IMPLEMENTASI PERHITUNGAN RECEIVER FUNCTION UNTUK GEMPA JAUH (TELESEISMIC) MENGGUNAKAN MATLAB
|
|
|
- Yenny Sudjarwadi
- 9 tahun lalu
- Tontonan:
Transkripsi
1 IMPLEMENTASI PERHITUNGAN RECEIVER FUNCTION UNTUK GEMPA JAUH (TELESEISMIC) MENGGUNAKAN MATLAB Wiwit Suryanto 1, Boko Nurdiyanto 2, Suliyanti Pakpahan 2 1 Laboratorium Geofisika, Jurusan Fisika UGM, Sekip Utara Yogyakarta. 2 Puslitbang BMKG Jakarta ABSTRAK Telah dilakukan pemodelan receiver function untuk data teleseismik yang direkam oleh stasiun pengamatan gempabumi 3 komponen. Perhitungan dekonvolusi dalam perhitungan receiver function ini dilakukan dalam domain frekuensi. Pemodelan dilakukan dalam sistem MATLAB. Program dapat berjalan dengan efisien, dan waktu yang diperlukan untuk perhitungan untuk model 4 lapis adalah sekitar 1,2 detik dengan menggunakan komputer Intel Atom dengan memori 1 GB. Untuk model dengan 31 lapisan, diperlukan waktu perhitungan 1,9 detik. Efektifitas program ini memungkinkan untuk dikembangkan lebih lanjut misalnya untuk keperluan inversi. Kata kunci: receiver function, dekonvolusi, MATLAB ABSTRACT Receiver function modeling for teleseismic earthquake has been implemented using MATLAB. The deconvolution process is carried out in the frequency domain for simplicity. The time required for calculating a four-layer model is about 1.2 seconds using Intel Atom 1 GB of memory. For a velocity model with 31 layers it takes 1.9 seconds using the same computer specification. The effectiveness of the program may used for other advance application especially for earth crustal inversion. Key words: receiver function, deconvolution, MATLAB Naskah masuk : 15 Maret 2010 Naskah diterima : 01 Juli 2010 I. PENDAHULUAN Salah satu cara untuk mendapatkan informasi mengenai struktur di bawah permukaan bumi adalah dengan melakukan analisis data gempabumi. Berbagai metode telah dikembangkan untuk keperluan ini, salah satunya adalah metode receiver function 1. Keuntungan dari metode ini adalah kemampuannya untuk memodelkan struktur di bawah stasiun pengamatan gempa hanya dengan menggunakan satu buah seismometer 3 komponen. Metode receiver function ini cukup popular dan terbukti mampu merekonstruksi struktur di bawah permukaan dengan tingkat kesesuaian dengan geologi dan dengan metode geofisika yang lain dengan cukup tinggi 2,3. Untuk keperluan pemrosesan data menggunakan receiver function ini, beberapa peneliti telah membuat program yang umumnya ditulis dengan menggunakan bahasa Fortran 77 atau C++, diantaranya Ammon 4, Zhu dan Kanamori 2. Meskipun program-program tersebut dapat diperoleh dengan gratis, namun sayangnya perangkat 67
2 pendukung dan kepopuleran bahasa pemrograman tersebut terutama di Indonesia, dan untuk keperluan geofisika, sudah semakin berkurang. Diantara peneliti lain Jacobsen dan Svenningsen 5 telah mengimplementasikan program tersebut dengan MATLAB. Namun demikian program tersebut sampai saat ini tidak bisa diperoleh secara bebas. Dalam makalah ini kami mencoba mengisi celah yang ada dengan mengimplementasikan program receiver function ini menggunakan MATLAB. Diharapkan nantinya hasil dari program ini dapat dipergunakan untuk aplikasi data-data gempabumi di Indonesia dan mendukung kegiatan operasional di Badan Meteorologi Klimatologi dan Geofisika. II. KONSEP DASAR RECEIVER FUNCTION Ketika gelombang teleseismik mencapai stasiun pencatat gempa, didalamnya berisi informasi mengenai bermacam-macam lintasan yang dilalui gelombang. Data seismik yang terekam berisi informasi mengenai struktur sumber gempanya, lintasannya dan struktur geologi di bawah stasiun penerimanya. Analsis receiver function adalah sebuah cara untuk menghilangkan informasi mengenai sumber gempa dan lintasan yang dilalui oleh gelombang sehingga menyisakan hanya efek dari struktur dangkal (dibawah stasiun penerima/receiver) (Gambar 1). Salah satu artikel yang membahas tentang receiver function adalah Phinney 6 yang membahas mengenai pemodelam gelombang P dan respon spectra dari kerak bumi. Phinney melakukannya dalam domain frekuensi, namun pada tahun 1979, Langston memperkenalkan pemodelan receiver function di dalam domain waktu 1. Salah satu artikel yang menjadi the most cited (terbanyak diacu) mengenai receiver function ini adalah Ammon 4. Di bawah ini akan dijelaskan mengenai metode analis receiver function secara ringkas. Gambar 1. Kiri: Skematika dari sebuah gelombang teleseismik yang mencapai stasiun pencatat gempa. Kanan: Simplifikasi dari receiver function yang menunjukkan gelombang P dan pantulannya pada interface. III. PERHITUNGAN RECEIVER FUNCTION Tahap pertama dalam perhitungan receiver function adalah membangkitkan sintetik seismogram. Teori yang mendasari pembuatan sintetik seismogram ini adalah filter linear 7. Dalam terori ini, sebuah seismogram dapat dilihat sebagai output dari sebuah sekuen dari linear filter pada sinyal dari sebuah sumber seismik. Filter ini merepresentasikan proses-proses yang berbeda seperti perambatan melalui bumi atau proses-proses yang terjadi selama perekaman. Output dari response filter terhadap sebuah impuls, yaitu sebuah fungsi delta, dinyatakan dalam dan transformasi Fouriernya dinyatakan dengan. Respon dari filter terhadap sebuah IMPLEMENTASI PERHITUNGAN RECEIVER FUNCTION UNTUK GEMPA JAUH (TELESEISMIC) MENGGUNAKAN MATLAB Wiwit Suryanto, Boko Nurdiyanto, Suliyanti Pakpahan 68
