BAB II TINJAUAN PUSTAKA. dermaga dimana kapal dapat bertambat untuk bongkar muat barang, kran-kran untuk

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA. dermaga dimana kapal dapat bertambat untuk bongkar muat barang, kran-kran untuk"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1. Umum Secara umum pelabuhan (port) merupakan daerah perairan yang terlindung terhadap gelombang dan arus, yang dilengkapi dengan fasilitas terminal laut meliputi dermaga dimana kapal dapat bertambat untuk bongkar muat barang, kran-kran untuk bongkar muat barang, gudang laut dan tempat-tempat penyimpanan dimana kapal membongkar muatannya, dan gudang gudang dimana barang-barang dapat disimpan dalam waktu yang lebih lama selama menunggu pengiriman ke daerah tujuan atau pengapalan. (Triatmodjo, 2003) Pelabuhan Perikanan Pelabuhan Perikanan sebagai prasarana perikanan yang selanjutnya disebut Pelabuhan Perikanan adalah suatu kawasan kerja yang meliputi areal perairan dan daratan yang dilengkapi dengan sarana yang dipergunakan untuk memberikan pelayanan umum dan jasa, guna memperlancar kapal perikanan, usaha perikanan, dan kegiatan-kegiatan yang berkaitan dengan usaha perikanan. (Ditjen Perikanan Tangkap, 2002). Pada umumnya pelabuhan ikan tidak memerlukan kedalaman air yang besar, karena kapal-kapal motor yang digunakan untuk menangkap ikan tidak besar. Di Indonesia pengusahaan ikan relatif masih sederhana yang dilakukan oleh nelayan nelayan dengan menggunakan perahu kecil. Jenis kapal ikan ini bervariasi, dari yang sederhana berupa jukung sampai kapal motor. Jukung adalah perahu yang dibuat dari kayu dengan lebar sekitar 1 m dan panjang 6-7 m. Perahu ini dapat menggunakan Iayar

2 atau motor tempel, dan bisa langsung mendarat di pantai. Kapal yang lebih besar terbuat dari papan atau fiberglass dengan lebar 2,0-2,5 m dan panjang 8-12 m, digerakkan oleh motor. Kapal Ex-Trawl mempunyai lebar 4,0-5,5 m dan panjang m digerakkan oleh motor. Menurut Bambang Murdiyanto dalam bukunya yang berjudul Pelabuhan Perikanan, mengklasifikasikan pelabuhan perikanan menjadi 4 kelompok. Kriteria pengklasifikasian pelabuhan perikanan tersebut berdasarkan berat kapal, daya tampung, jangkauan operasional, jumlah tangkapan ikan, jangkauan pemasaran, dan lahan. Secara lengkapnya klasifikasi pelabuhan perikanan dapat dilihat pada tabel berikut : Tabel 2.1. Kelas Pelabuhan Perikanan Sedangkan menurut SK Kepala Dinas Perikanan dan Kelautan Propinsi Jateng Nomor 523/074/SK/II/2005, maka TPI (Tempat Pelelangan Ikan) dibagi menjadi empat kelas berdasarkan Nilai Produksi (Raman) per tahun TPI tersebut. Adapun Pembagiannya dapat diuraikan sebagai berikut : 1. TPI Kelas I : TPI dengan Nilai Produksi (Raman) lebih dari : Rp 50 Milyard.

3 2. TPI Kelas II : TPI dengan Nilai Produksi (Raman) antara : Rp 25 s/d 50 Milyard. 3. TPI Kelas III : TPI dengan Nilai Produksi (Raman) antara : Rp 10 s/d 25 Milyard. 4. TPI Kelas IV : TPI dengan Nilai Produksi (Raman) kurang dari : Rp 10 Milyard. Beberapa contoh pelabuhan perikanan yang ada di Indonesia, antara lain sebagai berikut : Pelabuhan Perikanan Samudera Belawan. Pelabuhan Perikanan Samudera Bitung. Pelabuhan Perikanan Samudera Cilacap. Pelabuhan Perikanan Nusantara Pekalongan. Pelabuhan Perikanan Pantai Banjarmasin Fungsi Pelabuhan Perikanan Pelabuhan perikanan mempunyai fungsi yang bersifat umum (general function) dan fungsi khusus (special function). Fungsi umum merupakan fungsi yang terdapat pula pada pelabuhan lain (pelabuhan umum atau pelabuhan niaga). yang dimaksud fungsi khusus adalah fungsi yang berkaitan dengan masalah perikanan yang memerlukan pelayanan khusus pula yang belum terlayani oleh adanya berbagai fasilitas fungsi umum (Bambang Murdiyanto, 2004). Adapun fungsi khusus diantaranya : 1. Tempat pendaratan ikan hasil tangkapan. 2. Tempat pelelengan ikan. 3. Tempat memperlancar kegiatan-kegiatan kapal perikanan. 4. Pusat pemasaran dan distribusi ikan hasil tangkapan. 5. Tempat pengembangan masyarakat nelayan. 6. Pusat pembinaan mutu hasil perikanan.

4 Fasilitas Pelabuhan Pelabuhan harus dapat berfungsi dengan baik yaitu dapat melindungi kapal yang berlabuh dan beraktivitas di dalam areal pelabuhan. Agar dapat memenuhi fungsinya pelabuhan perlu dilengkapi dengan berbagai fasilitas baik fasilitas pokok maupun fasilitas fungsional (Bambang Murdiyanto, 2004). 1. Fasilitas Pokok (Basic Facilities) - Fasilitas Perlindungan Berfungsi melindungi kapal dari pengaruh buruk yang diakibatkan perubahan kondisi oceanografis (gelombang, arus, pasang, aliran pasir, erosi, luapan air di muara sungai dan sebagainya). Bentuk fasilitas perlindungan dapat berupa breakwater, groin, tembok laut, atau bangunan maritim lainnya. - Fasilitas Tambat (Mooring Facilities) Fasilitas ini digunakan untuk kapal bertambat atau berlabuh dengan tujuan membongkar muatan, mempersiapkan keberangkatan, memperbaiki kerusakan, beristirahat, dan sebagainya. Macam dan nama bangunan yang termasuk fasilitas ini antara lain adalah : tempat pendaratan (landing places), dermaga (mooring quays, wharf, pier), slipway, bollard, dan sebagainya. - Fasilitas Perairan (Water Side Facilities) Fasilitas Perairan adalah bagian perairan di dalam pelabuhan yang dipergunakan untuk menuver kapal dalam areal pelabuhan dengan aman dan untuk berlabuh atau tambat sementara waktu di kolam pelabuhan (anchor). Macam dan nama yang termasuk fasilitas ini antara lain adalah : alur (kanal) pelayaran, muara pelabuhan, kolam pelabuhan. 2. Fasilitas Fungsional (Functional Facilities)

5 Adalah fasilitas yang meninggikan nilai guna fasilitas pokok dengan memberikan berbagai pelayanan di pelabuhan. fasilitas yang dibangun adalah untuk mendayagunakan pelayanan yang menunjang segala kegiatan kerja di areal pelabuhan sehingga mamfaat dan kegunaan pelabuhan yang optimal dapat dicapai (Bambang Murdiyanto, 2004). Adapun yang termasuk ke dalam fasilitas ini adalah : 1) Fasilitas Transportasi. 2) Fasilitas Navigasi. 3) Fasilitas Daratan. 4) Fasilitas Pemeliharaan. 5) Fasilitas Supply. 6) Fasilitas Penanganan dan Pemrosesan Ikan. 7) Fasilitas komunikasi Perikanan. 8) Fasilitas Kesejahteraan Nelayan. 9) Fasilitas Manajemen Pelabuhan. 10) Fasilitas Kebersihan dan Sanitasi. 11) Fasilitas Penanganan Sisa Minyak 3. Fasilitas Penunjang (Supporting Facilities) Menurut Direktorat Jendral Perikanan (1994), fasilitas penunjang adalah fasilitas yang secara tidak langsung dapat meningkatkan kesejahteraan masyarakat, nelayan dan atau memberikan kemudahan bagi masyarakat umum. Fasilitas penunjang terdiri dari : 1. Fasilitas kesejahteraan nelayan terdiri dari tempat peginapan, kios bahan perbekalan dan alat perikanan, tempat ibadah, balai pertemuan nelayan.

6 2. Fasilitas pengelolaan pelabuhan terdiri dari kantor, pos penjagaan, perumahan karyawan, mess operator. 3. Fasilitas pengelolaan limbah bahan bakar dari kapal dan limbah industri Perencanaan Fasilitas Dasar Yang termasuk fasilitas dasar dalam perencaaan pangkalan pendaratan ikan adalah bangunan-bangunan utama yang harus dimiliki sebagai pendukung pangkalan pendaratan ikan sehinnga layak untuk digunakan sebagai tempat bersandarnya kapal dan menjadi tempat berlindungnya kapal dari bahaya angin dan gelombang Pemecah Gelombang / Breakwater Pemecah gelombang adalah bangunan yang digunakan untuk melindungi daerah perairan pelabuhan dari gangguan gelombang. Bangunan ini memisahkan daerah perairan dari laut bebas, sehingga perairan pelabuhan tidak banyak dipengaruhi oleh gelombang besar di laut. Daerah perairan dihubungkan dengan laut oleh mulut pelabuhan dengan lebar tertentu, dan kapal keluar/masuk pelabuhan melalui celah tersebut. Dengan adanya pemecah gelombang ini daerah pelabuhan menjadi tenang dan kapal bisa melakukan bongkar muat barang dengan mudah. Gambar berikut menunjukkan contoh pemecah gelombang. Gambar 2.1. Contoh Breakwater (Triatmodjo 2003)

7 Pada prinsipnya pemecah gelombang dibuat sedemikian rupa sehingga mulut pelabuhan tidak menghadap ke arah gelombang dan arus dominan yang terjadi di lokasi pelabuhan. Gelombang yang datang dengan membentuk sudut dengan garis pantai dapat menimbulkan arus sepanjang pantai. Kecepatan arus yang besar akan bisa mengangkut sedimen dasar dan membawanya searah dengan arus tersebut. Mulut pelabuhan yang menghadap arus tersebut akan memungkinkan masuknya sedimen ke dalam perairan pelabuhan yang berakibat terjadinya pendangkalan. Ada beberapa macam pemecah gelombang ditinjau dari bentuk dan bahan bangunan yang digunakan. Menurut bentuknya pemecah gelombang dapat dibedakan menjadi : 1. Pemecah gelombang sisi miring 2. Pemecah gelombang sisi tegak 3. Pemecah gelombang campuran Pemecah gelombang dapat dari tumpukan batu, blok beton, beton massa, turap dan sebagainya. Tabel 2.2. Keuntungan dan Kerugian Ketiga Tipe Breakwater

8 Mengingat tujuan utama pemecah gelombang adalah untuk melindungi kolam pelabuhan terhadap gangguan gelombang, maka pemecah gelombang harus mampu menahan gaya-gaya gelombang yang bekerja. Pada pemecah gelombang sisi miring, butir-butir batu atau blok beton harus diperhitungkan sedemikian rupa sehingga tidak runtuh oleh serangan gelombang. Demikian juga, pemecah gelombang dinding tegak harus mampu menahan gaya-gaya pengguling yang disebabkan oleh gaya gelombang dan tekanan hidrostatis. Resultan dari gaya berat sendiri dan gaya-gaya gelombang harus berada pada sepertiga lebar dasar bagian tengah, selain itu tanah dasar juga harus mampu mendukung beban bangunan diatasnya.

