocor dari kolektor ke emiter. Dengan menganalogikan transistor sebagai saklar, transistor tersebut dalam keadaan off seperti gambar dibawah ini. Vcc Vcc I C R V B I B R B V BE V CE Saklar Off Gambar 2.13 Transistor Sebagai Saklar OFF Keadaan penyumbatan terjadi apabila besar tegangan habis (V B ) sama dengan tegangan kerja transistor (V BE ) sehingga arus basis (I B ) = 0 maka : I B = IC (2.6) hfe I C = I B. hfe. (2.7) I C = 0. hfe.. (2.8) I C = 0..(2.9) Hal ini menyebabkan V CE sama dengan Vcc dapat dibuktikan dengan rumus : Vcc V CE V CE = Vc + V CE.. (2.10) = Vcc (Ic. Rc).. (2.11) = Vcc.. (2.12)

37 BAB III PERANCANGAN ALAT DAN PROGRAM 3.1 DIAGRAM BLOK Secara garis besar rangkaian untuk lift 4 lantai terdiri dari 5 blok utama, yaitu rangkaian tombol, rangkaian display, rangkaian mikrokontroler, rangkaian display, rangkaian driver motor stepper dan motor stepper. Diagram blok rangkaian tampak seperti gambar berikut: Sensor suhu LM35 ADC display uc AT89S51 ( 1 ) Pemancar infra merah penerima infra merah uc AT89S51 ( 2 ) display Gambar 3.1. Diagram Blok Rangkaian Secara umum pada perancangan alat pengirim data temperatur jarak jauh ini terdiri dari delapan blok diagram utama. Sensor suhu LM35 digunakan untuk mendeteksi suhu pada ruangan. Data analog yang dihasilkan oleh sensor suhu LM35 kemudian akan dikirimkan ke ADC untuk diolah menjadi data digital. Data yang telah dikonversi menjadi data digital inilah

38 29 yang dikirimkan ke mikrokontroler ( 1 ) untuk diolah. Display berfungsi untuk menampilkan data temperatur. Untuk dapat mengirimkan data temperatur yang diterima oleh sensor suhu LM35 ke mikrokontroler ( 2 ) maka digunakan pemancar infra merah. Dan untuk dapat menerima data yang dikirimkan oleh mikrokontroler (1) digunakan penerima infra merah. 3.2 Rangkaian Power Supplay (PSA) Rangkaian ini berfungsi untuk mensupplay tegangan ke seluruh rangkaian yang ada. Rangkaian PSA yang dibuat terdiri dari dua keluaran, yaitu 5 volt dan 12 volt, keluaran 5 volt digunakan untuk mensupplay tegangan ke seluruh rangkaian, sedangkan keluaran 12 volt digunakan untuk mensupplay tegangan ke motor stepper. Rangkaian power supplay ditunjukkan pada gambar 3.2 berikut ini : TIP32C LM7805CT 12 Volt Vreg 220V 50Hz 0Deg 1N5392GP 100ohm IN OUT 5 Volt 330ohm 1N5392GP 2200uF 1uF 100uF TS_PQ4_12 Gambar 3.2 Rangkaian Power Supplay (PSA) Trafo CT merupakan trafo stepdown yang berfungsi untuk menurunkan tegangan dari 220 volt AC menjadi 12 volt AC. Kemudian 12 volt AC akan disearahkan dengan menggunakan dua buah dioda, selanjutnya 12 volt DC akan diratakan oleh kapasitor 2200 μf. Regulator tegangan 5 volt (LM7805CT) digunakan agar keluaran yang dihasilkan tetap 5 volt walaupun terjadi perubahan pada tegangan masukannya. LED hanya sebagai indikator apabila PSA dinyalakan.

39 30 Transistor PNP TIP 32 disini berfungsi untuk mensupplay arus apabila terjadi kekurangan arus pada rangkaian, sehingga regulator tegangan (LM7805CT) tidak akan panas ketika rangkaian butuh arus yang cukup besar.transistor tipe PNP ini akan aktif jika tegangan pada basis > 0,7 volt dari tegangan positif. Tegangan positif yang dihubungkan ke emitor sebesar 12 volt, sehingga transistor akan aktif jika diberi tegangan yang lebih kecil dari 12 volt 0,7 volt = 11,3 volt. Dalam kondisi biasa (LM7805 tidak kekurangan arus), maka basis akan mendapatkan tegangan 12 volt, sehingga transistor tidak aktif, emiter tidak terhubung dengan kolektor, sehingga tegangan pada kolektor sama dengan tegangan pada output regulator LM7805 yaitu 5 volt. Namun jika rangkaian membutuhkan arus yang lebih banyak, maka regulator akan mengambil arus dari inputnya, sehingga tegangan pada input regulator akan turun hingga lebih kecil dari 11,3 volt, transistor akan aktif, maka arus akan mengalir dari emiter ke kolektor. Pada transistor ini jika aktif, maka yang mengalir dari emiter ke kolektor adalah arusnya, sedangkan tegangannya tidak, sehingga tegangan pada kolektor tetap 5 volt. Tegangan 12 volt DC langsung diambil dari keluaran 2 buah dioda penyearah.

40 Rangkaian Mikrokontroler AT89S51 Rangkaian minimum mikrokontroler AT89S51 ditunjukkan pada gambar 4.2 berikut ini : VCC 5V P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 RST VCC P0.0/AD0 P0.1/AD1 P0.2/AD2 P0.3/AD3 P0.4/AD4 P0.5/AD5 P0.6/AD6 P0.7/AD kohm Xtal 12 MHz pF 33pF P3.0/RX0 EA/VPP P3.1/TX0 ALE/PROG P3.2/INT0 P3.3/INT1 PSEN P3.4/T0 P2.0/A8 P3.5/T1 P2.1/A9 P3.6/WR P2.2/A10 P3.7/RD P2.3/A11 XTAL2 P2.4/A12 P2.5/A13 XTAL1 P2.6/A14 GND P2.7/A16 AT89S kohm 10uF Gambar 3.3 Rangkaian minimum AT89S51 Pin 29 merupakan PSEN (Program Store Enable) dan pin 30 sebagai Address Latch Enable (ALE)/PROG dihubungkan ke ground (diset low), sedangkan Pin 31 External Access Enable (EA) diset high (H). Ini dilakukan karena mikrokontroler AT89S51 tidak menggunakan memori eksternal. Pin 18 dan 19 dihubungkan ke XTAL 12 MHz dan capasitor 33 pf. XTAL ini akan mempengaruhi kecepatan mikrokontroler AT89S51 dalam mengeksekusi setiap perintah dalam program. Pin 9 merupakan masukan reset (aktif tinggi). Pulsa transisi dari rendah ke tinggi akan me-reset mikrokontroler ini. Pin 32 sampai 39 adalah Port 0 yang merupakan saluran/bus I/O 8 bit open collector dapat juga digunakan sebagai multiplex

41 32 bus alamat rendah dan bus data selama adanya akses ke memori program eksternal. Karena fungsi tersebut maka Port 0 dihubungkan dengan resistor array. Pin 20 merupakan ground dihubungkan dengan ground pada power supplay. Pin 40 merupakan sumber tegangan positif dihubungkan dengan + 5 volt dari power supplay. 3.4 Rangkaian Display Seven Segment Nilai temperatur yang terdeteksi oleh sensor temperatur (LM35) diubah menjadi 8-bit data biner oleh ADC kemudian diolah oleh mikrokontroler AT89S51 untuk selanjutnya ditampilkan pada 3-digit seven segmen. Rangkaian display seven segmen tampak seperti gambar di bawah ini : VCC 5 V i i i S E V E N _ S E G _ DSIS E VP EL AN Y_ S E G _ DSIS E VP EL AN Y_ S E G _ D IS P A B C DE F G A B C DE F G A B C DE F G In D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D Clock Out In Clock Out In Clock Out P3.0 AT89S P3.1 AT89S51 Gambar 3.4 Rangkaian Display Seven Segmen Display ini menggunakan 3 buah seven segmen yang dihubungkan ke IC 4094 yang merupakan IC serial to paralel. IC ini akan merubah 8 bit data serial yang masuk menjadi keluaran 8 bit data paralel. Rangkaian ini dihubungkan dengan P3.0 dan P3.1 AT89S51. P3.0

