Ruang Pencarian PERTEMUAN 3

Ukuran: px
Mulai penontonan dengan halaman:

Download "Ruang Pencarian PERTEMUAN 3"

Transkripsi

1 Ruang Pencarian PERTEMUAN 3

2 TUJUAN INSTRUKSIONAL Mahasiswa dapat mendeskripsikan sebuah permasalahan secara formal Mahasiswa dapat merancang ruang pencarian dari sebuah permasalahan

3 AGEN YANG MEMILIKI TUJUAN (GOAL DIRECTED AGENT) Search = an agent with several immediate options of unknown value can decide what to do by first examining different possible sequences of actions that lead to states of known value, and then choosing the best sequence.

4 KEBUTUHAN AGENT Perumusan permasalahan Keadaan awal Operator / Aksi Rencana Tes tujuan

5 FORMULASI PERMASALAHAN S: himpunan keadaan (states) S0: keadaan awal (initial state) A: S S adalah himpunan aksi (actions) G: keadaan akhir, perhatikan bahwa G adalah himpunan bagian dari S (goal test)

6 STATE SPACE (RUANG PENCARIAN) plan P = {a 0, a 1,, a N } akan menjalani keadaan-keadaan dalam sebuah permasalahan {s 0, s 1,, s N+1 G}.

7 REPRESENTASI FORMULASI PERMASALAHAN Representasi: Directed graph, nodes, arc

8 AIMA.SEARCH.FRAMEWORK: PROBLEM.JAVA

9 PROBLEM ROMANIA

10 ROMANIA PROBLEM STATEMENT (AIMA.SEARCH.MAP)

11 VACUUM WORLD

12 8-QUEENS PROBLEM

13 FORMULASI PERMASALAHAN 8-QUEENS: ALTERNATIF 1 States: susunan 0 sampai 8 ratu pada papan catur. Keadaan awal: 0 ratu di atas papan. Suksesor: tambahkan sebuah ratu pada kotak manapun. Tes tujuan: ada 8 ratu di atas papan, namun tidak ada yang saling menyerang.

14 ANALISIS ALTERNATIF 1

15 FORMULASI PERMASALAHAN 8-QUEENS: ALTERNATIF 2 States: Susunan apapun untuk 8 ratu di atas papan catur. Keadaan awal: Semua ratu berada pada kolom pertama. Suksesor: Ubah posisi salah satu ratu. Tes tujuan: ada 8 ratu di atas papan, namun tidak ada yang saling menyerang.

16 ANALISIS ALTERNATIF 2

17 FORMULASI PERMASALAHAN N-QUEENS: ALTERNATIF 3 States: Susunan apapun untuk k-queens pada k-baris pertama sehingga tidak ada yang saling menyerang. Keadaan Awal: 0 ratu di atas papan catur. Suksesor: tambahkan sebuah ratu pada baris (k+1) sehingga tidak ada yang saling menyerang. Tes tujuan: ada k-ratu di atas papan, namun tidak ada yang saling menyerang.

18 ANALSIS ALTERNATIF 3

19 8-PUZZLE PROBLEM

20 FORMULASI PERMASALAHAN 8-PUZZLE States: deskripsi dari setiap ubin pada lokasinya. Aksi: ubin kosong bergerak ke atas, bawah, kiri atau kanan. Tes tujuan: keadaan sekarang sesuai dengan urutan tertentu. Biaya: setiap pergerakan bernilai 1.

21 RUANG PENCARIAN 8-PUZZLE

22 TIC-TAC-TOE PROBLEM

23 WATER JUG PROBLEM Ada tiga teko dengan ukuran 12, 8, 3 liter, dan sebuah mata air. Salah satu teko tersebut harus tepat terisi 1 liter air. Definisi permasalahan yang dapat diambil adalah: Keadaan awal: semua teko kosong. Tes tujuan: salah satu teko berisi tepat 1 liter. Suksesor: Aksi: memindahkan air ke teko i dan j, dengan kapasitas Ci dan Cj, dan air yang telah terdapat dalam teko Li dan Lj. Teko i terisi dengan max(0, Li-(Cj-Gj) liter air, dan teko j dengan min(cj, Li+Lj) Aplikasikan aksi dengan mengisi ke teko i sejumlah Ci liter air. Biaya: berikan biaya pada setiap kali seliter air dipindahkan dari satu teko ke teko lain.

24 LATIHAN: TSP (TRAVELLING SALESMAN PROBLEM) Terdapat N kota yang dihubungkan dengan jalan. Yang diminta adalah untuk menemukan jalur terpendek antara N-kota yang dilalui dari sebuah kota asal, tanpa harus melalui kota yang sama dua kali, untuk dapat kembali ke kota asal. Berikan definisi permasalahan untuk problem ini. Berikan kandidat solusinya.

25 LATIHAN: MISSIONARIES & CANNIBALS PROBLEM Ada 3 misionaris dan 3 kanibal pada sebuah sisi sungai. Terdapat sebuah perahu yang dapat membawa 2 penumpang bersamaan. Seorang misionaris tidak boleh berjumlah lebih sedikit dari para kanibal dalam sebuah keadaan. Berikan definisi permasalahan untuk problem ini. Berikan perencanaan untuk menyeberangi sungai tersebut.

26 NODE REPRESENTATION

27 NODES COLLECTION QUEUE

28 GENERAL TREE SEARCH

29 RUANG PENCARIAN YANG IMPLISIT Keadaan awal Akibat dari setiap operator Membuka sebuah simpul Menghitung suksesor Pemilihan operator dapat berakibat pada: Ruang pencarian Waktu pencarian

Kecerdasan Buatan. Penyelesaian Masalah dengan Pencarian... Pertemuan 02. Husni

Kecerdasan Buatan. Penyelesaian Masalah dengan Pencarian... Pertemuan 02. Husni Kecerdasan Buatan Pertemuan 02 Penyelesaian Masalah dengan Pencarian... Husni [email protected] http://komputasi.wordpress.com S1 Teknik Informatika, STMIK AMIKOM, 2013 Outline Konsep Pencarian Pencarian

Lebih terperinci

Sistem Kecerdasan Buatan. Masalah, Ruang Masalah dan Pencarian Solusi. Masalah. Masalah Sebagai Ruang Keadaan 10/7/2015

