Fuzzy Set Logika Fuzzy Fuzzy System
|
|
|
- Widyawati Agusalim
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Fuzzy Set Logika Fuzzy Fuzzy System 1
2 Crisp Set Crisp set membedakan anggota dan non anggota dengan batasan pasti Misalkan A sebuah crisp set dan x anggota A maka : A [x]=1 Jika y bukan anggota A maka A [y]=0 2
3 Contoh: Crisp Set tinggi >= 185 sangat tinggi tinggi 165 <= tinggi < <= tinggi < 165 Orang dengan tinggi 150cm maka ia tergolong sedang ( sedang [150]=1) Orang dengan tinggi 150cm maka ia tergolong tidak tinggi ( tinggi [150]=0) Orang dengan tinggi 165cm kurang 2mm maka ia tergolong tidak tinggi sedang ( tinggi [165-2mm]=0) 120 <= tinggi < 145 pendek 120 tinggi < 120 sangat pendek 3
4 Himpunan Fuzzy tinggi >= 180 sangat tinggi <= tinggi < 185 tinggi 140 <= tinggi < 165 sedang <= tinggi < 145 pendek 120 tinggi < 120 sangat pendek 4
5 Contoh: Fungsi Keanggotaan (1) 1.0 pendek Pendek Sedang Tinggi tinggi = [ sp, p, s, t, st ] 5
6 Fungsi Keanggotaan (2) 1.0 pendek Pendek Sedang Tinggi tinggi [163]= [0, 0, 0.42, 0.58, 0] atau sedang [163] = 0.42, tinggi [163] =
7 Fuzzy Probabilitas Fuzzy vs Probabilitas - Probabilitas berkaitan dengan ketidakmenentuan dan kemungkinan - Logika Fuzzy berkaitan dengan ambiguitas dan ketidakjelasan Contoh 1: Billy memiliki 10 jari kaki. Probabilitas Billy memiliki 9 jari kaki adalah 0. Keanggotaan Fuzzy Billy pada himpunan orang dengan 9 jari kaki 0 Contoh 2: - Probabilitas botol 1 berisi air beracun adalah 0.5 dan 0.5 untuk isi air murni {mungkin air tersebut tidak beracun} - Isi botol 2 memiliki nilai keanggotaan 0.5 pada himpunan air berisi racun {air pasti beracun} 7
8 Himpunan Fuzzy Variabel Fuzzy Variabel dalam suatu sistem fuzzy. Contoh : berat badan, tinggi badan, dsb Himpunan Fuzzy (Fuzzy set) Himpunan fuzzy yang mewakili suatu kondisi pada suatu variabel fuzzy. Contoh : Variabel suhu terbagi menjadi 3 himpunan fuzzy, yaitu : panas, hangat, dingin. Variabel nilai terbagi menjadi : tinggi, sedang, rendah Himpunan fuzzy memiliki 2 atribut, yaitu : - Linguistik, yaitu penamaan suatu group yang mewakili suatu kondisi, misalnya panas, hangat, dingin - Numeris, yaitu ukuran dari suatu variabel seperti : 17,19, 21, 33, dst Himpunan Semesta keseluruhan nilai yang boleh dioperasikan dalam suatu variabel fuzzy. Contoh: Semesta untuk variabel berat badan : [1, 150] Semesta untuk variabel suhu : [0,100]. Domain Domain himpunan fuzzy adalah keseluruhan nilai yang diijinkan dalam Semesta dan boleh dioperasikan dalam suatu himpunan fuzzy. Contoh : DINGIN = [0,60] HANGAT = [50,80] PANAS = [80, +) 8
9 Fungsi Keanggotaan: Fungsi Linier a Domain b 0 a Domain b Linier Naik Linier Turun [x]= 0; x a (x-a)/(b-a); a x b 1; x b [x]= (b-x)/(b-a); a x b 0; x b 9
10 Fungsi Keanggotaan: Segitiga [x] = 0; x a atau x c (x-a)/(b-a); a x b (c-x)/(c-b); b x c a b Segitiga c 10
11 Fungsi Keanggotaan: Trapesium a b c d Trapesium [x]= 0; x a atau x d (x-a)/(b-a); a x b 1; b x c (d-x)/(d-c); c x d 11
12 Fungsi Keanggotaan: Sigmoid a b c Sigmoid [x;a,b,c] sigmoid = 0; x a 2 ((x - a)/(c - a)) 2 ; a x b 1-2((c - x)/(c - a)) 2 ; b x c 1; x c 12
13 Fungsi Keanggotaan: Phi c-b c-b/2 c c+b/2 c+b Phi [x;a,b,c] phi = [x;c-b,c-b/2,c] sigmoid ; x c [x;c,c+b/2,c+b] sigmoid ; x > c 13
14 AND AB [x] = min( A [x], B [x]) OR AB [x] = max( A [x], B [x]) NOT (Complement) A [x] = 1 - A [x] Operator Dasar Nilai keanggotaan sebagai hasil dari operasi 2 himpunan: fire strength atau a-predikat IPtinggiLulusCepat = min( IPtinggi [3.2], LulusCepat [8]) = min(0.7,0.8) = 0.7 IPtinggiLulusCepat = max( IPtinggi [3.2], LulusCepat [8]) = max(0.7,0.8) = 0.8 IPtinggi = 1 - IPtinggi [3.2] = = 0.3 Misalkan nilai keanggotaan IP 3.2 pada himpunan IPtinggi adalah 0.7 dan nilai keanggotaan 8 semester pada himpunan LulusCepat adalah 0.8 maka a-predikat untuk IPtinggi dan LulusCepat: a-predikat untuk IPtinggi atau LulusCepat: a-predikat untuk BUKAN IPtinggi : 14
15 Approximate Reasoning A : Apakah dia anak yang pintar? B : Sepertinya begitu. A : Apakah Indeks Prestasi dan hasil tes psikologinya bagus? B : Ya, keduanya sangat bagus. A : Apakah dia layak mendapatkan beasiswa? B : Ya, sepertinya itu adalah keputusan yang baik.