9 Pemecah Gelombang Sisi Miring Pemecah gelombang sisi miring mempunyai sifat fleksibel. Kerusakan yang terjadi karena serangan gelombang tidak secara tiba-tiba (tidak fatal). Meskipun beberapa butir batu longsor, tetapi bangunan masih bisa berfungsi. Kerusakan yang terjadi mudah diperbaiki dengan menambah batu pelindung pada bagian yang longsor. Gambar 2.2 Kerusakan dan Perbaikan Pemecah Gelombang Sisi Miring. (Triatmodjo 2003) Pemecah gelombang sisi miring biasanya dibuat dari tumpukan batu alam yang dilindungi oleh lapis pelindung berupa batu besar atau beton dengan bentuk tertentu. Pemecah gelombang tipe ini banyak digunakan di Indonesia, mengingat dasar laut di pantai Indonesia kebanyakan dari tanah lunak. Selain itu batu alam sebagai bahan utama banyak tersedia. Bangunan pemecah gelombang sisi miring disusun menggunakan butir batu dalam beberapa lapis, dengan lapis terluar (lapis pelindung) terdiri dari batu dengan ukuran besar dan semakin ke dalam ukurannya semakin kecil. Stabilitas batu lapis pelindung tergantung pada berat dan bentuk butiran serta kemiringan sisi bangunan. Bentuk butiran akan mempengaruhi kaitan antara butir batu yang ditumpuk. Butir batu dengan sisi tajam akan mengait (mengunci) satu sama lain dengan lebih baik sehingga lebih stabil. Batu-batu pada lapis pelindung dapat diatur perletakkannya untuk mendapat kaitan yang cukup baik. Semakin besar kemiringan pemecah gelombang memerlukan batu semakin berat. Berat tiap butir batu dapat mencapai beberapa ton. Kadang-kadang sulit mendapatkan batu seberat itu dalam jumlah yang sangat besar. Untuk mengatasinya

10 maka dibuat batu buatan dari beton dengan bentuk tertentu. Batu buatan ini bisa berbentuk sederhana (kubus) atau bentuk khusus lainnya. Gambar 2.3 Pemecah Gelombang Sisi Miring Dengan Lapis Pelindung Tetrapod. (Triatmodjo 2003) Gambar 2.4 Pemecah Gelombang Sisi Miring Dengan Lapis Kubus Beton. (Triatmodjo 2003) Bebarapa bentuk batu buatan ini jenisnya adalah : 1. Tetrapod : Mempunyai empat kaki yang berbentuk kerucut terpancung. 2. Tribar : terdiri dari 3 kaki yang saling dihubungkan dengan lengan 3. Quadripod : mempunyai bentuk mirip tetrapod tetapi sumbu-sumbu dari ketiga kakinya berada pada bidang datar. 4. Dolos : terdiri dari dua kaki saling menyilang yang dihubungkan dengan lengan.

11 Berikut adalah gambar dari berbagai jenis batu pelindung pemecah gelombang yang biasa digunakan. Gambar 2.5 Gambar Batu Pelindung Pemecah Gelombang. (Triatmodjo 2003) Pemecah Gelombang Sisi Tegak Pada pemecah gelombang sisi tegak energi gelombang dapat dihancurkan melalui runup pada permukaan sisi miring, gesekan dan turbulensi yang disebabkan oleh ketidakteraturan permukaan. Pada pemecah gelombang sisi tegak, yang biasa diletakkan di laut dengan kedalaman lebih besar dari tinggi gelombang, akan memantulkan gelombang tersebut.

12 Superposisi antara gelombang datang dan gelombang pantul akan menyebabkan terjadinya gelombang stasioner yang disebut dengan klapotis. Tinggi gelombang klapotis ini bisa mencapai 2 kali tinggi gelombang datang. Oleh karena itu tinggi pemecah gelombang di atas muka air pasang tertinggi tidak boleh kurang dari 1 ⅓ sampai 1 ½ kali tinggi gelombang maksimum. Dan kedalaman di bawah muka air terendah ke dasar bangunan tidak kurang dari 1 ¼ sampai 1 ½ kali atau lebih baik sekitar 2 kali tinggi gelombang. Gambar 2.6 Gambar Pemecah Gelombang Sisi Tegak Dari Beton. (Triatmodjo 2003) Gambar 2.7 Gambar Pemecah Gelombang Dari Kaison. (Triatmodjo 2003) Kedalaman maksimum dimana pemecah gelombang sisi tegak masih bisa dibangun adalah antara 15 dan 20 m. Apabila lebih besar dari kedalaman tersebut maka

13 pemecah gelombang menjadi sangat lebar, hal ini mengingat lebar bangunan tidak boleh kurang dari ¾ tingginya. Di laut dengan kedalaman lebih besar maka pemecah gelombang sisi tegak dibangun di atas pemecah gelombang tumpukan batu (pemecah gelombang campuran) pemecah gelombang ini dapat dibangun di laut sampai kedalaman 40 m. Pemecah gelombang sisi tegak dibuat apabila tanah dasar mempunyai daya dukung besar dan tahan terhadap erosi. Apabila tanah dasar mempunyai lapis atas berupa lumpur atau pasir halus, maka lapis tersebut harus dikeruk dahulu. Pada tanah dasar dengan daya dukung kecil, dibuat dasar dari tumpukan batu untuk menyebarkan beban pada luasan yang lebih besar. Dasar tumpukan batu ini dibuat agak lebar sehingga kaki bangunan dapat lebih aman terhadap gerusan. Supaya benar-benar aman terhadap gerusan, panjang dasar dari bangunan adalah ¼ kali panjang gelombang terbesar. Kegagalan yang sering terjadi bukan karena kelemahan konstruksinya, tetapi terjadi karena erosi pada kaki bangunan, tekanan yang terlalu besar dan tergesernya tanah fondasi. Pemecah gelombang sisi tegak bisa dibuat dari blok-blok beton massa yang disusun secara vertikal, kaison beton, turap beton atau baja yang dipancang dan sebagainya. Suatu blok beton mempunyai berat 10 sampai 50 ton. Pemecah gelombang sisi tegak juga bisa dibuat dari kaison. Kaison adalah konstruksi yang berupa kotak dari beton bertulang yang dapat terapung di laut. Pengangkutan ke loaksi dilakukan dengan pengapungan dan menariknya. Setelah sampai di tempat yang dikehendaki kotak ini diturunkan ke dasar laut dan kemudian diisi dengan beton atau batu. Pemecah gelombang turap bisa berupa satu jalur turap yang diperkuat dengan tiang-tiang pancang dan blok beton diatasnya. Atau berupa dua jalur turap yang dipancang vertikal dan satu dengan yang lain dihubungkan dengan batang-batang angker dan kemudian diisi dengan pasir dan batu.

14 Gambar 2.8 Penempatan Kaison Sebagai Pemecah Gelombang. (Triatmodjo 2003) Pemecah Gelombang Campuran Pemecah gelombang campuran terdiri dari pemecah gelombang sisi tegak yang dibuat di atas pemecah gelombang tumpukan batu. Bangunan ini dibuat apabila kedalaman air sangat besar dan tanah dasar tidak mampu menahan beban dari pemecah gelombang sisi tegak. Pada waktu air surut bangunan berfungsi sebagai pemecah gelombang sisi miring, sedang pada waktu air pasang bangunan berfungsi sebagai pemecah gelombang sisi tegak. Secara umum pemecah gelombang campuran harus mampu menahan serangan gelombang pecah. Tipe campuran memerlukan pertimbangan lebih lanjut mengenai perbandingan tinggi sisi tegak dengan tumpukan batunya. Pada dasarnya ada 3 macam, yaitu : 1. Tumpukan batu dibuat sampai setinggi air yang tertinggi, sedang bangunan sisi tegaknya hanya sebagai penutup bagian atas. 2. Tumpukan batu setinggi air terendah sedang bangunan sisi tegak harus menahan air tertinggi (pasang). 3. Tumpukan batu hanya merupakan tambahan pondasi dari bangunan sisi tegak.

15 Gambar 2.9 Pemecah Gelombang Campuran. (Triatmodjo 2003) Bahan Material Breakwater Untuk material yang digunakan tergantung dari tipe bangunan. Seperti halnya bangunan pantai kebanyakan, pemecah gelombang lepas pantai dilihat dari bentuk strukturnya bisa dibedakan menjadi dua tipe yaitu sisi tegak dan sisi miring. Untuk tipe sisi tegak pemecah gelombang bisa dibuat dari material-material seperti pasangan batu, sel turap baja yang didalamnya di isi tanah atau batu, tumpukan buis beton, dinding turap baja atau beton, kaison beton dan lain sebagainya. Berikut contoh gambar bahan material breakwater tegak : Gambar 2.10 Material breakwater tegak. (Triatmodjo 2003)

16 Dari beberapa jenis tersebut, kaison beton merupakan material yang paling umum di jumpai pada konstruksi bangunan pantai sisi tegak. Kaison beton pada pemecah gelombang lepas pantai adalah konstruksi berbentuk kotak dari beton bertulang yang didalamnya diisi pasir atau batu. Pada pemecah gelombang sisi tegak kaison beton diletakkan diatas tumpukan batu yang berfungsi sebagai fondasi. Untuk menanggulangi gerusan pada pondasi maka dibuat perlindungan kaki yang terbuat dari batu atau blok beton. Sementara untuk tipe bangunan sisi miring, pemecah gelombang lepas pantai bisa dibuat dari beberapa lapisan material yang di tumpuk dan di bentuk sedemikian rupa (pada umumnya apabila dilihat potongan melintangnya membentuk trapesium) sehingga terlihat seperti sebuah gundukan besar batu, Dengan lapisan terluar dari material dengan ukuran butiran sangat besar. Gambar 2.11 Material breakwater sisi miring. (Triatmodjo 2003) Dari gambar diatas didapat bahwa konstruksi terdiri dari beberapa lapisan yaitu: 1. Inti(core) pada umumnya terdiri dari agregat galian kasar, tanpa partikel-partikel halus dari debu dan pasir. 2. Lapisan bawah pertama(under layer) disebut juga lapisan penyaring (filter layer) yang melindungi bagian inti(core)terhadap penghanyutan material, biasanya terdiri dari

17 potongan-potongan tunggal batu dengan berat bervariasi dari 500 kg sampai dengan 1 ton. 3. Lapisan pelindung utama (main armor layer) sepertinamanya, merupakan pertahanan utama dari pemecah gelombang terhadap serangan gelombang pada lapisan inilah biasanya batu-batuan ukuran besar dengan berat antara 1-3 ton atau bisa juga menggunakan batu buatan dari beton dengan bentuk khusus dan ukuran yang sangat besar seperti tetrapod, quadripod, dolos, tribar, xbloc accropode dan lain-lain. Secara umum, batu buatan dibuat dari beton tidak bertulang konvensional kecuali beberapa unit dengan banyak lubang yang menggunakan perkuatan serat baja. Untuk unitunit yang lebih kecil, seperti Dolos dengan rasio keliling kecil, berbagai tipe dari beton berkekuatan tinggi dan beton bertulang (tulangan konvensional, prategang, fiber, besi, profil-profil baja) telah dipertimbangkan sebagai solusi untuk meningkatkan kekuatan struktur unit-unit batu buatan ini. Tetapi solusi-solusi ini secara umum kurang hemat biaya, dan jarang digunakan. Berikut ini merupakan contoh material breakwater dari batuan buatan : Gambar 2.12 Material breakwater batuan buatan.

