PERANCANGAN ALTERNATOR KECEPATAN RENDAH YANG DI PAKAI PADA TURBIN ANGIN TIPE HORIZONTAL MULTI BLADE DI PANTAI ALUE NAGA, ACEH BESAR

Ukuran: px
Mulai penontonan dengan halaman:

Download "PERANCANGAN ALTERNATOR KECEPATAN RENDAH YANG DI PAKAI PADA TURBIN ANGIN TIPE HORIZONTAL MULTI BLADE DI PANTAI ALUE NAGA, ACEH BESAR"

Transkripsi

1 PERANCANGAN ALTERNATOR KECEPATAN RENDAH YANG DI PAKAI PADA TURBIN ANGIN TIPE HORIZONTAL MULTI BLADE DI PANTAI ALUE NAGA, ACEH BESAR Analdi Muttaqin 1) Mahdi Syukri 2) Ramdhan Halid Siregar 3) Jurusan Teknik Elektro Fakultas Teknik Universitas Syiah Kuala Nalditokek3112@gmail.com ABSTRACT Engine power plant that is commonly used is the AC voltage generator engine, which can be manifold, mainly driven turbine engine, diesel engine or propeller engines. The focus of this research is to utilize renewable energy is wind energy. With the use of wind turbines as prime movers multibalde alternator on wind power. The wind energy utilization, conducted several stages, namely: 1) Determine the amount of blade 2) Making research procedure 3) Finding local wind data Alue Naga 4) Apply tools 5) Record hasi research 6) Evaluation. The purpose of this research is how to make a car alternator as wind power. Methodology used is experiment with one shot case study in which the object of the study were given specific treatment then measured. The data analysis technique used is descriptive analysis. Based on the results of measurements and observations of the use of a car alternator wind power, automobile alternator can output DC power by utilizing wind power. With a wind speed of 3.5 m / s to 6.2 m / sec will rotate the propeller rotation speed alternator that produces 500 rpm to 1100 rpm and an average output voltage of volts. Keywords: Alternator, multiblade Turbine, One shot case study 1. Pendahuluan Sistem Konversi Energi Angin (SKEA) berperan dalam mengubah energi angin menjadi energi primer yang dapat dikonsumsi masyarakat. Sistem konversi energi angin adalah suatu sistem yang dapat merubah energi kinetik dari angin menjadi energi mekanis untuk memutar alternator. Penelitian 1 ini merancang, membuat dan menguji prototipe SKEA menggunakan turbin horizontal tipe multiblade untuk ditempatkan di sekitar pantai Alue Naga sebagai penerangan para pemancing ikan pada malam hari. Penggunaan alternator mobil ini merupakan sebagai alat yang digunakan untuk salah satu pembangkit listrik alternatif yang ramah lingkungan, tidak menimbulkan polusi, biaya perawatan yang murah atau bahkan tanpa memerlukan perawatan yang berarti tanpa memerlukan bahan bakar, karena sumber energinya diperoleh dari alam secara cuma-cuma. Penelitian ini mengusulkan alternatif turbin horizontal tipe multiblade karena lebih cocok untuk keadaan di daerah Alue Naga yang mempunyai kecepatan angin yang bervariasi dan dapat di katakan rendah sebagai sistem konversi tenaga angin dan alternator mobil sebagai pembangkit listrik. Alternato r yang digunakan merupakan alternator yang telah dimodifikasi menjadi generator sinkron low speed sehingga dapat menghasilkan tegangan listrik pada putaran rendah.[5] 2. Dasar teori 2.1 Turbin angin Turbin angin merupakan mesin dengan sudu berp utar yang mengkonversi energi kinetik angin menjadi energy mekanik. Turbin angin sumbu horizontal merupakan turbin angin yang sumbu rotasi rotornya paralel terhadap permukaan tanah. Turbin angin sumbu horizontal memiliki poros rotor utama dan generator listrik dipuncak menara dan diarahkan menuju dari arah datangnya angin untuk dapat memanfaatkan energi angin. Dilihat dari jumlah sudu, turbin angin sumbu horizontal terbagi menjadi: 1. Turbin angin satu sudu (single blade) 2. Turbin angin dua sudu (double blade) 3. Turbin angin tiga sudu (three blade) 4. Turbin angin banyak sudu (multi blade)

2 Gambar 2.1 Jenis turbin angin berdasarkan jumlah sudu 2.2 Perancangan turbin Dimensi dari turbin angin dapat dicari dengan mengasumsikan daya yang dihasilkan dengan kecepatan angin yang terjadi disekitar kita. Dengan rumus daya (P) pada turbin angin sebagai berikut: Pt = Cpr...(2.1) Menentukan rotor power coeficient (cpr) Rotor Power Coeficient, koefisien daya akan dihitung dengan menggunakan teori strip untuk rasio kecepatan rotor tertentu. Ini memberikan koefisien daya rotor untuk kecepatan angin yang berbeda pada kecepatan rotor tetap atau untuk kecepatan rotor yang berbeda pada satu kecepatan angin. Cpr = λ Cq.(2.2) Tip speed ratio Tip speed ratio (rasio kecepatan ujung)adala h rasio kecepatan ujung rotor terhadap kecepatan angi n bebas. Untukkecepatanangin nominal yang tertentu, tip speed ratio akan berpengaruh pada kecepatan putar rotor. Tipe speed ratio dihitung dengan persamaan: λ =...(2.3) Dimana: λ =tipe speed ratio D = diameter rotor (m) n = putaran rotor (rpm) v = kecepatanangin (m/s) Gambar 2.2 Torsi rotor untuk berbagai jenis turbin angin Menentukan rotor torque coeficient (cq) Rotor Torque Coeficient (Cq) adalah torsi yang dihasilkan oleh rotor turbin yang digunakan untuk menghitung Rotor Power Coeficient (Cpr). Rotor Torque Coeficient (Cq) dapat dicari dengan persamaan sebagai berikut: Cq = 2.3 Alternator.(2.5) Alternator mobil merupakan sebuah alat pembangkit tenaga listrik yang berfungsi sebagai pensupply energy listrik untuk kebutuhan kelistrikan mobil seperti lampu penerangan, lampu indicator, pengapian,injeksi bahan bakar dan peralatan listrik lainnya. Alternator mempunyai konstruksi yang sederhana, pada alternator mobil terdapat beberapa keuntungan bila dibandingkan dengan mesin listrik lainnya. Keuntungannya adalah pada alternator ialah tidak terdapat bunga api antara sikat- sikat dan slip ring, disebabkan tidak terdapat komutator yang dapat menyebabkan sikat menjadi aus. Rotornya lebih ringan dan tahan terhadap putaran tinggi, dan silicon diode (rectifer) mempunyai sifat penyearah arus, serta dapat mencegah kembalinya arus dari baterai ke alternator [4] Stator Gambar 2.3 Alternator Stator ( armature) adalah bagian yang berfungsi sebagai tempat untuk menerima induksi magnet dari rotor. Arus AC yang menuju ke beban disalurkan melalui stator. Komponen ini berbentuk sebuah rangka silinder dengan lilitan kawat konduktor yang sangat banyak. Stator terdiri dari beberapa komponen utama, yaitu: Rangka stator, Inti Stator, Alur (slot) dan Gigi, Kumparan Stator (Kumparan Jangkar). Grafik diatas menunjukkan variasi nilai tip speed ratio dan koefisien daya cp untuk berbagai macam turbin angin.[2] Torsi dari sebuah kincir angin dapat dihitung menggunakan persamaan : Q =.(2.4) 2