3 sembarang input disebut dan dapat dituliskan sebagai, dengan diberikan dalam domain frekuensi dengan teorema konvolusi. Dalam hal ini tanda (*) adalah operator konvolusi. adalah transformasi Fourier dari, dan adalah transformasi Fourier dari. Jika sinyal mengalamai pemfilteran secara beruntun, transformasi Fourier dari output menjadi menghasilkan perkalian dari filter-filter di dalam kawasan frekuensi dikalikan dengan sinyal input. Dari sini penjelasan secara formal mengenai receiver function mengikuti penjelasan dari Ammon 4. Respon bumi terhadap gelombang yang datang pada struktur kecepatan satu dimensi, digambarkan oleh Gambar 4, dapat ditulis sebagai dua komponen gerakan. Gerakan vertikal, dan gerakan dalam arah radial dapat dituliskan sebagai:,, dengan adalah sinyal sumbernya, dan adalah amplitudo dari sinar gelombang ke pada tiap komponen, adalah waktu tiba dari tiap sinar gelombang ke pada permukaan dan adalah frekuensi sudut. Penjumlahan seluruh sinar gelombang dengan menjadi gelombang langsung P. Gambar 2. Respon medium pada komponen vertikal dan radial terhadap gelombang datang dan receiver function yang dihasilkan. Gambar diambil dari Ammon (1991). dengan mengasumsikan adalah sebuah fungsi delta, transformasi Fourier dapat dituliskan sebagai: dengan geombang ke adalah amplitudo dari sinar yang telah dinormalisasi oleh amplitude dari sinar pertama yang merupakan gelombang P langsung dan begitu juga untuk. Dekonvolusi dari komponen vertikal dari komponen radialnya dapat dituliskan sebagai: Dengan adalah transformasi Fourier dari sinyal sumber dan dan yang masing-masing tidak bernilai nol. Pengandaian semacam ini tidak berlaku untuk data real (data observasi 69
4 lapangan) sehingga pemecahan untuk masalah untuk data-data real akan dijelaskan dalam sub bab berikutnya. adalah transformasi Fourier dari receiver function pada komponen radial, h(t). Komponen tangensial dari receiver function dapat diperoleh dengan membagi dalam kawasan waktu antara komponen-komponen tangensial dan vertikal. IV. DEKONVOLUSI Dekonvolusi digunakan pada persamaan 1 dapat merupakan kasus yang menyulitkan pada kasus dimana bagian penyebutya sangat kecil atau mendekati nol (sering terjadi untuk data-data observasi). Hal ini dapat diatasi dengan menggunakan sebuah metode yang disebut sebagai metode dekonvolusi water-level 8. Dalam metode ini, bagian penyebut yang bernilai kecil akan digantikan dengan sebuah fraksi dari nilai maksimum di dalam penyebut, lihat Gambar 3. Dengan demikian proses perhitungan receiver function menjadi lebih stabil. Gambar 3. Metode dekonvolusi permukaan air (water-level deconvolution). Gambar diambil dari Ammon (1997). Dengan mengingat bahwa inversi dari sebuah bilangan kompleks dapat dituliskan sebagai dengan indeks bintang * menyatakan konjugat kompleks, receiver function dapat dituliskan kembali menjadi : Metode water-level menggantikan persamaan diatas dengan: dengan dan dalam hal ini, mengontrol the water level atau amplitude minimum yang diijinkan di dalan penyebut, adalah konstanta normalisasi adalah filter Gaussian dengan lebar dan dipilih sedemikian rupa sehingga lebarnya cocok dengan lebar dari gelombang P langsung 1. V. HASIL PENELITIAN Metode perhitungan receiver function seperti yang telah dijelaskan diatas kemudian direalisasikan dengan skrip MATLAB. Program receiver function ini kemudian diujikan pada data sintetik. Untuk keperluan ini, dibangkitkan seismogram sintetik menggunakan metode perambatan matriks (Matrix Propagation) sebagaimana yang dijelaskan oleh Kennett 9 IMPLEMENTASI PERHITUNGAN RECEIVER FUNCTION UNTUK GEMPA JAUH (TELESEISMIC) MENGGUNAKAN MATLAB Wiwit Suryanto, Boko Nurdiyanto, Suliyanti Pakpahan 70
5 dan Shearer 10. Matriks propagasi adalah sebuah metode untuk menghitung seismogram sintetik dari sebuah gelombang bidang yang merambat melalui perlapisan bawah permukaan horisontal yang homogen. Hasil perhitungannya berupa seismogram sintetik dalam komponen radial dan vertikal sebagaimana yang ditunjukkan pada Gambar 4. Gambar 4. Seismogram sintetik yang dihitung menggunakan metode propagasi matrix (reflectivity method) (Kennett, 1983). Gambar kiri: Warna biru dan merah menunjukkan seismogram sintetik pada komponen radial dan vertikal. Gambar kanan: Model kecepatan yang dipakai untuk membangkitkan seismogram sintetik. Langkah utama di dalam perhitungan receiver function adalah menghitung dekonvolusi antara komponen vertikal dan radial. Di dalam MATLAB proses dekonvolusi ini dilakukan dalam kawasan frekuensi menggunakan fungsi fft. Dibawah ini adalah core script Matlab untuk melakukan proses dekonvolusi dalam kawasan frekuensi. % V = fft(vertikal); R = fft(radial); Gamma = max(conj(v))*waterlevel; gaussfilt = exp(-(f.*f*(pi*pi/(a*a)))); eiwt = exp(-j*2*pi*timeshift*f); CSGW = Conj(V).*gaussfilt.*eiwt; for k=1:m; r(:,k) = ifft( CSGW./ max(conj(v),gamma(k)) ); end for k=1:m, cc(:,k)=ifft(fft(r(:,k)).*fft(s).*conj(eiwt)); maxc=max(abs(c));maxcc=max(abs(cc(:,k)));cc(:,k)=cc(:,k)*maxc/maxcc; end Hasil perhitungan receiver function menggunakan program ini ditunjukkan pada Gambar 5. Terlihat pada gambar tersebut fase-fase yang tiba setelah gelombang P dapat tertampilkan dengan jelas. Perhitungan receiver function dengan menggunakan program MATLAB ini dapat diselesaikan dalam waktu yang sangat singkat. Hal ini tentu saja sangat menguntungkan terutama untuk keperluan pemrosesan lebih lanjut, yaitu proses inverse, dimana diperlukan perhitungan respon receiver function secara berulang-ulang, terutama untuk teknik Monte Carlo yang memerlukan perhitungan bahkan sampai jutaan kali perhitungan. 71