18 Pemilihan dan Cara Perhitungan Breakwater Pemecah gelombang berfungsi untuk melindungi kolam pelabuhan, pantai dan fasilitas pelabuhan dari gangguan gelombang yang dapat mempengaruhi keamanan dan kelancaran aktifitas di pelabuhan. Pemilihan pemecah gelombang ditentukaan dengan melihat hal-hal sebagai berikut : Bahan yang tersedia di sekitar lokasi. Besar gelombang. Pasang surut air laut. Kondisi tanah dasar laut. Peralatan yang dibuat untuk pembuatannya Untuk perencanaan bentuk dan kestabilan bangunan pemecah gelombang, perlu diketahui beberapa hal antara lain sebagai berikut : Tinggi muka air laut akibat adanya pasang surut. Tinggi puncak gelombang dari permukaan air tenang. Perkiraan tinggi dan panjang gelombang. Run up gelombang Berat batuan yang digunakan sebagai konstruksi pemecah gelombang dapat dihitung dengan menggunakan persamaan : WW = Dimana : γγrrrr 3 KK DD (SSSS 1) 3 cot θθ (Bambang Triadmodjo,1996) W Sr γr = Berat batuan pelindung (ton) = Specific gravity = γr /γw = Berat jenis batu (ton/m³)

19 γw H KD θ = Berat jenis air laut (ton/m³) = Tinggi gelombang rencana (m) = Koefisien stabilitas (tergantung jenis lapis pelindung) = Sudut kemiringan sisi pemecah gelombang Rumus diatas hanya berlaku pada keadaan : Gerak gelombang tegak lurus breakwater. Tidak terlalu overlapping Semakin besar kedalaman, besar dan kekuatan gelombang semakin berkurang sehingga semakin bertambah kedalaman ukuran batu yang digunakan semakin kecil. Sedangkan untuk menghitung berat butir batu untuk pelindung kaki breakwater menggunakan rumus : γγ rr xx HH 3 WWWW = NN 3 ss (SS rr 1) 3 (Bambang Triadmodjo,1996) Dimana : Wk = Berat butir batu pelindung kaki (ton) (γ r ) = berat jenis batu (t/m3) H N S = Tinggi gelombang rencana (m) = Angka stabilitas rencana untuk pelindung kaki bangunan Dalam menentukan elevasi puncak breakwater digunakan rumus : Elv = HWL + Ru + 0,5 (Bambang Triadmodjo,1996) Dimana : HWL = Muka air tinggi Ru = Run up (tinggi rambat gelombang saat membentur break-water)

20 0,5 = Tinggi kebebasan aman dari run up maksimal. Penentuan lebar puncak breakwater dihitung dengan rumus : BB = nnnn ww γγrr 1/3 Dimana : (Bambang Triadmodjo,1996) B = lebar puncak breakwater n = Jumlah butir batu (min = 3) KΔ W γ r = Koefisien lapis pelindung = Berat butir pelindung = berat jenis batu pelindung Jumlah butir batu tiap satu luasan dihitung : NN = AA nn KK 1 PP 2/3 γr 100 W (Bambang Triadmodjo,1996) Dimana : N A = Jumlah butir batu untuk satu satuan luas permukaan A = Luas Permukaan P = Porositas dari lapisan Pelindung (%) Layout Breakwater Bentuk layout dan posisi bangunan breakwater ini ditentukan oleh beberapa faktor, diantaranya : Tinggi, arah dan frekuensi dari gelombang yang datang akan mempengaruhi letak dari mulut pelabuhan.

21 Kemudahan bagi kapal untuk memasuki atau mendekati posisi mulut pelabuhan. Lebar dan posisi mulut pelabuhan mempengaruhi efek defraksi (perubahan tinggi gelombang akibat adanya bangunan penghalang) yang terjadi. Mulut pelabuhan yang terlalu lebar menyebabkan gelombang dari luar tidak berkurang banyak di dalam pelabuhan. Oleh sebab itu, lebar mulut diusahakan sesuai kebutuhan alur saja sebab besaran faktor defraksi tergantung pada lebar mulut ini. Kebutuhan ruang manuver di dalam kolam pelabuhan dan keseluruhan ukuran kolam di dalam pelabuhan menentukan panjang kaki breakwater. Sedangkan luas areal di dalamnya ditentukan berdasar posisi alur dan kolam. Bangunan breakwater berdiri sejarak minimal 10 m dihitung dari posisi ujung bawahnya terhadap sisi terluar alur. Posisi breaker zone dan daerah sebaran sedimentasi juga akan menentukan panjang kaki breakwater. Ujung terluar kaki breakwater sebaiknya melewati daerah breaker zone. Breaker zone adalah garis contour batas kedalaman posisi pecahnya gelombang di perairan dangkal. Gambar 2.13 Contoh Gambar Layout Breakwater Terhadap Gelombang Dominan Dari Arah Barat Laut dan Timur Laut

22 . Gambar 2.14 Sirkulasi Pergerakan di Dalam Breakwater Gambar 2.15 Contoh Layout Panjang Kaki Breakwater Alur Pelayaran Alur pelayaran adalah bagian perairan pelabuhan yang berfungsi sebagai jalan keluar masuk kapal-kapal yang berlabuh dan menyandarkan kapalnya di Pelabuhan Perikanan. Alur Pelayaran dan kolam pelabuhan harus cukup tenang terhadap pengaruh gelombang dan arus. Perencanaan alur pelayaran dan kolam pelabuhan ditentukan oleh kapal terbesar yang akan masuk ke pelabuhan dan kondisi meteorologi dan oceanografi. Adapun faktor-faktor yang mempengaruhi pemilihan karakteristik alur masuk ke pelabuhan adalah sebagai berikut : 1. Keadaan trafik kapal. 2. Keadaan geografi dan meteorologi di daerah alur (bathimetri laut).

23 3. Kondisi pasang surut, arus dan gelombang. 4. Karakteristik maksimum kapal-kapal yang menggunakan pelabuhan Kedalaman Alur Untuk mendapatkan kondisi kedalaman alur pelayaran dan kedalaman kolam pelabuhan yang ideal, digunakan dasar perhitungan dengan formula : H = d + s + c (Bambang Triadmodjo,1996) Dimana : H = Kedalaman alur pelayaran (m) d = Draft kapal (direncanakan d = 1,25 m) s = squat atau Gerak vertikal kapal karena gelombang (toleransi max 0,5 m) c = Clearance atau Ruang kebebasan bersih minimum 0,5 m Gambar 2.16 Kedalaman Alur Pelayaran Lebar Alur Pelayaran Lebar alur pelayaran dapat digunakan untuk satu kapal atau dua kapan (one way traffic atau two way traffic), dihitung dengan formula sebagai berikut : - Alur dengan 1 kapal : W = 2BC + ML - Alur dengan 2 kapal : W = 2(BC + ML) + SC

24 Dimana : W BC ML SC : Lebar alur pelayaran : Bank Clearence (ruang aman sisi kapal) = 1,5 B : Manuevering Lane (1 ½ x lebar kapal) = 1,2 s/d 1,5)B : Ship Clearence (ruang aman antar kapal) minimal 0,5 m Gambar 2.17 Lebar Alur Pelayaran Untuk 1 Arah. Gambar 2.18 Lebar Alur Pelayaran Untuk 2 Arah Kolam Pelabuhan Kolam Pelabuhan adalah lokasi perairan tempat kapal berlabuh, mengisi perbekalan, atau melakukan aktivitas bongkar muat. Kondisi Kolam pelabuhan yang tenang dan luas, menjamin efisiensi operasi pelabuhan. Kenyamanan dan ketenangan kolam pelabuhan dapat dipenuhi apabila memenuhi syarat :

25 1. Kolam pelabuhan cukup luas dan dapat menampung semua kapal yang dating dan masih tersedia cukup ruang bebas, agar kapal yang sedang melakukan manuver dapat bergerak bebas tanpa mengganggu aktivitas kapal yang sedang membongkar ikan di dermaga. 2. Kolam pelabuhan mempunyai kedalaman yang cukup, agar arus keluar masuknya kapal-kapal tidak terpengaruh pada pasang surut air laut. 3. Tersedianya bangunan peredam gelombang, sehingga kolam pelabuhan sebagai kolam perlindungan dari pengaruh gelombang. 4. Memiliki radius putar (Turning basin) bagi kapal-kapal yang melakukan gerak putar berganti haluan, tanpa mengganggu aktivitas kapal-kapal lain yang ada di kolam pelabuhan. Adapun Rumus untuk mencari Luas Kolam Pelabuhan adalah : A = R + ( 3n x L x B ) (Dinas Perikanan dan Kelautan Propinsi Jawa Tengah,2003) Dimana : A R = Luas Kolam pelabuhan (m2) = Radius Putar (m2) 2 x LOA (Length Over All) atau 2 x Panjang Kapal n L B = Jumlah kapal maksimum yang berlabuh tiap hari = Panjang Kapal (m) = Lebar Kapal (m) 2.4. Analisis Data Dalam analisis data pengembangan pelabuhan ada beberapa faktor yang perlu dipertimbangkan sehubungan dengan kondisi lapangan yang ada, antara lain : Topografi dan situasi

26 Angin Pasang surut Gelombang Kondisi tanah Karakteristik kapal Jumlah produksi ikan hasil tangkapan. Faktor-faktor tersebut harus sudah diperhitungkan dengan tepat untuk menghasilkan perencanaan pelabuhan yang benar-benar baik Topografi dan Situasi Keadaan topografi daratan dan bawah laut harus memungkinkan untuk membangun suatu pelabuhan dan kemungkinan untuk pengembangan di masa mendatang. Daerah daratan harus cukup luas untuk membangun suatu fasilitas pelabuhan seperti dermaga, jalan, gudang dan juga daerah industri. Apabila daerah daratan sempit maka pantai harus cukup luas dan dangkal untuk memungkinkan perluasan daratan dengan melakukan penimbunan pantai tersebut. Daerah yang akan digunakan untuk perairan pelabuhan harus mempunyai kedalaman yang cukup sehingga kapal-kapal bisa masuk ke pelabuhan. Selain keadaan tersebut, kondisi geologi juga perlu diteliti mengenai sulit tidaknya melakukan pengerukan daerah perairan dan kemungkinan menggunakan hasil pengerukan tersebut untuk menimbun tempat lain.

27 Angin Posisi bumi terhadap matahari selalu berubah sepanjang tahun, maka pada beberapa bagian bumi timbul perbedaan temperatur udara. Hal ini menjadikan perbedaan tekanan udara di bagian-bagian tersebut. Akibat adanya perbedaan tekanan udara inilah terjadi gerakan udara yaitu dari tekanan tinggi menuju ke tekanan rendah, gerakan udara ini yang kita sebut angin. Angin juga dapat didefinisikan sebagai sirkulasi udara yang kurang lebih sejajar dengan permukaan bumi (Triatmodjo, 1999). Angin sangat berpengaruh dalam perencanaan pelabuhan karena angin : Mengendalikan kapal pada gerbang. Memberikan gaya horisontal pada kapal dan bangunan pelabuhan. Mengakibatkan terjadinya gelombang laut yang menimbulkan gaya yang bekerja pada bangunan pelabuhan. Mempengaruhi kecepatan arus, dimana kecepatan arus yang rendah dapat menimbulkan sedimentasi. Angin merupakan vektor, jadi dapat dinyatakan menurut besar dan arah. Arah angin dapat diuraikan ke dalam tiga sumbu : x, y, dan z, yang saling tegak lurus. Gerakan kearahbarat (-x); kearah timur (+x); kearah utara (+y); kearah selatan (-y); kearah atas (+z); dankearah bawah (-z). Y X Z Gambar 2.19 Sumbu Arah Angin.