3 Faktor Distribusi (Kd) Lilitan jangkar pada tiap fasa tidak dipusatkan hanya pada satu alur/slot tetapi didistribusikan pada beberapa alur/slot menyebabkan suatu factor yang disebut factor distribusi (Kd) yang dapat dihitung dengan persamaan : = Dengan / /.(2.6) Gambar 2.4 Stator pada alternator Kumparan jangkar Kumparan jangkar (stator) yang umum digunakan oleh generator sinkron tiga fasa, ada dua tipe yaitu : Kumparan satu lapis (Single Layer Winding). Kumparan berlapis ganda ( Double Layer Winding). Kumparan satu lapis (Single Layer Winding), Gambar 2.5 memperlihatkan kumparan satu lapis, karena hanya ada satu sisi lilitan didalam masingdimulai pada masing alur. Bila kumparan tiga phasa Sa, Sb, dan Sc dan berakhir di Fa, Fb, dan Fc bisa disatukan dalam dua cara, yaitu hubungann bintang dan segitiga. Antar kumparan phasa dipisahkan sebesar 120 derajat listrik atau 60 derajat mekanik, satu siklus GGL penuh akan dihasilkan bila rotor dengan 4 kutub berputar 180 derajat mekanis. Satu sikluss GGL penuh menunjukkan 360 derajat listrik. Gambar 2.5 Kumparan Satu Lapis Generator Sinkron Tiga Phasa. Kumparan berlapis ganda Gambar 2.6 memperlihatkan bagian dari sebuah kumparan jangkar yang secara umum banyak digunakan. Pada masing-masing alur ada dua sisi lilitan dan masing-masing lilitan memiliki lebih dari satu putaran. Gambar 2.6 Kumparan Berlapis Ganda Generatorr Sinkron Tiga Phasa. = m = Banyaknya alue/fasa/kutub Faktor Kisar (Kp) Gambar 2.7, memperlihatkan bentuk kisar dari sebuah kumparan, bila sisi lilitan diletakkan dalam alur 1 dan 7 disebut kisar penuh, sedangkan bila diletakkan dalam alur 1 dan 6 disebut kisar pendek, karena ini sama dengan 5/6 kisar kutub. Gambar 2.7 Kisar Kumparan Sedangkan kisar pendek dengan sudut 30 derajat listrik, seperti diperlihatkan pada gambar 2.7b, maka tegangan resultannya adalah: Kp = Cos (30 0 ) / (2).(2.8) Dimana Po adalah kisar kumparan dalam derajat listrik. Besarnya tegangan induksi yang timbul pada kumparan jangkar yang ada di stator akan mengikuti persamaan : E = 4,44 x Kd x Kp x f x φ x T Volt/phasa.(2.9) Dimana: Kp = Faktor kisar, Kd = Faktor distribusi, f = frekuensi dalam Hz atau cps, φ = fluks/kutub dalam weber, T = banyaknya lilitan/phasa = ½ Z Rotor.(2.7) Rotor berfungsi untuk membangkitkan medan magnet. Rotor berputar bersama poros, karena gerakannya maka disebut alternator dengan medan magnet berputar. Rotor terdiri dari inti kutub ( pole core), kumparan medan, slipring, poros dan lain lain. Inti kutub berbentuk seperti cakar dan didalamnya terdapat kumparan medan. 3

4 mengalir dengan arah yang berlawanan. Arus yang membentuk gelombang sinus disebut "arus bolak- 360 pada grafik berlaku balik satu fase". Perubahan untuk satu siklus dan banyaknya perubahan yang terjadi pada setiap detik disebut dengan "frekuensi" [7] Gambar 2.8 Rotor pada alternator Rotor terdiri dari tiga komponenn utama yaitu Slip Ring, Kumparan Rotor (Kumparan Medan) dan Poros Rotor.Rotor pada generator sinkron pada dasarnya adalah sebuah elektromagnet yang besar. Kutub medan magnet rotor dapat berupa silent pole (kutub menonjol) dan non silent pole (kutub silinder) Sleepring atau cincin geser Dibuat dari bahan kuningan atau tembaga yang dipasang pada poros dengan memakai bahan isolasi. Sleepring ini berputar secara bersama sama dengan poros (as) dan rotor. Banyaknya sleepring ada 2 dan pada tiap tiap sleepring dapat menggeser borstel positif dan borstel negatif, guna penguatan (Excitation Current) ke lilitan magnet pada rotor Rectifier Rectifier adalah sebuah penyearah tegangan output dari alternator. Rectifier (penyearah) terdiri dari rangkaian jembatan dioda yang berfungsi untuk menyearahkan arus listrik. Didalam alternator terdapat 2 buah rectifier, yaitu rectifier negatif dan rectifier positif. Rectifier positif ditandai dengan adanya terminal B pada alternator. Terminal B pada alternator biasannya berupa baut yang dibuat lebih panjang dan atau lebih besar. Gambar 2.10 Gelombang Sinus Pembangkitan Arus Bolak-Balik Satu Fase Masing-masing kumparan A, B, dan C berjarak 120. Pada saat magnet berputar diantara mereka, akan bangkit arus bolak-balik pada masing menunjukkan masing kumparan. Gambar hubungan antara ketiga arus bolak-balik dengan magnet. Listrik yang mempunyai tiga arus bolak-balik seperti ini disebut "Arus bolak-balik tiga phasa", alternator mobil membangkitkan arus bolak-balik tiga phasa. Biasanya, komponen komponen kelistrikan mobil menggunakan tegangan listrik 12 atau 24 volt dan alternator untuk sistem pengisian harus menghasilkan tegangan tersebut. Listrik dibangkitkan pada saat magnet diputarkan di dalam kumparan dan besarnya tergantung padaa kecepatan putaran magnet. Jadi, melalui proses induksi elektromagnet, semakin cepat kumparan memotong garis-garis gaya magnet semakin besar kumparan membangkitkan gaya gerak listrik. Selanjutnya dapat kita lihat bahwa tegangan berubah-ubah tergantungg pada kecepatan putaran magnet. Untuk memperoleh tegangan yang tetap, maka diperlukan putaran magnet yang tetap, ini tidak mungkin dipertahankan karena mesin akan berputar dengan kecepatan yang tidak tetap sesuai dengan kondisi pengemudian. Untuk mengatasi kesulitan ini, sebagai pengganti magnet permanen maka dipakai elektromagnet untuk mempertahankan tegangan supaya tetap. Elektromagnet, garis gaya magnetnya berubah-ubah sesuai dengan putaran alternator. Gambar 2.9 Prinsip diode pada stator 2.4 Prinsip kerja alternator Pada saat magnet (rotor) berputar di dalam kumparan stator akan timbul tegangan diantara kedua ujung kumparan, ini akan memberikan kenaikan pada arus bolak-balik. Hubungan antara arus yang dibangkitkan dalam kumparan dengan posisi magnet adalah seperti yang ditunjukkan pada gambar 2.10 Arus tertinggi akan bangkit pada saat kutub N dan S mencapai jarak yang terdekat dengann kumparan. Bagaimanapun setiap setengah putaran arus akan 4

5 3. Metodelogi penelitian 3.1 Tahapan penelitian Perancangan turbin pada software autocad Tahapan-tahapan yang dilakukan dalam penelitian ini adalah berupa studi literatur; desain alat dan pembuatan alat, hasil dan analisa data. Gambar 3.1 menunjukkan flow chart dari penelitian yang akan dilakukan. TAMPAK DEPAN 0,15 m 0,30 m 0,90 m 1 m 10 m Gambar 3.3 Perancangan turbin pada software autocad 3.4 Rangkaian sistem alternator Langkah awal dari perencanaan adalah membuat rangkaian dari sistem alternator yang akan dimodifikasi. Rangkaian ini menghubungkan alternato r mobil hingga kebeban. Bentuk rangkaian diperlihatk an pada Gambar 3.4. Gambar 3.1 Flow chat penelitian 3.2 Waktu dan lokasi penelitian Penelitian dilakukakan pada bulan April Mei, yang berlokasi di Laboratorium Elektronika Daya Jurusan Teknik Elektro Fakultas Teknik UNSYIAH untuk desain dan pembuatan alat serta lokasi penelitiannya dilaksanakan di pantai Alue Naga, Aceh Besar. 3.3 Perancangan turbin angin Pengukuran kecepatan angin Pengukuran kecepatan angin secara langsung dipantai Alue Naga sangat diperlukan sebagai data awal perancangan turbin. Gambar 3.4 Skema pengawatan alternator mobil Alternator membangkitkan arus listrik dengan cara memutarkan magnet listrik (rotor coil) di dalam kumparan stator (stator coil). Saat magnet berputar dialam kumparan maka akan timbul arus bolak-balik pada kumparan. Pada alternator terdapat 3 kumparan yang berjarak masing-masing 120o. Pada saat alternator berputar pada masing-masing kumparan akan timbul arus bolak-balik, yang berarti alternator membangkitkan arus bolak-balik 3 phase. Ujung dari tiap kumparan dihubungkan menjadi satu, dimana sambungan/titik tengah kumoaran itu disebut titik netral (netral point). Kelistrikan untuk pengisian baterai membutuhkan arus searah, oleh karena itu diperlukan dioda yang berfungsi untuk merubah arus bolak-balik (AC) menjadi arus searah (DC). yang dihasilkan alternator bervariasi bergantung dari kecepatan putaran dan banyaknya beban. Untuk itulah digunakan regulator yang berfungsi untuk menjaga tegangan output alternator tetap konstan. Gambar 3.2 Hasil pengukuran angin 5