16 Approximate Reasoning P 1 :Sebagian besar mahasiswa suka membaca P 2 : Dani adalah mahasiswa P 3 : Sepertinya Dani suka membaca
17 Reasoning yang Pasti P 1 :Semua manusia pasti akan mati P 2 : Dani adalah manusia P 3 : Dani pasti akan mati
18 Fuzzy Rule Based System Crisp Input Fuzzification variabel fuzzy Rule Evaluation Defuzzification Contoh 1: Mengevaluasi kesehatan orang berdasarkan tinggi dan berat badannya Input: tinggi dan berat badan Output: kategori sehat - sangat sehat (SS) - sehat (A) - agak sehat (AS) - tidak sehat (TS) Output Result 18
19 L1: Fuzzification (1) fungsi keanggotaan untuk tinggi 1.0 pendek Pendek Sedang Tinggi tinggi Ada 3 variabel fuzzy yang dimodelkan: tinggi, berat, sehat fungsi keanggotaan untuk berat kurus Kurus Biasa Berat berat
20 1.0 fungsi keanggotaan untuk tinggi pendek Pendek Sedang Tinggi tinggi 1.0 fungsi keanggotaan untuk berat kurus Kurus Biasa Berat berat f ts as s ss Decision B E R A T kurus Kurus Biasa Berat berat T I N G G I pendek SS S AS TS TS Pendek S SS S AS TS Sedang AS SS SS AS TS Tinggi TS S SS S TS tinggi TS AS SS S AS 20
21 L1: Fuzzification (2) 1.0 f ts as s ss Decision f = {TS, AS, S, SS} 21
22 L2: Rules Evaluation (1) Tentukan rules Tabel Kaidah Fuzzy B E R A T kurus Kurus Biasa Berat berat T I N G G I pendek SS S AS TS TS Pendek S SS S AS TS Sedang AS SS SS AS TS Tinggi TS S SS S TS tinggi TS AS SS S AS Dalam bentuk if-then, contoh: If sangat pendek dan sangat kurus then sangat sehat 22
23 L2: Rules Evaluation (2) Contoh: bagaimana kondisi kesehatan untuk orang dengan tinggi cm dan berat 41 kg? pendek Pendek Sedang Tinggi tinggi sedang [161.5] = ( )/( ) = 0.7 tinggi [161.5] = ( )/( ) =
24 L2: Rules Evaluation (3) kurus Kurus Biasa Berat berat sangatkurus [41] = (45-41)/(45-40) = 0.8 kurus [41] = (41-40)/(45-40) =
25 T I N G G I B E R A T Biasa Berat berat pendek SS S AS TS TS Pendek S SS S AS TS 0.7 AS SS SS AS TS 0.3 TS S SS S TS tinggi TS AS SS S AS L2: Rules Evaluation (4) B E R A T Biasa Berat berat Pilih bobot minimum krn relasi AND T I N G G I pendek SS S AS TS TS Pendek S SS S AS TS SS AS TS SS S TS tinggi TS AS SS S AS 25
26 L3: Defuzzification Diperoleh: f = {TS, AS, S, SS} = {0.3, 0.7, 0.2, 0.2} Penentuan hasil akhir, ada 2 metoda: 1. Max method: index tertinggi 0.7 hasil Agak Sehat 2. Centroid method (Mamdani): (0.3x0.2)+(0.7x0.4)+(0.2x0.6)+(0.3x0.8) / ( ) = Crisp decision index = Fuzzy decision index: 75% agak sehat, 25% sehat 26
27 Contoh 2 Pemberian Beasiswa Aturan : dengan Logika Biner if IPK 3,00 and G 10 juta then Dapat Beasiswa Mhsw A IPK 3.00 Gaji orang tuanya 10 juta Mhsw B IPK 2.99 Gaji orang tua 1 juta A lebih layak mendapatkan beasiswa. Kurang adil (manusiawi). 27
28 Himpunan Fuzzy 1 Buruk Cukup Bagus 0 2,00 2,75 3,25 4,00 IPK 1 Rendah Tinggi Nilai Kelayakan skala [0, 100] 1 Kecil Sedang Besar Besar Gaji orangtua (juta rupiah)
29 Aturan Fuzzy untuk Nilai Kelayakan IPK Gaji Kecil Sedang Besar Besar Buruk Rendah Rendah Rendah Rendah Cukup Tinggi Rendah Rendah Rendah Bagus Tinggi Tinggi Tinggi Rendah
30 IPK mahasiswa A Bagus Gradien = 1-0 / = 1/ 0.5 = 2 Pers garisnya Y = 2 (X-2.75) Hitung untuk X =3.0 Y =2 * 0.25 =0.5 Cukup Gradien = 0-1 / = -1/ 0.5 = - 2 Pers garisnya Y = -2 (X-2.75)+1 Hitung untuk X =3.0 Y = -2 * =0.5
31 Gaji Ortu mhs A Besar Gradien = (1-0) / (12-7) = 1/ 5 Pers garisnya Y = 1/5 (X-7) Hitung untuk X =10 Y =1/5(10-7) =3/5=0.6 Besar Gradien = (0-1) / (12-7) = -1/ 5 Pers garisnya Y = -1/5 (X-7) +1 Hitung untuk X =10 Y =-1/5(10-7)+1 =2/5=0.4
32 Fuzzification untuk mhs A IPK = 3,00 Gaji Orangtua = 10 juta/bulan IPK = Cukup (0,5) IPK = Bagus (0,5) Gaji Orangtua = Besar (0,4) Gaji Orangtua = Besar (0,6)
33 Aturan Fuzzy untuk Nilai Kelayakan IPK Buruk Gaji Kecil Sedang Besar Besar Rendah Rendah Rendah Rendah Cukup 0.5 Tinggi Rendah Rendah 0.4 Rendah 0.5 Bagus 0.5 Tinggi Tinggi Tinggi 0.4 Rendah 0.5
34 Fuzzification untuk mhs A IPK = 3,00 Gaji Orangtua = 10 juta/bulan IPK = Cukup (0,5) IPK = Bagus (0,5) Gaji Orangtua = Besar (0,4) Gaji Orangtua = Besar (0,6)
35 Conjunction () & Disjunction () IF IPK Cukup(0,5) AND Gaji Besar(0,4) THEN NK Rendah(0,4 ) IF IPK Cukup (0,5 ) AND Gaji Besar(0,6) THEN NK Rendah(0,5 ) IF IPK Bagus(0,5) AND Gaji Besar(0,4) THEN NK Tinggi(0,4 ) IF IPK Bagus(0,5) AND Gaji Besar(0,6) THEN NK Rendah(0,5 ) NK = Rendah (0,5) NK = Tinggi (0,4)
36 1 Rendah Tinggi 0, Nilai Kelayakan skala [0, 100] (a) 1 Rendah Tinggi 0, Nilai Kelayakan skala [0, 100] (b) 1 Rendah Tinggi 0,5 0, Nilai Kelayakan skala [0, 100]
37 Center of gravity? 1 Rendah Tinggi 0,5 0, Nilai Kelayakan skala [0, 100] y* ( (0,5 ) )0,5 (70 4 (0,4 ) )0,4 y* ,6 52,39
38 mahasiswa B IPK Gaji Buruk Cukup 0.52 Kecil 1 Sedang Besar Besar Rendah Rendah Rendah Rendah Tinggi 0.52 Rendah Rendah Rendah NK = Rendah (0) NK = Tinggi (0,52) Bagus 0.48 Tinggi 0.48 Tinggi Tinggi Rendah
39 Center of gravity? 1 Rendah Tinggi 0, Nilai Kelayakan skala [0, 100] y * 60 (1 / 3) 65 (1 / 2 ) (70 80 )( 0,52 (1 / 3) (1 / 2 ) (0,52 ) 2 ) y * 20 32,5 2, ,66
40 Keputusan Model Mamdani Mahasiswa B dengan IPK = 2,99 dan Gaji orangtuanya sebesar 1 juta rupiah per bulan memperoleh Nilai Kelayakan sebesar 69,66. Lebih besar dibandingkan dengan Nilai Kelayakan mahasiswa A yang sebesar 52,39. Jadi, mahasiswa B layak mendapatkan beasiswa.