28 P Pada gambar 2.27, angin terjadi jika antara 2 tempat mempunyai tekanan udara yang berbeda yang menyababkan adanya gaya horizontal yang kemudian mendorong massa udara. Timbulnya perbedaan tekanan udara di antara dua tempat dapat disebabkan oleh adanya perbedaan suhu atau karena adanya tekanan negatif yang disebabkan oleh gerakan udara sendiri. Data angin digunakan untuk menentukan arah gelombang dan tinggi gelombang secara empiris. Data yang diperlukan adalah data arah dan kecepatan angin. Beberapa koreksi terhadap data angin yang harus dilakukan sebelum melakukan peramalan gelombang antara lain : 1. Elevasi Elevasi pencatat angin untuk perhitungan adalah elevasi 10 m dpl. Untuk elevasi yang tidak pada ketinggian 10 m dikoreksi dengan rumus sebagai berikut : U (10) = U (z) 10 ZZ Dimana : 1/7 U (10) U (Z) = kecepatan pada ketinggian 10 dpl = kecepatan pada ketinggian Z m dpl 2. Konversi Kecepatan Angin Data angin diperoleh dari pencatatan di permukaan laut dengan menggunakan kapal yang sedang berlayar atau pengukuran di darat yang biasanya di bandara. Pengukuran data angin di permukaan laut adalah yang paling sesuai dengan peramalan gelombang. Data angin dari pengukuran dengan kapal perlu dikoreksi dengan menggunakan persamaan berikut ini : 7/9 U = 2,16xU s Dimana : Us = kecepatan angin yang diukur oleh kapal (knot)

29 U = kecepatan angin terkoreksi (knot) Hubungan antara angin di atas laut dan angin di atas daratan terdekat diberikan oleh RL = UW / UL seperti gambar di bawah ini : Gambar 2.20 Hubungan Antara Kecepatan Angin di Darat dan di Laut. 3. Tegangan Angin Kecepatan angin harus dikonversikan menjadi faktor tegangan angin (UA), factor tegangan angin berdasarkan kecepatan angin di laut (UW), yang telah dikoreksi terhadap data kecepatan angin di darat (UL). Rumus faktor tegangan angin adalah sebagai berikut : U A = 0,71 x U 1,23 w Pasang Surut Pasang surut adalah fluktuasi muka air laut karena adanya gaya tarik benda-benda langit, terutama matahari dan bulan terhadap massa air laut di bumi. Elevasi muka air tertinggi (pasang) dan muka air terendah (surut) sangat penting untuk perencanaan bangunan pantai. (Triatmodjo,1999). Pasang surut laut merupakan hasil dari gaya tarik gravitasi dan efek sentrifugal. Efek sentrifugal adalah dorongan ke arah luar pusat rotasi. Gravitasi bervariasi secara langsung dengan massa tetapi berbanding terbalik terhadap jarak. Meskipun ukuran bulan

30 lebih kecil dari matahari, gaya tarik gravitasi bulan dua kali lebih besar daripada gaya tarik matahari dalam membangkitkan pasang surut laut karena jarak bulan lebih dekat daripada jarak matahari ke bumi. Gaya tarik gravitasi menarik air laut ke arah bulan dan matahari dan menghasilkan dua tonjolan (bulge) pasang surut gravitasional di laut. Lintang dari tonjolan pasang surut ditentukan oleh deklinasi, sudut antara sumbu rotasi bumi dan bidang orbital bulan dan matahari. Data pasang surut didapatkan dari pengukuran selama minimal 15 hari. Dari data tersebut dibuat grafik sehingga didapat HHWL (Highest High Water Level), MHWL (Mean High Water Level), LLWL (Lowest Low Water Level), MLWL (Mean Low Water Level) dan MSL (Mean Sea Level). Dalam pengamatan selama 15 hari tersebut telah tercakup satu siklus pasang surut yang meliputi pasang purnama dan perbani. Pengamatan yang lebih lama akan memberikan data yang lebih lengkap Arus Laut Arus air laut adalah pergerakan massa air secara vertikal dan horizontal sehingga menuju keseimbangannya, atau gerakan air yang sangat luas yang terjadi di seluruh lautan dunia. Arus juga merupakan gerakan mengalir suatu massa air yang dikarenakan tiupan angin atau perbedaan densitas atau pergerakan gelombang panjang. Pergerakan arus dipengaruhi oleh beberapa hal antara lain arah angin, perbedaan tekanan air, perbedaan densitas air, gaya coriolis dan arus ekman, topografi dasar laut, arus permukaan, upwellng, downwelling (Hutabarat dan Evans, 1986).

31 Gambar Contoh Data Arus Laut Per Bulan Gelombang Secara umum dapat dikatakan bahwa gelombang laut ditimbulkan karena angin, meskipun gelombang dapat pula disebabkan oleh macam-macam seperti gempa di dasar laut, tsunami, gerakan kapal, pasang surut dan sebagainya. Gelombang yang sangat sering terjadi di laut dan yang cukup penting adalah gelombang yang dibangkitkan oleh angin. Selain itu ada juga gelombang pasang surut, gelombang tsunami, dan lain-lain. Pada umumnya bentuk gelombang sangat kompleks dan sulit digambarkan secara matematis karena tidak linier, tiga dimensi, dan bentuknya yang acak. Untuk dapat menggambarkan bentuk gelombang secara sederhana, ada beberapa teori sederhana yang merupakan pendekatan dari alam. Teori yang paling sederhana adalah teori gelombang linier. Menurut teori gelombang linier, gelombang berdasarkan kedalaman relatifnya dibagi menjadi tiga, yaitu deep water, transitional water, dan shallow water. Klasifikasi dari gelombang tersebut ditunjukkan pada tabel berikut :

32 Tabel 2.3. Klasifikasi Gelombang Menurut Teori Gelombang Linear Gambar Gerak Orbit Partikel Air di Laut Dangkal, Transisi dan Dalam Gelombang dapat terjadi karena angin, pasang surut, gangguan buatan seperti gerakan kapal dan gempa bumi. Pengaruh gelombang terhadap perencanaan pelabuhan antara lain : Besar kecilnya gelombang sangat menentukan dimensi dan kedalaman bangunan pemecah gelombang. Gelombang menimbulkan gaya tambahan yang harus diterima oleh kapal dan bangunan dermaga. Besarnya gelombang laut tergantung dari beberapa faktor, yaitu : Kecepatan angin. Lamanya angin bertiup. Kedalaman laut dan luasnya perairan.

33 Pada perencanaan pelabuhan penumpang dan barang diusahakan tinggi gelombang serendah mungkin, dengan pembuatan pemecah gelombang maka akan terjadi defraksi (pembelokan arah dan perubahan karakteristik) gelombang. Gelombang merupakan faktor utama dalam penentuan tata letak (lay out) pelabuhan, alur pelayaran dan perencanaan bangunan pantai (Bambang Triatmodjo, 1996). Oleh karena itu, pengetahuan tentang gelombang harus dipahami dengan baik. Menurut Bambang Triatmodjo (1996), gelombang di laut menurut gaya pembangkitnya dapat dibedakan antara lain sebagai berikut : Gelombang angin. Gelombang pasang surut. Gelombang tsunami. Gelombang karena pergerakan kapal Untuk perencanaan bangunan pantai, yang paling penting dan berpengaruh adalah gelombang angin dan gelombang pasang surut Fetch Fetch adalah panjang daerah dimana angin berhembus dengan kecepatan dan arah yang konstan dalam membangkitkan gelombang laut. Di dalam peninjauan pembangkitan gelombang di laut, fetch dibatasi oleh daratan yang mengelilingi lokasi yang ditinjau. Di daerah pembangkitan gelombang, gelombang tidak hanya dibangkitkan dalam arah yang sama dengan arah angin, tetapi juga dalam berbagai sudut terhadap arah angin. Cara menghitung fetch efektif adalah sebagai berikut (Triatmodjo,1999): Dimana : F eff = ƩXXXXXXXXXX Ʃcccccccc

34 F eff Xi = Fetch rata rata efektif = Panjang segmen fetch yang diukur dari titik observasi gelombang ke ujung akhir fetch. α = Deviasi pada kedua sisi dari arah angin, dengan menggunakan pertambahan 60 sampai sudut sebesar 420 pada kedua sisi dari arah angin Kondisi Tanah Kondisi tanah ini sangat penting, terutama diperlukan dalam penentuan jenis pondasi yang digunakan dan perhitungan dimensinya berdasarkan elevasi dan kontur tanah di lokasi perencanaan bangunan Karakteristik Kapal Jenis dan dimensi kapal yang akan masuk ke pelabuhan berhubungan langsung pada perencanaan pelabuhan seperti panjang dermaga, besarnya alur pelayaran dan gayagaya yang bekerja pada kapal. Beberapa istilah dimensi yang dipergunakan dalam perencanaan pelabuhan, antara lain : Displacement Tonnage (DPL)/ Ukuran Isi Tolak, yaitu volume air yang dipindahkan oleh kapal dan sama dengan berat kapal. Deadweight Tonnage (DWT)/ Bobot mati, yaitu berat total muatan dimana kapal dapat mengangkut dalam keadaan pelayaran optimal (draf maksimum) Gross Tons (GT)/ Ukuran Isi Kotor, yaitu volume keseluruhan ruangan kapal (untuk kapal ikan) 1 GRT = 2,83 m3. Netto Register Ton (NRT)/ Ukuran Isi Bersih, yaitu ruangan yang disediakan untuk muatan dan penumpang, besarnya sama dengan GRT dikurangi dengan ruangan-

35 ruangan yang disediakan untuk nahkoda dan anak buah kapal, ruang mesin, gang, kamar mandi, dapur dan ruang peta. Draft (sarat) yaitu bagian kapal yang terendam air pada keadaan muatan maksimum. Length Overall (Loa)/ Panjang Total, yaitu panjang kapal dihitung dari ujung depan(haluan) ampai ke ujung belakang (buritan). Length Between Perpendiculars (Lpp)/ Panjang Garis Air, yaitu panjang antara kedua garis air pada beban yang direncanakan Lpp = 0,846 Loa 1,0193 (untuk kapal barang) Lpp = 0,852 Loa 1,0201 (untuk kapal tanker) Gambar Dimensi Kapal Selain dimensi dan karakteristik kapal, hal lain yang penting juga adalah jumlah kapal yang bersandar di dermaga. Jumlah kapal yang bersandar sangat berguna untuk merencanakan panjang dermaga, luas kolam pelabuhan dan besarnya alur Jumlah Produksi Ikan Hasil Tangkapan Dengan bertambahnya kapal penangkap ikan sehingga produksi ikan hasil tangkapan meningkat, hal ini berpengaruh pada perencanaan dermaga. Semakin banyak ikan yang ditangkap maka semakin banyak kapal ikan yang berlabuh di dermaga dan semakin besar kapal yang berlabuh.