Sistem Kecerdasan Buatan. Masalah, Ruang Masalah dan Pencarian Solusi. Masalah. Masalah Sebagai Ruang Keadaan 10/7/2015 Sistem Kecerdasan Buatan Masalah, Ruang Masalah dan Pencarian Solusi Bahan Bacaan : Sri Kusumadewi, Artificial Intelligence. Russel, Artificial Intelligence Modern Approach 2 bagian utama kecerdasan buatan

Lebih terperinci

Problem solving by Searching. Materi 3 Kecerdasan Buatan Oleh: Dewi Liliana TI PNJ

Problem solving by Searching. Materi 3 Kecerdasan Buatan Oleh: Dewi Liliana TI PNJ Problem solving by Searching Materi 3 Kecerdasan Buatan Oleh: Dewi Liliana TI PNJ Pendahuluan Pengantar : Membahas agen cerdas penyelesaian problem serta strategi uninformed untuk memecahkan masalah. Tujuan:

Lebih terperinci

Kecerdasan Buatan Penyelesaian Masalah dengan Pencarian

Kecerdasan Buatan Penyelesaian Masalah dengan Pencarian Kecerdasan Buatan Pertemuan 02 Penyelesaian Masalah dengan Pencarian Kelas 10-S1TI-03, 04, 05 Husni [email protected] http://komputasi.wordpress.com S1 Teknik Informatika, STMIK AMIKOM, 2012 Outline Pendahuluan

Lebih terperinci

memberikan output berupa solusi kumpulan pengetahuan yang ada.

memberikan output berupa solusi kumpulan pengetahuan yang ada. MASALAH DAN METODE PEMECAHAN MASALAH (Minggu 2) Pendahuluan Sistem yang menggunakan kecerdasan buatan akan memberikan output berupa solusi dari suatu masalah berdasarkan kumpulan pengetahuan yang ada.

Lebih terperinci

Problem-solving Agent: Searching

Problem-solving Agent: Searching Problem-solving Agent: Searching Kuliah 3 Sistem Cerdas 5 April 2010 STMIK Indonesia Problem-Solving Agent Kelemahan reflex agent tidak cocok untuk menangani masalah besar!! Goal-based agent memiliki tujuan,

Lebih terperinci

AI sebagai Masalah Pelacakan. Lesson 2

AI sebagai Masalah Pelacakan. Lesson 2 AI sebagai Masalah Pelacakan Lesson 2 Pendahuluan Semua Bidang AI adalah Pelacakan Game Ruang masalah (problem spaces) Setiap masalah adalah pohon virtual dari seluruh solusi yang mungkin (berhasil atau

Lebih terperinci

SISTEM INTELEGENSIA. Pertemuan 3 Diema HS, M. Kom

SISTEM INTELEGENSIA. Pertemuan 3 Diema HS, M. Kom SISTEM INTELEGENSIA Pertemuan 3 Diema HS, M. Kom MASALAH DAN RUANG KEADAAN, 1. Definisi Masalah dan Ruang Masalah 2. Cara Merepresentasikan Ruang Masalah MASALAH? Untuk Mendefinisikan Suatu Masalah: a.

Lebih terperinci

Tujuan Instruksional

Tujuan Instruksional Pertemuan 4 P E N C A R I A N T A N P A I N F O R M A S I B F S D F S U N I F O R M S E A R C H I T E R A T I V E D E E P E N I N G B I D I R E C T I O N A L S E A R C H Tujuan Instruksional Mahasiswa

Lebih terperinci

Algoritma Branch & Bound

Algoritma Branch & Bound Algoritma Branch & Bound Bahan Kuliah IF2211 Strategi Algoritma Program Studi Informatika STEI ITB 2018 Overview Pembentukan pohon ruang status (state space tree) dinamis untuk mencari solusi persoalan

Lebih terperinci

Aplikasi dan Analisis Algoritma BFS dan DFS dalam Menemukan Solusi pada Kasus Water Jug

Aplikasi dan Analisis Algoritma BFS dan DFS dalam Menemukan Solusi pada Kasus Water Jug Aplikasi dan Analisis Algoritma BFS dan DFS dalam Menemukan Solusi pada Kasus Water Jug Rizkydaya Aditya Putra NIM : 13506037 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika, Institut

Lebih terperinci

SSSS, Problem Solving. State Space Search. Erick Pranata. Edisi I

SSSS, Problem Solving. State Space Search. Erick Pranata. Edisi I SSSS, Problem Solving State Space Search Erick Pranata Edisi I 19/04/2013 Definisi Merupakan sebuah teknik dalam kecerdasan buatan yang dapat digunakan untuk mencari langkah-langkah yang perlu ditempuh

Lebih terperinci

METODE PENCARIAN DAN PELACAKAN

METODE PENCARIAN DAN PELACAKAN METODE PENCARIAN DAN PELACAKAN SISTEM INTELEGENSIA Pertemuan 4 Diema Hernyka S, M.Kom Materi Bahasan Metode Pencarian & Pelacakan 1. Pencarian buta (blind search) a. Pencarian melebar pertama (Breadth

Lebih terperinci

Branch & Bound. Bahan Kuliah IF2211 Strategi Algoritma Rinaldi Munir & Masayu Leylia Khodra

Branch & Bound. Bahan Kuliah IF2211 Strategi Algoritma Rinaldi Munir & Masayu Leylia Khodra Branch & Bound Bahan Kuliah IF2211 Strategi Algoritma Rinaldi Munir & Masayu Leylia Khodra Overview Pembentukan pohon ruang status (state space tree) dinamis dengan BFS, DFS, DLS, dan IDS untuk mencari

Lebih terperinci

LESSON 6 : INFORMED SEARCH Part II

LESSON 6 : INFORMED SEARCH Part II LESSON 6 : INFORMED SEARCH Part II 3.3 Itterative deepening A* search 3.3.1 Algoritma IDA* Itterative deepening search atau IDA* serupa dengan iterative deepening depth first, namun dengan modifikasi sebagai