6 Sebagai uji validitas program ini kami menampilkan hasil perhitungan kami dengan menggunakan program yang dikembangkan oleh Professor Bo Holm Jacobsen dari Universitas Aarhaus Denmark (komunikasi personal). Untuk keperluan ini kami membangkitkan receiver function untuk model kecepatan Vp (5,0 6,0 6,5 8,0 km/s) dan kedalaman (6,0 15,0 35,0 km) dengan slowness s/km (Gambar 6). Gambar 5. Receiver function sintetik hasil perhitungan seismogram pada Gambar 4. Diperlukan waktu perhitungan sekitar 1,2 detik pada notebook dengan processor Intel Atom, dengan memori 1 GB. Gambar 6. Receiver function sintetik hasil perhitungan dengan menggunakan program kami dengan program yang digunakan oleh Lab. Seismologi Universitas Aarhaus Denmark. Pada gambar 6 terlihat bahwa hasil perhitungan dengan program ini memberikan hasil yang serupa dengan perhitungan dari metode yang dikembangkan oleh Prof. Jacobsen, terutama untuk fase kedatangan gelombang Ps yaitu pada sekitar detik ke 4. Dengan demikian, secara teori, program ini cukup akurat dan dapat digunakan untuk menghitung receiver function. Program ini dirancang untuk menghitung receiver function dengan sembarang jumlah perlapisan. Namun demikian jumlah lapisan yang bias diberikan di dalam program sangat tergantung nantinya pada kemampuan memori perangkat komputasi yang digunakan. VI. KESIMPULAN Dari penelitian ini telah dihasilkan sebuah program MATLAB untuk menghitung respon receiver function dari model kecepatan di bawah permukaan stasiun pencatat gempabumi. Program ini dapat digunakan untuk menghitung respon IMPLEMENTASI PERHITUNGAN RECEIVER FUNCTION UNTUK GEMPA JAUH (TELESEISMIC) MENGGUNAKAN MATLAB Wiwit Suryanto, Boko Nurdiyanto, Suliyanti Pakpahan 72
7 receiver function dari data pengamatan yang sebelumnya telah dirotasi ke dalam komponen radial dan transversal. Waktu yang diperlukan untuk perhitungan untuk model 4 lapis adalah sekitar 1,2 detik dengan menggunakan notebook Intel Atom dengan memori 1 GB. Untuk model dengan 31 lapisan, diperlukan waktu perhitungan 1,9 detik. Tentu saja waktu perhitungan akan jauh lebih cepat apabila program dijalankan dalam PC standard dengan memori > 2GB. UCAPAN TERIMAKASIH Riset ini dibiayai oleh PUSLITBANG BMKG melalui kegiatan penelitian Analisis Prediktibilitas dan Pengembangan Model Gempabumi dan Tsunami tahun anggaran 2009 DAFTAR PUSTAKA Langston, C. A. (1979). Structure under Mount Rainier, Washington, inferred from teleseismic body waves, J. Geophys. Res. 84, Zhu, L. and Kanamori, H. (2000). Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research, 105 (B2). Schulte-Pelkum, V., Monslave, G., Sheehan, A., Pandey, M. R., Sapkota, S., Bilham, R., and Wu, F. (2005). Imaging the Indian subcontinent beneath the Himalaya, Nature, 435, , doi: /nature Ammon, C. J. (1991). The isolation of receiver e_ects from teleseismic P waveforms. Bulletin of the seismological Society of America, 81(6): pp Jacobsen, B. H. and Svenningsen, L. (2008). Enhanced Uniqueness and Linearity of Receiver function Inversion. Bulletin of the Seismological Society of America, 98(4): pp Phinney, R. A. (1964). Structure of the earth's crust from spectral behavior of long-period body waves. Journal of Geophysical Research, 69: Lay, T. and Wallace, T. C. (1995). Modern Global Seismology, volume 58 of International geophysics series. Academic Press. 8 Clayton, R. and Wiggins, R. (1976). Source shape estimation and deconvolution of teleseismic body waves. Geophys. JR Astron. Soc, 47: Kennett, B. L. N. (1983). Seismic Wave Propagation in Stratifed Media. Cambridge University Press. 10 Shearer, P. M. (1999). Introduction to Seismology. Cambridge University Press. 73
PENENTUAN KEDALAMAN KERAK BUMI DENGAN TEKNIK STACKING H- MENGGUNAKAN MATLAB PADA DATA SINTETIK RECEIVER FUNCTION
PENENTUAN KEDALAMAN KERAK BUMI DENGAN TEKNIK STACKING H- MENGGUNAKAN MATLAB PADA DATA SINTETIK RECEIVER FUNCTION Wiwit Suryanto 1, Drajat Ngadmanto 2, Pupung Susilanto 2 1 Laboratorium Geofisika, Jurusan
Analisa Receiver Function Teleseismic untuk Mendeteksi Moho pada Stasiun Bkb Data Meramex
ISSN:2089 0133 Indonesian Journal of Applied Physics (2013) Vol.3 No.2 Halaman 195 Oktober 2013 Analisa Receiver Function Teleseismic untuk Mendeteksi Moho pada Stasiun Bkb Data Meramex Rian Amukti, Wiwit
STRUKTUR LAPISAN BUMI DI BAWAH G. TANGKUBAN PARAHU BERDASARKAN STUDI SEISMIK STASIUN TUNGGAL
STRUKTUR LAPISAN BUMI DI BAWAH G. TANGKUBAN PARAHU BERDASARKAN STUDI SEISMIK STASIUN TUNGGAL Dannie Hidayat*, **, Lina Handayani**, Christina Widiwijayanti*, **, Suyatno** dan Anto Sanyoto** Dannie Hidayat,
β = kecepatan gelombang S = μ / ρ, μ =
ANALISIS DATA GEOFISIKA MONITORING GUNUNGAPI BERDASARKAN PENGEMBANGAN PEMODELAN ANALITIK DAN DISKRIT (BAGIAN III) : SUATU STUDI KONSEP MEKANISME SUMBER GEMPA Hendra GUNAWAN Sari Pada prinsipnya seismogram
BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Rumusan Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Permukaan bumi mempunyai beberapa lapisan pada bagian bawahnya, masing masing lapisan memiliki perbedaan densitas antara lapisan yang satu dengan yang lainnya, sehingga
