Cluster Analysis. Hery Tri Sutanto. Jurusan Matematika MIPA UNESA. Abstrak
|
|
|
- Yuliana Tedjo
- 9 tahun lalu
- Tontonan:
Transkripsi
1 S-17 Cluster Analysis Hery Tri Sutanto Jurusan Matematika MIPA UNESA Abstrak Dalam analisis cluster mempelajari hubungan interdependensi antara seluruh set variabel perlu diteliti. Tujuan utama analisis cluster adalah mengekelompokkan obyek (elemen) seperti orang, produk (barang), toko, perusahaan ke dalam kelompok-kelompok yang relatif homogen berdasarkan pada suatu set variabel yang dipertimbangkan untuk diteliti. Obyek di dalam setiap kelompok harus relatif mirip/sama. Variabel-variabel pada cluster ini harus jauh berbeda dengan obyek dari cluster lain.jika digunakan cara seperti ini maka analisis cluster merupakan bagian depan dari analisis faktor, dimana mereduksi (memperkecil) banyaknya obyek (responden) bukan banyaknya variabel atau atribut responden, yaitu mengelompokkan obyek-obyek tersebut kedalam cluster yang banyaknya lebih sedikit dari banyaknya obyek asli yang diteliti, misalnya dari 50 orang responden, dikelompokkan dengan 5 cluster dengan setiap cluster terdiri dari 10 orang. Kata kunci : Cluster, mereduksi, interdependensi dan relatif sama 1. Pendahuluan Seperti pada analisis faktor, analisis cluster juga meneliti semua hubungan interpendensi, tidak ada variabel bebas dan tak bebas dalam analisis cluster. Perbedaan variabel bebas dan tidak bebas terjadi dalam analisis regresi, analisis varians, analisis diskriminan dimana kita ingin mempelajari pengaruh setiap variabel bebas, baik sendirian maupun secara bersama-sama terhadap variabel tak bebas. Di dalam analisis cluster hubungan interdependensi antara seluruh set variabel perlu diteliti. Tujuan utama analisis cluster adalah mengekelompokkan obyek (elemen) seperti orang, produk (barang), toko, perusahaan ke dalam kelompok-kelompok yang relatif homogen berdasarkan pada suatu set variabel yang dipertimbangkan untuk diteliti. Obyek di dalam setiap kelompok harus relatif mirip/sama. Variabel-variabel pada cluster ini harus jauh berbeda dengan obyek dari Jurusan Pendidikan Matematika FMIPA UNY, 5 Desember
2 cluster lain.jika digunakan cara seperti ini maka analisis cluster merupakan bagian depan dari analisis faktor, dimana mereduksi (memperkecil) banyaknya obyek (responden) bukan banyaknya variabel atau atribut responden, yaitu mengelompokkan obyek-obyek tersebut kedalam cluster yang banyaknya lebih sedikit dari banyaknya obyek asli yang diteliti, misalnya dari 50 orang responden, dikelompokkan dengan 5 cluster dengan setiap cluster terdiri dari 10 orang. Pada makalah ini menguraikan konsep dasar analisis cluster. Tahap-tahap untuk menjalankan yang akan dikaji dan diilustrasikan didalam pengclusteran hirarki dengan program paket statistik yang sudah dikenal dan pengclusteran tidak hirarki yang diikuti dengan pengclusteran variabel. Pada umumnya suatu obyek dikelompokkan ke dalam suatu cluster sedemikian rupa lebih berhubungan (berkorelasi) dengan obyek lainnya di dalam clusternya dari pada dengan obyek dari cluster lain.pembentukan cluster berdasarkan kuat tidaknya hubungan antar-obyek. Metode ini dinamakan metode hirarki. 