BAB II STUDI PUSTAKA 2.1. TINJAUAN UMUM

BAB II STUDI PUSTAKA 2.1. TINJAUAN UMUM 6 BAB II STUDI PUSTAKA 2.1. TINJAUAN UMUM Pada bab ini dibahas mengenai gambaran perencanaan suatu pekerjaan konstruksi yang dibutuhkan dasar-dasar perencanaan agar dapat diketahui spesifikasi yang menjadi

Lebih terperinci

BAB II KAJIAN PUSTAKA. pelabuhan, fasilitas pelabuhan atau untuk menangkap pasir. buatan). Pemecah gelombang ini mempunyai beberapa keuntungan,

BAB II KAJIAN PUSTAKA. pelabuhan, fasilitas pelabuhan atau untuk menangkap pasir. buatan). Pemecah gelombang ini mempunyai beberapa keuntungan, BAB II KAJIAN PUSTAKA 2.1 Tinjauan Umum Bangunan tanggul pemecah gelombang secara umum dapat diartikan suatu bangunan yang bertujuan melindungi pantai, kolam pelabuhan, fasilitas pelabuhan atau untuk menangkap

Lebih terperinci

BAB III PERENCANAAN PERAIRAN PELABUHAN

BAB III PERENCANAAN PERAIRAN PELABUHAN BAB III PERENCANAAN PERAIRAN PELABUHAN III.1 ALUR PELABUHAN Alur pelayaran digunakan untuk mengarahkan kapal yang akan masuk ke dalam kolam pelabuhan. Alur pelayaran dan kolam pelabuhan harus cukup tenang

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA 6 BAB II 2.1 Tinjauan Umum Pada bab ini dibahas mengenai gambaran perencanaan dan perhitungan yang akan dipakai pada perencanaan pelabuhan ikan di Kendal. Pada perencanaan tersebut digunakan beberapa metode

Lebih terperinci

BAB V RENCANA PENANGANAN

BAB V RENCANA PENANGANAN BAB V RENCANA PENANGANAN 5.. UMUM Strategi pengelolaan muara sungai ditentukan berdasarkan beberapa pertimbangan, diantaranya adalah pemanfaatan muara sungai, biaya pekerjaan, dampak bangunan terhadap

Lebih terperinci

DAFTAR SIMBOL / NOTASI

DAFTAR SIMBOL / NOTASI DAFTAR SIMBOL / NOTASI A : Luas atau dipakai sebagai koefisien, dapat ditempatkan pada garis bawah. ( m ; cm ; inci, dsb) B : Ukuran alas lateral terkecil ( adakalanya dinyatakan sebagai 2B ). ( m ; cm

Lebih terperinci

Perencanaan Bangunan Pemecah Gelombang di Teluk Sumbreng, Kabupaten Trenggalek

Perencanaan Bangunan Pemecah Gelombang di Teluk Sumbreng, Kabupaten Trenggalek JURNAL TEKNIK ITS Vol. 6, No. 2, (2017) ISSN: 2337-3539 (2301-9271 Print) D-280 Perencanaan Bangunan Pemecah Gelombang di Teluk Sumbreng, Kabupaten Trenggalek Dzakia Amalia Karima dan Bambang Sarwono Jurusan

Lebih terperinci

TIPE DERMAGA. Dari bentuk bangunannya, dermaga dibagi menjadi dua, yaitu

TIPE DERMAGA. Dari bentuk bangunannya, dermaga dibagi menjadi dua, yaitu DERMAGA Peranan Demaga sangat penting, karena harus dapat memenuhi semua aktifitas-aktifitas distribusi fisik di Pelabuhan, antara lain : 1. menaik turunkan penumpang dengan lancar, 2. mengangkut dan membongkar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Umum Pelabuhan Perikanan Pelabuhan Perikanan adalah sebagai tempat pelayanan umum bagi masyarakat nelayan dan usaha perikanan, sebagai pusat pembinaan dan peningkatan

Lebih terperinci

LEMBAR PENGESAHAN TUGAS AKHIR PERENCANAAN PEMECAH GELOMBANG PELABUHAN PERIKANAN SAMUDERA CILACAP

LEMBAR PENGESAHAN TUGAS AKHIR PERENCANAAN PEMECAH GELOMBANG PELABUHAN PERIKANAN SAMUDERA CILACAP LEMBAR PENGESAHAN TUGAS AKHIR PERENCANAAN PEMECAH GELOMBANG PELABUHAN PERIKANAN SAMUDERA CILACAP Diajukan untuk memenuhi syarat dalam menyelesaikan Pendidikan Tingkat Sarjana (Strata - 1) pada Jurusan

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA 5 BAB II 2.1 TINJAUAN UMUM Dalam suatu perencanaan dibutuhkan pustaka yang dijadikan sebagai dasar perencanaan agar terwujud spesifikasi yang menjadi acuan dalam perhitungan dan pelaksanaan pekerjaan di

Lebih terperinci

BAB IV ANALISIS. 4.1 Data Teknis Data teknis yang diperlukan berupa data angin, data pasang surut, data gelombang dan data tanah.

BAB IV ANALISIS. 4.1 Data Teknis Data teknis yang diperlukan berupa data angin, data pasang surut, data gelombang dan data tanah. BAB IV ANALISIS Perencanaan Pengembangan Pelabuhan Perikanan Samudra Cilacap ini memerlukan berbagai data meliputi : data peta topografi, oceanografi, data frekuensi kunjungan kapal dan data tanah. Data

Lebih terperinci

2. BAB II STUDI PUSTAKA

2. BAB II STUDI PUSTAKA . BAB II STUDI PUSTAKA.1 TINJAUAN UMUM Secara umum pelabuhan (port) merupakan daerah perairan yang terlindung terhadap gelombang dan arus, yang dilengkapi dengan fasilitas terminal laut meliputi dermaga

Lebih terperinci

BAB II STUDI PUSTAKA 2.1 Tinjauan Umum

BAB II STUDI PUSTAKA 2.1 Tinjauan Umum 4 BAB II STUDI PUSTAKA 2.1 Tinjauan Umum PPI Logending Pantai Ayah Kabupaten Kebumen menggunakan bangunan pengaman berupa pemecah gelombang dengan bentuk batuan buatan hexapod (Gambar 2.1). Pemecah gelombang

Lebih terperinci

ABSTRAK. Kata kunci: Pantai Sanur, Dermaga, Marina, Speedboat

ABSTRAK. Kata kunci: Pantai Sanur, Dermaga, Marina, Speedboat ABSTRAK Pantai Sanur selain sebagai tempat pariwisata juga merupakan tempat pelabuhan penyeberangan ke Pulau Nusa Penida. Namun sampai saat ini, Pantai Sanur belum memiliki dermaga yang berakibat mengganggu

Lebih terperinci

ANALISIS STABILITAS BANGUNAN PEMECAH GELOMBANG BATU BRONJONG

ANALISIS STABILITAS BANGUNAN PEMECAH GELOMBANG BATU BRONJONG ANALISIS STABILITAS BANGUNAN PEMECAH GELOMBANG BATU BRONJONG Olga Catherina Pattipawaej 1, Edith Dwi Kurnia 2 1 Jurusan Teknik Sipil, Fakultas Teknik, Universitas Kristen Maranatha Jl. Prof. drg. Suria

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA.. TINJAUAN UMUM Secara umum pelabuhan (port) merupakan daerah perairan yang terlindung terhadap gelombang dan arus, yang dilengkapi dengan fasilitas terminal laut meliputi dermaga

Lebih terperinci

BAB I PENDAHULUAN 1.1 TINJAUAN UMUM

BAB I PENDAHULUAN 1.1 TINJAUAN UMUM BAB I PENDAHULUAN 1.1 TINJAUAN UMUM Indonesia merupakan negara kepulauan dengan potensi luas perairan 3,1 juta km 2, terdiri dari 17.508 pulau dengan panjang garis pantai ± 81.000 km. (Dishidros,1992).

Lebih terperinci

BAB VI PERHITUNGAN STRUKTUR BANGUNAN PANTAI

BAB VI PERHITUNGAN STRUKTUR BANGUNAN PANTAI 145 BAB VI PERHITUNGAN STRUKTUR BANGUNAN PANTAI 6.1. Perhitungan Struktur Revetment dengan Tumpukan Batu Perhitungan tinggi dan periode gelombang signifikan telah dihitung pada Bab IV, data yang didapatkan

Lebih terperinci

DAFTAR ISI Hasil Uji Model Hidraulik UWS di Pelabuhan PT. Pertamina RU VI

DAFTAR ISI Hasil Uji Model Hidraulik UWS di Pelabuhan PT. Pertamina RU VI DAFTAR ISI ALAMAN JUDUL... i ALAMAN PENGESAAN... ii PERSEMBAAN... iii ALAMAN PERNYATAAN... iv KATA PENGANTAR... v DAFTAR ISI... vi DAFTAR TABEL... x DAFTAR GAMBAR... xi DAFTAR LAMBANG... xiii INTISARI...

Lebih terperinci

BAB V ANALISIS DATA. Tabel 5.1. Data jumlah kapal dan produksi ikan

BAB V ANALISIS DATA. Tabel 5.1. Data jumlah kapal dan produksi ikan BAB V ANALISIS DATA 5.1 TINJAUAN UMUM Perencanaan Pangkalan Pendaratan Ikan (PPI) ini memerlukan berbagai data meliputi : data frekuensi kunjungan kapal, data peta topografi, oceanografi, dan data tanah.

Lebih terperinci

KAJIAN KINERJA DAN PERENCANAAN PELABUHAN PERIKANAN MORODEMAK JAWA TENGAH

KAJIAN KINERJA DAN PERENCANAAN PELABUHAN PERIKANAN MORODEMAK JAWA TENGAH 127 BAB III 3.1 Tahap Persiapan Tahap persiapan merupakan rangkaian kegiatan sebelum memulai pengumpulan data dan pengolahannya. Dalam tahap awal ini disusun hal-hal penting yang harus dilakukan dengan

Lebih terperinci

TINJAUAN PUSTAKA. menahan gaya angkat keatas. Pondasi tiang juga digunakan untuk mendukung

TINJAUAN PUSTAKA. menahan gaya angkat keatas. Pondasi tiang juga digunakan untuk mendukung II. TINJAUAN PUSTAKA 2.1 Teori Dasar Pondasi Tiang digunakan untuk mendukung bangunan yang lapisan tanah kuatnya terletak sangat dalam, dapat juga digunakan untuk mendukung bangunan yang menahan gaya angkat

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Menurut Triatmodjo (1996) pelabuhan (port) adalah daerah perairan

BAB II TINJAUAN PUSTAKA. Menurut Triatmodjo (1996) pelabuhan (port) adalah daerah perairan BAB II TINJAUAN PUSTAKA 2.1 Pengertian Menurut Triatmodjo (1996) pelabuhan (port) adalah daerah perairan yang terlindung terhadap gelombang, yang dilengkapi dengan fasilitas terminal laut meliputi dermaga

Lebih terperinci

BAB IV ALTERNATIF PEMILIHAN BENTUK SALURAN PINTU AIR

BAB IV ALTERNATIF PEMILIHAN BENTUK SALURAN PINTU AIR Penyusunan RKS Perhitungan Analisa Harga Satuan dan RAB Selesai Gambar 3.1 Flowchart Penyusunan Tugas Akhir BAB IV ALTERNATIF PEMILIHAN BENTUK SALURAN PINTU AIR 4.1 Data - Data Teknis Bentuk pintu air

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA 2.1 Tinjauan Umum Dalam perencanaan suatu pekerjaan kontruksi dibutuhkan dasar-dasar perencanaan agar dapat diketahui spesifikasi yang menjadi acuan dalam perhitungan dan pelaksanaan

Lebih terperinci

BAB VII PERENCANAAN KONSTRUKSI BANGUNAN

BAB VII PERENCANAAN KONSTRUKSI BANGUNAN 117 BAB VII PERENCANAAN KONSTRUKSI BANGUNAN 7.1 ANALISA MASALAH PENUTUPAN MUARA Permasalahan yang banyak di jumpai di muara sungai adalah pendangkalan/penutupan mulut sungai oleh transport sedimen sepanjang

Lebih terperinci

1.2. Rumusan Masalah Rumusan masalah pada makalah ini adalah penjelasan mengenai bangunan pantai dan beberapa contohnya.

1.2. Rumusan Masalah Rumusan masalah pada makalah ini adalah penjelasan mengenai bangunan pantai dan beberapa contohnya. BAB I PENDAHULUAN 1.1. Latar Belakang Erosi pantai merupakan salah satu masalah serius perubahan garis pantai. Selain proses alami, seperti angin, arus, dan gelombang, aktivitas manusia menjadi penyebab