42 33 merupakan fasilitas khusus pengiriman data serial yang disediakan oleh mikrokontroler AT89S51. Sedangkan P3.1 merupakan sinyal clock untuk pengiriman data serial. Dengan menghubungkan P3.0 dengan IC serial to paralel (IC 4094), maka data serial yang dikirim akan diubah menjadi data paralel. Kemudian IC 4094 ini dihubungkan dengan seven segmen agar data tersebut dapat ditampilkan dalam bentuk angka. Seven segmen yang digunakan adalah aktip low, ini berarti segmen akan hidup jika diberi data low (0) dan segmen akan mati jika diberi data high (1). Untuk menampilkan angka pada seven segmen, maka data yang harus diberikan adalah sebagai berikut: Untuk menampilkan angka nol, data yang harus dikirim adalah 20h Untuk menampilkan angka satu, data yang harus dikirim adalah Untuk menampilkan angka dua, data yang harus dikirim adalah 0ech 18h Untuk menampilkan angka tiga, data yang harus dikirim adalah 88h Untuk menampilkan angka empat, data yang harus dikirim adalah 0c4h Untuk menampilkan angka lima, data yang harus dikirim adalah 82h Untuk menampilkan angka enam, data yang harus dikirim adalah 02h Untuk tampilan kosong (tidak ada nilai yang tampil), data yang harus dikirim adalah 0ffh Program untuk menampilkan angka pada display seven segmen adalah sebagai berikut: bil0 equ 20h bil1 equ 0ech bil2 equ 18h bil3 equ 88h bil4 equ 0c4h bil5 equ 82h

43 34 bil6 equ 02h bilkosong equ 0ffh Tampil: mov 60h,#bil1 mov 61h,#bil2 mov 62h,#bil3 mov sbuf,62h jnb ti,$ clr ti mov sbuf,61h jnb ti,$ clr ti mov sbuf,60h jnb ti,$ clr ti sjmp Tampil Program di atas akan menampilkan nilai 123 pada display seven segmen. Dan nilai berapapun yang diisikan ke alamat 60h, 61h dan 62h akan ditampilkan pada display seven segmen. 3.5 Rangkaian Pengirim Data Melalui Infra Merah Data yang yang telah diolah mikrokontroler AT89S51, selain ditampilkan pada display seven segmen, data tersebut juga dikirimkan ke rangkaian penerima dengan menggunakan LED infra merah. Rangkaiannya seperti gambar di bawah ini :

44 35 VCC 5V P3.7 ( AT89S51) R2 4.7k 2SA733 LED_ir 330 Gambar 3.5 Rangkaian Pengirim Data Melalui Infra Merah Pada rangkaian di atas LED infra merah akan menyala jika basis pada transistor C945 diberi tegangan yang lebih besar dari 0,7 volt, ini akan sama artinya jika pada P3.7 AT89S51 diberi logika high (1), karena pin yang diberi logika high akan mempunyai tegangan 4 s/d 5 volt, cukup untuk mengaktifkan transistor. Sedangkan untuk mematikan LED infra merah, maka P3.7 AT89S51 harus diberi logika low (0), karena dengan memberikan logika low pada P3.7, maka P3.7 akan memiliki tegangan 0 s/d 0,009 volt, tegangan ini akan menyebabkan transistor tidak aktif. Untuk pengiriman data agar data dapat dikirimkan dari jarak yang jauh, maka LED infra merah harus dipancarkan dengan frekuensi 38 KHz karena frekuensi ini bebas dari gangguan frekuensi infra merah alam. Jika LED infra merah dipancarkan dengan frekuensi selai 38 KHz, maka pancarannya akan terganggu oleh frekuensi-frekuensi infra merah dari alam, seperti frekuensi infra merah yang dipancarkan oleh matahari, tumbuhan, bahkan badan manusia. Dengan menggunakan frekuensi 38 KHz, maka pancaran LED infra merah yang

45 36 dihasilkan oleh rangkaian tidak terganggu oleh pancaran infra merah alam, sehingga jarak pengiriman data semakin jauh. Untuk memancarkan frekuensi 38 KHz dari LED infra merah, langkah yang harus dilakukan adalah dengan mengedipkannya (menghidupkan dan mematikannya) dengan frekuensi tersebut, yaitu dengan memberikan logika high dan low pada P3.7 dengan selang waktu (perioda) : T = = = = 0, s = 26,3µ s 3 f 38KHz 38x10 Hz Untuk mendapatkan perioda tersebut, maka program yang harus diberikan pada mikrokontroler AT89S51 adalah: 38KHz: Clr p3.7 setb p3.7 Program untuk mematikan bit p3.7 berhenti brhenti Program untuk mengaktifkan bit p3.7

46 37 sjmp 38KHz Mikrokontroler AT89S51 memerlukan 12 Clock setiap satu siklus mesin. Dengan demikian, jika digunakan kristal 12 MHz, maka waktu yang diperlukan untuk satu siklus mesin adalah : 12 clock = 1 x Mhz sekon = 1µ s Tabel 3.1 Waktu Mikrokontroler AT89S51 Mengerjakan perintah. Instruksi Siklus mesin Waktu (μs) CLR NOP SETB SJMP Berdasarkan tabel di atas, maka lamanya logika low (0) pada P3.7 adalah 13 μ dan lamanya logika high (1) adalah 13 μs, sehingga periodanya menjadi 26 μs. 13 μs 13 μs Low High 26 μs Dengan demikian frekuensi yang dihasilkan oleh P3.7 adalah :

47 x10 f = = = = = 38461Hz = 38, 461KHz 6 T 26µ s 26x10 s 26 Jika LED infra merah dipancarkan dengan frekuensi ini, maka pancaran LED infra merah dari rangkaian tidak akan terganggu oleh frekuensi infra merah alam. Sebagai catatan frekuensi infra merah yang tidak dipengaruhi oleh frekuensi infra merah dari alam adalah anatara 38 KHz s/d 40 KHz, frekuensi inilah yang digunakan sebagai frekuensi remote kontrol dari TV, VCD dan DVD di seluruh dunia. Ketika penerima infra merah menerima pancaran infra merah dengan frekuensi 38 KHz dari rangkaian pemancar, maka output dari penerima akan berlogika high (1), jika pancaran infra merah ini dihentikan, maka penerima akan mendapatkan logika low (0) sesaat (± 1200 μs ) kemudian berubah menjadi high (1) kembali walaupun tidak ada pancaran infra merah dengan frekuensi 38 KHz. Ini sudah merupakan karakteristik dari penerima infra merah yang digunakan (TSOP 1738). Pada alat ini, logika high setelah setelah logika low sesaat itulah yang dijadikan sebagai data, sehingga dengan mengatur lebar pulsa high (1) tersebut dengan suatu nilai tertentu dan menjadikan nilai tersebut sebagai datanya, maka pengiriman data dapat dilakukan. Pada alat ini, data yang dikirimkan sebanyak 3 data, yaitu data untuk nilai ratusan, nilai puluhan dan nilai. Setiap pengiriman masing-masing data dari ketiga data tersebut, didahului dengan pengiriman sinyal low, jadi ada 3 sinyal low dan ada 3 data. Akan terjadi masalah jika pengiriman data dilakukan seperti ini, yaitu data yang diterima urutannya tidak sesuai dengan data yang dikirimkan. Misalnya 3 data yang dikirimkan adalah 567, kemungkinan data yang diterima adalah: 675, dan 756. Sehingga hanya 1/3 kemungkinannya data yang dikirimkan benar. Kesalahan pengambilan data oleh penerima disebabkan karena adanya penghalang atau karena kesalahan pengambilan data ketika alat pertama kali dihidupkan. Seharusnya