SIMULASI PERHITUNGAN WAKTU TEMPUH GELOMBANG DENGAN METODA EIKONAL : SUATU CONTOH APLIKASI DALAM ESTIMASI KETELITIAN HIPOSENTER GEMPA
SIMULASI PERHITUNGAN WAKTU TEMPUH GELOMBANG DENGAN METODA EIKONAL : SUATU CONTOH APLIKASI DALAM ESTIMASI KETELITIAN HIPOSENTER GEMPA Yasa SUPARMAN dkk Pusat Vulkanologi dan Mitigasi Bencana Geologi Badan
Pemograman Ray Tracing Metode Pseudo-Bending Medium 3-D Untuk Menghitung Waktu Tempuh Antara Sumber Dan Penerima
Pemograman Ray Tracing Metode Pseudo-Bending Medium 3-D Untuk Menghitung Waktu Tempuh Antara Sumber Dan Penerima Ahmad Syahputra dan Andri Dian Nugraha Teknik Geofisika, Fakultas Teknik Pertambangan dan
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Magnitudo Gempabumi Magnitudo gempabumi adalah skala logaritmik kekuatan gempabumi atau ledakan berdasarkan pengukuran instrumental (Bormann, 2002). Pertama kali, konsep magnitudo
Fakultas Ilmu dan Teknologi Kebumian
Fakultas Ilmu dan Teknologi Kebumian Program Studi Meteorologi PENERBITAN ONLINE AWAL Paper ini adalah PDF yang diserahkan oleh penulis kepada Program Studi Meteologi sebagai salah satu syarat kelulusan
membahas tentang p nentuan kedalaman kerak bumi dengan teknik stacking H-K meaggunakan MAILAB padl d^t^ s]fl.tetijk receiver
Jumal Metcorologi dan Geofisika merupakan jumal riset yang diterbitkan olch Badan Meteorologi, Klimatologi dan Geofrsika sebagai sarana rmtuk metrdokumentasikan hasil pencapaian perelitian di bidang Meteorologi,
DEKONVOLUSI MENGGUNAKAN METODA NEURAL NETWORK SEBAGAI PRE-PROCESSING UNTUK INVERSI DATA SEISMIK TUGAS AKHIR
DEKONVOLUSI MENGGUNAKAN METODA NEURAL NETWORK SEBAGAI PRE-PROCESSING UNTUK INVERSI DATA SEISMIK TUGAS AKHIR Disusun untuk memenuhi syarat kurikuler Program Sarjana (S1) Program Studi Geofisika Institut
V. HASIL DAN PEMBAHASAN
52 V. HASIL DAN PEMBAHASAN 5.1. Distribusi Hiposenter Gempa dan Mekanisme Vulkanik Pada persebaran hiposenter Gunung Sinabung (gambar 31), persebaran hiposenter untuk gempa vulkanik sangat terlihat adanya
Analisis Mekanisme Gempabumi Sorong 25 September 2015 (WIT) (Preliminary Scientific Report)
Analisis Mekanisme Gempabumi Sorong 25 September 2015 (WIT) (Preliminary Scientific Report) Oleh: Dr. Muzli Email : [email protected] (updated 07 Oktober 2015) Gempabumi Sorong terjadi pada tanggal 25 September
PENGARUH KONFIGURASI STASIUN SEISMIK TERHADAP HASIL ESTIMASI PARAMETER SUMBER GEMPA BUMI MENGGUNAKAN METODE INVERSI WAVEFORM TIGA KOMPONEN
Jurnal Inovasi Fisika Indonesia (IFI) Volume 06 Nomor 02 Tahun 2017, hal 18-22 PENGARUH KONFIGURASI STASIUN SEISMIK TERHADAP HASIL ESTIMASI PARAMETER SUMBER GEMPA BUMI MENGGUNAKAN METODE INVERSI WAVEFORM
BAB I PENDAHULUAN 1.1. Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Pada tahun 2008 Indonesia keluar dari anggota Organization of the Petroleum Exporting Countries (OPEC) dan menjadi net importir minyak. Hal tersebut disebabkan oleh
PEMODELAN PROPAGASI GELOMBANG SEISMIK MENGGUNAKAN METODE BEDA BERHINGGA (FINITE DIFFERENCE)
PEMODELAN PROPAGASI GELOMBANG SEISMIK MENGGUNAKAN METODE BEDA BERHINGGA (FINITE DIFFERENCE) Muhammad Taufiq Rafie, Lantu, Sabrianto Aswad Program Studi Geofisika FMIPA Unhas Email : [email protected]
Kaitan Antara Teori Gelombang dan Jalur Rekahan Gempa Bumi Melalui Array Response Function
Kaitan Antara Teori Gelombang dan Jalur Rekahan Gempa Bumi elalui Array Response Function Deassy Siska., S.Si.,.Sc Universitas alikussaleh Jl. Cot Tgk Nie, Reuleut, Kecamatan uara Batu, Aceh Utara, Indonesia
III. TEORI DASAR. dan mampu dicatat oleh seismograf (Hendrajaya dan Bijaksana, 1990).
17 III. TEORI DASAR 3.1. Gelombang Seismik Gelombang adalah perambatan suatu energi, yang mampu memindahkan partikel ke tempat lain sesuai dengan arah perambatannya (Tjia, 1993). Gerak gelombang adalah
BAB III METODE PENELITIAN. Metode geofisika yang digunakan adalah metode seimik. Metode ini
BAB III METODE PENELITIAN 3.1 METODE SEISMIK Metode geofisika yang digunakan adalah metode seimik. Metode ini memanfaatkan perambatan gelombang yang melewati bumi. Gelombang yang dirambatkannya berasal
BAB 5 KESIMPULAN DAN SARAN
BAB 5 KESIMPULAN DAN SARAN 5.1 Kesimpulan Analisa data gempa melalui inversi waveform tiga komponen dilakukan dengan menggunakan software ISOLA yang bertujuan untuk mengestimasi CMT (Centroid Moment Tensor)
PENENTUAN MODEL KECEPATAN LOKAL 1-D GELOMBANG P DAN S SEBAGAI FUNGSI KEDALAMAN DI WILAYAH SUMATERA BARAT MENGGUNAKAN METODE INVERSI ALGORITMA GENETIKA
PENENTUAN MODEL KECEPATAN LOKAL 1-D GELOMBANG P DAN S SEBAGAI FUNGSI KEDALAMAN DI WILAYAH SUMATERA BARAT MENGGUNAKAN METODE INVERSI ALGORITMA GENETIKA Aprillia Dwi Ardianti Pembimbing: Dr.Madlazim, M.Si
BAB III TEORI DASAR. direfleksikan kembali ke permukaan, sehingga dapat menggambarkan lapisan
BAB III TEORI DASAR 3.1. Konsep Seismik Refleksi Metode seismik memanfaatkan penjalaran gelombang seismik ke dalam bumi. Metode seismik refleksi merupakan metode seismik mengenai penjalaran gelombang elastik
Gambar 3.1 Lintasan Pengukuran
BAB III METODE PENELITIAN 3.1 Metode Penelitian Metode yang digunakan pada penelitian ini adalah metode deskriptif analitik yaitu metode mengumpulkan data tanpa melakukan akuisisi data secara langsung
GEMPABUMI AKIBAT UJICOBA NUKLIR KOREA UTARA AWAL 2016
GEMPABUMI AKIBAT UJICOBA NUKLIR KOREA UTARA AWAL 216 Supriyanto Rohadi, Bambang Sunardi, Pupung Susilanto, Jimmi Nugraha, Drajat Ngadmanto Pusat Penelitian dan Pengembangan BMKG [email protected] The