Lebih terperinci

KAJIAN BEBERAPA ALTERNATIF LAYOUT BREAKWATER DESA SUMBER ANYAR PROBOLINGGO

KAJIAN BEBERAPA ALTERNATIF LAYOUT BREAKWATER DESA SUMBER ANYAR PROBOLINGGO Pemanfaatan Metode Log Pearson III dan Mononobe Untuk 1 KAJIAN BEBERAPA ALTERNATIF LAYOUT BREAKWATER DESA SUMBER ANYAR PROBOLINGGO ABSTRAK Adhi Muhtadi, ST., SE., MSi. Untuk merealisir rencana pengembangan

Lebih terperinci

BAB IV PENGUMPULAN DAN ANALISIS DATA

BAB IV PENGUMPULAN DAN ANALISIS DATA BAB IV PENGUMPULAN DAN ANALISIS DATA 4.1 TINJAUAN UMUM Dalam perencanaan dermaga peti kemas dengan metode precast di Pelabuhan Trisakti Banjarmasin ini, data yang dikumpulkan dan dianalisis, meliputi data

Lebih terperinci

BAB II TINJAUAN PUSTAKA. rancu pemakaiannya, yaitu pesisir (coast) dan pantai (shore). Penjelasan mengenai

BAB II TINJAUAN PUSTAKA. rancu pemakaiannya, yaitu pesisir (coast) dan pantai (shore). Penjelasan mengenai BAB II TINJAUAN PUSTAKA 2.1. Definisi Pantai Ada dua istilah tentang kepantaian dalam bahasa indonesia yang sering rancu pemakaiannya, yaitu pesisir (coast) dan pantai (shore). Penjelasan mengenai kepantaian

Lebih terperinci

BAB III DATA DAN ANALISA

BAB III DATA DAN ANALISA BAB III DATA DAN ANALISA 3.1. Umum Dalam studi kelayakan pembangunan pelabuhan peti kemas ini membutuhkan data teknis dan data ekonomi. Data-data teknis yang diperlukan adalah peta topografi, bathymetri,

Lebih terperinci

BAB V EVALUASI KINERJA PELABUHAN

BAB V EVALUASI KINERJA PELABUHAN 168 BAB V 5.1. Tinjauan Umum. Untuk dapat melaksanakan Perencanaan dan Perancangan Pelabuhan Perikanan Morodemak, Kabupaten Demak dengan baik maka diperlukan evaluasi yang mendalam atas kondisi Pelabuhan

Lebih terperinci

BAB 1 PENDAHULUAN. mendistribusikan hasil bumi dan kebutuhan lainnya. dermaga, gudang kantor pandu dan lain-lain sesuai peruntukannya.

BAB 1 PENDAHULUAN. mendistribusikan hasil bumi dan kebutuhan lainnya. dermaga, gudang kantor pandu dan lain-lain sesuai peruntukannya. BAB 1 PENDAHULUAN 1.1 Latar Belakang Indonesia sebagai wilayah kepulauan yang mempunyai lebih dari 3.700 pulau dan wilayah pantai sepanjang 80.000 km. Sebagai wilayah kepulauan, transportasi laut menjadi

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Tahap Persiapan Tahap persiapan adalah serangkaian kegiatan sebelum memulai tahap pengumpulan data dan pengolahan data. Dalam tahap awal ini disusun hal-hal penting yang

Lebih terperinci

7 KAPASITAS FASILITAS

7 KAPASITAS FASILITAS 71 7 KAPASITAS FASILITAS 7.1 Tempat Pelelangan Ikan (TPI) Tempat Pelelangan Ikan (TPI) di PPI Cituis sejak tahun 2000 hingga sekarang dikelola oleh KUD Mina Samudera. Proses lelang, pengelolaan, fasilitas,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Pelabuhan perikan merupakan salah satu pelabuhan yang banyak

BAB II TINJAUAN PUSTAKA. Pelabuhan perikan merupakan salah satu pelabuhan yang banyak BAB II TINJAUAN PUSTAKA 2.1 Pelabuhan Perikanan 2.1.1 Definisi Pelabuhan Perikanan Pelabuhan perikan merupakan salah satu pelabuhan yang banyak terdapat di indonesia, hampir semua wilayah perairan indonesia

Lebih terperinci

BAB VI PEMILIHAN ALTERNATIF BANGUNAN PELINDUNG MUARA KALI SILANDAK

BAB VI PEMILIHAN ALTERNATIF BANGUNAN PELINDUNG MUARA KALI SILANDAK 96 BAB VI PEMILIHAN ALTERNATIF BANGUNAN PELINDUNG MUARA KALI SILANDAK 6.1 Perlindungan Muara Pantai Secara alami pantai telah mempunyai perlindungan alami, tetapi seiring perkembangan waktu garis pantai

Lebih terperinci

TUGAS AKHIR SIMON ROYS TAMBUNAN

TUGAS AKHIR SIMON ROYS TAMBUNAN TUGAS AKHIR PERENCANAAN DETAIL STRUKTUR DAN REKLAMASI PELABUHAN PARIWISATA DI DESA MERTASARI - BALI OLEH : SIMON ROYS TAMBUNAN 3101.100.105 PROGRAM SARJANA (S-1) JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK SIPIL

Lebih terperinci

BAB I PENDAHULUAN. langsung berada dibawah Dinas Kelautan dan Perikanan Provinsi Aceh.

BAB I PENDAHULUAN. langsung berada dibawah Dinas Kelautan dan Perikanan Provinsi Aceh. BAB I PENDAHULUAN 1.1 Latar Belakang Pelabuhan Perikanan Lampulo merupakan salah satu pelabuhan perikanan yang sejak beberapa tahun terakhir ini mengalami sejumlah perkembangan fisik yang berarti. Kolam

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA 2.1. TINJAUAN UMUM Studi pustaka merupakan suatu pembahasan materi berdasarkan sumber dari referensi-referensi yang telah dipergunakan dengan tujuan untuk memperkuat isi materi maupun

Lebih terperinci

DESAIN DAN PERHITUNGAN STABILITAS BREAKWATER

DESAIN DAN PERHITUNGAN STABILITAS BREAKWATER DESAIN DAN PERHITUNGAN STABILITAS BREAKWATER Tri Octaviani Sihombing 1021056 Pembimbing : Olga Pattipawaej, Ph.D ABSTRAK Struktur bangunan pantai seperti pelabuhan sebagai sarana transit lalu-lintas yang

Lebih terperinci

DAFTAR ISI DAFTAR ISI

DAFTAR ISI DAFTAR ISI DAFTAR ISI BAB I PENDAHULUAN 1.1. Latar belakang... I-1 1.2. Permasalahan... I-2 1.3. Maksud dan tujuan... I-2 1.4. Lokasi studi... I-2 1.5. Sistematika penulisan... I-4 BAB II DASAR TEORI 2.1. Tinjauan

Lebih terperinci

BAB VII PERHITUNGAN STRUKTUR BANGUNAN PELINDUNG PANTAI

BAB VII PERHITUNGAN STRUKTUR BANGUNAN PELINDUNG PANTAI BAB VII PERHITUNGAN STRUKTUR BANGUNAN PELINDUNG PANTAI 7.. Perhitungan Struktur Seawall Perhitungan tinggi dan periode gelombang signifikan telah dihitung pada Bab IV, data yang didapatkan adalah sebagai

Lebih terperinci

2 TINJAUAN PUSTAKA 2.1 Definisi Pelabuhan Perikanan 2.2 Fungsi dan Peran Pelabuhan Perikanan

2 TINJAUAN PUSTAKA 2.1 Definisi Pelabuhan Perikanan 2.2 Fungsi dan Peran Pelabuhan Perikanan 2 TINJAUAN PUSTAKA 2.1 Definisi Pelabuhan Perikanan Menurut Lubis (2000), Pelabuhan Perikanan adalah suatu pusat aktivitas dari sejumlah industri perikanan, merupakan pusat untuk semua kegiatan perikanan,

Lebih terperinci

BAB V PENGUMPULAN DAN ANALISIS DATA

BAB V PENGUMPULAN DAN ANALISIS DATA 52 BAB V PENGUMPULAN DAN ANALISIS DATA 5.1. TINJAUAN UMUM Perencanaan Pelabuhan Perikanan Pantai (PPP) ini memerlukan berbagai data meliputi : data peta Topografi, oceanografi, data frekuensi kunjungan

Lebih terperinci

PERENCANAAN PENGEMBANGAN PELABUHAN LAUT SERUI DI KOTA SERUI PAPUA

PERENCANAAN PENGEMBANGAN PELABUHAN LAUT SERUI DI KOTA SERUI PAPUA PERENCANAAN PENGEMBANGAN PELABUHAN LAUT SERUI DI KOTA SERUI PAPUA Jori George Kherel Kastanya L. F. Kereh, M. R. E. Manoppo, T. K. Sendow Fakultas Teknik, Jurusan Teknik Sipil, Universitas Sam Ratulangi

Lebih terperinci

LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan. Bab 1.

LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan. Bab 1. LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan Bab 1 Pendahuluan Bab 1 Pendahuluan Perancangan Dermaga dan Trestle Tipe

Lebih terperinci

BAB II STUDI PUSTAKA II-1

BAB II STUDI PUSTAKA II-1 BAB II STUDI PUSTAKA 2.1. UMUM Dalam perencanaan suatu pekerjaan konstruksi dibutuhkan dasar-dasar perencanaan agar dapat diketahui spesifikasi yang menjadi acuan dalam perhitungan dan pelaksanaan pekerjaan

Lebih terperinci

BAB III STUDI PUSTAKA

BAB III STUDI PUSTAKA BAB III STUDI PUSTAKA 3.1 Tinjauan Umum Pada bab ini dibahas mengenai landasan teori perencanaan dan perhitungan yang akan dipakai pada perencanaan PPI di Muara Sungai Seragi Lama. Pada perencanaan tersebut

Lebih terperinci

II. TINJAUAN PUSTAKA WRPLOT View (Wind Rose Plots for Meteorological Data) WRPLOT View adalah program yang memiliki kemampuan untuk

II. TINJAUAN PUSTAKA WRPLOT View (Wind Rose Plots for Meteorological Data) WRPLOT View adalah program yang memiliki kemampuan untuk II. TINJAUAN PUSTAKA 2.1. WRPLOT View (Wind Rose Plots for Meteorological Data) WRPLOT View adalah program yang memiliki kemampuan untuk mempresentasikan data kecepatan angin dalam bentuk mawar angin sebagai

Lebih terperinci

BAB I PENDAHULUAN. gelombang laut, maka harus dilengkapi dengan bangunan tanggul. diatas tadi dengan menggunakan pemilihan lapis lindung berupa

BAB I PENDAHULUAN. gelombang laut, maka harus dilengkapi dengan bangunan tanggul. diatas tadi dengan menggunakan pemilihan lapis lindung berupa BAB I PENDAHULUAN 1. 1 Tinjauan Umum Dalam negara Republik Indonesia yang berbentuk kepulauan dengan daerah yang sangat luas, sangat dirasakan kebutuhan adanya suatu angkutan yang efektif, dalam arti aman,

Lebih terperinci

BAB II GAMBARAN UMUM WILAYAH STUDI

BAB II GAMBARAN UMUM WILAYAH STUDI BAB II GAMBARAN UMUM WILAYAH STUDI 2.1 Geografis dan Administratif Sebagai salah satu wilayah Kabupaten/Kota yang ada di Provinsi Jawa Tengah, Kabupaten Kendal memiliki karakteristik daerah yang cukup

Lebih terperinci

Pengertian Pasang Surut

Pengertian Pasang Surut Pengertian Pasang Surut Pasang surut adalah fluktuasi (gerakan naik turunnya) muka air laut secara berirama karena adanya gaya tarik benda-benda di lagit, terutama bulan dan matahari terhadap massa air

Lebih terperinci

BAB II STUDI PUSTAKA. 2.1 Tinjauan Umum

BAB II STUDI PUSTAKA. 2.1 Tinjauan Umum 6 BAB II STUDI PUSTAKA 2.1 Tinjauan Umum Dalam suatu perencanaan tentu dibutuhkan pustaka yang bisa dijadikan sebagai acuan dari perencanaan tersebut agar dapat terwujud bangunan pantai yang sesuai dengan

Lebih terperinci

BAB IV ANALISIS DATA

BAB IV ANALISIS DATA BAB IV ANALISIS DATA 4.1.Tinjauan Umum Perencanaan pelabuhan perikanan Glagah ini memerlukan berbagai data meliputi: data angin, Hidro oceanografi, peta batimetri, data jumlah kunjungan kapal dan data

Lebih terperinci

Erosi, revretment, breakwater, rubble mound.