48 39 penerima mengambil sinyal low dari data yang pertama, kemudian mengambil data pertama, setelah itu mengambil sinyal low dari data kedua, kemudian mengambil data kedua, dan demikian seterusnya, sehingga data tersebut sesuai dengan urutannya. Namun jika ada penghalang sesaat atau ketika pertama kali dihidupkan terjadi kesalahan pengambilan sinyal low, maka pengambilan data seterusnya akan salah. Misalnya jika ada penghalang sesaat, sehingga sinyal low yang diterima adalah sinyal low yang kedua, maka data kedua akan dianggap sebagai data pertama, dan data ketiga akan dianggap sebagai data kedua, demikian seterusnya, sehingga urutan data menjadi salah. Untuk menghindari kesalahan dalam pengambilan data, maka pada alat ini ditambahkan satu data yang berfungsi sebagai startbit atau data awal. Data awal ini mempunyai nilai tertentu, jadi ketika penerima mendapatkan sinyal low, penerima akan mengambil 1 data setelah sinyal low tersebut dan membandingkannya apakah sesuai dengan data awal atau tidak. Jika tidak sama, maka penerima akan mengambil data berikutnya, kemudian membandingkan lagi sesuai atau tidak dengan data awal. Langkah ini dilakukan terus sampai didapat data awal. Ketika penerima mendapatkan data yang sesuai dengan data awal, maka penerima akan mengambil data pertama setelah data awal sebagai data pertama, data kedua setelah data awal sebagai data kedua, dan seterusnya hingga data ketiga. Dengan demikian tidak akan terjadi kesalahan urutan data, walaupun ada penghalang sesaat. Setiap data mempunyai lebar pulsa high (1) tertentu. Untuk nilai data 0, maka lebar pulsa high yang dikirim adalah ± 1131 μ sekon. Programnya seperti berikut: Kirim: Mov 70h,#0 Inc 70h Mov r0,70h Acall data Sjmp kirim

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB 2 LANDASAN TEORI 2.1 Perangkat Keras 2.1.1 Bahasa Assembly MCS-51 Bahasa yang digunakan untuk memprogram IC mikrokontroler AT89S51 adalah bahasa assembly untuk MCS-51. angka 51 merupakan jumlah instruksi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 PERANGKAT KERAS 2.1.1 Arsitektur Mikrokontroler AT89S51 Mikrokontroler, sebagai suatu terobosan teknologi mikrokontoler dan mikrokomputer, hadir memenuhi kebutuhan pasar (market

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Mikrokontroler, sebagai suatu terobosan teknologi mikrokontroler dan

BAB II TINJAUAN PUSTAKA. Mikrokontroler, sebagai suatu terobosan teknologi mikrokontroler dan BAB II TINJAUAN PUSTAKA 2.1. PERANGKAT KERAS 2.1.1. Arsitektur Mikrokontroler AT89S51 Mikrokontroler, sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer, hadir memenuhi kebutuhan pasar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1 Mikrokontroler AT89S51 Mikrokontroler, sebagai suatu terobosan teknologi mikrokontoler dan mikrokomputer, hadir memenuhi kebutuhan pasar (market need) dan teknologi baru.

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan microkomputer,

BAB 2 TINJAUAN TEORITIS. Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan microkomputer, BAB 2 TINJAUAN TEORITIS 2.1.Hardware 2.1.1 Mikrokontroler AT89S51 Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan microkomputer, hadir memenuhi kebutuhan pasar (market need) dan teknologi

Lebih terperinci

BAB 2 LANDASAN TEORI. Mikrokontroler sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer,

BAB 2 LANDASAN TEORI. Mikrokontroler sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer, BAB 2 LANDASAN TEORI 2.1. Mikrokontroler AT89S51 Mikrokontroler sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer, hadir memenuhi kebutuhan pasar (market need) dan teknologi baru. Sebagai

Lebih terperinci

BAB 2 LANDASAN TEORI. Mikrokontroler AT89S52 termasuk kedalam keluarga MCS-51 merupakan suatu. dua macam memori yang sifatnya berbeda yaitu:

BAB 2 LANDASAN TEORI. Mikrokontroler AT89S52 termasuk kedalam keluarga MCS-51 merupakan suatu. dua macam memori yang sifatnya berbeda yaitu: BAB 2 LANDASAN TEORI 2.1 Perangkat Keras 2.1.1 Mikrokontroler AT89S52 Mikrokontroler AT89S52 termasuk kedalam keluarga MCS-51 merupakan suatu mikrokomputer CMOS 8 bit dengan daya rendah, kemampuan tinggi,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI 2.1 Perangkat keras Mikrokontroler AT89S51 2.1.1 Arsitektur Mikrokontroler AT89S51 Mikrokontroler AT89S51 merupakan salah satu keluarga dari MCS-51 keluaran Atmel. Jenis mikrokontroler

Lebih terperinci

BAB III RANCANGAN SISTEM. dirancanag. Setiap diagram blok mempunyai fungsi masing-masing. Adapun diagram

BAB III RANCANGAN SISTEM. dirancanag. Setiap diagram blok mempunyai fungsi masing-masing. Adapun diagram BAB III RANCANGAN SISTEM 3.1. Diagram Blok Rangkaian Diagram blok merupakan gambaran dasar dari rangkaian sistem yang akan dirancanag. Setiap diagram blok mempunyai fungsi masing-masing. Adapun diagram

Lebih terperinci

APLIKASI MIKROKONTROLLER AT89S51 UNTUK BUKA/TUTUP PINTU OTOMATIS MENGGUNAKAN PASSWORD

APLIKASI MIKROKONTROLLER AT89S51 UNTUK BUKA/TUTUP PINTU OTOMATIS MENGGUNAKAN PASSWORD APLIKASI MIKROKONTROLLER AT89S51 UNTUK BUKA/TUTUP PINTU OTOMATIS MENGGUNAKAN PASSWORD TUGAS AKHIR Diajukan untuk melengkapi tugas dan memenuhi syarat mencapai gelar ahli madya RAMLI BUTAR-BUTAR 052408054

Lebih terperinci

BAB 2 LANDASAN TEORI. Mikrokontroler AT89S51 hanya memerlukan tambahan 3 kapasitor, 1 resistor dan 1

BAB 2 LANDASAN TEORI. Mikrokontroler AT89S51 hanya memerlukan tambahan 3 kapasitor, 1 resistor dan 1 BAB 2 LANDASAN TEORI 2.1 Defenisi AT89S51 Mikrokontroler AT89S51 hanya memerlukan tambahan 3 kapasitor, 1 resistor dan 1 kristal serta catu daya 5 Volt. Kapasitor 10 mikro-farad dan resistor 10 Kilo Ohm

Lebih terperinci

Please purchase PDFcamp Printer on to remove this watermark. BAB 2 DASAR TEORI

Please purchase PDFcamp Printer on  to remove this watermark. BAB 2 DASAR TEORI BAB 2 DASAR TEORI 2.1 Telepon Dual Tone Multi Frequency (DTMF) Dewasa ini hampir semua telepon yang ada sudah menggunakan tombol tekan yang disebut pesawat Telepon Dual Tone Multi Frequency (DTMF). Pada

Lebih terperinci

BAB II TINJAUAN TEORITIS. Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan

BAB II TINJAUAN TEORITIS. Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan 6 BAB II TINJAUAN TEORITIS 2.1. Mikrokontroller AT89S51 Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan microkomputer, hadir memenuhi kebutuhan pasar (market need) dan teknologi baru.