6 3.5 Proses modifikasi alternator Pada proses modifikasi alternator, dilakukan beberapa tahapan sehingga dalam penelitian ini didapatkan hasil yang lebih ekonomis dan efisien. Secara garis besar proses tahapan tersebut terbagi dua, yaitu perhitungan parameter alternator dan tahapan modifikasi alternator tersebut Perhitungan parameter alternator Beberapa parameter yang diketahui sebelum melakukan proses modifikasi yaitu harus diketahui beberapa nilai kuat medan, fluks magnet yang dihasilkan, hambatan kawat, serta tegangan induksi. Semua parameter tersebut dapat kita hitung dengan persamaan yang telah disebutkan pada bab Tahapan modifikasi alternator Tahapan modifikasi alternator yang pertama yaitu mengukur diameter kawat tembaga yang belum dimodifikasi. Selanjutnya menghitung banyaknya jumlah lilitan yang terdapat pada kumparan stator dan rotor. Dengan hasil parameter yang didapat, kita dapat menentukan besar nya diameter kawat tembaga yang akan dimodifikasi untuk mendapatkan nilai tegangan output sesuai dengan yang diinginkan. Dan dari hasil modifikasi alternator dapat dioperasikan dengan putaran yang lebih rendah namun menghasilkan tegangan output yang lebih besar dibandingkan dengan tegangan output alternator sebelum dimodifikasi. 4. Analisa dan pembahasan 4.1 Hasil Hasil dari penelitian ini berupa hasil pengujian alternator sebelum dan sesudah dimodifikas i. Dari data tersebut didapatkan perbandingan kinerja alternator tersebut. 4.2 Data hasil perhitungan Data hasil perhitungan merupakan data yang didapatkan dari analisis menggunakan persamaa n pada bab2. Perhitungan tersebut terdiri dari beberapa parameter yang akan menjadi data kinerja turbin angin dan alternator Hasil pada perhitungan turbin Daya angin P = 1/2 x ρ x A x V 3 = 1/2 x 1,2 x 2,82 x (3,5) 3 = 72,54 W Tipe speed ratio λ = =,, 3.6 Perancangan rangkaian pengujian alat =, Untuk mengetahui hasil kenerja dari alternator yang akan dimodifikasi perlu dilakukan pengujian kinerja alternator sebelum dan sesudah dimodifikasi. Alternator mobil digerakkan oleh motor DC yang dapat diatur kecepatannya. Selanjutnya kecepatan putaran alternator diatur untuk menghasilkan tegangan nominal. Sehingga didapatkan perbandingan kinerja alternator sebelum dan sesudah dimodifikasi. = 0,89 Q = = (, ) ( ) (, ) = 15,50 N/m Cq = Gambar 3.5 Pengujian kinerja alternator =,,, (, ), = 0,75 Cp = λ x Cq 6 = 0,89 x 0,75

7 = 0, Hasil perhitungan pada alternator sesudah dimodifikasi Daya pada turbin Pt = Cp x P = 0,67 x 72,54 = 48,6 W Hasil Perhitungan Pada Alternator Sebelum Dimodifikasi Gambar 4.2 Kumparan pada stator sesudah dimodifikasi Tabel 4.2 Pengukuran alternator yang sudah dimodifikasi Gambar 4.1 Kumparan pada stator sebelum dimodifikasi Tabel 4.1 Pengukuran alternator yang belum dimodifikasi NO Kecepatan Alternator (RPM) 1 Fasa 3 Fasa ,07 3, ,49 4, ,90 5, ,32 5, ,74 6, ,15 7, ,57 7,91 Dalam penelitian ini, jika melihat hasil pengukuran diatas dengan berbagai macam variasi putaran kecepatan alternator diikuti dengan hasil tegangan yang berbeda. Hal ini menunjukkan bahwa tegangan berbanding lurus dengan kecepatan putar alternator. NO Kecepatan Alternator (RPM) 1 Fasa 3 Fasa ,15 14, , , , , , ,21 Dalam penelitian ini, jika melihat hasil pengukuran diatas dengan berbagai macam variasi putaran kecepatan alternator diikuti dengan hasil tegangan yang berbeda. Hal ini menunjukkan bahwa tegangan berbanding lurus dengan kecepatan putar alternator. Pada pengukuran kali ini tegangannya lebih besar dari pada sebelum modifikasi. Hal ini terjadi karena setelah modifikasi diberi penambahan lilitan pada kumparan jangkar dari sebelum modifikasi. Jadi dapat dikatakan bahwa tegangan juga berbanding lurus terhadap penambahan lilitan di sisi stator. 7

8 SESUDAH MODIFIKAS I SEBELUM MODIFIKAS I 10 5 SESUDAH MODIFIKA SI SEBELUM MODIFIKA SI Gambar 4.3 Grafik Pengukuran 3 Phasa pada Alternator Berdasarkan hasil pengukuran tegangan keluaran 3 phasa dari alternator, terdapat berbagai macam variasi diikuti dengan meningkatnya tegangan keluaran tersebut. Pada putaran 500 rpm tegangan terendah berada pada saat sebelum dimodifikasi, yaitu sebesar 3,59 V. Dan tertinggi berada pada saat setelah dimodifikasi, yaitu sebesar 14,11 V. Gambar 4.4 Grafik Pengukuran 1 Phasa pada Alternator Berdasarkan hasil pengukuran tegangan keluaran 1 phasa dari alternator, terdapat berbagai macam variasi diikuti dengan meningkatnya tegangan keluaran tersebut. Pada putaran 500 rpm tegangan terendah berada pada saat sebelum dimodifikasi, yaitu sebesar 2,07 V. Dan tertinggi berada pada saat sesudah dimodifikasi, yaitu sebesar 8,11 V. Hasil pengukuran turbin angin dan alternator setelah modifikasi di lapangan dapat di lihat pada table dibawah ini Tabel 4.3 pengukuran turnin angin dan alternator dilapangan. jam Kecepatan angin(m/s) DC AC 3 Fasa ,9 2,07 3, ,6 3,32 5, ,5 3,74 6, ,5 3,74 6, ,0 8,15 14, , , , , , , , ,1 8,25 14, ,9 3, ,8 4,55 7,88 8

9 Berdasarkan hasil pengukuran di lapangan tegangan keluaran dari alternator tergantung dari kecepatan angin yang berhembus di daerah Alue Naga berbagai macam variasi diikuti dengan meningkatnya tegangan keluaran dari alternator. Pada pukul kecepatan angin 1,9 m/s tegangan alternator sebesar 3,59 V. Dan tegangan keluaran mulai tinggi pada pukul yaitu sebesar 14,11 V. keluaran tertinggi alternator di capai saat pukul sampai pukul yaitu sebesar 21,20 V. Hal ini menunjukkan bahwa kecepatan angin meningkat saat pukul sampai 16.00, sehingga antara pukul sampai pembangkit listrik tenaga angin bekerja dengan efisien. keluaran alternator ini masih berbentuk tegangan bolak balik (AC) sehingga harus disearahkan dengan rectifier. [6]. M Kahlil Firdausi Simulasi Pengaruh Disain Magnet Permanen Pada Generator Sinkron Fluks Aksial Rotor Cakram Ganda Stator Tanpa Inti Universitas Indonesia. [7]. Alamsyah, Hery, Pemanfaatan Turbin Angin Dua Sudu Sebagai Penggerak Mula Alternator Pada Pembangkit Listrik Tenaga Angin, Universitas Negeri Semarang [8]. Y. Daryanto Kajian Potensi angin Untuk Pembangkit Listrik Tenaga Bayu. BALAI PPTAGG UPT-LAGG Yogyakarta, 5 April [9]. Berahim,Hamzah, Pengantar Teknik Tenaga Listrik. Andioffset, Yogyakarta. [10] fisika/269-rumus-kuat-medan-magnetik-12- sma#ixzz2tkyti0y7 (Diakses pada tanggl , WIB) 5. Kesimpulan Dari hasil penelitian yang telah dilakukan dapat disimpulkan bahwa : 1. Turbin angin horinzontal tipe multiblade sangat cocok untuk daerah yang mempunyai kecepataan angin rata-rata rendah. 2. Diameter kawat tembaga pada stator dengan ukuran yang lebih kecil akan didapatkan jumlah lilitan yang lebih besar dibandingkan sebelum alternator dimodifikasi, yaitu dari 36 lilitan menjadi 108 lilitan pada kumparan stator. 3. Pembangkit listrik tenaga angin dengan menggunakan kincir angin horizontal tipe multiblade yang ditempatkan dipantai Alue Naga bekerja dengan efesien pada waktu pukul sampai REFERENSI [1]. Ilhamd Fabillo, Perancangan Pembangkit Listrik Tenaga Angin Skala Kecil (100va ) Pr oyek Akhir Universitas Pendidikan Indonesia. [2]. Adityo Putranto.2011 Rancang Bangun Turbin Angin Vertikal Untuk Penerangan Rumah Tangga Universitas Diponegoro. [3]. Situngkir, P. Putra S Rancang Bangun dan Uji Eksperimental Pengaruh Profil Dan Jumlah Sudu Pada Variasi Kecepatan Angin Terhadap Daya Dan Putaran Turbin Angin Savonius Menggunakan Sudu PengarahDengan Luas Sapuan Rotor 0,9 m2. Universitas Sumatra utara. [4]. Setiono,puji, 2006.Pemanfaatan Alternator Mobil Sebagai Pembangkit Listrik Tenaga Angin, Universitas Negeri Malang, [5]. Habibie Ilham,2012. Perancangan Ulang Alternator Mobil Menjadi Generator Sinkron Kecepatan Rendah Fakultas Teknik Universit as Syiah Kuala Darussalam, Banda Aceh. 9