BAB I PENDAHULUAN I.1. Latar Belakang I.2. Maksud dan Tujuan
BAB I PENDAHULUAN I.1. Latar Belakang Metode seismik merupakan salah satu bagian dari metode geofisika aktif, yang memanfaatkan pergerakan gelombang dalam suatu medium dimana dalam penyelidikannnya di
Penggunaan Bilangan Kompleks dalam Pemrosesan Signal
Penggunaan Bilangan Kompleks dalam Pemrosesan Signal Stefanus Agus Haryono (13514097) 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10
PICKING DATA MIKROSEISMIK
PICKING DATA MIKROSEISMIK Oleh: IDA AYU IRENA HERAWATI, MUTHI A JAMILATUZZUHRIYA MAHYA, DEVIYANTI ARYANI MARYAM, SHIFT: KAMIS,.-5. ASISTEN : THOMAS PANJI ROY SANDI 55 LABORATORIUM SEISMOLOGI, PROGRAM STUDI
ANALISIS PERBEDAAN ESTIMASI PARAMETER TSUNAMI MENGGUNAKAN SOFTWARE EARLY-EST DAN JOKO TINGKIR UNTUK GEMPA BUMI DI INDONESIA
Jurnal Inovasi Fisika Indonesia (IFI) Volume 06 Nomor 03 Tahun 2017, hal 68-72 ANALISIS PERBEDAAN ESTIMASI PARAMETER TSUNAMI MENGGUNAKAN SOFTWARE EARLY-EST DAN JOKO TINGKIR UNTUK GEMPA BUMI DI INDONESIA
Gambar 3.1 Peta lintasan akuisisi data seismik Perairan Alor
BAB III METODE PENELITIAN Pada penelitian ini dibahas mengenai proses pengolahan data seismik dengan menggunakan perangkat lunak ProMAX 2D sehingga diperoleh penampang seismik yang merepresentasikan penampang
INTERPRETASI EPISENTER DAN HIPOSENTER SESAR LEMBANG. Stasiun Geofisika klas I BMKG Bandung, INDONESIA
INTERPRETASI EPISENTER DAN HIPOSENTER SESAR LEMBANG Rasmid 1, Muhamad Imam Ramdhan 2 1 Stasiun Geofisika klas I BMKG Bandung, INDONESIA 2 Fisika Fakultas Sains dan Teknologi UIN SGD Bandung, INDONESIA
Analisis Jarak Microphone Array dengan Teknik Pemrosesan Sinyal Fast Fourier Transform Beamforming
85 Analisis Jarak Microphone Array dengan Teknik Pemrosesan Sinyal Fast Fourier Transform Beamforming Moh Fausi, Agus Naba dan Djoko Santjojo Abstract The main problem in the application of the sound source
III. TEORI DASAR. melalui bagian dalam bumi dan biasa disebut free wave karena dapat menjalar
III. TEORI DASAR 3.1. Jenis-jenis Gelombang Seismik 3.1.1. Gelombang Badan (Body Waves) Gelombang badan (body wave) yang merupakan gelombang yang menjalar melalui bagian dalam bumi dan biasa disebut free
BAB I PENDAHULUAN. laut Indonesia, maka ini akan mendorong teknologi untuk dapat membantu dalam
1 BAB I PENDAHULUAN 1.1. Latar Belakang Semakin banyak penerapan teknologi dalam kehidupan sehari-hari yang berdasarkan perkembangan pemanfaatan energi dan sumber daya alam di laut Indonesia, maka ini
V. INTERPRETASI DAN ANALISIS
V. INTERPRETASI DAN ANALISIS 5.1.Penentuan Jenis Sesar Dengan Metode Gradien Interpretasi struktur geologi bawah permukaan berdasarkan anomali gayaberat akan memberikan hasil yang beragam. Oleh karena
INVERSI GEOFISIKA (geophysical inversion) Dr. Hendra Grandis
INVERSI GEOFISIKA (geophysical inversion) Dr. Hendra Grandis Teknik Geofisika FTTM - ITB Tujuan kuliah Memberikan landasan teori dan konsep pemodelan inversi geofisika (linier dan non- linier) serta penerapannya
PENENTUAN HIPOSENTER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE JANUARI Oleh ZULHAM SUGITO 1
PENENTUAN HIPOSENTER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE JANUARI 2018 Oleh ZULHAM SUGITO 1 1 PMG Stasiun Geofisika Mata Ie Banda Aceh Pendahuluan Aktifitas tektonik di Provinsi Aceh dipengaruhi
Karakteristik mikrotremor dan analisis seismisitas pada jalur sesar Opak, kabupaten Bantul, Yogyakarta
J. Sains Dasar 2014 3(1) 95 101 Karakteristik mikrotremor dan analisis seismisitas pada jalur sesar Opak, kabupaten Bantul, Yogyakarta (Microtremor characteristics and analysis of seismicity on Opak fault
RELOKASI SUMBER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE MARET Oleh ZULHAM SUGITO 1, TATOK YATIMANTORO 2
RELOKASI SUMBER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE MARET 2018 Oleh ZULHAM SUGITO 1, TATOK YATIMANTORO 2 1 Stasiun Geofisika Mata Ie Banda Aceh 2 Bidang Mitigasi Gempabumi dan Tsunami Pendahuluan
III. TEORI DASAR. seismik juga disebut gelombang elastik karena osilasi partikel-partikel
III. TEORI DASAR A. Konsep Dasar Seismik Gelombang seismik merupakan gelombang mekanis yang muncul akibat adanya gempa bumi. Pengertian gelombang secara umum ialah fenomena perambatan gangguan atau (usikan)
Komputasi Geofisika 1: Pemodelan dan Prosesing Geofisika dengan Octave/Matlab
Komputasi Geofisika 1: Pemodelan dan Prosesing Geofisika dengan Octave/Matlab Editor: Agus Abdullah Mohammad Heriyanto Hardianto Rizky Prabusetyo Judul Artikel: Putu Pasek Wirantara, Jeremy Adi Padma Nagara,
Perubahan Fasa dan Amplitudo dari Gelombang Rayleigh akibat Pengaruh Lembah pada Pemodelan 2 Dimensi (2D) Penjalaran Gelombang Seismik
TELAAH Jurnal Ilmu Pengetahuan dan Teknologi Volume 30 (1) 2012 : 13-18 ISSN : 0125-9121 Perubahan Fasa dan Amplitudo dari Gelombang Rayleigh akibat Pengaruh Lembah pada Pemodelan 2 Dimensi (2D) Penjalaran
RINGKASAN EKSEKUTIF. Pembuatan Perangkat Lunak Untuk Memodelkan Deformasi Dasar Laut Akibat Sesar Dengan Slip Homogen Atau Bervariasi
RINGKASAN EKSEKUTIF Pembuatan Perangkat Lunak Untuk Memodelkan Deformasi Dasar Laut Akibat Sesar Dengan Slip Homogen Atau Bervariasi Indonesia merupakan benua maritim dengan aktivitas kegempaan yang sangat
BAB IV PERMODELAN POISSON S RATIO. Berikut ini adalah diagram alir dalam mengerjakan permodelan poisson s ratio.