Lebih terperinci

KECERDASAN BUATAN MASALAH, RUANG KEADAAN DAN PENCARIAN ERWIEN TJIPTA WIJAYA, ST., M.KOM

KECERDASAN BUATAN MASALAH, RUANG KEADAAN DAN PENCARIAN ERWIEN TJIPTA WIJAYA, ST., M.KOM KECERDASAN BUATAN MASALAH, RUANG KEADAAN DAN PENCARIAN ERWIEN TJIPTA WIJAYA, ST., M.KOM KERANGKA MASALAH Masalah Ruang Keadaan Pencarian DEFINISI MASALAH Sistem yang menggunakan kecerdasan buatan akan

Lebih terperinci

IKI 30320: Sistem Cerdas Kuliah 3: Problem-Solving Agent & Search

IKI 30320: Sistem Cerdas Kuliah 3: Problem-Solving Agent & Search IKI 30320: Sistem Cerdas : -Solving Agent & Fakultas Ilmu Komputer Universitas Indonesia 3 September 2007 Outline 1 2 3 4 5 Outline 1 2 3 4 5 -Solving Agent Di kuliah yang lalu kita melihat contoh reflex

Lebih terperinci

IKI30320 Kuliah 3 3 Sep Ruli Manurung. Problem solving agent. Representasi masalah: state space. Pencarian solusi: search.

IKI30320 Kuliah 3 3 Sep Ruli Manurung. Problem solving agent. Representasi masalah: state space. Pencarian solusi: search. Outline IKI 00: istem Cerdas : -olving Agent & Fakultas Ilmu Komputer Universitas Indonesia 4 eptember 007 5 -olving Agent Mekanisme kerja -olving Agent Di kuliah yang lalu kita melihat contoh reflex agent:

Lebih terperinci

Masalah, Ruang Keadaan, Pencarian. Kecerdasan Buatan Pertemuan 2 Yudianto Sujana

Masalah, Ruang Keadaan, Pencarian. Kecerdasan Buatan Pertemuan 2 Yudianto Sujana Masalah, Ruang Keadaan, Pencarian Kecerdasan Buatan Pertemuan 2 Yudianto Sujana Sistem AI Komputer Input Masalah Pertanyaan Basis Pengetahuan Motor Inferensi Output Jawaban Solusi Masalah Untuk membangun

Lebih terperinci

Jurnal Mahajana Informasi, Vol.1 No 2, 2016 e-issn: SIMULASI PERGERAKAN CHESS KNIGHT DALAM PAPAN CATUR

Jurnal Mahajana Informasi, Vol.1 No 2, 2016 e-issn: SIMULASI PERGERAKAN CHESS KNIGHT DALAM PAPAN CATUR SIMULASI PERGERAKAN CHESS KNIGHT DALAM PAPAN CATUR Dini MH. Hutagalung Program Studi Sistem Informasi Universitas Sari Mutiara Indonesia [email protected] ABSTRAK Sistem produksi ( production system) merupakan

Lebih terperinci

Contoh 4/7/ HEURISTIC METHOD. Pencarian Heuristik

Contoh 4/7/ HEURISTIC METHOD. Pencarian Heuristik 07/04/2016 3. HEURISTI METHO KEERASAN BUATAN Pertemuan : 05-06 INFORMATIKA FASILKOM UNIVERSITAS IGM Pencarian Heuristik Kelemahan blind search : Waktu akses lama Memori yang dibutuhkan besar Ruang masalah

Lebih terperinci

ALGORITMA PENCARIAN (1)

ALGORITMA PENCARIAN (1) ALGORITMA PENCARIAN (1) Permasalahan, Ruang Keadaan, Pencarian Farah Zakiyah Rahmanti Diperbarui 2016 Overview Deskripsi Permasalahan dalam Kecerdasan Buatan Definisi Permasalahan Pencarian Breadth First

Lebih terperinci

ALGORITMA PENCARIAN. 1. Iterative-Deepening Depth-First Search (IDS) Nama : Gede Noverdi Indra Wirawan Nim : Kelas : VI A

ALGORITMA PENCARIAN. 1. Iterative-Deepening Depth-First Search (IDS) Nama : Gede Noverdi Indra Wirawan Nim : Kelas : VI A Nama : Gede Noverdi Indra Wirawan Nim : 0915051050 Kelas : VI A ALGORITMA PENCARIAN Algoritma pencarian (searching algorithm) adalah algoritma yang menerima sebuah argumen kunci dan dengan langkah-langkah

Lebih terperinci

Update 2012 DESAIN DAN ANALISIS ALGORITMA SEARCHING

Update 2012 DESAIN DAN ANALISIS ALGORITMA SEARCHING SEARCHING MENDEFINISIKAN MASALAH SEBAGAI SUATU RUANG KEADAAN Secara umum, untuk mendeskripsikan suatu permasalahan dengan baik harus: 1 Mendefinisikan suatu ruang keadaan. 2 Menerapkan satu atau lebih

Lebih terperinci

Masalah, Ruang Masalah dan Pencarian

Masalah, Ruang Masalah dan Pencarian Masalah, Ruang Masalah dan Pencarian Definisi Masalah dan Ruang Masalah Metode Pencarian Buta Breadth First Search Depth First Search Referensi Luger & Stubblefield - bab 3 Sri Kusumadewi - bab 2 Rich

Lebih terperinci

03/03/2015. Agenda Teknik Dasar Pencarian Teknik Pemecahan Masalah Strategi Pencarian Mendalam Pencarian Heuristik

03/03/2015. Agenda Teknik Dasar Pencarian Teknik Pemecahan Masalah Strategi Pencarian Mendalam Pencarian Heuristik Prio Handoko, S. Kom., M.T.I. Program Studi Teknik Informatika Universitas Pembangunan Jaya Jl. oulevard - intaro Jaya Sektor VII Tangerang Selatan anten 154 Kompetensi asar Mahasiswa mendapatkan pemahaman

Lebih terperinci

MASALAH, RUANG KEADAAN

MASALAH, RUANG KEADAAN MASALAH, RUANG KEADAAN PENDAHULUAN Sistem yang menggunakna kecerdasan buatan mencoba untuk memberikan output berupa solusi dari suatu masalah berdasarkan kumpulan pengetahuan yang ada. Input yang diberikan

Lebih terperinci

KECERDASAN BUATAN METODE HEURISTIK / HEURISTIC SEARCH ERWIEN TJIPTA WIJAYA, ST., M.KOM

KECERDASAN BUATAN METODE HEURISTIK / HEURISTIC SEARCH ERWIEN TJIPTA WIJAYA, ST., M.KOM KECERDASAN BUATAN METODE HEURISTIK / HEURISTIC SEARCH ERWIEN TJIPTA WIJAYA, ST., M.KOM KERANGKA MASALAH Generate And Test Hill Climbing Best First Search PENCARIAN HEURISTIK Kelemahan blind search : 1.