BAB II GENERATOR SINKRON. bolak-balik dengan cara mengubah energi mekanis menjadi energi listrik. Energi

BAB II GENERATOR SINKRON. bolak-balik dengan cara mengubah energi mekanis menjadi energi listrik. Energi BAB II GENERATOR SINKRON 2.1. UMUM Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (altenator) merupakan

Lebih terperinci

BAB II GENERATOR SINKRON

BAB II GENERATOR SINKRON BAB II GENERATOR SINKRON 2.1 Pendahuluan Generator arus bolak balik berfungsi mengubah tenaga mekanis menjadi tenaga listrik arus bolak balik. Generator arus bolak balik sering disebut juga sebagai alternator,

Lebih terperinci

PRINSIP KERJA MOTOR. Motor Listrik

PRINSIP KERJA MOTOR. Motor Listrik Nama : Gede Teguh Pradnyana Yoga NIM : 1504405031 No Absen/ Kelas : 15 / B MK : Teknik Tenaga Listrik PRINSIP KERJA MOTOR A. Pengertian Motor Listrik Motor listrik merupakan sebuah perangkat elektromagnetis

Lebih terperinci

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang BAB II HARMONISA PADA GENERATOR II.1 Umum Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang digunakan untuk menkonversikan daya mekanis menjadi daya listrik arus bolak balik. Arus

Lebih terperinci

BAB II LANDASAN TEORI. mobil seperti motor stater, lampu-lampu, wiper dan komponen lainnya yang

BAB II LANDASAN TEORI. mobil seperti motor stater, lampu-lampu, wiper dan komponen lainnya yang 7 BAB II LANDASAN TEORI A. LANDASAN TEORI 1. Pembebanan Suatu mobil dalam memenuhi kebutuhan tenaga listrik selalu dilengkapi dengan alat pembangkit listrik berupa generator yang berfungsi memberikan tenaga

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sebagai Sumber angin telah dimanfaatkan oleh manusaia sejak dahulu, yaitu untuk transportasi, misalnya perahu layar, untuk industri dan pertanian, misalnya kincir angin untuk

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA II.1 Umum Motor induksi merupakan motor arus bolak balik ( AC ) yang paling luas digunakan dan dapat dijumpai dalam setiap aplikasi industri maupun rumah tangga. Penamaannya

Lebih terperinci

PERANCANGAN MINI GENERATOR TURBIN ANGIN 200 W UNTUK ENERGI ANGIN KECEPATAN RENDAH. Jl Kaliurang km 14,5 Sleman Yogyakarta

PERANCANGAN MINI GENERATOR TURBIN ANGIN 200 W UNTUK ENERGI ANGIN KECEPATAN RENDAH. Jl Kaliurang km 14,5 Sleman Yogyakarta PERANCANGAN MINI GENERATOR TURBIN ANGIN 200 W UNTUK ENERGI ANGIN KECEPATAN RENDAH Wahyudi Budi Pramono 1*, Warindi 2, Achmad Hidayat 1 1 Program Studi Teknik Elektro, Fakultas Teknologi Industri, Universitas

Lebih terperinci

MODUL 10 DASAR KONVERSI ENERGI LISTRIK. Motor induksi

MODUL 10 DASAR KONVERSI ENERGI LISTRIK. Motor induksi MODUL 10 DASAR KONVERSI ENERGI LISTRIK Motor induksi Motor induksi merupakan motor yang paling umum digunakan pada berbagai peralatan industri. Popularitasnya karena rancangannya yang sederhana, murah

Lebih terperinci

Rancang Bangun Generator Portable Fluks Aksial Magnet Permanen Jenis Neodymium (NdFeB)

Rancang Bangun Generator Portable Fluks Aksial Magnet Permanen Jenis Neodymium (NdFeB) Rancang Bangun Generator Portable Fluks Aksial Magnet Permanen Jenis Neodymium (NdFeB) Fithri Muliawati 1, Taufiq Ramadhan 2 1 Dosen Tetap Program Studi Teknik Elektro Fakultas Teknik Universitas Ibn Khaldun

Lebih terperinci

PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo

PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo PENGARUH VARIASI JUMLAH STAGE TERHADAP KINERJA TURBIN ANGIN SUMBU VERTIKAL SAVONIUS TIPE- L Krisna Slamet Rasyid, Sudarno, Wawan Trisnadi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Turbin Angin Turbin angin adalah suatu sistem konversi energi angin untuk menghasilkan energi listrik dengan proses mengubah energi kinetik angin menjadi putaran mekanis rotor

Lebih terperinci

SYNCHRONOUS GENERATOR. Teknik Elektro Universitas Indonesia Depok 2010

SYNCHRONOUS GENERATOR. Teknik Elektro Universitas Indonesia Depok 2010 SYNCHRONOUS GENERATOR Teknik Elektro Universitas Indonesia Depok 2010 1 Kelompok 7: Ainur Rofiq (0706199022) Rudy Triandi (0706199874) Reza Perkasa Alamsyah (0806366296) Riza Tamridho (0806366320) 2 TUJUAN

Lebih terperinci

Generator listrik adalah sebuah alat yang memproduksi energi listrik dari sumber energi mekanik, biasanya dengan menggunakan induksi elektromagnetik.

Generator listrik adalah sebuah alat yang memproduksi energi listrik dari sumber energi mekanik, biasanya dengan menggunakan induksi elektromagnetik. Generator listrik Generator listrik adalah sebuah alat yang memproduksi energi listrik dari sumber energi mekanik, biasanya dengan menggunakan induksi elektromagnetik. Proses ini dikenal sebagai pembangkit

Lebih terperinci

PRINSIP KERJA GENERATOR SINKRON. Abstrak :

PRINSIP KERJA GENERATOR SINKRON. Abstrak : PRINSIP KERJA GENERATOR SINKRON * Wahyu Sunarlik Abstrak : Generator adalah suatu alat yang dapat mengubah tenaga mekanik menjadi energi listrik. Tenaga mekanik bisa berasal dari panas, air, uap, dll.

Lebih terperinci

Politeknik Negeri Sriwijaya

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA 2.1 Umum Generator sinkron (alternator) adalah mesin listrik yang digunakan untuk mengubah energi mekanik menjadi energi listrik dengan perantara induksi medan magnet. Perubahan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI II.1 Umum Seperti telah di ketahui bahwa mesin arus searah terdiri dari dua bagian, yaitu : Generator arus searah Motor arus searah Ditinjau dari konstruksinya, kedua mesin ini adalah

Lebih terperinci

Perancangan Prototype Generator Magnet Permanen 1 Fasa Jenis Fluks Aksial pada Putaran Rendah

Perancangan Prototype Generator Magnet Permanen 1 Fasa Jenis Fluks Aksial pada Putaran Rendah Perancangan Prototype Generator Magnet Permanen 1 Fasa Jenis Fluks Aksial pada Putaran Rendah Leo Noprizal #1, Mahdi Syukri #2, Syahrizal Syahrizal #3 # Jurusan Teknik Elektro dan Komputer, Universitas

Lebih terperinci

BAB II GENERATOR SINKRON TIGA FASA

BAB II GENERATOR SINKRON TIGA FASA BAB II GENERATOR SINKRON TIGA FASA II.1. Umum Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (alternator)