Lebih terperinci

BAB III PERANCANGAN SISTEM. Secara garis besar rangkaian pengendali peralatan elektronik dengan. blok rangkaian tampak seperti gambar berikut :

BAB III PERANCANGAN SISTEM. Secara garis besar rangkaian pengendali peralatan elektronik dengan. blok rangkaian tampak seperti gambar berikut : BAB III PERANCANGAN SISTEM 3.1. Diagram Blok Secara garis besar rangkaian pengendali peralatan elektronik dengan menggunakan PC, memiliki 6 blok utama, yaitu personal komputer (PC), Mikrokontroler AT89S51,

Lebih terperinci

BAB 3 PERANCANGAN ALAT DAN BAHAN. 3.1 Diagram Blok dan Rangkaian Sensor Ketinggian Air

BAB 3 PERANCANGAN ALAT DAN BAHAN. 3.1 Diagram Blok dan Rangkaian Sensor Ketinggian Air BAB 3 PERANCANGAN ALAT DAN BAHAN 3.1 Diagram Blok dan Rangkaian Sensor Ketinggian Air Sensor 1 Sensor 2 Sensor 6 Diplay 7 segment Dislay LED Penguat sinyal Penguat sinyal Penguat sinyal Mikrokontroller

Lebih terperinci

BAB 2 LANDASAN TEORI. Mikrokontroler, sebagai suatu terobosan teknologi mikrokontroler dan

BAB 2 LANDASAN TEORI. Mikrokontroler, sebagai suatu terobosan teknologi mikrokontroler dan BAB 2 LANDASAN TEORI 2.1. Sistem Minimum Mikrokontroler AT89S51 Mikrokontroler, sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer, hadir memenuhi kebutuhan pasar (market need) dan teknologi

Lebih terperinci

BAB 2 LANDASAN TEORI. bisa digunakan untuk memindahkan program yang ber-ekstention.hex ke Flash,

BAB 2 LANDASAN TEORI. bisa digunakan untuk memindahkan program yang ber-ekstention.hex ke Flash, BAB 2 LANDASAN TEORI Arsitektur Mikrokontroler AT89S51 Programer Atmel seri S merupakan programer yang serbaguna, karena programer ini bisa digunakan untuk memindahkan program yang ber-ekstention.hex ke

Lebih terperinci

BAB 2 LANDASAN TEORI. memenuhi kebutuhan pasar (market need) dan teknologi baru. Sebagai teknologi baru, yaitu teknologi

BAB 2 LANDASAN TEORI. memenuhi kebutuhan pasar (market need) dan teknologi baru. Sebagai teknologi baru, yaitu teknologi BAB 2 LANDASAN TEORI 2.1. Mikrokontroler ATmega8535 Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan microkomputer, hadir memenuhi kebutuhan pasar (market need) dan teknologi baru.

Lebih terperinci

BAB 3 PERANCANGAN ALAT DAN PROGRAM

BAB 3 PERANCANGAN ALAT DAN PROGRAM BAB 3 PERANCANGAN ALAT DAN PROGRAM 3.1. DIAGRAM BLOK display Penguat sinyal Sensor 1 keypad AT89S51 Penguat sinyal Sensor 5 relay alarm pompa Keterangan diagram blok: Sensor air yang berfungsi untuk mengetahui

Lebih terperinci

BAB 2 TINJAUAN TEORITIS

BAB 2 TINJAUAN TEORITIS 7 BAB 2 TINJAUAN TEORITIS 1 Konveyor Konveyor hanya bergerak ke satu arah saja, konveyor digerakkan dengan motor stepper 12V type. Sinyal keluaran dari motor stepper untuk menggerakkan konveyor dirangkaikan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Perangkat Keras (Hardware) 2.1.1. Mikrokontroller AT89S51 Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroller dan mikrokomputer, hadir memenuhi kebutuhan pasar

Lebih terperinci

MIKROKONTROLER Arsitektur Mikrokontroler AT89S51

MIKROKONTROLER Arsitektur Mikrokontroler AT89S51 MIKROKONTROLER Arsitektur Mikrokontroler AT89S51 Ringkasan Pendahuluan Mikrokontroler Mikrokontroler = µp + Memori (RAM & ROM) + I/O Port + Programmable IC Mikrokontroler digunakan sebagai komponen pengendali

Lebih terperinci

BAB II DASAR TEORI. disebut pesawat Telepon Dual Tone Multi Frequency (DTMF). Pada pesawat telepon

BAB II DASAR TEORI. disebut pesawat Telepon Dual Tone Multi Frequency (DTMF). Pada pesawat telepon BAB II DASAR TEORI 2.1. Telepon Dual Tone Multi Frequency (DTMF) Dewasa ini hampir semua telepon yang ada sudah menggunakan tombol tekan yang disebut pesawat Telepon Dual Tone Multi Frequency (DTMF). Pada

Lebih terperinci

BAB II LANDASAN TEORI. Dalam merancang sebuah peralatan yang cerdas, diperlukan suatu

BAB II LANDASAN TEORI. Dalam merancang sebuah peralatan yang cerdas, diperlukan suatu BAB II LANDASAN TEORI 2.1. Perangkat Keras Dalam merancang sebuah peralatan yang cerdas, diperlukan suatu perangkat keras (hardware) yang dapat mengolah data, menghitung, mengingat dan mengambil pilihan.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Perangkat Keras 2.1.1. Mikrokontroler AT89S51 Mikrokontroler sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer hadir memenuhi kebutuhan pasar (market need) dan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Perangkat Keras 2.1.1. Sistem Minimum Mikrokontroler AT89S52 Perkembangan teknologi telah maju dengan pesat dalam perkembangan dunia elektronika, khususnya dunia mikroelektronika.

Lebih terperinci

ARSITEKTUR MIKROKONTROLER AT89C51/52/55

ARSITEKTUR MIKROKONTROLER AT89C51/52/55 ARSITEKTUR MIKROKONTROLER AT89C51/52/55 A. Pendahuluan Mikrokontroler merupakan lompatan teknologi mikroprosesor dan mikrokomputer. Mikrokontroler diciptakan tidak semata-mata hanya memenuhi kebutuhan

Lebih terperinci

BAB II LANDASAN TEORI. Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer,

BAB II LANDASAN TEORI. Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer, BAB II LANDASAN TEORI 2.1 Perangkat Keras (Hardware) 2.1.1 Mikrokontroler AT89S51 Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer, hadir memenuhi kebutuhan pasar (market

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Inframerah Inframerah adalah radiasi elektromagnetik dari panjang gelombang lebih panjang dari cahaya tampak, tetapi lebih pendek dari radiasi gelombang radio. Namanya berarti

Lebih terperinci

BAB III ANALISA DAN CARA KERJA RANGKAIAN

BAB III ANALISA DAN CARA KERJA RANGKAIAN BAB III ANALISA DAN CARA KERJA RANGKAIAN 3.1 Analisa Rangkaian Secara Blok Diagram Pada rangkaian yang penulis buat berdasarkan cara kerja rangkaian secara keseluruhan penulis membagi rangkaian menjadi

Lebih terperinci

BAB 2 LANDASAN TEORI 2.1 M

BAB 2 LANDASAN TEORI 2.1 M BAB 2 LANDASAN TEORI 2.1 M ikrokontroller AT89S51 Mikroprosesor ialah suatu chip (rangkaian terintegrasi yang sangat komplek) yang berfungsi sebagai pemroses data dari input yang diterima pada suatu sistem

Lebih terperinci

PERANCANGAN PROGRAM SIMULASI JEMBATAN ANGKAT OTOMATIS BERBASIS AT89S51 TUGAS AKHIR ELISA SIMATUPANG

PERANCANGAN PROGRAM SIMULASI JEMBATAN ANGKAT OTOMATIS BERBASIS AT89S51 TUGAS AKHIR ELISA SIMATUPANG PERANCANGAN PROGRAM SIMULASI JEMBATAN ANGKAT OTOMATIS BERBASIS AT89S51 TUGAS AKHIR ELISA SIMATUPANG 052408089 PROGRAM STUDI FISIKA INSTRUMENTASI D-3 DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

BAB III SISTEM KERJA RANGKAIAN

BAB III SISTEM KERJA RANGKAIAN BAB III SISTEM KERJA RANGKAIAN 3.1 Diagram Blok Secara garis besar, perancangan pengisian tangki air otomatis menggunakan sensor ultrasonik ini terdiri dari Bar Display, Mikrokontroler ATMega8535, Relay,

Lebih terperinci

PERANCANGAN ALAT BANTU PENGUKUR JARAK BAGI PENYANDANG TUNA NETRA DENGAN MENGGUNAKAN SENSOR ULTRASONIK BERBASIS MIKROKONTROLER AT89S51

PERANCANGAN ALAT BANTU PENGUKUR JARAK BAGI PENYANDANG TUNA NETRA DENGAN MENGGUNAKAN SENSOR ULTRASONIK BERBASIS MIKROKONTROLER AT89S51 PERANCANGAN ALAT BANTU PENGUKUR JARAK BAGI PENYANDANG TUNA NETRA DENGAN MENGGUNAKAN SENSOR ULTRASONIK BERBASIS MIKROKONTROLER AT89S51 TUGAS AKHIR NAIMAH F. NASUTION 052408040 PROGRAM STUDI D-3 FISIKA INSTRUMENTASI

Lebih terperinci

BAB III PERANCANGAN DAN CARA KERJA RANGKAIAN

BAB III PERANCANGAN DAN CARA KERJA RANGKAIAN BAB III PERANCANGAN DAN CARA KERJA RANGKAIAN 3.1 Diagram Blok Rangkaian Secara Detail Pada rangkaian yang penulis buat berdasarkan cara kerja rangkaian secara keseluruhan penulis membagi rangkaian menjadi

Lebih terperinci

BAB II TEORI Telepon Dual Tone Multiple Frequency (DTMF) sebagai DTMF (Dual Tone Multiple Frequency).