Lebih terperinci

HEURISTIC SEARCH UTHIE

HEURISTIC SEARCH UTHIE HEURISTIC SEARCH Pendahuluan Pencarian buta biasanya tidak efisien karena waktu akses memori yang dibutuhkan cukup besar. Untuk mengatasi hal ini maka perlu ditambahkan suatu informasi pada domain yang

Lebih terperinci

BAB II MASALAH DAN RUANG MASALAH. Gambar 2.1 sistem yang menggunakan kecerdasan buatan

BAB II MASALAH DAN RUANG MASALAH. Gambar 2.1 sistem yang menggunakan kecerdasan buatan BAB II MASALAH DAN RUANG MASALAH 2.1 MASALAH DAN METODE PEMECAHAN MASALAH Sistem yang menggunakan kecerdasan buatan akan memberikan output berupa solusi dari suatu masalah berdasarkan kumpulan pengetahuan

Lebih terperinci

Masalah, Ruang Masalah dan Pencarian

Masalah, Ruang Masalah dan Pencarian Masalah, Ruang Masalah dan Pencarian Review : Sistem yang menggunakan AI Komputer Input Masalah Pertanyaan dll Basis Pengetahuan Motor Inferensi Output Jawaban Solusi Untuk membangun sistem yang mampu

Lebih terperinci

Pengantar Strategi Algoritmik. Oleh: Rinaldi Munir

Pengantar Strategi Algoritmik. Oleh: Rinaldi Munir Pengantar Strategi Algoritmik Oleh: Rinaldi Munir 1 Masalah (Problem) Masalah atau persoalan: pertanyaan atau tugas yang kita cari jawabannya. Contoh-contoh masalah: 1. [Masalah pengurutan] Diberikan senarai

Lebih terperinci

Oleh Lukman Hariadi

Oleh Lukman Hariadi ANALISIS PENYELESAIAN PUZZLE SUDOKU DENGAN MENERAPKAN ALGORITMA BACKTRACKING (berbentuk piramida terbalik) PROPOSAL JUDUL Diajukan Untuk Menempuh Tugas Akhir Oleh Lukman Hariadi 14201045 PROGRAM STUDI

Lebih terperinci

Algoritma Pencarian Blind. Breadth First Search Depth First Search

Algoritma Pencarian Blind. Breadth First Search Depth First Search Algoritma Pencarian Blind Breadth First Search Depth First Search Deskripsi Merupakan algoritma untuk mencari kemungkinan penyelesaian Sering dijumpai oleh peneliti di bidang AI Mendefinisikan permasalahan

Lebih terperinci

Masalah, Ruang Keadaan dan Pencarian 4/7/2016. fakultas ilmu komputer program studi informatika

Masalah, Ruang Keadaan dan Pencarian 4/7/2016. fakultas ilmu komputer program studi informatika ب س م ا ه لل الر ح ن الر ح ي السالم عليكم ورحمة هللا وبركاته fakultas ilmu komputer program studi informatika Masalah, Ruang Keadaan dan Pencarian Ruang Masalah / Keadaan Suatu ruang yang berisi semua

Lebih terperinci

PENERAPAN ALGORITMA A* PADA PERMASALAHAN OPTIMALISASI PENCARIAN SOLUSI DYNAMIC WATER JUG

PENERAPAN ALGORITMA A* PADA PERMASALAHAN OPTIMALISASI PENCARIAN SOLUSI DYNAMIC WATER JUG PENERAPAN ALGORITMA A* PADA PERMASALAHAN OPTIMALISASI PENCARIAN SOLUSI DYNAMIC WATER JUG Firman Harianja (0911519) Mahasiswa Program Studi Teknik Informatika STMIK Budidarma Medan Jl. Sisingamangaraja

Lebih terperinci

Penyelesaian Masalah dengan Pencarian

Penyelesaian Masalah dengan Pencarian Penyelesaian Masalah dengan Pencarian Model Problem & Pencarian Solusi Mengkonversi situasi yang diberikan ke dalam situasi lain menggunakan sekumpulan operasi tertentu. Searching : merepresentasikan masalah

Lebih terperinci

BAB III METODE PELACAKAN/PENCARIAN

BAB III METODE PELACAKAN/PENCARIAN BAB III METODE PELACAKAN/PENCARIAN Hal penting dalam menentukan keberhasilan sistem cerdas adalah kesuksesan dalam pencarian. Pencarian = suatu proses mencari solusi dari suatu permasalahan melalui sekumpulan,

Lebih terperinci

Analisis Beberapa Algoritma dalam Menyelesaikan Pencarian Jalan Terpendek

Analisis Beberapa Algoritma dalam Menyelesaikan Pencarian Jalan Terpendek Analisis Beberapa Algoritma dalam Menyelesaikan Pencarian Jalan Terpendek Hugo Toni Seputro Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Jl. Ganesha 10 Bandung Jawa Barat Indonesia

Lebih terperinci

MASALAH, RUANG KEADAAN & PENCARIAN

MASALAH, RUANG KEADAAN & PENCARIAN MASALAH, RUANG KEADAAN & PENCARIAN 1 Pokok Bahasan Mendefinisikan Masalah dalam Ruang Keadaan Representasi Ruang Keadaan Metode Pencarian & Pelacakan 2 Artificial Intelligence ARTIFICIAL INTELLIGENCE Input:

Lebih terperinci

Pemecahan Masalah dengan Metoda Pencarian (Searching)

Pemecahan Masalah dengan Metoda Pencarian (Searching) Pemecahan Masalah dengan Metoda Pencarian (Searching) Problem-Solving Agent (PSA) Memutuskan tindakan yang harus dilakukan untuk mencapai hasil yang diinginkan. Dengan cara : mengidentifikasi tiap urutan