94 BAB IV PERMODELAN POISSON S RATIO 4.1 Work Flow Permodelan Poisson Ratio Berikut ini adalah diagram alir dalam mengerjakan permodelan poisson s ratio. Selain dari data seismic, kita juga membutuhkan
Ringkasan Tugas Akhir/Skripsi
Ringkasan Tugas Akhir/Skripsi Nama, NPM : Wijayanti R. Hutami, 0906516631 Pembimbing : 1. Dr. Eng. Supriyanto M.Sc. 2. Krisna Andita, S.Si Judul (Indonesia) : Reduksi Noise pada Data Seismik Menggunakan
ANALISA RESIKO GEMPA DENGAN TEOREMA PROBABILITAS TOTAL UNTUK KOTA-KOTA DI INDONESIA YANG AKTIFITAS SEISMIKNYA TINGGI
ANALISA RESIKO GEMPA DENGAN TEOREMA PROBABILITAS TOTAL UNTUK KOTA-KOTA DI INDONESIA YANG AKTIFITAS SEISMIKNYA TINGGI Helmy Darjanto 1 Adhi Muhtadi 2 1 Dosen & Praktisi, Anggota Himpunan Ahli Teknik Tanah
PERBAIKAN MODEL KECEPATAN INTERVAL PADA PRE-STACK DEPTH MIGRATION 3D DENGAN ANALISA RESIDUAL DEPTH MOVEOUT HORIZON BASED TOMOGRAPHY PADA LAPANGAN SF
PERBAIKAN MODEL KECEPATAN INTERVAL PADA PRE-STACK DEPTH MIGRATION 3D DENGAN ANALISA RESIDUAL DEPTH MOVEOUT HORIZON BASED TOMOGRAPHY PADA LAPANGAN SF Skripsi untuk memenuhi sebagian persyaratan mencapai
TOMOGRAFI SEISMIK 3-D PADA LAPANGAN PANAS BUMI X
TOMOGRAFI SEISMIK 3-D PADA LAPANGAN PANAS BUMI X Akino Iskandar,Lantu, Sabrianto Aswad,Andri Dian Nugrah Program Studi Sarjana Geofisika Universitas Hasanuddin, [email protected] SARI BACAAN Perubahan
Perbandingan Metode Model Based Tomography dan Grid Based Tomography untuk Perbaikan Kecepatan Interval
ISSN:2089 0133 Indonesian Journal of Applied Physics (2014) Vol.04 No.1 Halaman 63 April 2014 Perbandingan Metode Model Based Tomography dan Grid Based Tomography untuk Perbaikan Kecepatan Interval ABSTRACT
Sifat gelombang elektromagnetik. Pantulan (Refleksi) Pembiasan (Refraksi) Pembelokan (Difraksi) Hamburan (Scattering) P o l a r i s a s i
Sifat gelombang elektromagnetik Pantulan (Refleksi) Pembiasan (Refraksi) Pembelokan (Difraksi) Hamburan (Scattering) P o l a r i s a s i Pantulan (Refleksi) Pemantulan gelombang terjadi ketika gelombang
III. TEORI DASAR. A. Tinjauan Teori Perambatan Gelombang Seismik. akumulasi stress (tekanan) dan pelepasan strain (regangan). Ketika gempa terjadi,
1 III. TEORI DASAR A. Tinjauan Teori Perambatan Gelombang Seismik Gempa bumi umumnya menggambarkan proses dinamis yang melibatkan akumulasi stress (tekanan) dan pelepasan strain (regangan). Ketika gempa
BAB III MIGRASI KIRCHHOFF
BAB III MIGRASI KIRCHHOFF Migrasi didefinisikan sebagai suatu teknik memindahkan reflektor miring kembali ke posisi subsurface sebenarnya dan menghilangkan pengaruh difraksi, sehingga dapat menggambarkan
BAB III GLOBAL POSITIONING SYSTEM (GPS)
BAB III GLOBAL POSITIONING SYSTEM (GPS) III. 1 GLOBAL POSITIONING SYSTEM (GPS) Global Positioning System atau GPS adalah sistem radio navigasi dan penentuan posisi menggunakan satelit [Abidin, 2007]. Nama
SISTEM KONTROL KONDISI PERALATAN SEISMOGRAPH JARINGAN INATEWS. Oleh : Bidang Instrumentasi Rekayasa dan Kalibrasi Peralatan Geofisika
SISTEM KONTROL KONDISI PERALATAN SEISMOGRAPH JARINGAN INATEWS Oleh : Bidang Instrumentasi Rekayasa dan Kalibrasi Peralatan Geofisika I. PENDAHULUAN Indonesia terletak didaerah yang memiliki resiko bencana
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN 3.1. Lokasi Penelitian Penelitian ini dilakukan di daerah Leuwidamar, kabupaten Lebak, Banten Selatan yang terletak pada koordinat 6 o 30 00-7 o 00 00 LS dan 106 o 00 00-106 o
BAB III TEORI DASAR Tinjauan Umum Seismik Eksplorasi
BAB III TEORI DASAR 3. 1. Tinjauan Umum Seismik Eksplorasi Metode seismik merupakan metode eksplorasi yang menggunakan prinsip penjalaran gelombang seismik untuk tujuan penyelidikan bawah permukaan bumi.
Skrip GNU Octave sederhana untuk menghitung respon Magnetotellurik dengan algoritma rekursif
Prosiding Seminar Nasional Penelitian, Pendidikan, dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 2009 Skrip GNU Octave sederhana untuk menghitung respon Magnetotellurik dengan
MODEL KECEPATAN 1-D GELOMBANG P DAN RELOKASI HIPOSENTER GEMPA BUMI DI BENGKULU MENGGUNAKAN METODE COUPLED VELOCITY HIPOCENTER
Jurnal Fisika. Volume 03 Nomor 02 Tahun 2014, hal 69-73 MODEL KECEPATAN 1-D GELOMBANG P DAN RELOKASI HIPOSENTER GEMPA BUMI DI BENGKULU MENGGUNAKAN METODE COUPLED VELOCITY HIPOCENTER Jihan Nia Shohaya,
BAB III METODE PENELITIAN. Konsep dasar fenomena amplifikasi gelombang seismik oleh adanya
BAB III METODE PENELITIAN 3.1 Metoda Mikrozonasi Gempabumi Konsep dasar fenomena amplifikasi gelombang seismik oleh adanya batuan sedimen yang berada di atas basement dengan perbedaan densitas dan kecepatan
Studi Lapisan Batuan Bawah Permukaan Kawasan Kampus Unsyiah Menggunakan Metoda Seismik Refraksi
Jurnal radien Vol No Juli : - Studi Lapisan Batuan Bawah Permukaan Kawasan Kampus Unsyiah Menggunakan Metoda Seismik Refraksi Muhammad Isa, Nuriza Yani, Jurusan Fisika, FMIPA Universitas Syiah Kuala, Indonesia
FORMULASI HAMILTONIAN UNTUK MENGGAMBARKAN GERAK GELOMBANG INTERNAL PADA LAUT DALAM RINA PRASTIWI
FORMULASI HAMILTONIAN UNTUK MENGGAMBARKAN GERAK GELOMBANG INTERNAL PADA LAUT DALAM RINA PRASTIWI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan
RELOKASI DAN KLASIFIKASI GEMPABUMI UNTUK DATABASE STRONG GROUND MOTION DI WILAYAH JAWA TIMUR
RELOKASI DAN KLASIFIKASI GEMPABUMI UNTUK DATABASE STRONG GROUND MOTION DI WILAYAH JAWA TIMUR Rian Mahendra 1*, Supriyanto 2, Ariska Rudyanto 2 1 Sekolah Tinggi Meteorologi Klimatologi dan Geofisika, Jakarta
PERBANDINGAN POST STACK TIME MIGRATION METODE FINITE DIFFERENCE DAN METODE KIRCHOFF DENGAN PARAMETER GAP DEKONVOLUSI DATA SEISMIK DARAT 2D LINE SRDA
Youngster Physics Journal ISSN : 2302-7371 Vol. 4, No. 1, Januari 2015, Hal 79-86 PERBANDINGAN POST STACK TIME MIGRATION METODE FINITE DIFFERENCE DAN METODE KIRCHOFF DENGAN PARAMETER GAP DEKONVOLUSI DATA
BAB II PERAMBATAN GELOMBANG SEISMIK
BAB II PERAMBATAN GELOMBANG SEISMIK.1 Teori Perambatan Gelombang Seismik Metode seismik adalah sebuah metode yang memanfaatkan perambatan gelombang elastik dengan bumi sebagai medium rambatnya. Perambatan
PENERAPAN METODE F-K DEMULTIPLE DALAM KASUS ATENUASI WATER-BOTTOM MULTIPLE
PENERAPAN METODE F-K DEMULTIPLE DALAM KASUS ATENUASI WATER-BOTTOM MULTIPLE APPLICATION OF F-K DEMULTIPLE METHODS TO ATTENUATE WATER-BOTTOM MULTIPLE Subarsyah dan Sahudin Pusat Penelitian dan Pengembangan
Analisis Mekanisme Sumber Gempa Vulkanik Gunung Merapi di Yogyakarta September 2010
Analisis Mekanisme Sumber Gempa Vulkanik Gunung Merapi di Yogyakarta September 2010 Emilia Kurniawati 1 dan Supriyanto 2,* 1 Laboratorium Geofisika Program Studi Fisika FMIPA Universitas Mulawarman 2 Program
Gambar 1.1 Cincin Newton didesain interferensi optik yang menunjukkan interferensi optik pada lensa udara dan udara kaca (Schuster, 2008).