41 Model Mamdani
42 Model Sugeno Model ini sering digunakan untuk membangun sistem kontrol yang membutuhkan respon cepat. Proses perhitungannya sangat sederhana sehingga membutuhkan waktu relatif cepat sehingga sangat sesuai untuk sistem kontrol. Bagaimana jika digunakan untuk masalah pemberian beasiswa?
43 FK singleton untuk Nilai Kelayakan 1 Rendah Tinggi Nilai Kelayakan skala [0, 100]
44 Untuk mahasiswa A 1 Rendah Tinggi NK = Rendah (0,5) NK = Tinggi (0,4) 0, Nilai Kelayakan skala [0, 100] (a) 1 Rendah Tinggi 0, Nilai Kelayakan skala [0, 100] (b)
45 Proses Composition 1 Rendah Tinggi 0,5 0, Nilai Kelayakan skala [0, 100]
46 Defuzzyfication: Weighted Average (0,5 )50 (0,4 )80 y * (0,5 ) (0,4 ) 63,33
47 Mahasiswa B IF IPK Cukup(0,52 ) AND Gaji Kecil(1) THEN NK Tinggi(0,5 2) IF IPK Cukup(0,52 ) AND Gaji Sedang(0) THEN NK Rendah(0) IF IPK Besar (0,48 ) AND Gaji Kecil(1) THEN NK Tinggi(0,4 8) IF IPK Besar (0,48 ) AND Gaji Sedang(0) THEN NK Tinggi(0) NK = Rendah (0) NK = Tinggi (0,52)
48 Untuk Mahasiswa B NK = Rendah (0) NK = Tinggi (0,52) 1 Rendah Tinggi 0, Nilai Kelayakan skala [0, 100]
49 Defuzzyfication: Weighted Average (0 )50 (0,52 )80 y * 0 0,52 80
50 Keputusan Model Sugeno Mahasiswa B dengan IPK = 2,99 dan Gaji orangtuanya sebesar Rp 1 juta per bulan memperoleh Nilai Kelayakan sebesar 80. Lebih besar dibandingkan dengan Nilai Kelayakan mahasiswa A yang sebesar 63,33. Jadi, mahasiswa B layak mendapatkan beasiswa.
51 Model Mamdani Model Sugeno
52 Nilai Kelayakan mahasiswa A & B Mahasiswa Nilai Kelayakan mendapat beasiswa Model Mamdani Model Sugeno A 52,39 63,33 B 69,66 80 Selisih A dan B 17,72 16,67
Logika Himpunan Fuzzy
Logika Himpunan Fuzzy 1 Fungsi Keanggotaan untuk crisp logic True False 1 0 80F Panas Temperature f temperature >= 25C, Panas (1 atau Benar); f temperature < 25C, tidak Panas (0 atau Salah). Fungsi keanggotaan
Crisp Logic. Crisp logic is concerned with absolutes-true or false, there is no in-between. Contoh:
Logika Fuzzy Teori Dasar Crisp Logic Crisp logic is concerned with absolutes-true or false, there is no in-between. Contoh: Rule: If the temperature is higher than 80F, it is hot; otherwise, it is not
Ci Crisp Logic. Crisp logic is concerned with absolutes-true or false, there is no in-between. Contoh:
Logika Fuzzy 1 Teori Dasar Ci Crisp Logic Crisp logic is concerned with absolutes-true or false, there is no in-between. Contoh: Rule: If the temperature is higher than 80F, it is hot; otherwise, it is
Fuzzy Logic. Untuk merepresentasikan masalah yang mengandung ketidakpastian ke dalam suatu bahasa formal yang dipahami komputer digunakan fuzzy logic.
Fuzzy Systems Fuzzy Logic Untuk merepresentasikan masalah yang mengandung ketidakpastian ke dalam suatu bahasa formal yang dipahami komputer digunakan fuzzy logic. Masalah: Pemberian beasiswa Misalkan
Definisi LOGIKA FUZZY. Himpunan Fuzzy. Himpunan Fuzzy(contd) 3/13/2012. Budi Rudianto
3/3/22 Definisi LOGIKA FUY Budi Rudianto http://rizaldi.web.id/repo/fuzzy/logikafuzzy-.ppt Logika Fuzzy adalah peningkatan dari logika Boolean yang mengenalkan konsep kebenaran sebagian. Di mana logika
KECERDASAN BUATAN (Artificial Intelligence) Materi 8. Entin Martiana
Logika Fuzzy KECERDASAN BUATAN (Artificial Intelligence) Materi 8 Entin Martiana 1 Kasus fuzzy dalam kehidupan sehari-hari Tinggi badan saya: Andi menilai bahwa tinggi badan saya termasuk tinggi Nina menilai
Logika Fuzzy. Farah Zakiyah Rahmanti 2016
Logika Fuzzy Farah Zakiyah Rahmanti 2016 Topik Bahasa Alami Crisp Logic VS Fuzzy Logic Fungsi Keanggotaan (Membership Function) Fuzzifikasi (Fuzzyfication) Inferensi (Inference) Komposisi (Composition)
LOGIKA FUZZY (Lanjutan)
Metode Mamdani Metode mamdani sering dikenal sebagai metode Max-Min. Metode ini diperkenalkan oleh Ebrahim Mamdani pada tahun 1975. Menurut metode ini, ada empat tahap yang harus dilalui untuk mendapatkan
Metode Fuzzy. Analisis Keputusan TIP FTP UB
Metode Fuzzy Analisis Keputusan TIP FTP UB Pokok Bahasan Pendahuluan Logika Klasik dan Proposisi Himpunan Fuzzy Logika Fuzzy Operasi Fuzzy Contoh Pendahuluan Penggunaan istilah samar yang bersifat kualitatif
Perbaikan UTS. Telah ada tugas, merangkum paper, tujuan: Apakah tugas tsb telah dikerjakan dengan baik? Contoh yang SALAH:
Perbaikan UTS Telah ada tugas, merangkum paper, tujuan: memperbaiki hasil UTS Apakah tugas tsb telah dikerjakan dengan baik? Contoh yang SALAH: Paper tidak terkait / berbasis WEB Tidak ada unsur kecerdasan
Prof. Erich P., Johannes Kepler Univ. Suyanto, Artificial Intelligence
Prof. Erich P., Johannes Kepler Univ. Suyanto, Artificial Intelligence 12/11/2009 1 Pada hidup sehari-hari, kita terbiasa dengan ucapan kecil, agak panas, sekitar jam 2. Ucapan yang tidak presisi (imprecise
KECERDASAN BUATAN (Artificial Intelligence) Materi 8. Entin Martiana
Logika Fuzzy KECERDASAN BUATAN (Artificial Intelligence) Materi 8 Entin Martiana 1 Kasus fuzzy dalam kehidupan sehari-hari Tinggi badan saya: Andi menilai bahwa tinggi badan saya termasuk tinggi Nina menilai