BAB II TEORI Telepon Dual Tone Multiple Frequency (DTMF) sebagai DTMF (Dual Tone Multiple Frequency). BAB II TEORI 2.1. Telepon Dual Tone Multiple Frequency (DTMF) Setelah beralih ke teknologi digital,cara meminta nomor sambungan telepon tidak lagi dengan cara memutar piringan angka tetapi dengan cara

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Konsep Dasar Sistem pendeteksi intensitas cahaya yang akan dirancang pada tugas akhir ini adalah sebuah sistem yang menggunakan sebuah mikrokontroler, dimana sistem ini berfungsi

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras elektronik (hardware) dan pembuatan mekanik robot. Sedangkan untuk pembuatan perangkat

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Perangkat Keras 2.1.1. Mikrokontroler AT89S51 Mikrokontroler merupakan suatu komponen elektronika yang di dalamnya terdapat rangkaian mikroprosesor, memori (RAM atau ROM) dan

Lebih terperinci

digunakan untuk pembahasan dan cara kerja dari rangkaian Teori komponen-komponen pendukung.

digunakan untuk pembahasan dan cara kerja dari rangkaian Teori komponen-komponen pendukung. 13 Landasan teori, dalam bab ini dijelaskan tentang teori pendukung yang digunakan untuk pembahasan dan cara kerja dari rangkaian Teori pendukung itu antara lain tentang mikrokontroler AT89S51 (hardware

Lebih terperinci

Blok sistem mikrokontroler MCS-51 adalah sebagai berikut.

Blok sistem mikrokontroler MCS-51 adalah sebagai berikut. Arsitektur mikrokontroler MCS-51 diotaki oleh CPU 8 bit yang terhubung melalui satu jalur bus dengan memori penyimpanan berupa RAM dan ROM serta jalur I/O berupa port bit I/O dan port serial. Selain itu

Lebih terperinci

BAB III PERANCANGAN. Perancangan tersebut mulai dari: spesifikasi alat, blok diagram sampai dengan

BAB III PERANCANGAN. Perancangan tersebut mulai dari: spesifikasi alat, blok diagram sampai dengan 41 BAB III PERANCANGAN Pada bab ini akan menjelaskan perancangan alat yang akan penulis buat. Perancangan tersebut mulai dari: spesifikasi alat, blok diagram sampai dengan perancangan rangkaian elektronik,

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT III.1. Diagram Blok Secara garis besar, diagram blok rangkaian pendeteksi kebakaran dapat ditunjukkan pada Gambar III.1 di bawah ini : Alarm Sensor Asap Mikrokontroler ATmega8535

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN Pada bab ini akan dijelaskan langkah-langkah yang akan digunakan dalam menyelesaikan perangkat keras (hardware) yang berupa komponen fisik penunjang seperti IC AT89S52 dan perangkat

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 5 BAB 2 LANDASAN TEORI 2.1.Mikrokontroller AT-Mega 8535 Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroller dan microcomputer, hadir memenuhi kebutuhan pasar (market need) dan teknologi

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. Penguat operasional (Op Amp) adalah suatu rangkaian terintegrasi yang berisi

BAB 2 TINJAUAN PUSTAKA. Penguat operasional (Op Amp) adalah suatu rangkaian terintegrasi yang berisi 4 BAB 2 TINJAUAN PUSTAKA 2.1 Penguat Operasional(Op-Amp) Penguat operasional (Op Amp) adalah suatu rangkaian terintegrasi yang berisi beberapa tingkat dan konfigurasi penguat diferensial yang telah dijelaskan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Mikrokontroller AT89S51 Didalam pembuatan alat ini peran penting mikrokontroller sangat berpengaruh dalam menentukan hasil akhir /output dari fungsi alat ini, yang mana hasil akhir/ouput

Lebih terperinci

BAB III PERANCANGAN ALAT PENDETEKSI KERUSAKAN KABEL

BAB III PERANCANGAN ALAT PENDETEKSI KERUSAKAN KABEL BAB III PERANCANGAN ALAT PENDETEKSI KERUSAKAN KABEL. Diagram Blok Diagram blok merupakan gambaran dasar membahas tentang perancangan dan pembuatan alat pendeteksi kerusakan kabel, dari rangkaian sistem

Lebih terperinci

MANAJEMEN ENERGI PADA SISTEM PENDINGINAN RUANG KULIAH MELALUI METODE PENCACAHAN KEHADIRAN & SUHU RUANGAN BERBASIS MIKROKONTROLLER AT89S51

MANAJEMEN ENERGI PADA SISTEM PENDINGINAN RUANG KULIAH MELALUI METODE PENCACAHAN KEHADIRAN & SUHU RUANGAN BERBASIS MIKROKONTROLLER AT89S51 MANAJEMEN ENERGI PADA SISTEM PENDINGINAN RUANG KULIAH MELALUI METODE PENCACAHAN KEHADIRAN & SUHU RUANGAN BERBASIS MIKROKONTROLLER AT89S51 TUGAS UTS MATA KULIAH E-BUSSINES Dosen Pengampu : Prof. M.Suyanto,MM

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT 21 BAB III PERANCANGAN ALAT 3.1 Diagram Blok Rangkaian Rangkaian Pen- Charge Baterei Batere ADC Relay Rangkaian Setting Nilai Minimum Rangkaian Setting Nilai Maksimum Rangakaian Keypad MikrokontrolerAT89S51

Lebih terperinci

PROTOTIPE PINTU OTOMATIS DENGAN SISTEM PEMBACAAN KODE BAR BERBASIS MIKROKONTROLER AT89S51 TUGAS AKHIR BERNATH ALFHA HAMONANGAN BUTAR BUTAR

PROTOTIPE PINTU OTOMATIS DENGAN SISTEM PEMBACAAN KODE BAR BERBASIS MIKROKONTROLER AT89S51 TUGAS AKHIR BERNATH ALFHA HAMONANGAN BUTAR BUTAR PROTOTIPE PINTU OTOMATIS DENGAN SISTEM PEMBACAAN KODE BAR BERBASIS MIKROKONTROLER AT89S51 TUGAS AKHIR Diajukan untuk melengkapi tugas dan memenuhi syarat memperoleh Ahli Madya BERNATH ALFHA HAMONANGAN

Lebih terperinci

BAB III PERANCANGAN SISTEM. perancangan mekanik alat dan modul elektronik sedangkan perancangan perangkat

BAB III PERANCANGAN SISTEM. perancangan mekanik alat dan modul elektronik sedangkan perancangan perangkat BAB III PERANCANGAN SISTEM 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras (hardware) dan perangkat lunak ( Software). Pembahasan perangkat keras meliputi perancangan mekanik

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras elektronik (hardware) dan pembuatan mekanik robot. Sedangkan untuk pembuatan perangkat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI A II LANDASAN TEORI 2.1 Mikrokontroler AT89S51 Mikrokontroler, sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer, hadir memenuhi kebutuhan pasar (market need) dan teknologi baru. Sebagai

Lebih terperinci

PERANCANGAN PEMUTUS ALIRAN LISTRIK OTOMATIS BERBASIS MIKROKONTROLER ATMEGA8535 TUGAS AKHIR FAHRI MAHYUZAR

PERANCANGAN PEMUTUS ALIRAN LISTRIK OTOMATIS BERBASIS MIKROKONTROLER ATMEGA8535 TUGAS AKHIR FAHRI MAHYUZAR PERANCANGAN PEMUTUS ALIRAN LISTRIK OTOMATIS BERBASIS MIKROKONTROLER ATMEGA8535 TUGAS AKHIR FAHRI MAHYUZAR 092408037 PROGRAM STUDI D3 FISIKA INSTRUMENTASI FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