BAB I PENDAHULUAN 1.1. Latar Belakang Telah lama ilmuwan menggunakan interferensi gelombang cahaya untuk mengakses sifat-sifat optik misalnya ketebalan lensa, geometri lensa, dan indeks bias lensa. Salah
BAB III METODE PENELITIAN
3.1. Kerangka Pemikiran BAB III METODE PENELITIAN Permasalahan yang akan dijawab atau tujuan yang ingin dicapai pada penelitian ini adalah untuk melakukan prakiraan beban listrik jangka pendek atau untuk
FORMULA EMPIRIS PENENTUAN MAGNITUDO MENGGUNAKAN TIGA DETIK PERTAMA GELOMBANG P (STUDI KASUS STASIUN CISI, GARUT JAWA BARAT)
FORMULA EMPIRIS PENENTUAN MAGNITUDO MENGGUNAKAN TIGA DETIK PERTAMA GELOMBANG P (STUDI KASUS STASIUN CISI, GARUT JAWA BARAT) Azhari Himawan *1, Agus Marsono 1, Muzli 2 1 Sekolah Tinggi Meteorologi Klimatologi
Analisis Fisis Aktivitas Gunung Talang Sumatera Barat Berdasarkan Karakteristik Spektral dan Estimasi Hiposenter Gempa Vulkanik
Analisis Fisis Aktivitas Gunung Talang Sumatera Barat Berdasarkan Karakteristik Spektral dan Estimasi Gempa Vulkanik Welayaturromadhona, Adi Susilo Ph.D, Dr. Hetty Triastuty 2 ) Jurusan Fisika FMIPA Universitas
MAKALAH TRANSFORMASI FOURIER MATA KULIAH PENGOLAHAN CITRA OLEH: 1. RISKA NOR AULIA ( ) 2. DYA AYU NINGTYAS ( )
MAKALAH TRANSFORMASI FOURIER MATA KULIAH PENGOLAHAN CITRA OLEH: 1. RISKA NOR AULIA (08 615 013) 2. DYA AYU NINGTYAS (08 615 017) JURUSAN TEKNOLOGI INFORMASI POLITEKNIK NEGERI SAMARINDA 2010 TRANSFORMASI
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN 3.1 Lokasi Akuisisi Data Seismik Akuisisi data seismik dilaksanakan pada bulan April 2013 dengan menggunakan Kapal Riset Geomarin III di kawasan batas laut dan Zona Ekonomi Eksklusif
III. TEORI DASAR. pada permukaan kemudian berpropagasi ke bawah permukaan dan sebagian
III. TEORI DASAR III.1. Konsep Seismik Refleksi Metode seismik refleksi merupakan salah satu metode geofisika yang menggunakan perambatan gelombang elastik yang dihasilkan oleh suatu sumber pada permukaan
BAB 3 ALGORITMA DAN MODEL 2K FFT-IFFT CORE
BAB 3 ALGORITMA DAN MODEL 2K FFT-IFFT CORE Pada Bab ini dibahas mengenai penentuan algoritma, menentukan deskripsi matematis dari algoritma, pembuatan model fixed point menggunakan Matlab, dan pengukuran
BAB IV HASIL DAN PEMBAHASAN
BAB IV HASIL DAN PEMBAHASAN 4.1. Pengujian Perangkat Lunak Dalam mengetahui perangkat lunak yang dibuat bisa sesuai dengan metode yang dipakai maka dilakukan pengujian terhadap masin-masing komponen perangkat.
BAB IV HASIL DAN PEMBAHASAN
23 BAB IV HASIL DAN PEMBAHASAN 4.1 Visualisasi Gelombang di Dalam Domain Komputasi Teknis penelitian yang dilakukan dalam menguji disain sensor ini adalah dengan cara menembakkan struktur sensor yang telah
BAB II TEORI DASAR (2.1) sin. Gambar 2.1 Prinsip Huygen. Gambar 2.2 Prinsip Snellius yang menggambarkan suatu yang merambat dari medium 1 ke medium 2
BAB II TEORI DASAR.1 Identifikasi Bentuk Gelombang Perambatan gelombang pada media bawah permukaan mengikuti beberapa prinsip fisika sebagai berikut : a. Prinsip Huygen menyatakan bahwa setiap titik yang
ANALISIS SEISMOGRAM TIGA KOMPONEN TERHADAP PARAMETER SUMBER GEMPA DI SUMBAWA NUSA TENGGARA BARAT
ANALISIS SEISMOGRAM TIGA KOMPONEN TERHADAP PARAMETER SUMBER GEMPA DI SUMBAWA NUSA TENGGARA BARAT Muhlis, Bagus Jaya Santosa Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi
BAB III STUDI KASUS 1 : Model Geologi dengan Struktur Lipatan
BAB III STUDI KASUS 1 : Model Geologi dengan Struktur Lipatan Dalam suatu eksplorasi sumber daya alam khususnya gas alam dan minyak bumi, para eksplorasionis umumnya mencari suatu cekungan yang berisi
PANDUAN PRAKTIS PENGUKURAN DURASI RUPTURE GELOMBANG PRIMER SECARA MANUAL MENGGUNAKAN SOFTWARE SEISGRAM2K
PANDUAN PRAKTIS PENGUKURAN DURASI RUPTURE GELOMBANG PRIMER SECARA MANUAL MENGGUNAKAN SOFTWARE SEISGRAM2K Madlazim Pusat Studi Sains Kebumian Jurusan Fisika FMIPA Universitas Negeri Surabaya (UNESA) 1.