LOGIKA FUZZY. Kelompok Rhio Bagus P Ishak Yusuf Martinus N Cendra Rossa Rahmat Adhi Chipty Zaimima
Sistem Berbasis Pengetahuan LOGIKA FUZZY Kelompok Rhio Bagus P 1308010 Ishak Yusuf 1308011 Martinus N 1308012 Cendra Rossa 1308013 Rahmat Adhi 1308014 Chipty Zaimima 1308069 Sekolah Tinggi Manajemen Industri
Sebelumnya... Penalaran pada Sistem Pakar. Ketidakpastian dalam Sistem Pakar. Contoh forward chaining & backward chaining
Sebelumnya... Penalaran pada Sistem Pakar Contoh forward chaining & backward chaining Ketidakpastian dalam Sistem Pakar Teori Peluang Teori Bayes Jaringan Bayes Faktor Kepastian Kecerdasan Buatan Pertemuan
Himpunan Tegas (Crisp)
Logika Fuzzy Logika Fuzzy Suatu cara untuk merepresentasikan dan menangani masalah ketidakpastian (keraguan, ketidaktepatan, kekuranglengkapan informasi, dan kebenaran yang bersifat sebagian). Fuzzy System
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Logika Fuzzy Logika fuzzy merupakan suatu metode pengambilan keputusan berbasis aturan yang digunakan untuk memecahkan keabu-abuan masalah pada sistem yang sulit dimodelkan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Permintaan, Persediaan dan Produksi 2.1.1 Permintaan Permintaan adalah banyaknya jumlah barang yang diminta pada suatu pasar tertentu dengan tingkat harga tertentu pada tingkat
Jurnal Informatika SIMANTIK Vol. 2 No. 2 September 2017 ISSN:
PENERAPAN LOGIKA FUZZY UNTUK MENENTUKAN MAHASISWA BERPRESTASI DI STMIK CIKARANG MENGGUNAKAN JAVA NETBEANS DAN MYSQL Ema Dili Giyanti 1), Ali Mulyanto 2) 1) Program Studi Teknik Informatika, STMIK Cikarang
Erwien Tjipta Wijaya, ST.,M.Kom
Erwien Tjipta Wijaya, ST.,M.Kom PENDAHULUAN Logika Fuzzy pertama kali dikenalkan oleh Prof. Lotfi A. Zadeh tahun 1965 Dasar Logika Fuzzy adalah teori himpunan fuzzy. Teori himpunan fuzzy adalah peranan
Logika fuzzy pertama kali dikembangkan oleh Lotfi A. Zadeh melalui tulisannya pada tahun 1965 tentang teori himpunan fuzzy.
LOGIKA FUZZY UTHIE Intro Pendahuluan Logika fuzzy pertama kali dikembangkan oleh Lotfi A. Zadeh melalui tulisannya pada tahun 1965 tentang teori himpunan fuzzy. Lotfi Asker Zadeh adalah seorang ilmuwan
BAB 1 PENDAHULUAN. Logika fuzzy memberikan solusi praktis dan ekonomis untuk mengendalikan
BAB 1 PENDAHULUAN 1.1. Latar Belakang Logika fuzzy memberikan solusi praktis dan ekonomis untuk mengendalikan sistem yang kompleks. Logika fuzzy memberikan rangka kerja yang kuat dalam memecahkan masalah
LOGIKA FUZZY 3/18/2017 OVERVIEW SEJARAH LOGIKA FUZZY WHAT IS FUZZY LOGIC? LOGIKA BOLEAN PERMASALAHAN DUNIA NYATA
OVERVIEW Pengertian Logika Fuzzy LOGIKA FUZZY SHINTA P. SARI Sejarah Logika Fuzzy Teori Logika Fuzzy Aplikasi Logika Fuzzy PRODI. INFORMATIKA FASILKOM UIGM 2017 WHAT IS FUZZY LOGIC? Pengertian Fuzzy not
Sebelumnya... Penalaran pada Sistem Pakar. Ketidakpastian dalam Sistem Pakar. Contoh forward chaining & backward chaining
Sebelumnya... Penalaran pada Sistem Pakar Contoh forward chaining & backward chaining Ketidakpastian dalam Sistem Pakar Teori Peluang Teori Bayes Jaringan Bayes Faktor Kepastian Kecerdasan Buatan Pertemuan
METODOLOGI PENELITIAN
7 terboboti dari daerah output fuzzy. Metode ini paling dikenal dan sangat luas dipergunakan. First of Maxima (FoM) dan Last of Maxima (LoM) Pada First of Maxima (FoM), defuzzifikasi B( y) didefinisikan
BAB II LANDASAN TEORI. Dalam kondisi yang nyata, beberapa aspek dalam dunia nyata selalu atau biasanya
BAB II LANDASAN TEORI A. Logika Fuzzy Dalam kondisi yang nyata, beberapa aspek dalam dunia nyata selalu atau biasanya berada di luar model matematis dan bersifat inexact. Konsep ketidakpastian inilah yang
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Logika Fuzzy Fuzzy secara bahasa diartikan sebagai kabur atau samar yang artinya suatu nilai dapat bernilai benar atau salah secara bersamaan. Dalam fuzzy dikenal derajat keanggotan
Kecerdasan Buatan. Pertemuan 10. (Review) Faktor Kepastian Sistem Penalaran Fuzzy Mamdani Pembelajaran Mesin ID3. Husni
Kecerdasan Buatan Pertemuan 10 (Review) Faktor Kepastian Sistem Penalaran Fuzzy Mamdani Pembelajaran Mesin ID3 Husni [email protected] http://komputasi.wordpress.com S1 Teknik Informatika, STMIK AMIKOM,
BAB II: TINJAUAN PUSTAKA
BAB II: TINJAUAN PUSTAKA Bab ini akan memberikan penjelasan awal mengenai konsep logika fuzzy beserta pengenalan sistem inferensi fuzzy secara umum. 2.1 LOGIKA FUZZY Konsep mengenai logika fuzzy diawali
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Bab landasan teori bertujuan untuk memberikan penjelasan mengenai metode atau pun teori yang digunakan dalam laporan tugas akhir ini, sehingga dapat membangun pemahaman yang sama antara
BAB 2 LANDASAN TEORI
BAB LANDASAN TEORI. Himpunan Himpunan adalah setiap daftar, kumpulan atau kelas objek-objek yang didefenisikan secara jelas, objek-objek dalam himpunan-himpunan yang dapat berupa apa saja: bilangan, orang,
FUZZY LOGIC CONTROL 1. LOGIKA FUZZY