IMPLEMENTASI KABEL LISTRIK SEBAGAI SENSOR CAIRAN DALAM MENENTUKAN BATAS PENGISIAN DAN PENGOSONGAN TANGKI TUGAS AKHIR HENDRA BANJARNAHOR

IMPLEMENTASI KABEL LISTRIK SEBAGAI SENSOR CAIRAN DALAM MENENTUKAN BATAS PENGISIAN DAN PENGOSONGAN TANGKI TUGAS AKHIR HENDRA BANJARNAHOR IMPLEMENTASI KABEL LISTRIK SEBAGAI SENSOR CAIRAN DALAM MENENTUKAN BATAS PENGISIAN DAN PENGOSONGAN TANGKI TUGAS AKHIR HENDRA BANJARNAHOR 042408043 PROGRAM STUDI D-III FISIKA INSTRUMENTASI FAKULTAS MATEMATIKA

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 REMOTE TV Remote TV adalah suatu pengontrol, yang fungsinya untuk merubah dan meng-set TV yang dapat digunakan untuk merubah saluran TV seperti ingin melihat saluran ( RCTI,

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN PERANGKAT KERAS

BAB III PERANCANGAN DAN PEMBUATAN PERANGKAT KERAS BAB III PERANCANGAN DAN PEMBUATAN PERANGKAT KERAS 3.1. Pendahuluan Perangkat pengolah sinyal yang dikembangkan pada tugas sarjana ini dirancang dengan tiga kanal masukan. Pada perangkat pengolah sinyal

Lebih terperinci

BAB 3 PERANCANGAN SISTEM. Di bawah ini adalah blok diagram dari perancangan alat sensor keamanan menggunakan PIR (Passive Infrared).

BAB 3 PERANCANGAN SISTEM. Di bawah ini adalah blok diagram dari perancangan alat sensor keamanan menggunakan PIR (Passive Infrared). 30 BAB 3 PERANCANGAN SISTEM 3.1 Diagram Blok Rangkaian Di bawah ini adalah blok diagram dari perancangan alat sensor keamanan menggunakan PIR (Passive Infrared). Buzzer PIR (Passive Infra Red) Mikrokontroler

Lebih terperinci

I/O dan Struktur Memori

I/O dan Struktur Memori I/O dan Struktur Memori Mikrokontroler 89C51 adalah mikrokontroler dengan arsitektur MCS51 seperti 8031 dengan memori Flash PEROM (Programmable and Erasable Read Only Memory) DESKRIPSI PIN Nomor Pin Nama

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sensor Jarak Ultrasonik PING Sensor jarak ultrasonik ping adalah sensor 40 khz produksi parallax yang banyak digunakan untuk aplikasi atau kontes robot cerdas. Kelebihan sensor

Lebih terperinci

ALAT UKUR TEMPERATUR LINGKUNGAN MELALUI DISPLAY BERBASIS MIKROKONTROLER AT89S51 LAPORAN TUGAS AKHIR DWI AGUNG SETIONO

ALAT UKUR TEMPERATUR LINGKUNGAN MELALUI DISPLAY BERBASIS MIKROKONTROLER AT89S51 LAPORAN TUGAS AKHIR DWI AGUNG SETIONO ALAT UKUR TEMPERATUR LINGKUNGAN MELALUI DISPLAY BERBASIS MIKROKONTROLER AT89S51 LAPORAN TUGAS AKHIR Diajukan untuk melengkapi tugas dan memenuhi syarat mencapai gelar Ahli Madya DWI AGUNG SETIONO 052408006

Lebih terperinci

BAB II TEORI DASAR 2.1 Pendahuluan 2.2 Sensor Clamp Putaran Mesin

BAB II TEORI DASAR 2.1 Pendahuluan 2.2 Sensor Clamp Putaran Mesin 4 BAB II TEORI DASAR 2.1 Pendahuluan Pada bab ini akan dijelaskan mengenai teori-teori mengenai perangkatperangkat pendukung baik perangkat keras dan perangkat lunak yang akan dipergunakan sebagai pengukuran

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1.Hardware 2.1.1 Mikrokontroler AT89S51 Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan microkomputer, hadir memenuhi kebutuhan pasar (market need) dan teknologi

Lebih terperinci

3.2. Tempat Penelitian Penelitian dan pengujian alat dilakukan di lokasi permainan game PT. EMI (Elektronik Megaindo) Plaza Medan Fair.

3.2. Tempat Penelitian Penelitian dan pengujian alat dilakukan di lokasi permainan game PT. EMI (Elektronik Megaindo) Plaza Medan Fair. BAB III METODOLOGI PENELITIAN 3.1. Metode Penelitian Dalam penulisan tugas akhir ini metode yang digunakan dalam penelitian adalah : 1. Metode Perancangan Metode yang digunakan untuk membuat rancangan

Lebih terperinci

BAB 2 LANDASAN TEORI PEMANCAR GELOMBANG INFRAMERAH. 2.1 Diagram Blok Pemancar Gelombang Inframerah

BAB 2 LANDASAN TEORI PEMANCAR GELOMBANG INFRAMERAH. 2.1 Diagram Blok Pemancar Gelombang Inframerah BAB 2 LANDASAN TEORI PEMANCAR GELOMBANG INFRAMERAH 2.1 Diagram Blok Pemancar Gelombang Inframerah Tombol ON Tombol OFF A T 8 9 S 5 1 Pemancar inframerah Pulsa gelo inframe Gambar 2.1 Diagram Blok Pemancar

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT 35 BAB III PERANCANGAN ALAT 3.1 Diagram Blok Secara garis besar, rangkaian display papan skor LED dapat dibagi menjadi 6 blok utama, yaitu blok power supply, mikrokontroler, driver board, seven segmen,

Lebih terperinci

ALAT PENGERING TANGAN OTOMATIS DENGAN MENGGUNAKAN LDR

ALAT PENGERING TANGAN OTOMATIS DENGAN MENGGUNAKAN LDR ALAT PENGERING TANGAN OTOMATIS DENGAN MENGGUNAKAN LDR TUGAS AKHIR Diajukan untuk melengkapi tugas dan memenuhi syarat mencapai gelar ahli madya ADE MIRZA 042408007 DEPARTEMEN FISIKA INSTRUMENTASI FAKULTAS

Lebih terperinci

BAB 2 LANDASAN TEORI. (hardware) yang dapat mengolah data, menghitung, mengingat dan mengambil

BAB 2 LANDASAN TEORI. (hardware) yang dapat mengolah data, menghitung, mengingat dan mengambil BAB 2 LANDASAN TEORI 2.1 Perangkat Keras Dalam merancang sebuah peralatan yang cerdas, diperlukan suatu perangkat keras (hardware) yang dapat mengolah data, menghitung, mengingat dan mengambil pilihan.