Lebih terperinci

Artificial Intelegence/ P_2. Eka Yuniar

Artificial Intelegence/ P_2. Eka Yuniar Artificial Intelegence/ P_2 Eka Yuniar Pokok Bahasan Definisi Masalah Ruang Masalah Metode Pencarian BFS dan DFS Problem/ Masalah Masalah dalam kecerdasan buatan adalah masalah yang dapat dikonversi ke

Lebih terperinci

Penerapan BFS dan DFS pada Pencarian Solusi

Penerapan BFS dan DFS pada Pencarian Solusi Bahan Kuliah ke-8 IF5 Strategi Algoritmik Penerapan BFS dan DFS pada Pencarian Solusi Disusun oleh: Ir. Rinaldi Munir, M.T. Departemen Teknik Informatika Institut Teknologi Bandung 4 Struktur pencarian

Lebih terperinci

Sebelumnya... Best-First Search Greedy Search A* Search, karena boros memory, dimunculkan variannya (sekilas): IDA* SMA* D* (DWA*) RBFS Beam

Sebelumnya... Best-First Search Greedy Search A* Search, karena boros memory, dimunculkan variannya (sekilas): IDA* SMA* D* (DWA*) RBFS Beam Sebelumnya... Best-First Search Greedy Search A* Search, karena boros memory, dimunculkan variannya (sekilas): IDA* SMA* D* (DWA*) RBFS Beam Kecerdasan Buatan Pertemuan 04 Variasi A* dan Hill Climbing

Lebih terperinci

Metode Searching. Blind/Un-informed Search. Heuristic/Informed Search. Breadth-First Search (BFS) Depth-First Search (DFS) Hill Climbing A*

Metode Searching. Blind/Un-informed Search. Heuristic/Informed Search. Breadth-First Search (BFS) Depth-First Search (DFS) Hill Climbing A* SEARCHING Russel and Norvig. 2003. Artificial Intelligence: a Modern Approach. Prentice Hall. Suyanto, Artificial Intelligence. 2005. Bandung:Informatika Program Studi Ilmu Komputer FPMIPA UPI RNI IK460(Kecerdasan

Lebih terperinci

Bab 2 2. Teknik Pencarian

Bab 2 2. Teknik Pencarian Bab 2 2. Teknik Pencarian Bab ini membahas bagaimana membuat ruang masalah untuk suatu masalah tertentu. Sebagian masalah mempunyai ruang masalah yang dapat diprediksi, sebagian lainnya tidak. 1.1 Pendefinisian

Lebih terperinci

Pemanfaatan Pohon dalam Realisasi Algoritma Backtracking untuk Memecahkan N-Queens Problem

Pemanfaatan Pohon dalam Realisasi Algoritma Backtracking untuk Memecahkan N-Queens Problem Pemanfaatan Pohon dalam Realisasi Algoritma Backtracking untuk Memecahkan N-Queens Problem Halida Astatin (13507049) Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika, Institut Teknologi

Lebih terperinci

Pengembangan Teknik Pencarian Optimal Menggunakan Algoritma Generate and Test dengan Diagram Precedence (GTPRE)

Pengembangan Teknik Pencarian Optimal Menggunakan Algoritma Generate and Test dengan Diagram Precedence (GTPRE) Pengembangan Teknik Pencarian Optimal Menggunakan Algoritma Generate and Test dengan Diagram Precedence (GTPRE) Development of Optimal Search Using Generate and Test Algorithm with Precedence Diagram (GTPRE)

Lebih terperinci

Penerapan BFS dan DFS pada Pencarian Solusi

Penerapan BFS dan DFS pada Pencarian Solusi Penerapan BFS dan DFS pada Pencarian Solusi Bahan Kuliah IF2151 Strategi Algoritmik Oleh: Rinaldi Munir 1 Pengorganisasian Solusi Kemungkinan2 solusi dari persoalan membentuk ruang solusi (solution space)

Lebih terperinci

CLIQUE MAKSIMAL SEBAGAI KONSEP DASAR PEMBUATAN ALGORITMA CLIQUE-BACK UNTUK MENYELESAIKAN MASALAH N-RATU

CLIQUE MAKSIMAL SEBAGAI KONSEP DASAR PEMBUATAN ALGORITMA CLIQUE-BACK UNTUK MENYELESAIKAN MASALAH N-RATU CLIQUE MAKSIMAL SEBAGAI KONSEP DASAR PEMBUATAN ALGORITMA CLIQUE-BACK UNTUK MENYELESAIKAN MASALAH N-RATU Diny Zulkarnaen Dosen Matematika Fakultas Sains dan Teknologi [email protected] ABSTRAK Masalah N-ratu

Lebih terperinci

ALGORITMA PENCARIAN (HEURISTIC)

ALGORITMA PENCARIAN (HEURISTIC) ALGORITMA PENCARIAN (HEURISTIC) Farah Zakiyah Rahmanti, M.T Diperbarui 2016 Overview Pengertian Pencarian Heuristik Generate and Test Hill Climbing Best First Searching Latihan Pencarian Heuristik Merupakan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Pengertian Algoritma Algoritma merupakan urutan langkah langkah untuk menyelesaikan masalah yang disusun secara sistematis, algoritma dibuat dengan tanpa memperhatikan bentuk

Lebih terperinci

TEKNIK PENYELESAIAN MASALAH BERDASARKAN AI

TEKNIK PENYELESAIAN MASALAH BERDASARKAN AI TEKNIK PENYELESAIAN MASALAH BERDASARKAN AI 1. Definisikan masalah dengan tepat 2. Analisa masalahnya 3. Representasikan task knowledge 4. Pilih dan gunakan representasi dan teknik reasoning Untuk mendefinisikan

Lebih terperinci

Pertemuan-07 INFORMATIKA FASILKOM UNIVERSITAS IGM

Pertemuan-07 INFORMATIKA FASILKOM UNIVERSITAS IGM 07/04/2016 3. HEURISTIC METHOD Algoritma yang menggunakan Metode Best-First Search, yaitu: 1 Literatur Review KECERDASAN BUATAN Pertemuan-07 INFORMATIKA FASILKOM UNIVERSITAS IGM a. Greedy Best-First Greedy

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Kecerdasan buatan merupakan sub-bidang ilmu komputer yang khusus ditujukan untuk membuat software dan hardware yang sepenuhnya bisa menirukan beberapa fungsi