Lebih terperinci

MODIFIKASI ALTERNATOR MOBIL MENJADI GENERATOR SINKRON 3 FASA PENGUAT LUAR 220V/380V, 50Hz. M. Rodhi Faiz, Hafit Afandi

MODIFIKASI ALTERNATOR MOBIL MENJADI GENERATOR SINKRON 3 FASA PENGUAT LUAR 220V/380V, 50Hz. M. Rodhi Faiz, Hafit Afandi TEKNO, Vol : 19 Maret 2013, ISSN : 1693-8739 MODIFIKASI ALTERNATOR MOBIL MENJADI GENERATOR SINKRON 3 FASA PENGUAT LUAR 220V/380V, 50Hz M. Rodhi Faiz, Hafit Afandi Abstrak : Metode yang digunakan dalam

Lebih terperinci

Makalah Mata Kuliah Penggunaan Mesin Listrik

Makalah Mata Kuliah Penggunaan Mesin Listrik Makalah Mata Kuliah Penggunaan Mesin Listrik KARAKTERISTIK MOTOR UNIVERSAL DAN MOTOR COMPOUND Tatas Ardhy Prihanto (21060110120039) Tatas_ap@yahoo.co.id Jurusan Teknik Elektro, Fakultas Teknik, Universitas

Lebih terperinci

MOTOR DC. Karakteristik Motor DC

MOTOR DC. Karakteristik Motor DC MOTOR DC Karakteristik Motor DC Karakteristik yang dimiliki suatu motor DC dapat digambarkan melalui kurva daya dan kurva torsi/kecepatannya, dari kurva tersebut dapat dianalisa batasanbatasan kerja dari

Lebih terperinci

Mesin AC. Dian Retno Sawitri

Mesin AC. Dian Retno Sawitri Mesin AC Dian Retno Sawitri Pendahuluan Mesin AC terdiri dari Motor AC dan Generator AC Ada 2 tipe mesin AC yaitu Mesin Sinkron arus medan magnet disuplai oleh sumber daya DC yang terpisah Mesin Induksi

Lebih terperinci

DA S S AR AR T T E E ORI ORI

DA S S AR AR T T E E ORI ORI BAB II 2 DASAR DASAR TEORI TEORI 2.1 Umum Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (altenator)

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik.

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik. BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tinjauan Pustaka Pembangkit Listrik Tenaga Uap merupakan pembangkit yang memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik. Pembangkit

Lebih terperinci

PENGUJIAN PERFORMANCE MOTOR LISTRIK AC 3 FASA DENGAN DAYA 3 HP MENGGUNAKAN PEMBEBANAN GENERATOR LISTRIK

PENGUJIAN PERFORMANCE MOTOR LISTRIK AC 3 FASA DENGAN DAYA 3 HP MENGGUNAKAN PEMBEBANAN GENERATOR LISTRIK PENGUJIAN PERFORMANCE MOTOR LISTRIK AC 3 FASA DENGAN DAYA 3 HP MENGGUNAKAN PEMBEBANAN GENERATOR LISTRIK Zainal Abidin, Tabah Priangkoso *, Darmanto Jurusan Teknik Mesin Fakultas Teknik Universitas Wahid

Lebih terperinci

BAB II GENERATOR SINKRON TIGA PHASA. berupa putaran menjadi energi listrik bolak-balik (AC).

BAB II GENERATOR SINKRON TIGA PHASA. berupa putaran menjadi energi listrik bolak-balik (AC). BAB II GENERATOR SINKRON TIGA PHASA 2.1 Umum Hampir semua energi listrik dibangkitkan dengan menggunakan generator sinkron. Oleh sebab itu generator sinkron memegang peranan penting dalam sebuah pusat

Lebih terperinci

1BAB I PENDAHULUAN. contohnya adalah baterai. Baterai memberikan kita sumber energi listrik mobile yang

1BAB I PENDAHULUAN. contohnya adalah baterai. Baterai memberikan kita sumber energi listrik mobile yang 1BAB I PENDAHULUAN 1.1 LatarBelakang Dewasa ini penggunaan energi listrik berubah dari energi listrik yang statis (berasal dari pembangkitan) menjadi energi listrik yang dapat dibawa kemana saja, contohnya

Lebih terperinci

Dasar Teori Generator Sinkron Tiga Fasa

Dasar Teori Generator Sinkron Tiga Fasa Dasar Teori Generator Sinkron Tiga Fasa Hampir semua energi listrik dibangkitkan dengan menggunakan mesin sinkron. Generator sinkron (sering disebut alternator) adalah mesin sinkron yangdigunakan untuk

Lebih terperinci

GENERATOR DC HASBULLAH, MT, Mobile :

GENERATOR DC HASBULLAH, MT, Mobile : GENERATOR DC HASBULLAH, MT, 2009 ELECTRICAL ENGINEERING DEPT. ELECTRICAL POWER SYSTEM Email : hasbullahmsee@yahoo.com has_basri@telkom.net Mobile : 081383893175 Definisi Generator DC Sebuah perangkat mesin

Lebih terperinci

BAB II GENERATOR SINKRON

BAB II GENERATOR SINKRON BAB II GENERATOR SINKRON 2.1 Umum Mesin sinkron merupakan mesin listrik yang kecepatan putar rotornya (N R ) sama (sinkron) dengan kecepatan medan putar stator (N S ), dimana: (2.1) Dimana: N S = Kecepatan

Lebih terperinci

Politeknik Negeri Sriwijaya

Politeknik Negeri Sriwijaya 4 BAB II TINJAUAN PUSTAKA 2.1. Umum Generator sinkron adalah mesin pembangkit listrik yang mengubah energi mekanik sebagai input menjadi energi listrik sebagai output. Tegangan output dari generator sinkron

Lebih terperinci

BAB 2 TEORI DASAR Jaringan Listrik Mikro

BAB 2 TEORI DASAR Jaringan Listrik Mikro 2.3. Jaringan Listrik Mikro BAB 2 TEORI DASAR Jaringan listrik mikro merupakan jaringan penyedia sumber daya dengan kapasitas kecil, yang dihasilkan oleh pembangkit energi terbarukan. Daya yang dihasilkan

Lebih terperinci

Universitas Medan Area

Universitas Medan Area BAB II TINJAUAN PUSTAKA 2.1 Landasan teori Generator listrik adalah suatu peralatan yang mengubah enersi mekanis menjadi enersi listrik. Konversi enersi berdasarkan prinsip pembangkitan tegangan induksi

Lebih terperinci

BAB II MESIN INDUKSI TIGA FASA. 2. Generator Induksi 3 fasa, yang pada umumnya disebut alternator.

BAB II MESIN INDUKSI TIGA FASA. 2. Generator Induksi 3 fasa, yang pada umumnya disebut alternator. BAB II MESIN INDUKSI TIGA FASA II.1. Umum Mesin Induksi 3 fasa atau mesin tak serempak dibagi atas dua jenis yaitu : 1. Motor Induksi 3 fasa 2. Generator Induksi 3 fasa, yang pada umumnya disebut alternator.

Lebih terperinci

ANALISIS TURBIN ANGIN SUMBU VERTIKAL DENGAN 4, 6 DAN 8 SUDU. Muhammad Suprapto

ANALISIS TURBIN ANGIN SUMBU VERTIKAL DENGAN 4, 6 DAN 8 SUDU. Muhammad Suprapto ANALISIS TURBIN ANGIN SUMBU VERTIKAL DENGAN 4, 6 DAN 8 SUDU Muhammad Suprapto Program Studi Teknik Mesin, Universitas Islam Kalimantan MAB Jl. Adhyaksa No.2 Kayutangi Banjarmasin Email : Muhammadsuprapto13@gmail.com

Lebih terperinci

SEPEDA STATIS SEBAGAI PEMBANGKIT ENERGI LISTRIK ALTERNATIF DENGAN PEMANFAATAN ALTERNATOR BEKAS

SEPEDA STATIS SEBAGAI PEMBANGKIT ENERGI LISTRIK ALTERNATIF DENGAN PEMANFAATAN ALTERNATOR BEKAS Jurnal Edukasi Elektro, Vol. 1, No. 2, November 2017 http://journal.uny.ac.id/index.php/jee/ ISSN 2548-8260 (Media Online) SEPEDA STATIS SEBAGAI PEMBANGKIT ENERGI LISTRIK ALTERNATIF DENGAN PEMANFAATAN

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA II.1 UMUM Faraday menemukan hukum induksi elektromagnetik pada tahun 1831 dan Maxwell memformulasikannya ke hukum listrik (persamaan Maxwell) sekitar tahun 1860. Pengetahuan

Lebih terperinci

BAB III PERANCANGAN SISTEM DAN PEMBUATAN ALAT

BAB III PERANCANGAN SISTEM DAN PEMBUATAN ALAT 38 BAB III PERANCANGAN SISTEM DAN PEMBUATAN ALAT Bab ini membahas rancangan diagram blok alat, rancangan Konstruksi Kumparan Stator dan Kumparan Rotor, rancangan Konstruksi Magnet Permanent pada Rotor