GELOMBANG SEISMIK Oleh : Retno Juanita/M
GELOMBANG SEISMIK Oleh : Retno Juanita/M0208050 Gelombang seismik merupakan gelombang yang merambat melalui bumi. Perambatan gelombang ini bergantung pada sifat elastisitas batuan. Gelombang seismik dapat
IMPLEMENTASI PENGURANGAN NOISE SEISMIK MENGGUNAKAN FILTER WIENER PADA ALGORITMA DETEKSI OTOMATIS SINYAL GEMPABUMI
Implementasi Pengurangan Noise... (Sriyanto dan Sipayung) IMPLEMENTASI PENGURANGAN NOISE SEISMIK MENGGUNAKAN FILTER WIENER PADA ALGORITMA DETEKSI OTOMATIS SINYAL GEMPABUMI Sesar Prabu Dwi Sriyanto *, Renhard
PENGENALAN POLA GELOMBANG SEISMIK DENGAN MENGGUNAKAN WAVELET PADA AKTIVITAS GUNUNG MERAPI
PENGENALAN POLA GELOMBANG SEISMIK DENGAN MENGGUNAKAN WAVELET PADA AKTIVITAS GUNUNG MERAPI Evrita Lusiana Utari Fakultas Sains & Teknologi Prodi Teknik Elektro UNRIYO ABSTRAK Maksud dan tujuan penulisan
BAB III TEORI DASAR. 3.1 Tinjauan Teori Perambatan Gelombang Seismik. Seismologi adalah ilmu yang mempelajari gempa bumi dan struktur dalam bumi
20 BAB III TEORI DASAR 3.1 Tinjauan Teori Perambatan Gelombang Seismik Seismologi adalah ilmu yang mempelajari gempa bumi dan struktur dalam bumi dengan menggunakan gelombang seismik yang dapat ditimbulkan
ANALISIS DEKOMPOSISI SPEKTRAL DATA SEISMIK DENGAN TRANFORMASI WAVELET KONTINU TESIS. Oleh MARZUKI SINAMBELA /TE
ANALISIS DEKOMPOSISI SPEKTRAL DATA SEISMIK DENGAN TRANFORMASI WAVELET KONTINU TESIS Oleh MARZUKI SINAMBELA 087034024/TE FAKULTAS TEKNIK UNIVERISTAS SUMATERA UTARA MEDAN 2011 ANALISIS DEKOMPOSISI SPEKTRAL
INVERSI 1-D PADA DATA MAGNETOTELLURIK DI LAPANGAN X MENGGUNAKAN METODE OCCAM DAN SIMULATED ANNEALING
Inversi 1-D... INVERSI 1-D PADA DATA MAGNETOTELLURIK DI LAPANGAN X MENGGUNAKAN METODE OCCAM DAN SIMULATED ANNEALING R. Aldi Kurnia Wijaya 1), Ayi Syaeful Bahri 1), Dwa Desa Warnana 1), Arif Darmawan 2)
INVERSI SEISMIK MODEL BASED DAN BANDLIMITED UNTUK PENDEKATAN NILAI IMPEDANSI AKUSTIK TESIS
INVERSI SEISMIK MODEL BASED DAN BANDLIMITED UNTUK PENDEKATAN NILAI IMPEDANSI AKUSTIK TESIS Karya tulis sebagai salah satu syarat memperoleh gelar Magister dari Departemen Fisika Institut Teknologi Bandung
BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR
A V PERAMATAN GELOMANG OPTIK PADA MEDIUM NONLINIER KERR 5.. Pendahuluan erkas (beam) optik yang merambat pada medium linier mempunyai kecenderungan untuk menyebar karena adanya efek difraksi; lihat Gambar
Pre Stack Depth Migration Vertical Transverse Isotropy (PSDM VTI) pada Data Seismik Laut 2D
Pre Stack Depth Migration Vertical Transverse Isotropy (PSDM VTI) pada Data Seismik Laut 2D Oleh: Thariq Guntoro 1110100004 Pembimbing: Prof. Dr. rer. nat Bagus Jaya Santosa, S. U Jurusan Fisika Institut
PERANCANGAN PENGUKUR MAGNITUDO DAN ARAH GEMPA MENGGUNAKAN SENSOR ACCELEROMETER ADXL330 MELALUI TELEMETRI
Jurnal Sistem Komputer Unikom Komputika Volume 1, No.2-2012 PERANCANGAN PENGUKUR MAGNITUDO DAN ARAH GEMPA MENGGUNAKAN SENSOR ACCELEROMETER ADXL330 MELALUI TELEMETRI Hidayat 1, Usep Mohamad Ishaq 2, Andi
PENDAHULUAN I.1 Latar Belakang
PENDAHULUAN I.1 Latar Belakang Banyak studi menunjukkan bahwa kerusakan infrastruktur akibat gempa bumi akan lebih besar terjadi pada wilayah yang tanahnya tidak terkonsolidasi dengan baik. Tanah yang
Analisis Daerah Dugaan Seismic Gap di Sulawesi Utara dan sekitarnya
JURNAL MIPA UNSRAT ONLINE 3 (1) 53-57 dapat diakses melalui http://ejournal.unsrat.ac.id/index.php/jmuo Analisis Daerah Dugaan Seismic Gap di Sulawesi Utara dan sekitarnya Sandy Nur Eko Wibowo a,b*, As
BAB III PENGOLAHAN DATA
BAB III PENGOLAHAN DATA Tahap pengolahan data pada penelitian ini meliputi pemilihan data penelitian, penentuan titik pengamatan pada area homogen dan heterogen, penentuan ukuran Sub Citra Acuan (SCA)
BAB 4 IMPLEMENTASI DAN EVALUASI
BAB 4 IMPLEMENTASI DAN EVALUASI 4.1 Spesifikasi Kebutuhan Program Untuk menjalankan aplikasi ini ada beberapa kebutuhan yang harus dipenuhi oleh pengguna. Spesifikasi kebutuhan berikut ini merupakan spesifikasi
AVO FLUID INVERSION (AFI) UNTUK ANALISA KANDUNGAN HIDROKARBON DALAM RESEVOAR
AVO FLUID INVERSION (AFI) UNTUK ANALISA KANDUNGAN HIDROKARON DALAM RESEVOAR Muhammad Edisar 1, Usman Malik 1 1 Computational of Physics and Earth Science Laboratory Physic Dept. Riau University Email :
Pencitraan Tomografi Atenuasi Seismik 3-D Gunung Guntur Menggunakan Metode Spectral Fitting dengan Summary Ray TUGAS AKHIR
Pencitraan Tomografi Atenuasi Seismik 3-D Gunung Guntur Menggunakan Metode Spectral Fitting dengan Summary Ray TUGAS AKHIR Disusun untuk memenuhi syarat kurikuler Program Sarjana Geofisika Oleh : MUHAMMAD
BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut.
BAB III PEMBAHASAN Pada bab ini akan dibahas tentang penurunan model persamaan gelombang satu dimensi. Setelah itu akan ditentukan persamaan gelombang satu dimensi dengan menggunakan penyelesaian analitik