Lebih terperinci

Penerapan Pohon dengan Algoritma Branch and Bound dalam Menyelesaikan N-Queen Problem

Penerapan Pohon dengan Algoritma Branch and Bound dalam Menyelesaikan N-Queen Problem Penerapan Pohon dengan Algoritma Branch and Bound dalam Menyelesaikan N-Queen Problem Arie Tando (13510018) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

Penerapan Algoritma Runut-balik pada Permainan Math Maze

Penerapan Algoritma Runut-balik pada Permainan Math Maze Penerapan Algoritma Runut-balik pada Permainan Math Maze Angela Lynn - 13513032 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

MASALAH, RUANG KEADAAN. Kecerdasan Buatan

MASALAH, RUANG KEADAAN. Kecerdasan Buatan MASALAH, RUANG KEADAAN Kecerdasan Buatan Pokok Bahasan Mendefinisikan Masalah dalam Ruang Keadaan Representasi Ruang Keadaan Artificial Intelligence ARTIFICIAL INTELLIGENCE Input: MASALAH Knowledge Base

Lebih terperinci

KI Kecerdasan Buatan Materi 6: Pencarian dgn. Lihat Status Lawan (Adversarial Search)

KI Kecerdasan Buatan Materi 6: Pencarian dgn. Lihat Status Lawan (Adversarial Search) [AIMA] Russel, Stuart J., Peter Norvig, "Artificial Intelligence, A Modern Approach" rd Ed., Prentice Hall, New Jersey, KI9 Kecerdasan Buatan Materi 6: Pencarian dgn. Lihat Status Lawan (Adversarial Search)

Lebih terperinci

Penerapan Search Tree pada Penyelesaian Masalah Penentuan Jalur Kota Terpendek.

Penerapan Search Tree pada Penyelesaian Masalah Penentuan Jalur Kota Terpendek. Penerapan Search Tree pada Penyelesaian Masalah Penentuan Jalur Kota Terpendek. Arnold Nugroho Sutanto - 13507102 1) 1) Jurusan Teknik Informatika ITB, Bandung 40132, email: [email protected]

Lebih terperinci

Pencarian. Kecerdasan Buatan Pertemuan 3 Yudianto Sujana

Pencarian. Kecerdasan Buatan Pertemuan 3 Yudianto Sujana Pencarian Kecerdasan Buatan Pertemuan 3 Yudianto Sujana Metode Pencarian dan Pelacakan Hal penting dalam menentukan keberhasilan sistem cerdas adalah kesuksesan dalam pencarian. Pencarian = suatu proses

Lebih terperinci

BAB I PENDAHULUAN UKDW. dalam kehidupan kita sehari-hari, terutama bagi para pengguna sarana

BAB I PENDAHULUAN UKDW. dalam kehidupan kita sehari-hari, terutama bagi para pengguna sarana BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pencarian jalur terpendek merupakan sebuah masalah yang sering muncul dalam kehidupan kita sehari-hari, terutama bagi para pengguna sarana transportasi. Para

Lebih terperinci

Penyelesaian Permainan 3 missionaries and 3 cannibals Dengan Algoritma Runut-Balik

Penyelesaian Permainan 3 missionaries and 3 cannibals Dengan Algoritma Runut-Balik Penyelesaian Permainan 3 missionaries and 3 cannibals Dengan Algoritma Runut-Balik Hendro Program Studi Teknik Informatika Alamat : Jl. iumbeuluit Gg.Suhari No. 95/155A E-mail: [email protected]

Lebih terperinci

BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM

BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM III.1. Analisis Masalah Proses analisa sistem merupakan langkah kedua pada pengembangan sistem. Analisa sistem dilakukan untuk memahami informasi-informasi

Lebih terperinci

BAB 2 LANDASAN TEORI. Definisi Graf G didefinisikan sebagai pasangan himpunan (V, E), yang dalam hal ini:

BAB 2 LANDASAN TEORI. Definisi Graf G didefinisikan sebagai pasangan himpunan (V, E), yang dalam hal ini: 10 BAB 2 LANDASAN TEORI 2.1.Konsep Dasar Graf Definisi 2.1.1 Graf G didefinisikan sebagai pasangan himpunan (V, E), yang dalam hal ini: V = himpunan tidak kosong dari simpul-simpul (vertices atau node)

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Kecerdasan Buatan Kecerdasan buatan atau Artificial Intelligence adalah bagian dari ilmu pengetahuan komputer yang khusus ditujukan dalam perancangan otomatisasi tingkah laku cerdas

Lebih terperinci

Case Study : Search Algorithm

Case Study : Search Algorithm Case Study : Search Algorithm INF-303 Kecerdasan Buatan Jurusan Informatika FMIPA UNSYIAH Irvanizam Zamanhuri, M.Sc Dr. Taufiq A. Gani, M.EngSc Website: http://informatika.unsyiah.ac.id/irvanizam Contoh

Lebih terperinci

Penerapan Algoritma Branch and Bound untuk Optimasi Rute Penempelan Poster di Papan Mading ITB

Penerapan Algoritma Branch and Bound untuk Optimasi Rute Penempelan Poster di Papan Mading ITB Penerapan Algoritma Branch and Bound untuk Optimasi Rute Penempelan Poster di Papan Mading ITB Zain Fathoni 00 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

BAB I PENDAHULUAN 1-1. Howard. W. Sams & Co.1987, hal 1. 1 Frenzel, L.W. Crash Course In Artifical Intelligence And Expert Systems. 1st Edition.