Lebih terperinci

M O T O R D C. Motor arus searah (motor dc) telah ada selama lebih dari seabad. Keberadaan motor dc telah membawa perubahan besar sejak dikenalkan

M O T O R D C. Motor arus searah (motor dc) telah ada selama lebih dari seabad. Keberadaan motor dc telah membawa perubahan besar sejak dikenalkan M O T O R D C Motor arus searah (motor dc) telah ada selama lebih dari seabad. Keberadaan motor dc telah membawa perubahan besar sejak dikenalkan motor induksi, atau terkadang disebut Ac Shunt Motor. Motor

Lebih terperinci

NASKAH PUBLIKASI DESAIN GENERATOR AXIAL KECEPATAN RENDAH MENGGUNAKAN 8 BUAH MAGNET PERMANEN DENGAN DIMENSI 10 X 10 X 1 CM

NASKAH PUBLIKASI DESAIN GENERATOR AXIAL KECEPATAN RENDAH MENGGUNAKAN 8 BUAH MAGNET PERMANEN DENGAN DIMENSI 10 X 10 X 1 CM NASKAH PUBLIKASI DESAIN GENERATOR AXIAL KECEPATAN RENDAH MENGGUNAKAN 8 BUAH MAGNET PERMANEN DENGAN DIMENSI 10 X 10 X 1 CM Disusun untuk Melengkapi Tugas Akhir dan Memenuhi Syarat-syarat untuk Mencapai

Lebih terperinci

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip BAB II MOTOR ARUS SEARAH 2.1. Umum Motor arus searah (DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Pada prinsip pengoperasiannya, motor arus searah

Lebih terperinci

BAB II MOTOR ARUS SEARAH. tersebut berupa putaran rotor. Proses pengkonversian energi listrik menjadi energi

BAB II MOTOR ARUS SEARAH. tersebut berupa putaran rotor. Proses pengkonversian energi listrik menjadi energi BAB II MOTOR ARUS SEARAH II.1 Umum Motor arus searah ialah suatu mesin listrik yang berfungsi mengubah energi listrik arus searah (listrik DC) menjadi energi gerak atau energi mekanik, dimana energi gerak

Lebih terperinci

GENERATOR SINKRON Gambar 1

GENERATOR SINKRON Gambar 1 GENERATOR SINKRON Generator sinkron merupakan mesin listrik arus bolak balik yang mengubah energi mekanik menjadi energi listrik arus bolak-balik. Energi mekanik diperoleh dari penggerak mula (prime mover)

Lebih terperinci

BAB 2II DASAR TEORI. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang

BAB 2II DASAR TEORI. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang BAB 2II DASAR TEORI Motor Sinkron Tiga Fasa Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang putaran rotornya sinkron/serempak dengan kecepatan medan putar statornya. Motor ini beroperasi

Lebih terperinci

ANALISA GENERATOR 3 PHASA TIPE MAGNET PERMANEN DENGAN PENGGERAK MULA TURBIN ANGIN PROPELLER 3 BLADE UNTUK PLTB

ANALISA GENERATOR 3 PHASA TIPE MAGNET PERMANEN DENGAN PENGGERAK MULA TURBIN ANGIN PROPELLER 3 BLADE UNTUK PLTB EKSERGI Jurnal Teknik Energi Vo. 11 No.1 Januari 2015, 12-17 ANALISA GENERATOR 3 PHASA TIPE MAGNET PERMANEN DENGAN PENGGERAK MULA TURBIN ANGIN PROPELLER 3 BLADE UNTUK PLTB Kusuma A. 1), Supriyo 2) 1) Mahasiswa

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Motor DC Motor DC adalah suatu mesin yang mengubah energi listrik arus searah (energi lisrik DC) menjadi energi mekanik dalam bentuk putaran rotor. [1] Pada dasarnya, motor

Lebih terperinci

BAB II DASAR TEORI. searah. Energi mekanik dipergunakan untuk memutar kumparan kawat penghantar

BAB II DASAR TEORI. searah. Energi mekanik dipergunakan untuk memutar kumparan kawat penghantar BAB II DASAR TEORI 2.1 Umum Generator arus searah mempunyai komponen dasar yang hampir sama dengan komponen mesin-mesin lainnya. Secara garis besar generator arus searah adalah alat konversi energi mekanis

Lebih terperinci

BAB II MOTOR INDUKSI 3 FASA

BAB II MOTOR INDUKSI 3 FASA BAB II MOTOR INDUKSI 3 FASA 2.1 Umum Motor listrik merupakan beban listrik yang paling banyak digunakan di dunia, motor induksi tiga fasa adalah suatu mesin listrik yang mengubah energi listrik menjadi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI 2.1 Alternator Alternator atau yang lebih kita kenal sebagai "Dinamo Amper" merupakan suatu unit yang berfungsi sebagai power supply dan charging syste. Fungsi alternator adalah

Lebih terperinci

MAKALAH ACUK FEBRI NURYANTO D

MAKALAH ACUK FEBRI NURYANTO D MAKALAH MEMBUAT GENERATOR MAGNET PERMANEN KECEPATAN RENDAH Disusun Oleh : ACUK FEBRI NURYANTO D 400 080 006 FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO UNIVERSITAS MUHAMMADIYAH SURAKARTA 2012 MEMBUAT GENERATOR

Lebih terperinci

KONSTRUKSI GENERATOR DC

KONSTRUKSI GENERATOR DC KONSTRUKSI GENERATOR DC Disusun oleh : HENDRIL SATRIYAN PURNAMA 1300022054 PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS AHMAD DAHLAN YOGYAKARTA 2015 I. DEFINISI GENERATOR DC Generator

Lebih terperinci

MAKALAH ANALISIS SISTEM KENDALI INDUSTRI Synchronous Motor Derives. Oleh PUSPITA AYU ARMI

MAKALAH ANALISIS SISTEM KENDALI INDUSTRI Synchronous Motor Derives. Oleh PUSPITA AYU ARMI MAKALAH ANALISIS SISTEM KENDALI INDUSTRI Synchronous Motor Derives Oleh PUSPITA AYU ARMI 1304432 PENDIDIKAN TEKNOLOGI DAN KEJURUAN PASCASARJANA FAKULTAS TEKNIK UNIVERSITAS NEGERI PADANG 2013 SYNCHRONOUS

Lebih terperinci

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH 2.1 Umum Motor arus searah (motor DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis. Pada prinsip pengoperasiannya, motor arus searah sangat identik

Lebih terperinci

BAB II DASAR TEORI. Teknik Konversi Energi Politeknik Negeri Bandung

BAB II DASAR TEORI. Teknik Konversi Energi Politeknik Negeri Bandung BAB II DASAR TEORI 2.1 Energi Listrik Energi adalah kemampuan untuk melakukan kerja. Salah satu bentuk energi adalah energi listrik. Energi listrik adalah energi yang berkaitan dengan akumulasi arus elektron,

Lebih terperinci

DESAIN GENERATOR MAGNET PERMANEN KECEPATAN RENDAH UNTUK PEMBANGKIT LISTRIK TENAGA ANGIN ATAU BAYU (PLTB)

DESAIN GENERATOR MAGNET PERMANEN KECEPATAN RENDAH UNTUK PEMBANGKIT LISTRIK TENAGA ANGIN ATAU BAYU (PLTB) DESAIN GENERATOR MAGNET PERMANEN KECEPATAN RENDAH UNTUK PEMBANGKIT LISTRIK TENAGA ANGIN ATAU BAYU (PLTB) Hasyim Asy ari, Jatmiko, Azis Ardiyatmoko 1 Jurusan Teknik Elektro, Fakultas Teknik,Universitas

Lebih terperinci

DESAIN GENERATOR MAGNET PERMANEN SATU FASA TIPE AXIAL. Hasyim Asy ari 1, Jatmiko 1, Acuk Febrianto 2

DESAIN GENERATOR MAGNET PERMANEN SATU FASA TIPE AXIAL. Hasyim Asy ari 1, Jatmiko 1, Acuk Febrianto 2 DESAIN GENERATOR MAGNET PERMANEN SATU FASA TIPE AXIAL Hasyim Asy ari 1, Jatmiko 1, Acuk Febrianto 2 1 Jurusan Teknik Elektro, Fakultas Teknik, Universitas Muhammadiyah Surakarta Jl. A Yani Tromol Pos I