Erosi, revretment, breakwater, rubble mound. ABSTRAK Pulau Bali yang memiliki panjang pantai 438 km, mengalami erosi sekitar 181,7 km atau setara dengan 41,5% panjang pantai. Upaya penanganan pantai yang dilakukan umumnya berupa revretment yang menggunakan

Lebih terperinci

OPTIMALISASI DERMAGA PELABUHAN BAJOE KABUPATEN BONE

OPTIMALISASI DERMAGA PELABUHAN BAJOE KABUPATEN BONE PROSIDING 20 13 HASIL PENELITIAN FAKULTAS TEKNIK OPTIMALISASI DERMAGA PELABUHAN BAJOE KABUPATEN BONE Jurusan Perkapalan Fakultas Teknik Universitas Hasanuddin Jl. Perintis Kemerdekaan Km.10 Tamalanrea

Lebih terperinci

BAB I PENDAHULUAN D3 TEKNIK SIPIL POLITEKNIK NEGERI BANDUNG. Gambar 1.1 Pulau Obi, Maluku Utara

BAB I PENDAHULUAN D3 TEKNIK SIPIL POLITEKNIK NEGERI BANDUNG. Gambar 1.1 Pulau Obi, Maluku Utara BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia adalah negara kepulauan yang terkenal dengan kekayaan alamnya. Salah satu kekayaan tersebut yaitu nikel. Nikel adalah hasil tambang yang bila diolah dengan

Lebih terperinci

BAB II SURVEI LOKASI UNTUK PELETAKAN ANJUNGAN EKSPLORASI MINYAK LEPAS PANTAI

BAB II SURVEI LOKASI UNTUK PELETAKAN ANJUNGAN EKSPLORASI MINYAK LEPAS PANTAI BAB II SURVEI LOKASI UNTUK PELETAKAN ANJUNGAN EKSPLORASI MINYAK LEPAS PANTAI Lokasi pada lepas pantai yang teridentifikasi memiliki potensi kandungan minyak bumi perlu dieksplorasi lebih lanjut supaya

Lebih terperinci

Oleh: Yulia Islamia

Oleh: Yulia Islamia Oleh: Yulia Islamia 3109100310 Pendahuluan Kebutuhan global akan minyak bumi kian meningkat Produksi minyak mentah domestik makin menurun PT.Pertamina berencana untuk meningkatkan security energi Diperlukan

Lebih terperinci

2. TINJAUAN PUSTAKA 2.1 Pelabuhan Perikanan 2.2 Fungsi Pelabuhan Perikanan

2. TINJAUAN PUSTAKA 2.1 Pelabuhan Perikanan 2.2 Fungsi Pelabuhan Perikanan 2. TINJAUAN PUSTAKA 2.1 Pelabuhan Perikanan Pelabuhan perikanan menurut UU no. 45 tahun 2009 tentang Perikanan adalah tempat yang terdiri atas daratan dan perairan di sekitarnya dengan batasbatas tertentu

Lebih terperinci

METODE PELAKSANAAN GROIN (BANGUNAN PENGAMAN PANTAI)

METODE PELAKSANAAN GROIN (BANGUNAN PENGAMAN PANTAI) METODE PELAKSANAAN GROIN (BANGUNAN PENGAMAN PANTAI) Groin adalah salah satu jenis bangunan pengaman pantai yang direncanakan untuk menangkap transpor sedimen sepanjang pantai serta mencegah transpor sedimen

Lebih terperinci

BAB I PENDAHULUAN. Pembangunan prasarana perikanan yang berupa Pelabuhan Perikanan (PP)

BAB I PENDAHULUAN. Pembangunan prasarana perikanan yang berupa Pelabuhan Perikanan (PP) BAB I PENDAHULUAN 1.1. LATAR BELAKANG Pembangunan prasarana perikanan yang berupa Pelabuhan Perikanan (PP) mempunyai nilai strategis dalam rangka pembangunan ekonomi perikanan. Keberadaan Pelabuhan Perikanan

Lebih terperinci

D3 TEKNIK SIPIL POLITEKNIK NEGERI BANDUNG BAB I PENDAHULUAN

D3 TEKNIK SIPIL POLITEKNIK NEGERI BANDUNG BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia sebagai negara kepulauan / maritim, peranan pelayaran adalah sangat penting bagi kehidupan sosial, ekonomi, pemerintahan, pertahanan / keamanan, dan sebagainya.

Lebih terperinci

LEMBAR PENGESAHAN TUGAS AKHIR PERENCANAAN PENGEMBANGAN PELABUHAN PERIKANAN PANTAI (PPP) TASIK AGUNG KABUPATEN REMBANG

LEMBAR PENGESAHAN TUGAS AKHIR PERENCANAAN PENGEMBANGAN PELABUHAN PERIKANAN PANTAI (PPP) TASIK AGUNG KABUPATEN REMBANG LEMBAR PENGESAHAN TUGAS AKHIR PERENCANAAN PENGEMBANGAN PELABUHAN PERIKANAN PANTAI (PPP) TASIK AGUNG KABUPATEN REMBANG Diajukan untuk memenuhi persyaratan dalam menyelesaikan Pendidikan Tingkat Sarjana

Lebih terperinci

BAB I PENDAHULUAN BAB I PENDAHULUAN

BAB I PENDAHULUAN BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Pelabuhan adalah daerah perairan yang terlindung terhadap gelombang, yang dilengkapi dengan fasilitas terminal laut meliputi dermaga dimana kapal dapat bertambat untuk

Lebih terperinci

DESAIN STRUKTUR PELINDUNG PANTAI TIPE GROIN DI PANTAI CIWADAS KABUPATEN KARAWANG

DESAIN STRUKTUR PELINDUNG PANTAI TIPE GROIN DI PANTAI CIWADAS KABUPATEN KARAWANG DESAIN STRUKTUR PELINDUNG PANTAI TIPE GROIN DI PANTAI CIWADAS KABUPATEN KARAWANG Fathu Rofi 1 dan Dr.Ir. Syawaluddin Hutahaean, MT. 2 Program Studi Teknik Kelautan Fakultas Teknik Sipil dan Lingkungan,

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI A. Pembangkitan Gelombang Angin yang berhembus di atas permukaan air akan memindahkan energinya ke air. Kecepatan angin tersebut akan menimbulkan tegangan pada permukaan laut, sehingga

Lebih terperinci

BAB II TINJAUAN PUSTAKA. antara partikelnya, yang terbentuk kerena pelapukan dari batuan.

BAB II TINJAUAN PUSTAKA. antara partikelnya, yang terbentuk kerena pelapukan dari batuan. BAB II TINJAUAN PUSTAKA A. Umum Tanah adalah akumulasi partikel mineral yang tidak mempunyai atau lemah ikatan antara partikelnya, yang terbentuk kerena pelapukan dari batuan. Tanah merupakan bahan bangunan

Lebih terperinci

Kajian Hidro-Oseanografi untuk Deteksi Proses-Proses Dinamika Pantai (Abrasi dan Sedimentasi)

Kajian Hidro-Oseanografi untuk Deteksi Proses-Proses Dinamika Pantai (Abrasi dan Sedimentasi) Kajian Hidro-Oseanografi untuk Deteksi Proses-Proses Dinamika Pantai (Abrasi dan Sedimentasi) Mario P. Suhana * * Mahasiswa Pascasarjana Ilmu Kelautan, Institut Pertanian Bogor Email: msdciyoo@gmail.com

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1. Pembangkitan Gelombang Angin yang berhembus di atas permukaan air akan memindahkan energinya ke air. Kecepatan angin tersebut akan menimbulkan tegangan pada permukaan laut,

Lebih terperinci

Bab III METODOLOGI PENELITIAN. Diagram alur perhitungan struktur dermaga dan fasilitas

Bab III METODOLOGI PENELITIAN. Diagram alur perhitungan struktur dermaga dan fasilitas Bab III METODOLOGI PENELITIAN 3.1 Diagram Alur Diagram alur perhitungan struktur dermaga dan fasilitas Perencanaan Dermaga Data Lingkungan : 1. Data Topografi 2. Data Pasut 3. Data Batimetri 4. Data Kapal

Lebih terperinci

3 Kondisi Fisik Lokasi Studi

3 Kondisi Fisik Lokasi Studi Bab 3 3 Kondisi Fisik Lokasi Studi Sebelum pemodelan dilakukan, diperlukan data-data rinci mengenai kondisi fisik dari lokasi yang akan dimodelkan. Ketersediaan dan keakuratan data fisik yang digunakan

Lebih terperinci

BAB II. TINJAUAN PUSTAKA. Pada bagian ini yang akan dibahas adalah gambaran perencanaan suatu

BAB II. TINJAUAN PUSTAKA. Pada bagian ini yang akan dibahas adalah gambaran perencanaan suatu 6 BAB II. TINJAUAN PUSTAKA 2.1 Tinjauan Umum Pada bagian ini yang akan dibahas adalah gambaran perencanaan suatu pekerjaan konstruksi yang dibutuhkan untuk dasar-dasar perencanaan. Pada perencanaan tersebut

Lebih terperinci

Diperlukannya dermaga untuk fasilitas unloading batubara yang dapat memperlancar kegiatan unloading batubara. Diperlukannya dermaga yang dapat

Diperlukannya dermaga untuk fasilitas unloading batubara yang dapat memperlancar kegiatan unloading batubara. Diperlukannya dermaga yang dapat PROYEK AKHIR Diperlukannya dermaga untuk fasilitas unloading batubara yang dapat memperlancar kegiatan unloading batubara. Diperlukannya dermaga yang dapat menampung kapal tongkang pengangkut batubara

Lebih terperinci

PERENCANAAN PENGEMBANGAN PELABUHAN PERIKANAN SAMUDERA CILACAP

PERENCANAAN PENGEMBANGAN PELABUHAN PERIKANAN SAMUDERA CILACAP LEMBAR PENGESAHAN LAPORAN TUGAS AKHIR PERENCANAAN PENGEMBANGAN PELABUHAN PERIKANAN SAMUDERA CILACAP Diajukan Untuk Memenuhi Persyaratan Program Strata 1 Pada Jurusan Sipil Fakultas Teknik Universitas Diponegoro