1. LOGIKA FUZZY Logika fuzzy adalah suatu cara tepat untuk memetakan suatu ruang input ke dalam suatu ruang output. Teknik ini menggunakan teori matematis himpunan fuzzy. Logika fuzzy berhubungan dengan
Praktikum sistem Pakar Fuzzy Expert System
Praktikum sistem Pakar Fuzzy Expert System Ketentuan Praktikum 1. Lembar Kerja Praktikum ini dibuat sebagai panduan bagi mahasiswa untuk praktikum pertemuan ke - 8 2. Mahasiswa akan mendapatkan penjelasan
SPK PENENTUAN TINGKAT KEPUASAN KONSUMEN PADA RESTORAN XYZ
SPK PENENTUAN TINGKAT KEPUASAN KONSUMEN PADA RESTORAN XYZ P.A Teknik Informatika Universitas Ahmad Dahlan Yogyakarta Kampus 3 UAD, Jl. Prof. Soepomo [email protected] Abstrak Perkembangan teknologi
Himpunan Fuzzy. Sistem Pakar Program Studi : S1 sistem Informasi
Himpunan Fuzzy Sistem Pakar Program Studi : S1 sistem Informasi Outline Himpunan CRISP Himpunan Fuzzy Himpunan CRISP Pada himpunan tegas (crisp), nilai keanggotaan suatu item dalam suatu himpunan A, yang
ke dalam suatu ruang output. Orang yang belum pernah mengenal logika fuzzy pasti
BAB II LANDASAN TEORI 2.1 Logika Fuzzy Logika fuzzy adalah suatu cara yang tepat untuk memetakan suatu ruang input ke dalam suatu ruang output. Orang yang belum pernah mengenal logika fuzzy pasti akan
Bab III TEORI DAN PENGONTOR BERBASIS LOGIKA FUZZI
Bab III TEORI DAN PENGONTOR BERBASIS LOGIKA FUZZI III.1 Teori Logika fuzzi III.1.1 Logika fuzzi Secara Umum Logika fuzzi adalah teori yang memetakan ruangan input ke ruang output dengan menggunakan aturan-aturan
Aplikasi Prediksi Harga Bekas Sepeda Motor Yamaha. Menggunakan Fuzzy Logic
Aplikasi Prediksi Harga Bekas Sepeda Motor Yamaha Menggunakan Fuzzy Logic 1. Pendahuluan Jual beli motor merupakan suatu kegiatan transaksi yang mungkin sering kita temukan di kehidupan sehari-hari. Untuk
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Himpunan Himpunan adalah kata benda yang berasal dari kata himpun. Kata kerjanya adalah menghimpun. Menghimpun adalah kegiatan yang berhubungan dengan berbagai objek apa saja.
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Sistem Pendukung Keputusan Sistem Pendukung Keputusan dapat diartikan sebagai sebuah sistem yang dimaksudkan untuk mendukung para pengambil keputusan dalam situasi tertentu. Sistem
Kata kunci: Sistem pendukung keputusan metode Sugeno, tingkat kepribadian siswa
SISTEM PENDUKUNG KEPUTUSAN METODE SUGENO DALAM MENENTUKAN TINGKAT KEPRIBADIAN SISWA BERDASARKAN PENDIDIKAN (STUDI KASUS DI MI MIFTAHUL ULUM GONDANGLEGI MALANG) Wildan Hakim, 2 Turmudi, 3 Wahyu H. Irawan
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Sekarang ini hampir semua perusahaan yang bergerak di bidang industri dihadapkan pada suatu masalah yaitu adanya tingkat persaingan yang semakin kompetitif. Hal ini
MENENTUKAN HARGA MOBIL BEKAS TOYOTA AVANZA MENGGUNAKAN METODE TSUKAMOTO
MENENTUKAN HARGA MOBIL BEKAS TOYOTA AVANZA MENGGUNAKAN METODE TSUKAMOTO Ganjar Ramadhan Jurusan Teknik Informatika, Universitas Islam Negeri Syarif Hidayatullah Jakarta Email : [email protected]
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA Pada bab ini penulis akan menjelaskan mengenai landasan teori yang digunakan pada penelitian ini. Penjabaran ini bertujuan untuk memberikan pemahaman lebih mendalam kepada penulis
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1. Permintaan 2.1.1 Pengertian Permintaan Permintaan adalah banyaknya jumlah barang yang diminta pada suatu pasar tertentu dengan tingkat harga tertentu pada tingkat pendapatan tertentu
4-5-FUZZY INFERENCE SYSTEMS
4-5-FUZZY INFERENCE SYSTEMS Shofwatul Uyun Mekanisme FIS Fuzzy Inference Systems (FIS) INPUT (CRISP) FUZZYFIKASI RULES AGREGASI DEFUZZY OUTPUT (CRISP) 2 Metode Inferensi Fuzzy Metode Tsukamoto Metode Mamdani
BAB II LANDASAN TEORI. papernya yang monumental Fuzzy Set (Nasution, 2012). Dengan
BAB II LANDASAN TEORI 2.. Logika Fuzzy Fuzzy set pertama kali diperkenalkan oleh Prof. Lotfi Zadeh, 965 orang Iran yang menjadi guru besar di University of California at Berkeley dalam papernya yang monumental
BAB II TEORI PENUNJANG
BAB II TEORI PENUNJANG 2.1 LOGIKA FUZZY Titik awal dari konsep modern mengenai ketidakpastian adalah paper yang dibuat oleh Lofti A Zadeh, dimana Zadeh memperkenalkan teori yang memiliki obyek-obyek dari
BAB II LANDASAN TEORI. Pada bab ini berisi tentang teori mengenai permasalahan yang akan dibahas
BAB II LANDASAN TEORI Pada bab ini berisi tentang teori mengenai permasalahan yang akan dibahas dalam pembuatan tugas akhir ini. Secara garis besar teori penjelasan akan dimulai dari definisi logika fuzzy,
PENGEMBANGAN SISTEM PAKAR FUZZY
FUZZY EXPERT SYSTEM FUZZY INFERENCE SYSTEM FUZZY REASONING Toto Haryanto MATA KULIAH SISTEM PAKAR DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR PENGEMBANGAN SISTEM PAKAR FUZZY Domain Masalah Fuzzifikasi
BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai teori-teori yang akan digunakan untuk menunjang dalam proses pembuatan tugas akhir ini.