Lebih terperinci

Modul Kuliah Dasar-Dasar Kelistrikan Teknik Industri 1

Modul Kuliah Dasar-Dasar Kelistrikan Teknik Industri 1 TOPIK 12 MESIN ARUS SEARAH Suatu mesin listrik (generator atau motor) akan berfungsi bila memiliki: (1) kumparan medan, untuk menghasilkan medan magnet; (2) kumparan jangkar, untuk mengimbaskan ggl pada

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA II.1 Pembangkit Listrik Tenaga Angin Pembangkit Listrik Tenaga Angin memberikan banyak keuntungan seperti bersahabat dengan lingkungan (tidak menghasilkan emisi gas), tersedia dalam

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT 3.1 Prinsip Kerja Turbin Angin Prinsip kerja dari turbin angin adalah mengubah energi mekanis dari angin menjadi energi putar pada kincir. Lalu putaran kincir digunakan untuk memutar

Lebih terperinci

DESAIN JARAK STATOR DENGAN ROTOR YANG PALING OPTIMAL PADA GENERATOR MAGNET PERMANEN

DESAIN JARAK STATOR DENGAN ROTOR YANG PALING OPTIMAL PADA GENERATOR MAGNET PERMANEN DESAIN JARAK STATOR DENGAN ROTOR YANG PALING OPTIMAL PADA GENERATOR MAGNET PERMANEN TUGAS AKHIR Disusun untuk Melengkapi Tugas Akhir dan Syarat-syarat untuk Mencapai Gelar Sarjana Teknik Jurusan Teknik

Lebih terperinci

MESIN LISTRIK. 2. JENIS MOTOR LISTRIK Motor berdasarkan bermacam-macam tinjauan dapat dibedakan atas beberapa jenis.

MESIN LISTRIK. 2. JENIS MOTOR LISTRIK Motor berdasarkan bermacam-macam tinjauan dapat dibedakan atas beberapa jenis. MESIN LISTRIK 1. PENDAHULUAN Motor listrik merupakan sebuah mesin yang berfungsi untuk merubah energi listrik menjadi energi mekanik atau tenaga gerak, di mana tenaga gerak itu berupa putaran dari pada

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka Rujukan penelitian yang pernah dilakukan untuk mendukung penulisan tugas akhir ini antara lain sebagai berikut : a. Berdasarkan hasil penelitian yang telah

Lebih terperinci

LAPORAN PRAKTIKUM MESIN LISTRIK MESIN DC MOTOR DC PENGUATAN TERPISAH

LAPORAN PRAKTIKUM MESIN LISTRIK MESIN DC MOTOR DC PENGUATAN TERPISAH LAPORAN PRAKTIKUM MESIN LISTRIK MESIN DC MOTOR DC PENGUATAN TERPISAH Kelompok : 1 Nama Praktikan : Ainun Nidhar Nama Anggota Kelompok : 1. Adi Putra Utama 8. Faisal Azhari 2. Adri Pribagusdri 9. Fajry

Lebih terperinci

BAB I PENDAHULUAN. maka semakin maju suatu negara, semakin besar energi listrik yang dibutuhkan.

BAB I PENDAHULUAN. maka semakin maju suatu negara, semakin besar energi listrik yang dibutuhkan. BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan suatu kebutuhan utama yang sangat dibutuhkan pada zaman modern ini. Jika dilihat dari kebutuhan energi listrik tiap negara, maka semakin maju

Lebih terperinci

DASAR-DASAR LISTRIK ARUS AC

DASAR-DASAR LISTRIK ARUS AC BAB X DASAR-DASAR LISTRIK ARUS AC Tujuan Pembelajaran : - Memahami Dasar-dasar listrik AC - Mengetahui prinsip kerja dan kontruksi Generator A. PERBEDAAN AC DAN DC Perbedaan arus bolak-balik dan arus searah

Lebih terperinci

MESIN SINKRON ( MESIN SEREMPAK )

MESIN SINKRON ( MESIN SEREMPAK ) MESIN SINKRON ( MESIN SEREMPAK ) BAB I GENERATOR SINKRON (ALTERNATOR) Hampir semua energi listrik dibangkitkan dengan menggunakan mesin sinkron. Generator sinkron (sering disebut alternator) adalah mesin

Lebih terperinci

POLITEKNIK NEGERI SRIWIJAYA BAB II TINJAUAN PUSTAKA

POLITEKNIK NEGERI SRIWIJAYA BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Generator Sinkron Tegangan output dari generator sinkron adalah tegangan bolak balik, karena itu generator sinkron disebut juga generator AC. Perbedaan prinsip antara generator

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Generator Generator merupakan mesin yang mengubah energi kinetik menjadi energi listrik, Tenaga kinetik bisa berasal dari panas, air, uap, dll, Prinsip kerja generator tersebut

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Generator Generator adalah salah satu jenis mesin listrik yang digunakan sebagai alat pembangkit energi listrik dengan cara menkonversikan energi mekanik menjadi energi listrik.

Lebih terperinci

I. Maksud dan tujuan praktikum pengereman motor induksi

I. Maksud dan tujuan praktikum pengereman motor induksi I. Maksud dan tujuan praktikum pengereman motor induksi Mengetahui macam-macam pengereman pada motor induksi. Menetahui karakteristik pengereman pada motor induksi. II. Alat dan bahan yang digunakan Autotrafo

Lebih terperinci

BAB I PENDAHULUAN. putaran tersebut dihasilkan oleh penggerak mula (prime mover) yang dapat berupa

BAB I PENDAHULUAN. putaran tersebut dihasilkan oleh penggerak mula (prime mover) yang dapat berupa BAB I PENDAHULUAN 1.1 Latar Belakang Generator sinkron merupakan alat listrik yang berfungsi mengkonversikan energi mekanis berupa putaran menjadi energi listrik. Energi mekanis berupa putaran tersebut

Lebih terperinci

Politeknik Negeri Sriwijaya

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA 2.1 Umum Generator adalah mesin yang mengelola energi mekanik menjadi energi listrik. Prinsip kerja generator adalah rotor generator yang digerakan oleh turbin sehingga menimbulkan

Lebih terperinci

PROTOTIPE GENERATOR MAGNET PERMANEN AXIAL AC 1 FASA PUTARAN RENDAH SEBAGAI KOMPONEN PEMBANGKIT LISTRIK TENAGA PIKO HIDRO

PROTOTIPE GENERATOR MAGNET PERMANEN AXIAL AC 1 FASA PUTARAN RENDAH SEBAGAI KOMPONEN PEMBANGKIT LISTRIK TENAGA PIKO HIDRO Techno, ISSN 141-867 Volume 15 No. 2 Oktober 214 Hal. 3 36 PROTOTIPE GENERATOR MAGNET PERMANEN AXIAL AC 1 FASA PUTARAN RENDAH SEBAGAI KOMPONEN PEMBANGKIT LISTRIK TENAGA PIKO HIDRO Prototype of 1-Phase

Lebih terperinci

BAB II DASAR TEORI. Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi

BAB II DASAR TEORI. Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi BAB II DASAR TEORI 2.1 Umum Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi yang merupakan motor arus bolak-balik yang paling luas penggunaannya. Penamaan ini berasal dari kenyataan

Lebih terperinci

MOTOR LISTRIK 1 FASA

MOTOR LISTRIK 1 FASA MOTOR LISTRIK 1 FASA Alat alat listrik rumah tangga yang menggunakan motor listrik satu fasa biasanya menggunakan motor induksi 1 fasa, motor split fasa, motor kapasitor, motor shaded pole, dan motor universal.