BAB I PENDAHULUAN 1-1. Howard. W. Sams & Co.1987, hal 1. 1 Frenzel, L.W. Crash Course In Artifical Intelligence And Expert Systems. 1st Edition. BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Perkembangan teknologi yang makin pesat menyebabkan kebutuhan akan kecerdasan buatan (artificial intelligence) dalam komputerpun meningkat. Kecerdasan buatan

Lebih terperinci

AI sebagai Masalah Pelacakan. Lesson 2

AI sebagai Masalah Pelacakan. Lesson 2 AI sebagai Masalah Pelacakan Lesson 2 Teknik Pencarian Pendahuluan Setelah permasalahan direpresentasikan dalam bentuk state-space, maka selanjutnya dilakukan pencarian (searching) di dalam state-space

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Kecerdasan Buatan Kecerdasan buatan merupakan salah satu bidang ilmu komputer yang didefinisikan sebagai kecerdasan yang dibuat untuk suatu sistem dengan menggunakan algoritmaalgoritma

Lebih terperinci

Artificial Intelegence/ P_3 EKA YUNIAR

Artificial Intelegence/ P_3 EKA YUNIAR Artificial Intelegence/ P_3 EKA YUNIAR Pokok Bahasan Teknik Pencarian Heuristik Generate And Test Hill Climbing Best First Searching Problem Reduction Constrait Satisfaction Means End Analysis Teknik Pencarian

Lebih terperinci

PENYELESAIAN MASALAH 8 PUZZLE DENGAN ALGORITMA HILL CLIMBING STEPEST ASCENT LOGLIST HEURISTIK BERBASIS JAVA

PENYELESAIAN MASALAH 8 PUZZLE DENGAN ALGORITMA HILL CLIMBING STEPEST ASCENT LOGLIST HEURISTIK BERBASIS JAVA Seminar Nasional Teknologi Informasi dan Komunikasi 2012 (SENTIKA 2012) ISSN: 209-915 PENYELESAIAN MASALAH PUZZLE DENGAN ALGORITMA HILL CLIMBING STEPEST ASCENT LOGLIST HEURISTIK BERBASIS JAVA Azizah Zakiah

Lebih terperinci

BAB III REPRESENTASI RUANG KEADAAN ( STATE SPACE) keadaan baru yang akan dicapai dengan menggunakan operator. Node-node dalam graph

BAB III REPRESENTASI RUANG KEADAAN ( STATE SPACE) keadaan baru yang akan dicapai dengan menggunakan operator. Node-node dalam graph BAB III REPRESENASI RUANG KEADAAN ( SAE SPACE) A. Graph Keadaan Graph terdiri dari node-node yang menunjukkan keadaab yaitu keadaan awal dan keadaan baru yang akan dicapai dengan menggunakan operator.

Lebih terperinci

Penerapan Metode Best First Search Pada Permainan Tic Tac Toe

Penerapan Metode Best First Search Pada Permainan Tic Tac Toe Penerapan Metode Best First Search Pada Permainan Tic Tac Toe Harvei Desmon Hutahaean STMIK Pelita Nusantara, Jl. Iskandar Muda No. 1 Medan, Sumatera Utara, Indonesia http : // www.penusa.ac.id, Email:

Lebih terperinci

Algoritma Branch & Bound untuk Optimasi Pengiriman Surat antar Himpunan di ITB

Algoritma Branch & Bound untuk Optimasi Pengiriman Surat antar Himpunan di ITB Algoritma Branch & Bound untuk Optimasi Pengiriman Surat antar Himpunan di ITB Mohamad Ray Rizaldy - 13505073 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

Algoritma Greedy dalam Artificial Intelligence Permainan Tic Tac Toe

Algoritma Greedy dalam Artificial Intelligence Permainan Tic Tac Toe Algoritma Greedy dalam Artificial Intelligence Permainan Tic Tac Toe Alif Bhaskoro 13514016 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

Kecerdasan Buatan. Pertemuan 03. Pencarian Branch & Bound dan Heuristik (Informed)

Kecerdasan Buatan. Pertemuan 03. Pencarian Branch & Bound dan Heuristik (Informed) Kecerdasan Buatan Pertemuan 03 Pencarian Branch & Bound dan Heuristik (Informed) Husni [email protected] http://www.facebook.com/lunix96 http://komputasi.wordpress.com S1 Teknik Informatika, STMIK AMIKOM,

Lebih terperinci

Masalah, Ruang Keadaan dan Pencarian 4/7/2016. fakultas ilmu komputer program studi informatika

Masalah, Ruang Keadaan dan Pencarian 4/7/2016. fakultas ilmu komputer program studi informatika ب س م ا ه لل الر ح ن الر ح ي السالم عليكم ورحمة هللا وبركاته fakultas ilmu komputer program studi informatika Masalah, Ruang Keadaan dan Pencarian Ruang Masalah / Keadaan Suatu ruang yang berisi semua

Lebih terperinci

Hal penting dalam menentukan keberhasilan sistem cerdas adalah kesuksesan dalam pencarian.

Hal penting dalam menentukan keberhasilan sistem cerdas adalah kesuksesan dalam pencarian. Hal penting dalam menentukan keberhasilan sistem cerdas adalah kesuksesan dalam pencarian. 3 Teknik Search menentukan simpul mana yang dibuat lebih dulu dan mana yang kemudian sampai ditemukannya simpul

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Permainan (game) merupakan bidang usaha manusia terhadap kecerdasan buatan, salah satunya adalah sliding puzzle. Permainan ini merupakan permainan yang dapat melatih

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Graf 2.1.1 Definisi Graf Graf adalah pasangan himpunan (V, E), dan ditulis dengan notasi G = (V, E), V adalah himpunan tidak kosong dari verteks-verteks {v 1, v 2,, v n } yang

Lebih terperinci

KECERDASAN BUATAN. Simple Hill Climbing. Disusun Oleh:

KECERDASAN BUATAN. Simple Hill Climbing. Disusun Oleh: KECERDASAN BUATAN Simple Hill Climbing Disusun Oleh: 1. Lutvi Maulida Al H. (081112006) 2. Nurul Fauziah (081112021) 3. Anggraeni Susanti (081112055) 4. Syahrul Bahar Hamdani (081211232012) Departemen

Lebih terperinci

Pengantar Strategi Algoritma

Pengantar Strategi Algoritma PROGRAM STUDI TEKNIK INFORMATIKA Sekolah Teknik Elrektro dan Informatika INSTITUT TEKNOLOGI BANDUNG Pengantar Strategi Algoritma Bahan Kuliah IF2211 Strategi Algoritma RINALDI MUNIR Lab Ilmu dan Rekayasa

Lebih terperinci

APLIKASI GAME TIC TAC TOE 6X6 BERBASIS ANDROID MENGGUNAKAN ALGORITMA MINIMAX DAN HEURISTIC EVALUATION

APLIKASI GAME TIC TAC TOE 6X6 BERBASIS ANDROID MENGGUNAKAN ALGORITMA MINIMAX DAN HEURISTIC EVALUATION APLIKASI GAME TIC TAC TOE 6X6 BERBASIS ANDROID MENGGUNAKAN ALGORITMA MINIMAX DAN HEURISTIC EVALUATION Ever Jayadi1), Muhammad Aziz Fatchur Rachman2), Muhammad Yuliansyah3) 1), 2), 3) Teknik Informatika

Lebih terperinci

BAB 3 ANALISIS DAN PERANCANGAN

BAB 3 ANALISIS DAN PERANCANGAN BAB 3 ANALISIS DAN PERANCANGAN 3.1 Gambaran Umum Manusia mempunyai kemampuan untuk belajar sejak dia dilahirkan, baik diajarkan maupun belajar sendiri, hal ini dikarenakan manusia mempunyai jaringan saraf.