Lebih terperinci

BAB III DESKRIPSI MASALAH

BAB III DESKRIPSI MASALAH BAB III DESKRIPSI MASALAH 3.1 Perancangan Hardware Perancangan hardware ini meliputi keseluruhan perancangan, artinya dari masukan sampai keluaran dengan menghasilkan energi panas. Dibawah ini adalah diagram

Lebih terperinci

BAB 2 DASAR TEORI. 2.1 Perangkat Keras Prinsip Kerja Pembuka/Penutup Pintu

BAB 2 DASAR TEORI. 2.1 Perangkat Keras Prinsip Kerja Pembuka/Penutup Pintu BAB 2 DASAR TEORI 2.1 Perangkat Keras 2.1.1 Prinsip Kerja Pembuka/Penutup Pintu Pintu air sebagai sistem kontrol, yang akan digerakkan oleh motor. Mikrokontroler AT89S51 sebagai pusat proses untuk mengendalikan

Lebih terperinci

APLIKASI PHOTODIODA DAN LED INFRAMERAH SEBAGAI PENGHITUNG SKOR DALAM PERMAINAN BOLA BASKET BERBASIS MIKROKONTROLLER AT89S51 TUGAS AKHIR

APLIKASI PHOTODIODA DAN LED INFRAMERAH SEBAGAI PENGHITUNG SKOR DALAM PERMAINAN BOLA BASKET BERBASIS MIKROKONTROLLER AT89S51 TUGAS AKHIR APLIKASI PHOTODIODA DAN LED INFRAMERAH SEBAGAI PENGHITUNG SKOR DALAM PERMAINAN BOLA BASKET BERBASIS MIKROKONTROLLER AT89S51 TUGAS AKHIR ARMIYANA EKA PUTRI A 062408044 DEPARTEMEN FISIKA INSTRUMENTASI FAKULTAS

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT 1.1 Blok Diagram Sensor Kunci kontak Transmiter GSM Modem Recivier Handphone Switch Aktif Sistem pengamanan Mikrokontroler Relay Pemutus CDI LED indikator aktif Alarm Buzzer Gambar

Lebih terperinci

ROBOT PENGHINDAR DINDING DENGAN NAVIGASI INFRAMERAH TUGAS AKHIR. Diajukan untuk melengkapi tugas dan memenuhi syarat memperoleh Ahli Madya

ROBOT PENGHINDAR DINDING DENGAN NAVIGASI INFRAMERAH TUGAS AKHIR. Diajukan untuk melengkapi tugas dan memenuhi syarat memperoleh Ahli Madya ROBOT PENGHINDAR DINDING DENGAN NAVIGASI INFRAMERAH TUGAS AKHIR Diajukan untuk melengkapi tugas dan memenuhi syarat memperoleh Ahli Madya HOTMAIDA SITOHANG 042408060 PROGRAM STUDI DIPLOMA III FISIKA INSTRUMENTASI

Lebih terperinci

Memprogram Port sebagai Output dan Input Sederhana

Memprogram Port sebagai Output dan Input Sederhana BAGIAN 1 Tujuan Pembelajaran Umum: 1. Mahasiswa trampil memprogram Port sebagai Input dan Output sederhana menggunakan bahasa pemrograman assembly Tujuan Pembelajaran Khusus: 1. Mahasiswa memahami Konstruksi

Lebih terperinci

BAB III PERENCANAAN DAN REALISASI

BAB III PERENCANAAN DAN REALISASI BAB III PERENCANAAN DAN REALISASI 3.1 Perancangan Blok Diaram Metode untuk pelaksanaan Program dimulai dengan mempelajari sistem pendeteksi kebocoran gas pada rumah yang akan digunakan. Dari sini dikembangkan

Lebih terperinci

PERANCANGAN ALAT PENGUKUR TINGGI BADAN OTOMATIS DENGAN MENGGUNAKAN SENSOR ULTRASONIK TUGAS AKHIR LAIDY DIANA BR GINTING

PERANCANGAN ALAT PENGUKUR TINGGI BADAN OTOMATIS DENGAN MENGGUNAKAN SENSOR ULTRASONIK TUGAS AKHIR LAIDY DIANA BR GINTING PERANCANGAN ALAT PENGUKUR TINGGI BADAN OTOMATIS DENGAN MENGGUNAKAN SENSOR ULTRASONIK TUGAS AKHIR LAIDY DIANA BR GINTING 052408052 PROGRAM STUDI D3 FISIKA INSTRUMENTASI DEPARTEMEN FISIKA FAKULTAS MATEMATIKA

Lebih terperinci

BAB III PERANCANGAN DAN KERJA ALAT

BAB III PERANCANGAN DAN KERJA ALAT BAB III PERANCANGAN DAN KERJA ALAT 3.1 DIAGRAM BLOK sensor optocoupler lantai 1 POWER SUPPLY sensor optocoupler lantai 2 sensor optocoupler lantai 3 Tombol lantai 1 Tbl 1 Tbl 2 Tbl 3 DRIVER ATMEGA 8535

Lebih terperinci

BAB III PERANCANGAN ALAT. Gambar 3.1 Diagram Blok Pengukur Kecepatan

BAB III PERANCANGAN ALAT. Gambar 3.1 Diagram Blok Pengukur Kecepatan BAB III PERANCANGAN ALAT 3.1 PERANCANGAN PERANGKAT KERAS Setelah mempelajari teori yang menunjang dalam pembuatan alat, maka langkah berikutnya adalah membuat suatu rancangan dengan tujuan untuk mempermudah

Lebih terperinci

PERANCANGAN ALAT PENGERING TANGAN OTOMATIS MENGGUNAKAN PENGONTROLAN WAKTU BERBASIS AT89S52 TUGAS AKHIR TIOMAS ELDAYANI SINAGA ( )

PERANCANGAN ALAT PENGERING TANGAN OTOMATIS MENGGUNAKAN PENGONTROLAN WAKTU BERBASIS AT89S52 TUGAS AKHIR TIOMAS ELDAYANI SINAGA ( ) PERANCANGAN ALAT PENGERING TANGAN OTOMATIS MENGGUNAKAN PENGONTROLAN WAKTU BERBASIS AT89S52 TUGAS AKHIR TIOMAS ELDAYANI SINAGA (052408005) PROGRAM STUDI FISIKA INSTRUMENTASI DEPARTEMEN FISIKA FAKULTAS MATEMATIKA

Lebih terperinci

APLIKASI MIKROKONTROLLER AT89S51 UNTUK PEMBATASAN WAKTU DALAM PEMAKIAN KOMPUTER MENGGUNAKAN ALARM TUGAS AKHIR KHAIRULLAH HAKIM

APLIKASI MIKROKONTROLLER AT89S51 UNTUK PEMBATASAN WAKTU DALAM PEMAKIAN KOMPUTER MENGGUNAKAN ALARM TUGAS AKHIR KHAIRULLAH HAKIM APLIKASI MIKROKONTROLLER AT89S51 UNTUK PEMBATASAN WAKTU DALAM PEMAKIAN KOMPUTER MENGGUNAKAN ALARM TUGAS AKHIR KHAIRULLAH HAKIM 062408061 PROGRAM STUDI DIPLOMA III FISIKA INSTRUMENTASI DEPARTEMEN FISIKA

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 A 2 TINJAUAN PUSTAKA 2.1 LDR ( Light Dependent Resistor ) LDR adalah singkatan dari Light Dependent Resistor adalah resistor yang nilai resistansinya berubah ubah karena adanya intensitas cahaya yang

Lebih terperinci

BAB II DASAR TEORI. open-source, diturunkan dari Wiring platform, dirancang untuk. memudahkan penggunaan elektronik dalam berbagai

BAB II DASAR TEORI. open-source, diturunkan dari Wiring platform, dirancang untuk. memudahkan penggunaan elektronik dalam berbagai BAB II DASAR TEORI 2.1 Arduino Uno R3 Arduino adalah pengendali mikro single-board yang bersifat open-source, diturunkan dari Wiring platform, dirancang untuk memudahkan penggunaan elektronik dalam berbagai

Lebih terperinci

RANCANG ALAT PENGHITUNG ORANG KELUAR/MASUK PADA SUATU RUANGAN MENGGUNAKAN FOTODIODA BERBASIS MIKROKONTROLER AT89S52

RANCANG ALAT PENGHITUNG ORANG KELUAR/MASUK PADA SUATU RUANGAN MENGGUNAKAN FOTODIODA BERBASIS MIKROKONTROLER AT89S52 RANCANG ALAT PENGHITUNG ORANG KELUAR/MASUK PADA SUATU RUANGAN MENGGUNAKAN FOTODIODA BERBASIS MIKROKONTROLER AT89S52 TUGAS AKHIR DEBBY Z BEGRIPPEN SILABAN 052408002 PROGRAM STUDI DIPLOMA III FISIKA INSTRUMENTASI

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI xx BAB 2 LANDASAN TEORI 2.1 Mikrokontroler AT89S52 2.1.1 Gambaran umum Mikrokontroler AT89S52 adalah mikrokomputer CMOS 8 bit yang memiliki 8 KB Programmable and Erasable Read Only Memory (PEROM). Mikrokontroler

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB 2 LANDASAN TEORI 2.1 PERANGKAT KERAS 2.2 Arsitektur mikrokontroler AT89S8253 Mikrokontroler sebagai suatu terobosan teknologi mikrokontoler dan mikrokomputer, hadir memenuhi kebutuhan pasar (market