1.2 Konsep dasar Analisis cluster merupakan suatu kelas tehnik yang digunakan untuk mengklasifikasikan obyek atau kasus (responden) ke dalam kelompok yang relatif homogen yang dinamakan cluster. Obyek dalam setiap kelompok cenderung mirip satu sama lain dan berbeda jauh dengan obyek dari cluster lainnya.di dalam pengclusteran setiap obyek hanya boleh masuk ke dalam satu cluster saja sehingga tidak terjadi tumpang tindih (overlapping atau interaction). Gambar 1 (X 2 ) (X 1 ) Dilihat apa yang diclusterkan, maka analisa cluster dibagi menjadi dua, yaitu: a. Pengclusteran observasi b. Pengclusteran variabel Secara umum ada dua metode di dalam analisa cluster yaitu a. Metode hirarki, yaitu hasil pengclusterannnya disajikan secara berjenjang dari n, (n-1) sampai 1 cluster yang termasuk dalam metode Jurusan Pendidikan Matematika FMIPA UNY, 5 Desember
3 hirarki single linkage, complete linkage, average linkage, median linkage, dan centroid linkage b. Metode non hirarki adalah banyaknya cluster sudah diketahui dan biasanya metode ini dipakai dalam mengcluster data yang berukuran besar yaitu metode K means. Untuk menyatakan suatu observasi atau variabel mempunyai sifat yang lebih dekat dengan observasi tertentu dari pada observasi yang lain digunakan fungsi jarak. Suatu fungsi dinamakan jarak jika mempunyai sifat a. b. (simetris) c. panjang salah satu suatu segitiga lebih kecil atau sama deeengan jumlah dua sisi yang lain Beberapa macam jarak yang dipakai dalam analisa cluster 1 Jarak Euclidean dengan rumus 2 Jarak Manhattan dengan rumus 3 Jarak Pearson dengan rumus 4 Jarak Korelasi dengan rumus 5. Jarak Mutlak Korelasi dengan rumus Metode-metode pengclusteran hirarki dibedakan dengan dasar konsep jarak antar cluster. Metode-metode yang digunakan untuk menentukan jarak antara cluster 1. Single linkage mempunyai jarak antar cluster (i.j) dengan k 2. Complete linkage mempunyai jarak antara cluster (i,j) dengan k Jurusan Pendidikan Matematika FMIPA UNY, 5 Desember
4 3. Average linkage mempunyai jarak antara cluster (i,j) dengan k 4. Median linkage mempunyai jarak antara cluster (i,j) dengan k Langkah-langkah dalam membuat cluster data dengan menggunakan metode hirarki a. Tentukan matriks jarak antar data yang diclusterkan b. Tentukan dua data yang mempunyai jarak terkecil kemudian gabungkan dua data ini ke dalam satu cluster c. Modifikasi matriks jarak sesuai aturan jarak antar cluster yang sesuai dengan metode yang dipakai d. Lakukan langkah 2 dan 3 sampai matriks jarak berorder 1X1 Langkah- langkah dalam membuat cluster data dengan metode non hirarki K Means adalah a. Mulai b. Tentukan k buah pusat awal c. Tentukan jarak setiap data ke titik pusat d. Lakukan pengclusteran setiap data ke pusat terdekat e. Tentukan nilai pusat baru sebagai rata-rata data dalam cluster f. Lakukan langkah 3-5 sampai nilai pusat cluster tidak berubah lagi g. Selesai. Contoh Seorang ahli pertanian ingin mengelompokkan (cluster) 6 jenis jagung berdasarkan sifat produksinya (hasil produksi). Keenam jenis jagung itu adalah jenis 1,2,3,4,5 dan 6 dibudidayakan di lima tempat atau lokasi,yaitu Tabel 1 Rata-rata Hasil Produksi (kwintal per ha) dari 6 jenis jagung di 5 Lokasi yang Berbeda Lokasi Percobaan Jenis jagung ,7 37,1 25,5 47,4 39,5 36,1 30,2 29,5 32,9 29,5 47,6 40,3 22,6 17,7 35,6 32,8 25,8 28,8 23,7 23,9 32,2 34,7 30,6 30,6 36,5 30,1 35,1 28,2 34,5 34,5 Jurusan Pendidikan Matematika FMIPA UNY, 5 Desember