Lebih terperinci

Penentuan Keputusan dalam Permainan Gomoku dengan Program Dinamis dan Algoritma Greedy

Penentuan Keputusan dalam Permainan Gomoku dengan Program Dinamis dan Algoritma Greedy Penentuan Keputusan dalam Permainan Gomoku dengan Program Dinamis dan Algoritma Greedy Atika Yusuf 135055 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

HEURISTIC SEARCH. Irvanizam Zamanhuri, M.Sc Dr. Taufiq A. Gani, M.EngSc

HEURISTIC SEARCH. Irvanizam Zamanhuri, M.Sc Dr. Taufiq A. Gani, M.EngSc HEURISTIC SEARCH Irvanizam Zamanhuri, M.Sc Dr. Taufiq A. Gani, M.EngSc Jurusan Informatika Universitas Syiah Kuala http://informatika.unsyiah.ac.id/irvanizam Travelling Salesmen Problem Seorang salesman

Lebih terperinci

Praktikum Blind Search (BFS dan DFS)

Praktikum Blind Search (BFS dan DFS) Praktikum Blind Search (BFS dan DFS) LATIHAN SOAL A. 1. Jelaskan algoritma BFS! 2. Jelaskan algoritma DFS! B. Aplikasi Game Petani Angsa Serigala - Padi 1. Tentukan ruang permasalahan (problem space) dari

Lebih terperinci

SOLUSI ALGORITMA BACKTRACKING DALAM PERMAINAN KSATRIA MENYEBRANG KASTIL

SOLUSI ALGORITMA BACKTRACKING DALAM PERMAINAN KSATRIA MENYEBRANG KASTIL SOLUSI ALGORITMA BACKTRACKING DALAM PERMAINAN KSATRIA MENYEBRANG KASTIL Yosef Sukianto Nim 13506035 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika, Institut Teknologi Bandung,

Lebih terperinci

Algoritma Backtracking Pada Permainan Peg Solitaire

Algoritma Backtracking Pada Permainan Peg Solitaire Algoritma Backtracking Pada Permainan Peg Solitaire Gilbran Imami, 13509072 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,

Lebih terperinci

Perbandingan Algoritma Greedy & Bactracking Dalam Penyelesaian Permainan 2048

Perbandingan Algoritma Greedy & Bactracking Dalam Penyelesaian Permainan 2048 Perbandingan Algoritma Greedy & Bactracking Dalam Penyelesaian Permainan 2048 Stephen (13512025) 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.

Lebih terperinci

KATA PENGANTAR. Maha Esa, yang telah berkenan memelihara dan membimbing penulis, sehingga

KATA PENGANTAR. Maha Esa, yang telah berkenan memelihara dan membimbing penulis, sehingga KATA PENGANTAR Pertama-tama penulis mengucapkan puji syukur ke hadirat Tuhan Yang Maha Esa, yang telah berkenan memelihara dan membimbing penulis, sehingga penulis dapat menyelesaikan pengerjaan dan penyusunan

Lebih terperinci

Breadth/Depth First Search. Bahan Kuliah IF2211 Strategi Algoritmik Oleh: Rinaldi Munir Update: Masayu Leylia Khodra 22 September 2013

Breadth/Depth First Search. Bahan Kuliah IF2211 Strategi Algoritmik Oleh: Rinaldi Munir Update: Masayu Leylia Khodra 22 September 2013 Breadth/Depth First Search (BFS/DFS) Bahan Kuliah IF2211 Strategi Algoritmik Oleh: Rinaldi Munir Update: Masayu Leylia Khodra 22 September 2013 1 Traversal Graf Algoritma traversal graf: mengunjungi simpul

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Algoritma Algoritma adalah teknik penyusunan langkah-langkah penyelesaian masalah dalam bentuk kalimat dengan jumlah kata terbatas tetapi tersusun secara logis dan sitematis

Lebih terperinci

Penerapan Ant Colony Optimization Sebagai Problem Solver Dalam Sliding Puzzle Games

Penerapan Ant Colony Optimization Sebagai Problem Solver Dalam Sliding Puzzle Games Penerapan Ant Colony Optimization Sebagai Problem Solver Dalam Sliding Puzzle Games Erick Alfons Lisangan, Phie Chyan Abstract 1 Sliding puzzle is one of the classical problems in the field of artificial

Lebih terperinci

Bab 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

Bab 1 PENDAHULUAN. 1.1 Latar Belakang Masalah Bab 1 PENDAHULUAN 1.1 Latar Belakang Masalah Teori graf merupakan pokok bahasan yang memiliki banyak terapan sampai saat ini. Graf di gunakan untuk merepresentasikan objek objek diskrit dan hubungan antara

Lebih terperinci

Penyelesaian Permainan Sliding Puzzle 3x3 Menggunakan Algoritma Greedy Dengan Dua Fungsi Heuristik

Penyelesaian Permainan Sliding Puzzle 3x3 Menggunakan Algoritma Greedy Dengan Dua Fungsi Heuristik Penyelesaian Permainan Sliding Puzzle 3x3 Menggunakan Algoritma Greedy Dengan Dua Fungsi Heuristik Akbar Gumbira - 13508106 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

Penyelesaian Sum of Subset Problem dengan Dynamic Programming

Penyelesaian Sum of Subset Problem dengan Dynamic Programming Penyelesaian Sum of Subset Problem dengan Dynamic Programming Devina Ekawati 13513088 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10

Lebih terperinci