Lebih terperinci

BAB I PENDAHULUAN. 1.2 Rumusan Masalah Berdasarkan uraian di atas, dapat dikemukakan permasalahan sebagai berikut:

BAB I PENDAHULUAN. 1.2 Rumusan Masalah Berdasarkan uraian di atas, dapat dikemukakan permasalahan sebagai berikut: BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Seiring dengan makin meningkatnya jumlah pengguna kendaraan bermotor dan maraknya pencurian kendaraan bermotor, penggunaan alat keamanan standar yang

Lebih terperinci

BAB 2 LANDASAN TEORI. Agar kendaraan lebih teratur dan tidak terlalu padat, biasanya tempat perparkiran ini dibagi

BAB 2 LANDASAN TEORI. Agar kendaraan lebih teratur dan tidak terlalu padat, biasanya tempat perparkiran ini dibagi BAB 2 LANDASAN TEORI 2.1. Inteligent Parking System Agar kendaraan lebih teratur dan tidak terlalu padat, biasanya tempat perparkiran ini dibagi menjadi beberapa tempat. Dengan demikian kendaraan yang

Lebih terperinci

BAB 2 DASAR TEORI. sistem atau rangkaian terlebih dahulu membuat blok diagramnya. Sensor air sederhana

BAB 2 DASAR TEORI. sistem atau rangkaian terlebih dahulu membuat blok diagramnya. Sensor air sederhana BAB 2 DASAR TEORI 2.1 Perangkat Keras 2.1.1 Prinsip Kerja Pembuka/Penutup Pintu Dalam membuat suatu alat ada beberapa hal yang perlu di perhatikan yaitu bagaimana cara merancang alat yang akan di buat

Lebih terperinci

PERANCANGAN DAN PEMBUATAN PROTOTYPE ALAT PENGAMAN KENDARAAN RODA DUA TERKONEKSI HANDPHONE BERBASIS MIKROKONTROLLER AT89S51 TUGAS AKHIR VISCA SYLVIA

PERANCANGAN DAN PEMBUATAN PROTOTYPE ALAT PENGAMAN KENDARAAN RODA DUA TERKONEKSI HANDPHONE BERBASIS MIKROKONTROLLER AT89S51 TUGAS AKHIR VISCA SYLVIA PERANCANGAN DAN PEMBUATAN PROTOTYPE ALAT PENGAMAN KENDARAAN RODA DUA TERKONEKSI HANDPHONE BERBASIS MIKROKONTROLLER AT89S51 TUGAS AKHIR VISCA SYLVIA 062408046 PROGRAM STUDI D-3 FISIKA INSTRUMENTASI DEPARTEMEN

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Adapun blok diagram modul baby incubator ditunjukkan pada Gambar 3.1.

BAB III METODOLOGI PENELITIAN. Adapun blok diagram modul baby incubator ditunjukkan pada Gambar 3.1. 23 BAB III METODOLOGI PENELITIAN 3.1 Blok Diagram Modul Baby Incubator Adapun blok diagram modul baby incubator ditunjukkan pada Gambar 3.1. PLN THERMOSTAT POWER SUPPLY FAN HEATER DRIVER HEATER DISPLAY

Lebih terperinci

BAB III PROSES PERANCANGAN

BAB III PROSES PERANCANGAN BAB III PROSES PERANCANGAN 3.1 Tinjauan Umum Perancangan prototipe sistem pengontrolan level air ini mengacu pada sistem pengambilan dan penampungan air pada umumnya yang terdapat di perumahan. Tujuan

Lebih terperinci

APLIKASI SENSOR PELAMPUNG PADA SISTEM PENGONTROLAN PINTU AIR OTOMATIS PADA BENDUNGAN BERBASIS MIKROKONTROLLER AT89S51 DEARNI PURBA

APLIKASI SENSOR PELAMPUNG PADA SISTEM PENGONTROLAN PINTU AIR OTOMATIS PADA BENDUNGAN BERBASIS MIKROKONTROLLER AT89S51 DEARNI PURBA APLIKASI SENSOR PELAMPUNG PADA SISTEM PENGONTROLAN PINTU AIR OTOMATIS PADA BENDUNGAN BERBASIS MIKROKONTROLLER AT89S51 TUGAS AKHIR DEARNI PURBA 072408051 PROGRAM STUDI D-III FISIKA INSTRUMENTASI DEPARTEMEN

Lebih terperinci

TKC210 - Teknik Interface dan Peripheral. Eko Didik Widianto

TKC210 - Teknik Interface dan Peripheral. Eko Didik Widianto TKC210 - Teknik Interface dan Peripheral Eko Didik Sistem Komputer - Universitas Diponegoro Review Kuliah Pembahasan tentang: Referensi: mikrokontroler (AT89S51) mikrokontroler (ATMega32A) Sumber daya

Lebih terperinci

PERANCANGAN ALAT PENGIRIM DAN PENERIMA DATA MENGGUNAKAN INFRA MERAH BERBASIS MIKROKONTROLER AT89S51 TUGAS AKHIR LENNI DARLIAH

PERANCANGAN ALAT PENGIRIM DAN PENERIMA DATA MENGGUNAKAN INFRA MERAH BERBASIS MIKROKONTROLER AT89S51 TUGAS AKHIR LENNI DARLIAH PERANCANGAN ALAT PENGIRIM DAN PENERIMA DATA MENGGUNAKAN INFRA MERAH BERBASIS MIKROKONTROLER AT89S51 TUGAS AKHIR LENNI DARLIAH 042408039 PROGRAM STUDI DIPLOMA III ILMU KOMPUTER FAKULATAS MATEMATIKA DAN

Lebih terperinci

AUDIO/VIDEO SELECTOR 5 CHANNEL DENGAN MIKROKONTROLER AT89C2051

AUDIO/VIDEO SELECTOR 5 CHANNEL DENGAN MIKROKONTROLER AT89C2051 AUDIO/VIDEO SELECTOR 5 CHANNEL DENGAN MIKROKONTROLER AT89C2051 MUHAMMAD ERPANDI DALIMUNTHE Jurusan Teknik Elektro, Fakultas Teknologi Industri, Universitas Gunadarma, Margonda Raya 100 Depok 16424 telp

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini membahas perencanaan dan pembuatan dari alat yang akan dibuat yaitu Perencanaan dan Pembuatan Pengendali Suhu Ruangan Berdasarkan Jumlah Orang ini memiliki 4 tahapan

Lebih terperinci

MIKROKONTROLER AT89S52

MIKROKONTROLER AT89S52 MIKROKONTROLER AT89S52 Mikrokontroler adalah mikroprosessor yang dirancang khusus untuk aplikasi kontrol, dan dilengkapi dengan ROM, RAM dan fasilitas I/O pada satu chip. AT89S52 adalah salah satu anggota

Lebih terperinci

PENGGUNAAN LDR DAN SENSOR AIR PADA SIMULASI ALAT KONTROL ATAP OTOMATIS BERBASIS MIKROKONTROLER AT89S51 LAPORAN TUGAS AKHIR SRI WULANDARI RITONGA

PENGGUNAAN LDR DAN SENSOR AIR PADA SIMULASI ALAT KONTROL ATAP OTOMATIS BERBASIS MIKROKONTROLER AT89S51 LAPORAN TUGAS AKHIR SRI WULANDARI RITONGA PENGGUNAAN LDR DAN SENSOR AIR PADA SIMULASI ALAT KONTROL ATAP OTOMATIS BERBASIS MIKROKONTROLER AT89S51 LAPORAN TUGAS AKHIR SRI WULANDARI RITONGA 072408019 PROGRAM STUDI D3 FISIKA INSTRUMENTASI DEPARTEMEN

Lebih terperinci

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM. Dari diagram sistem dapat diuraikan metode kerja sistem secara global.

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM. Dari diagram sistem dapat diuraikan metode kerja sistem secara global. BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM 3.1 Perancangan Perangkat Keras 3.1.1 Blok Diagram Dari diagram sistem dapat diuraikan metode kerja sistem secara global. Gambar

Lebih terperinci