Lebih terperinci

BAB II DASAR TEORI. 2.1 Motor Sinkron Tiga Fasa. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang

BAB II DASAR TEORI. 2.1 Motor Sinkron Tiga Fasa. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang BAB II DASAR TEORI 2.1 Motor Sinkron Tiga Fasa Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang putaran rotornya sinkron/serempak dengan kecepatan medan putar statornya. Motor ini

Lebih terperinci

Perancangan Prototype Generator Magnet Permanen Fluks Aksial Pada Pembangkit Listrik Tenaga Angin Untuk Penerangan Lampu Jalan

Perancangan Prototype Generator Magnet Permanen Fluks Aksial Pada Pembangkit Listrik Tenaga Angin Untuk Penerangan Lampu Jalan Seminar Nasional dan ExpoTeknik Elektro 2013 1 Perancangan Prototype Generator Magnet Permanen Fluks Aksial Pada Pembangkit Listrik Tenaga Angin Untuk Penerangan Lampu Jalan Dhiyaul Farhan M. Nur 1) )

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Motor arus searah (motor DC) telah ada selama lebih dari seabad. Keberadaan motor DC telah membawa perubahan besar sejak dikenalkan motor induksi, atau terkadang disebut

Lebih terperinci

Pendahuluan Motor DC mengkonversikan energi listrik menjadi energi mekanik. Sebaliknya pada generator DC energi mekanik dikonversikan menjadi energi l

Pendahuluan Motor DC mengkonversikan energi listrik menjadi energi mekanik. Sebaliknya pada generator DC energi mekanik dikonversikan menjadi energi l Mesin DC Pendahuluan Motor DC mengkonversikan energi listrik menjadi energi mekanik. Sebaliknya pada generator DC energi mekanik dikonversikan menjadi energi listrik. Prinsip kerja mesin DC (dan AC) adalah

Lebih terperinci

Dasar Konversi Energi Listrik Motor Arus Searah

Dasar Konversi Energi Listrik Motor Arus Searah Modul 3 Dasar Konversi Energi Listrik Motor Arus Searah 3.1 Definisi Motor Arus Searah Motor arus searah adalah suatu mesin yang berfungsi mengubah tenaga listrik arus searah menjadi tenaga listrik arus

Lebih terperinci

KONSTRUKSI GENERATOR ARUS SEARAH

KONSTRUKSI GENERATOR ARUS SEARAH KONSTRUKSI GENERATOR ARUS SEARAH BAGAN DARI MESIN LISTRIK Konversi energi Trafo Listrik Listrik Medan magnet Generator Motor mekanik BAGIAN-BAGIAN MESIN ARUS SEARAH Bagian-bagian penting pada suatu mesin

Lebih terperinci

PERBANDINGAN PENGARUH TAHANAN ROTOR TIDAK SEIMBANG DAN SATU FASA ROTOR TERBUKA : SUATU ANALISIS TERHADAP EFISIENSI MOTOR INDUKSI TIGA FASA

PERBANDINGAN PENGARUH TAHANAN ROTOR TIDAK SEIMBANG DAN SATU FASA ROTOR TERBUKA : SUATU ANALISIS TERHADAP EFISIENSI MOTOR INDUKSI TIGA FASA PERBANDINGAN PENGARUH TAHANAN ROTOR TIDAK SEIMBANG DAN SATU FASA ROTOR TERBUKA : SUATU ANALISIS TERHADAP EFISIENSI MOTOR INDUKSI TIGA FASA Wendy Tambun, Surya Tarmizi Kasim Konsentrasi Teknik Energi Listrik,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Turbin Angin Bila terdapat suatu mesin dengan sudu berputar yang dapat mengonversikan energi kinetik angin menjadi energi mekanik maka disebut juga turbin angin. Jika energi

Lebih terperinci

PEMBUATAN DAN PENGUJIAN AWAL GENERATOR AXIAL MAGNET PERMANEN KECEPATAN RENDAH

PEMBUATAN DAN PENGUJIAN AWAL GENERATOR AXIAL MAGNET PERMANEN KECEPATAN RENDAH PEMBUATAN DAN PENGUJIAN AWAL GENERATOR AXIAL MAGNET PERMANEN KECEPATAN RENDAH Aris Budiman, Dhanar Yuwono Aji, Hasyim Asy'ari Program Studi Teknik Elektro, Fakultas Teknik, Universitas Muhammadiyah Surakarta

Lebih terperinci

Hubungan Antara Tegangan dan RPM Pada Motor Listrik

Hubungan Antara Tegangan dan RPM Pada Motor Listrik 1 Hubungan Antara Tegangan dan RPM Pada Motor Listrik Pada motor DC berlaku persamaan-persamaan berikut : V = E+I a Ra, E = C n Ф, n =E/C.Ф Dari persamaan-persamaan diatas didapat : n = (V-Ra.Ra) / C.Ф

Lebih terperinci

BAB 2 DASAR TEORI 2.1 Energi Angin

BAB 2 DASAR TEORI 2.1 Energi Angin BAB DASAR TEORI.1 Energi Angin Energi merupakan suatu kekuatan yang dimiliki oleh suatu zat sehingga zat tersebut mempunyai pengaruh pada keadaan sekitarnya. Menurut mediumnya dikenal banyak jenis energi.

Lebih terperinci

LAPORAN PRAKTIKUM TEKNIK TENAGA LISTRIK NO LOAD AND LOAD TEST GENERATOR SINKRON EXPERIMENT N.2 & N.4

LAPORAN PRAKTIKUM TEKNIK TENAGA LISTRIK NO LOAD AND LOAD TEST GENERATOR SINKRON EXPERIMENT N.2 & N.4 LAPORAN PRAKTIKUM TEKNIK TENAGA LISTRIK NO LOAD AND LOAD TEST GENERATOR SINKRON EXPERIMENT N.2 & N.4 DOSEN PEMBIMBING : Bp. DJODI ANTONO, B.Tech. Oleh: Hanif Khorul Fahmy LT-2D 3.39.13.3.09 PROGRAM STUDI

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Motor Listrik Motor listrik adalah alat untuk mengubah energi listrik menjadi energi mekanik. Motor listrik yang umum digunakan di dunia Industri adalah motor listrik asinkron

Lebih terperinci

ANALISIS PERBANDINGAN TORSI START

ANALISIS PERBANDINGAN TORSI START ANALISIS PERBANDINGAN TORSI START DAN ARUS START,DENGAN MENGGUNAKAN METODE PENGASUTAN AUTOTRAFO, STAR DELTA DAN DOL (DIRECT ON LINE) PADA MOTOR INDUKSI 3 FASA (Aplikasi pada Laboratorium Konversi Energi

Lebih terperinci

Teknik Tenaga Listrik(FTG2J2)

Teknik Tenaga Listrik(FTG2J2) Teknik Tenaga Listrik(FTG2J2) Generator Sinkron Ahmad Qurthobi, MT. Teknik Fisika Telkom University Ahmad Qurthobi, MT. (Teknik Fisika Telkom University) Teknik Tenaga Listrik(FTG2J2) 1 / 35 Outline 1

Lebih terperinci

BAB II MOTOR INDUKSI 3 Ø

BAB II MOTOR INDUKSI 3 Ø BAB II MOTOR INDUKSI 3 Ø 2.1. Prinsip Kerja Motor Induksi Pada motor induksi, supply listrik bolak-balik ( AC ) membangkitkan fluksi medan putar stator (B s ). Fluksi medan putar stator ini memotong konduktor

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Motor Arus Searah Sebuah mesin yang mengubah energi listrik arus searah menjadi energi mekanik dikenal sebagai motor arus searah. Cara kerjanya berdasarkan prinsip, sebuah konduktor

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembangkit Listrik Pembangkit Listrik adalah bagian dari alat industri yang dipakai untuk memproduksi dan membangkitkan tenaga listrik dari berbagai sumber tenaga. Bagian utama

Lebih terperinci

PEMODELAN PEMBANGKIT LISTRIK TENAGA ANGIN 1kW BERBANTUAN SIMULINK MATLAB

PEMODELAN PEMBANGKIT LISTRIK TENAGA ANGIN 1kW BERBANTUAN SIMULINK MATLAB PEMODELAN PEMBANGKIT LISTRIK TENAGA ANGIN 1kW BERBANTUAN SIMULINK MATLAB Subrata Program Studi Teknik Elektro Jurusan Teknik Elektro Fakultas Teknik Universitas Tanjungpura Pontianak, 2014 E-mail : artha.elx@gmail.com

Lebih terperinci

ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA ROTOR BELITAN (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU)

ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA ROTOR BELITAN (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU) ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA ROTOR BELITAN (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU) M. Arfan Saputra, Syamsul Amien Konsentrasi Teknik Energi

Lebih terperinci

MOTOR LISTRIK 1 & 3 FASA

MOTOR LISTRIK 1 & 3 FASA MOTOR LISTRIK 1 & 3 FASA I. MOTOR LISTRIK 1 FASA Pada era industri modern saat ini, kebutuhan terhadap alat produksi yang tepat guna sangat diperlukan untuk dapat meningkatkan effesiensi waktu dan biaya.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan

Lebih terperinci

BAB II DASAR TEORI. mesin listrik yang mengubah energi listrik pada arus searah (DC) menjadi energi

BAB II DASAR TEORI. mesin listrik yang mengubah energi listrik pada arus searah (DC) menjadi energi BAB II DASAR TEORI 2.1 Umum (1,2,4) Secara sederhana motor arus searah dapat didefenisikan sebagai suatu mesin listrik yang mengubah energi listrik pada arus searah (DC) menjadi energi gerak atau energi

Lebih terperinci