Lebih terperinci

ANALISIS TRANSPOR SEDIMEN MENYUSUR PANTAI DENGAN MENGGUNAKAN METODE GRAFIS PADA PELABUHAN PERIKANAN TANJUNG ADIKARTA

ANALISIS TRANSPOR SEDIMEN MENYUSUR PANTAI DENGAN MENGGUNAKAN METODE GRAFIS PADA PELABUHAN PERIKANAN TANJUNG ADIKARTA ANALISIS TRANSPOR SEDIMEN MENYUSUR PANTAI DENGAN MENGGUNAKAN METODE GRAFIS PADA PELABUHAN PERIKANAN TANJUNG ADIKARTA Irnovia Berliana Pakpahan 1) 1) Staff Pengajar Jurusan Teknik Sipil, Fakultas Teknik

Lebih terperinci

BAB I PENDAHULUAN. sangat luas, dirasakan sangat perlu akan kebutuhan adanya angkutan (transport) yang

BAB I PENDAHULUAN. sangat luas, dirasakan sangat perlu akan kebutuhan adanya angkutan (transport) yang BAB I PENDAHULUAN 1.1. Latar Belakang Negara Republik Indonesia yang berbentuk kepulauan dengan daerah yang sangat luas, dirasakan sangat perlu akan kebutuhan adanya angkutan (transport) yang efektif dalam

Lebih terperinci

UNIVERSITAS KRISTEN MARANATHA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL ABSTRAK

UNIVERSITAS KRISTEN MARANATHA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL ABSTRAK STUDI KENERJA OPERASI PELABUHAN MERAK BANTEN Disusun oleh: Rheno Wahyu Nugroho NRP: 9721069 NIRM: 41077011970304 Pembimbing: Prof. Dr. Ir. Bambang Ismanto. S., M.Sc UNIVERSITAS KRISTEN MARANATHA FAKULTAS

Lebih terperinci

BAB II KONDISI LAPANGAN

BAB II KONDISI LAPANGAN BAB II KONDISI LAPANGAN 2.1. Tinjauan Umum Pada bab ini merupakan pengumpulan data-data yang telah dikompilasi seperti data angin, pasang surut, batrimetri, topografi, morfologi sungai, geoteknik, jumlah

Lebih terperinci

BAB IV ANALISA PERHITUNGAN STABILITAS DINDING PENAHAN

BAB IV ANALISA PERHITUNGAN STABILITAS DINDING PENAHAN BAB IV ANALISA PERHITUNGAN STABILITAS DINDING PENAHAN 4.1 Pemilihan Tipe Dinding Penahan Dalam penulisan skripsi ini penulis akan menganalisis dinding penahan tipe gravitasi yang terbuat dari beton yang

Lebih terperinci

Soal :Stabilitas Benda Terapung

Soal :Stabilitas Benda Terapung TUGAS 3 Soal :Stabilitas Benda Terapung 1. Batu di udara mempunyai berat 500 N, sedang beratnya di dalam air adalah 300 N. Hitung volume dan rapat relatif batu itu. 2. Balok segi empat dengan ukuran 75

Lebih terperinci

BAB VI PERENCANAAN PANGKALAN PENDARATAN IKAN (PPI)

BAB VI PERENCANAAN PANGKALAN PENDARATAN IKAN (PPI) BAB VI PERENCANAAN PANGKALAN PENDARATAN IKAN (PPI) 6.. TINJAUAN UU Berdasarkan data yang telah diperoleh sementara, untuk kondisi saat ini Tempat Pelelangan Ikan (TPI) enganti Kebumen kurang memenuhi syarat,

Lebih terperinci

JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2013

JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2013 OLEH : DHIMAS AKBAR DANAPARAMITA / 3108100091 DOSEN PEMBIMBING : IR. FUDDOLY M.SC. CAHYA BUANA ST.,MT. JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA

Lebih terperinci

HIBAH PROGRAM PASCA SARJANA UNIVERSITAS UDAYANA JUDUL PENELITIAN STUDI ANALISIS PENDANGKALAN KOLAM DAN ALUR PELAYARAN PPN PENGAMBENGAN JEMBRANA

HIBAH PROGRAM PASCA SARJANA UNIVERSITAS UDAYANA JUDUL PENELITIAN STUDI ANALISIS PENDANGKALAN KOLAM DAN ALUR PELAYARAN PPN PENGAMBENGAN JEMBRANA HIBAH PROGRAM PASCA SARJANA UNIVERSITAS UDAYANA JUDUL PENELITIAN STUDI ANALISIS PENDANGKALAN KOLAM DAN ALUR PELAYARAN PPN PENGAMBENGAN JEMBRANA PENGUSUL Dr. Eng. NI NYOMAN PUJIANIKI, ST. MT. MEng Ir. I

Lebih terperinci

KRITERIA PERENCANAAN BENDUNG KARET

KRITERIA PERENCANAAN BENDUNG KARET KRITERIA PERENCANAAN BENDUNG KARET Bendung karet adalah bendung gerak yang terbuat dari tabung karet yang mengembang sebagai sarana operasi pembendungan air. Berdasarkan media pengisi tabung karet, ada

Lebih terperinci

III - 1 BAB III METODOLOGI BAB III METODOLOGI

III - 1 BAB III METODOLOGI BAB III METODOLOGI III - 1 BAB III 3.1 Tinjauan Umum Dalam penulisan laporan Tugas Akhir memerlukan metode atau tahapan/tata cara penulisan untuk mendapatkan hasil yang baik dan optimal mengenai pengendalian banjir sungai

Lebih terperinci

BAB 4 ANALISIS PELAKSANAAN PERENCANAAN ALUR PELAYARAN

BAB 4 ANALISIS PELAKSANAAN PERENCANAAN ALUR PELAYARAN BAB 4 ANALISIS PELAKSANAAN PERENCANAAN ALUR PELAYARAN Tujuan pembahasan analisis pelaksanaan perencanaan alur pelayaran untuk distribusi hasil pertambangan batubara ini adalah untuk menjelaskan kegiatan

Lebih terperinci

BAB III METODOLOGI. 3.1 Diagram Alir Penyusunan Laporan Tugas Akhir

BAB III METODOLOGI. 3.1 Diagram Alir Penyusunan Laporan Tugas Akhir BAB III METODOLOGI III - 1 BAB III METODOLOGI 3.1 Diagram Alir Penyusunan Laporan Tugas Akhir Langkah-langkah secara umum yang dilakukan dalam penyusunan Tugas Akhir ini dapat dilihat pada diagram alir

Lebih terperinci

PERENCANAAN INFRASTRUKTUR REKLAMASI PANTAI MARINA SEMARANG ( DESIGN OF THE RECLAMATION INFRASTRUCTURE OF THE MARINA BAY IN SEMARANG )

PERENCANAAN INFRASTRUKTUR REKLAMASI PANTAI MARINA SEMARANG ( DESIGN OF THE RECLAMATION INFRASTRUCTURE OF THE MARINA BAY IN SEMARANG ) LEMBAR PENGESAHAN TUGAS AKHIR PERENCANAAN INFRASTRUKTUR REKLAMASI PANTAI MARINA SEMARANG ( DESIGN OF THE RECLAMATION INFRASTRUCTURE OF THE MARINA BAY IN SEMARANG ) Disusun oleh : Haspriyaldi L2A 000 081

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA 4 II. TINJAUAN PUSTAKA A. Garis Pantai Garis pantai merupakan batas pertemuan antara daratan dengan bagian laut saat terjadi air laut pasang tertinggi. Garis ini bisa berubah karena beberapa hal seperti

Lebih terperinci

BAB III METODOLOGI 3.1 PERSIAPAN PENDAHULUAN

BAB III METODOLOGI 3.1 PERSIAPAN PENDAHULUAN BAB III METODOLOGI 3.1 PERSIAPAN PENDAHULUAN Tahap persiapan merupakan rangkaian kegiatan sebelum kegiatan pengumpulan data dan pengolahannya. Dalam tahap awal ini di susun hal-hal yang penting dengan

Lebih terperinci

2.6. Pengaruh Pemecah Gelombang Sejajar Pantai / Krib (Offshore Breakwater) terhadap Perubahan Bentuk Garis Pantai Pada Pantai Pasir Buatan...

2.6. Pengaruh Pemecah Gelombang Sejajar Pantai / Krib (Offshore Breakwater) terhadap Perubahan Bentuk Garis Pantai Pada Pantai Pasir Buatan... DAFTAR ISI Halaman HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERSEMBAHAN... ii PERNYATAAN... iv PRAKATA... v DAFTAR ISI...viii DAFTAR TABEL... xi DAFTAR GAMBAR... xii DAFTAR LAMPIRAN... xiv DAFTAR

Lebih terperinci

PERENCANAAN BREAKWATER PELABUHAN PENDARATAN IKAN (PPI) TAMBAKLOROK SEMARANG

PERENCANAAN BREAKWATER PELABUHAN PENDARATAN IKAN (PPI) TAMBAKLOROK SEMARANG LEMBAR PENGESAHAN PERENCANAAN BREAKWATER PELABUHAN PENDARATAN IKAN (PPI) TAMBAKLOROK SEMARANG (The Breakwater Design of Tambaklorok Port of Fish Semarang) Diajukan untuk memenuhi salah satu syarat akademis

Lebih terperinci

BAB I PENDAHULUAN I - 1 BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN I - 1 BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN I - 1 BAB I PENDAHULUAN 1.1. Latar Belakang Pembangunan PLTU Cilacap 2X300 MW ditujukan selain untuk memenuhi kebutuhan listrik juga ditujukan untuk meningkatkan keandalan tegangan di

Lebih terperinci

BAB IV ANALISIS DATA

BAB IV ANALISIS DATA BAB IV ANALISIS DATA IV - 1 BAB IV ANALISIS DATA 4.1 Umum Analisis data yang dilakukan merupakan data-data yang akan digunakan sebagai input program GENESIS. Analisis data ini meliputi analisis data hidrooceanografi,

Lebih terperinci

2 TINJAUAN PUSTAKA 2.1 Pelabuhan Perikanan Pengertian, klasifikasi dan fungsi pelabuhan perikanan

2 TINJAUAN PUSTAKA 2.1 Pelabuhan Perikanan Pengertian, klasifikasi dan fungsi pelabuhan perikanan 4 2 TINJAUAN PUSTAKA 2.1 Pelabuhan Perikanan 2.1.1 Pengertian, klasifikasi dan fungsi pelabuhan perikanan Pelabuhan perikanan adalah suatu wilayah perpaduan antara wilayah daratan dan lautan yang dipergunakan

Lebih terperinci

Beban hidup yang diperhitungkan pada dermaga utama adalah beban hidup merata, beban petikemas, dan beban mobile crane.

Beban hidup yang diperhitungkan pada dermaga utama adalah beban hidup merata, beban petikemas, dan beban mobile crane. Bab 4 Analisa Beban Pada Dermaga BAB 4 ANALISA BEBAN PADA DERMAGA 4.1. Dasar Teori Pembebanan Dermaga yang telah direncanakan bentuk dan jenisnya, harus ditentukan disain detailnya yang direncanakan dapat

Lebih terperinci

ANALISIS PERUBAHAN DEFLEKSI STRUKTUR DERMAGA AKIBAT KENAIKAN MUKA AIR LAUT

ANALISIS PERUBAHAN DEFLEKSI STRUKTUR DERMAGA AKIBAT KENAIKAN MUKA AIR LAUT ANALISIS PERUBAHAN DEFLEKSI STRUKTUR DERMAGA AKIBAT KENAIKAN MUKA AIR LAUT Daniel Rivandi Siahaan 1 dan Olga Pattipawaej 2 1 Jurusan Teknik Sipil, Universitas Kristen Maranatha, Jl. Prof. drg. Suria Sumatri,

Lebih terperinci