BAB II LANDASAN TEORI Pada bab ini akan dibahas mengenai teori-teori yang akan digunakan untuk menunjang dalam proses pembuatan tugas akhir ini. 2.1 CLUSTERING Clustering adalah proses pengelompokkan suatu
RANCANG BANGUN FUZZY MAMDANI SISTEM UNTUK DEDUPLIKASI PENUNJANG KEPUTUSAN KELAYAKAN NASABAH PADA LEASING PT. CS FINANCE. Sarwo
RANCANG BANGUN FUZZY MAMDANI SISTEM UNTUK DEDUPLIKASI PENUNJANG KEPUTUSAN KELAYAKAN NASABAH PADA LEASING PT. CS FINANCE Sarwo Sekolah Tinggi Manajemen Informatika dan Komputer Mercusuar [email protected]
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Game dan Video Game Menurut kamus Cambridge Advanced Learner Dictionary, game adalah sebuah aktivitas menghibur dan menyenangkan yang dimainkan oleh anak anak. Sedangkan video
PENALARAN FUZZY SISTEM PAKAR DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR 2012
PENALARAN FUZZY SISTEM PAKAR DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR 2012 PENALARAN FUZZY Digunakan untuk menghasilkan suatu keputusan tunggal / crisp saat defuzzifikasi Penggunaan akan bergantung
Sist Sis em t Fuzzy Fuzz Sistem Pakar
Sistem Fuzzy Sistem Pakar Pendahuluan Manusia cenderung menggunakan bahasa dalam bentuk sesuatu yang dapat dipahami secara umum, bukan dalam bentuk bahasa matematika yang mementingkan akurasi. Misalkan,
Penentuan Jumlah Produksi Kue Bolu pada Nella Cake Padang dengan Sistem Inferensi Fuzzy Metode Sugeno
Penentuan Kue Bolu pada Nella Cake Padang dengan Sistem Inferensi Fuzzy Metode Sugeno Shenna Miranda #1, Minora Longgom Nasution *2, Muhammad Subhan #3 #1 Student of Mathematics department State University
Sistem Inferensi Fuzzy
Sistem Inferensi Fuzzy METODE SUGENO 27 Sistem Inferensi Fuzzy Metode Tsukamoto Metode Sugeno! Diperkenalkan oleh Takagi-Sugeno-Kang, tahun 1985.! Bagian output (konsekuen) sistem tidak berupa himpunan
DENIA FADILA RUSMAN
Sidang Tugas Akhir INVENTORY CONTROL SYSTEM UNTUK MENENTUKAN ORDER QUANTITY DAN REORDER POINT BAHAN BAKU POKOK TRANSFORMER MENGGUNAKAN METODE FUZZY (STUDI KASUS : PT BAMBANG DJAJA SURABAYA) DENIA FADILA
BAB III METODE FUZZY MAMDANI
29 BAB III METODE FUZZY MAMDANI Fuzzy Inference System merupakan sebuah kerangka kerja perhitungan berdasarkan konsep teori himpunan fuzzy dan pemikiran fuzzy yang digunakan dalam penarikan kesimpulan
Logika fuzzy pertama kali dikembangkan oleh Lotfi A. Zadeh melalui tulisannya pada tahun 1965 tentang teori himpunan fuzzy.
LOGIKA FUZZY UTHIE Pendahuluan Logika fuzzy pertama kali dikembangkan oleh Lotfi A. Zadeh melalui tulisannya pada tahun 1965 tentang teori himpunan fuzzy. Lotfi Asker Zadeh adalah seorang ilmuwan Amerika
ARTIFICIAL INTELLIGENCE MENENTUKAN KUALITAS KEHAMILAN PADA WANITA PEKERJA
ARTIFICIAL INTELLIGENCE MENENTUKAN KUALITAS KEHAMILAN PADA WANITA PEKERJA Rima Liana Gema, Devia Kartika, Mutiana Pratiwi Universitas Putra Indonesia YPTK Padang email: [email protected] ABSTRAK
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA Bab ini berisi tentang pemahaman dari logika fuzzy dan data mining. Pada bab ini juga akan dijelaskan bagian-bagian yang perlu diketahui dalam logika fuzzy dan data mining, sehingga
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Komponen Mobil Mesin terdiri atas beberapa bagian yang memiliki fungsinya masingmaning. Bagian-bagian atau komponen-komponen tersebut bekerja bersama-sama untuk menghasilkan
Simulasi Kinerja Siswa Dengan Metode Fuzzy Inference Sugeno Menggunakan Aplikasi Matlab
Jurnal Ilmiah Teknologi dan Informasi I (JITIK) Vol.11, No.1, Februari 2017 IN: 0852-730X imulasi Kinerja iswa Dengan Metode Fuzzy Inference ugeno Menggunakan plikasi Matlab Halimahtus Mukminna 1,Devita
BAB II TINJAUAN PUSTAKA
5 BAB II TINJAUAN PUSTAKA 2.1. Logika Fuzzy Logika fuzzy merupakan suatu metode pengambilan keputusan berbasis aturan yang digunakan untuk memecahkan keabu-abuan masalah pada sistem yang sulit dimodelkan
PERBANDINGAN PRODUKSI KOPI OPTIMUM ANTARA METODE FUZZY-MAMDANI DENGAN FUZZY-SUGENO (Studi Kasus: PT SARIMAKMUR TUNGGALMANDIRI)
PERBANDINGAN PRODUKSI KOPI OPTIMUM ANTARA METODE FUZZY-MAMDANI DENGAN FUZZY-SUGENO (Studi Kasus: PT SARIMAKMUR TUNGGALMANDIRI) RIANTO PANGIHUTAN SAMOSIR 090803024 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA
LOGIKA FUZZY FUNGSI KEANGGOTAAN
LOGIKA FUZZY FUNGSI KEANGGOTAAN FUNGSI KEANGGOTAAN (Membership function) adalah suatu kurva yang menunjukkan pemetaan titik-titik input data ke dalam nilai/derajat keanggotaannya yang memiliki interval
Contoh Kasus. Bagus Ilhami HIdayat
Contoh Kasus Suatu perusahaan tekstil akan memproduksi pakaian dengan jenis XYZ. Dari 1 bulan terakhir, permintaan terbesar mencapai 5000 potong per hari, dan permintaan terkecil mencapai 1000 potong per
Fuzzy Inference System untuk Mengurangi Kemacetan di Perempatan Jalan
Fuzzy Inference System untuk Mengurangi Kemacetan di Perempatan Jalan Edwin Romelta / 13508052 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha
MATERI KULIAH (PERTEMUAN 12,13) Lecturer : M. Miftakul Amin, M. Eng. Logika Fuzzy. Politeknik Negeri Sriwijaya Palembang
HIMPUNAN FUZZY MATERI KULIAH (PERTEMUAN 2,3) Lecturer : M. Miftakul Amin, M. Eng. Logika Fuzzy Jurusan Teknik Komputer Politeknik Negeri Sriwijaya Palembang Pokok Bahasan Sistem fuzzy Logika fuzzy Aplikasi
SISTEM PENDUKUNG KEPUTUSAN PENERIMAAN BEASISWA BIDIK MISI DI POLITEKNIK NEGERI JEMBER MENGGUNAKAN LOGIKA FUZZY
SISTEM PENDUKUNG KEPUTUSAN PENERIMAAN BEASISWA BIDIK MISI DI POLITEKNIK NEGERI JEMBER MENGGUNAKAN LOGIKA FUZZY oleh: 1 I Putu Dody Lesmana, 2 Arfian Siswo Bintoro 1,2 Jurusan Teknologi Informasi, Politeknik
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Himpunan Himpunan adalah suatu kumpulan atau koleksi objek-objek yang mempunyai kesamaan sifat tertentu. Objek ini disebut elemen-elemen atau anggota-anggota dari himpunan (Frans
APLIKASI PENGAMBILAN KEPUTUSAN DENGAN METODE TSUKAMOTO PADA PENENTUAN TINGKAT KEPUASAN PELANGGAN (STUDI KASUS DI TOKO KENCANA KEDIRI)
APLIKASI PENGAMBILAN KEPUTUSAN DENGAN METODE TSUKAMOTO PADA PENENTUAN TINGKAT KEPUASAN PELANGGAN (STUDI KASUS DI TOKO KENCANA KEDIRI) 1Venny Riana Agustin, 2 Wahyu H. Irawan 1 Jurusan Matematika, Universitas
Analisis Pengaruh Pemilihan Fuzzy Membership Function Terhadap Output Sebuah Sistem Fuzzy Logic
Analisis Pengaruh Pemilihan Fuzzy Membership Function Terhadap Output Sebuah Sistem Fuzzy Logic Luh Kesuma Wardhani, Elin Haerani Jurusan Teknik Informatika Fakultas Sains dan Teknologi UIN SUSKA Riau
PERBANDINGAN METODE TSUKAMOTO, METODE MAMDANI DAN METODE SUGENO UNTUK MENENTUKAN PRODUKSI DUPA (Studi Kasus : CV. Dewi Bulan)
PERBANDINGAN METODE TSUKAMOTO, METODE MAMDANI DAN METODE SUGENO UNTUK MENENTUKAN PRODUKSI DUPA (Studi Kasus : CV. Dewi Bulan) Komang Wahyudi Suardika 1, G.K. Gandhiadi 2, Luh Putu Ida Harini 3 1 Program
Penentuan Harga dengan Menggunakan Sistem Inferensi Fuzzy Tsukamoto Pada Rancang Bangun Aplikasi Finding-Tutor
A527 Penentuan Harga dengan Menggunakan Sistem Inferensi Fuzzy Tsukamoto Pada Rancang Bangun Aplikasi Finding-Tutor Syah Dia Putri Mustika Sari, R.V. Hari Ginardi, dan Chastine Fatichah Departemen Teknik
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 SISTEM PENDUKUNG KEPUTUSAN Sistem pendukung keputusan pertama kali diperkenalkan pada awal tahun 1970 oleh Michael S. Scott dengan istilah management decision system yang merupakan
KASUS PENERAPAN LOGIKA FUZZY. Fuzzy tsukamoto, mamdani, sugeno
KASUS PENERAPAN LOGIKA FUZZY Fuzzy tsukamoto, mamdani, sugeno CARA KERJA LOGIKA FUZZY MELIPUTI BEBERAPA TAHAPAN BERIKUT : 1. Fuzzyfikasi 2. Pembentukan basis pengetahuan fuzzy (rule dalam bentuk if..then).
Fuzzy Expert Sistem. Departemen Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor 2015
Fuzzy Expert Sistem Departemen Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor 2015 Ketentuan Praktikum Lembar Kerja Praktikum ini dibuat sebagai panduan bagi mahasiswa
BAB II TINJAUAN PUSTAKA
4 BAB II TINJAUAN PUSTAKA A. Penjurusan di SMA Sepanjang perkembangan Pendidikan formal di Indonesia teramati bahwa penjurusan di SMA telah dilaksanakan sejak awal kemerdekaan yaitu tahun 1945 sampai sekarang,
Model Evaluasi Performa Mahasiswa Tahun Pertama Melalui Pendekatan Fuzzy Inference System dengan Metode Tsukamoto
Model Evaluasi Performa Mahasiswa Tahun Pertama Melalui Pendekatan Fuzzy Inference System dengan Metode Tsukamoto Zaenal Abidin Program studi Sistem Informasi STMIK Teknokrat Bandar Lampung, Indonesia
PENERAPAN INFERENSI FUZZY UNTUK KENDALI SUHU RUANGAN PADA PENDINGIN RUANGAN (AC)
PENERAPAN INFERENSI FUZZY UNTUK KENDALI SUHU RUANGAN PADA PENDINGIN RUANGAN (AC) Kartina Diah KW,ST1), Zulfa Noviardi2) 1,2) Jurusan Teknik Komputer Politeknik Caltex Riau Pekanbaru Jl. Umban Sari No.1
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1. Logika Fuzzy Logika fuzzy meringankan bagaimana orang-orang berpikir. Hal ini upaya kita untuk memodelkan pengertian kita terhadap kata-kata dalam pengambilan keputusan. Sehingga
Pengantar Kecerdasan Buatan (AK045218) Logika Fuzzy
Logika Fuzzy Pendahuluan Alasan digunakannya Logika Fuzzy Aplikasi Himpunan Fuzzy Fungsi keanggotaan Operator Dasar Zadeh Penalaran Monoton Fungsi Impilkasi Sistem Inferensi Fuzzy Basis Data Fuzzy Referensi
PERBANDINGAN METODE FUZZY SUGENO DAN METODE FUZZY MAMDANI DALAM PENENTUAN STOK BERAS PADA PERUM BULOG DIVISI REGIONAL SUMUT SKRIPSI
PERBANDINGAN METODE FUZZY SUGENO DAN METODE FUZZY MAMDANI DALAM PENENTUAN STOK BERAS PADA PERUM BULOG DIVISI REGIONAL SUMUT SKRIPSI DESMON GUNADI SIAGIAN 110803066 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA
PREDIKSI JUMLAH PRODUKSI BARANG BEDASARKAN JUMLAH PERMINTAAN DAN DATA JUMLAH PERSEDIAAN CV.CIHANJUANG INTI TEKNIK MENGGUNAKAN LOGIKA FUZZY MAMDANI
PREDIKSI JUMLAH PRODUKSI BARANG BEDASARKAN JUMLAH PERMINTAAN DAN DATA JUMLAH PERSEDIAAN CV.CIHANJUANG INTI TEKNIK MENGGUNAKAN LOGIKA FUZZY MAMDANI Rizka Munia Yogaswara 1), Gunawan Abdillah 2), Dian Nursantika
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1 Logika Fuzzy Zadeh (1965) memperkenalkan konsep fuzzy sebagai sarana untuk menggambarkan sistem yang kompleks tanpa persyaratan untuk presisi. Dalam jurnalnya Hoseeinzadeh et
Matematika Diskrit Fuzzy Inference System Prodi T.Informatika
Matematika Diskrit Fuzzy Inference System Prodi T.Informatika Mahasiswa dapat melakukan penalaran dengan hasil akhirnya diperoleh dengan menggunakan rata-rata terbobot. Mekanisme Fuzzy Iinference Systems
LEMBAR PENGESAHAN PERNYATAAN ABSTRAK...
DAFTAR ISI LEMBAR PENGESAHAN PERNYATAAN ABSTRAK... i KATA PENGANTAR... ii UCAPAN TERIMA KASIH... iv DAFTAR ISI... vi DAFTAR TABEL... viii DAFTAR GAMBAR... ix DAFTAR SIMBOL... x BAB I PENDAHULUAN... 1 1.1
Institut Teknologi Sepuluh Nopember Surabaya
Aplikasi Sistem Inferensi Fuzzy Metode Sugeno dalam Memperkirakan Produksi Air Mineral dalam Kemasan Oleh Suwandi NRP 1209201724 Dosen Pembimbing 1. Prof. Dr M. Isa Irawan, MT 2. Dr Imam Mukhlash, MT Institut
: Sistem Pendukung Keputusan, Siswa berprestasi, Tsukamoto
SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN SISWA BERPRESTASI BERBASIS WEB DENGAN METODE TSUKAMOTO PADA SMA INSTITUT INDONESIA Eko Purwanto Program Studi Teknik Informatika, Fakultas Ilmu Komputer Universitas
REVIEW PENERAPAN FUZZY LOGIC SUGENO DAN MAMDANI PADA SISTEM PENDUKUNG KEPUTUSAN PRAKIRAAN CUACA DI INDONESIA
Seminar Nasional Sistem Informasi Indonesia, 6 November 2017 REVIEW PENERAPAN FUZZY LOGIC SUGENO DAN MAMDANI PADA SISTEM PENDUKUNG KEPUTUSAN PRAKIRAAN CUACA DI INDONESIA Anisa Citra Mutia, Aria Fajar Sundoro,
BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. Dalam tinjauan pustaka dibawah ini terdapat 5 referensi dan 1 referensi dari
BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 1.1 Tinjauan Pustaka Dalam tinjauan pustaka dibawah ini terdapat 5 referensi dan 1 referensi dari penulis sebagai berikut: Tabel 2.1 Perbandingan Metode Penelitian
manusia diantaranya penyakit mata konjungtivitis, keratitis, dan glaukoma.
6 BAB II TINJAUAN PUSTAKA 2.1 Gambaran Tentang Mata Mata merupakan organ tubuh manusia yang paling sensitif apabila terkena benda asing misal asap dan debu. Debu akan membuat mata kita terasa perih atau
KOTAK HITAM. Pemetaan input-output pada masalah produksi Diberikan data persediaan barang, berapa jumlah barang yang harus diproduksi?
LOGIKA FUZZY 7 7. PENDAHULUAN Orang yang belum pernah mengenal logika fuzzy pasti akan mengira bahwa logika fuzzy adalah sesuatu yang amat rumit dan tidak menyenangkan. Namun, sekali seseorang mulai mengenalnya,
Analisis Fungsi Implikasi Max-Min dan Max-Prod Dalam Pengambilan Keputusan
128 ISSN: 2354-5771 Analisis Fungsi Implikasi Max-Min dan Max-Prod Dalam Pengambilan Keputusan Raheliya Br Ginting STT Poliprofesi Meda E-mail: [email protected] Abstrak Pengambilan keputusan harus
NURAIDA, IRYANTO, DJAKARIA SEBAYANG
Saintia Matematika Vol. 1, No. 6 (2013), pp. 543 555. ANALISIS TINGKAT KEPUASAN KONSUMEN BERDASARKAN PELAYANAN, HARGA DAN KUALITAS MAKANAN MENGGUNAKAN FUZZY MAMDANI (Studi Kasus pada Restoran Cepat Saji
ABSTRAK. Kata kunci: Logika Fuzzy, Metode Mamdani, Penentuan Jumlah Produksi, Pengambilan Keputusan
Kaunia Vol. XI No. 2, Oktober 25/436: 9 99 ISSN 829-5266 (print) ISSN 23-855 (online) APLIKASI LOGIKA FUZZY METODE MAMDANI DALAM PENGAMBILAN KEPUTUSAN PENENTUAN JUMLAH PRODUKSI Muchammad Abrori dan Amrul
SISTEM INFERENSI FUZZY (METODE TSUKAMOTO) UNTUK PENENTUAN KEBUTUHAN KALORI HARIAN OLEH
KECERDASAN BUATAN SISTEM INFERENSI FUZZY (METODE TSUKAMOTO) UNTUK PENENTUAN KEBUTUHAN KALORI HARIAN OLEH AMARILIS ARI SADELA (E1E1 10 086) SITI MUTHMAINNAH (E1E1 10 082) SAMSUL (E1E1 10 091) NUR IMRAN
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Persediaan 2.1.1 Pengertian Persediaan Persediaan adalah bahan atau barang yang disimpan yang akan digunakan untuk digunakan memenuhi tujuan tertentu, misalnya untuk proses produksi