5 Kemudian kita menentukan matriks jarak berdasarkan rumus Dimana Kita hitung dulu koefisien korelasi antara jenis i dan j dimana i=1,2,3,4,5,6 j=1,2,3,4,5,6 Hasil perhitungan koefisien korelasi untuk i,j=1,2,3,4,5,6 sebagai berikut Dengan menggunakan nilai kooefisien korelasi sederhana antara i dan j, maka nilai jarak antara jenis jagung i dan j berikut ini: i,j=1,2,3,4,5,6 Jurusan Pendidikan Matematika FMIPA UNY, 5 Desember
6 PROSIDING ISBN: ,020 Dengan menggunakan nilai jarak diatas diperoleh matriks jarak Dibawah ini Minimum jarak 0,020 Dengan menggunakan setiap jenis jagung sebagai suatu kelompok, maka suatu kriteria pengelompokkan adalah menggabungkan dua jenis {5,6} maka kedua jenis yangng memiliki nilai jarak minimum yaitu nilai jagung itu mempunyai kedekatan sifat hasil produksi sehingga jenis jagung 5 dan 6 dikelompokkan ke dalam satu kelompok yang diberi nama kelompok {5,6}. Untuk melaksanakan pengelompokkan berikutnya, maka kita dapat menentukan jarak antara kelompok {5,6} dan kelompok jenis jagung yang tersisa 1,2,3.4. Jarak minimum (neightbourhood) dan kelompok berikutnya dengan menggunakan rumus Sehingga diperoleh Dengan membuang baris dan kolom dari matriks yang berhubungan dengan varitas 5 dan 6, kemudian melalui penambahan baris dan kolom untuk kelompok {5,6}, maka akan memperoleh matriks jarak yang baru berikut ini Jurusan Pendidikan Matematika FMIPA UNY, 5 Desember
7 PROSIDING ISBN: Dari matriks diperoleh nilai jarak minimum d(3,4)=0,150 yang berarti ada kedekatan sifat produksi jenis 3 dan 4. Sehingga perlu menggabungkan jenis 3 dan 4 pada jarak d(3,4)=0,150 ke dalam satu kelompok baru yang diberi nama kelompok {3,4}. Kita ulangi proses pengelompokkan berikutnya dengan cara menentukan jarak antara kelompok {3,4}, {5,6},1,2 dengan menggunakan rumus Sehingga diperoleh: Kemudian diadakan penghapusan baris dan kolom dari matriks yang berkaitan dengan jenis 3 dan 4, setelah itu menambahkan baris dan kolom untuk kolom(3,4) maka akan diperoleh matriks jarak baru dibawah ini: terdapat nilai jarak minimum d(1,2)=0,152 kedalam satu Dari matriks kelompok yang diberi nama kelompok {1,2}. Pengelompokkan diulangi lagi untuk mengelompokkan semua jenis jagung ke dalam satu kelompok secara bersama yang menandakan algoritma telah berakhir Kemudian dikelompokkan dengan menghitung nilai jarak antara kelompok {1,2} yang baru terbentuk dan kelompok {3,4} dan {5,6}. Perhitungan jarak menggunakan rumus dibawah ini : Sehingga diperoleh Jurusan Pendidikan Matematika FMIPA UNY, 5 Desember
8 Dengan penghapusan baris dan kolom dari matriks yang berhubungan dengan jenis 1 dan 2, kemudian setelah menambah baris dan kolom untuk kolom {1,2} akan diperoleh matriks jarak baru berikut ini: Dari matriks terdapat jarak minimum d(3,4)=0,370 dengan menggabungkan jenis 1,2,3 dan 4 kedalam kelompok baru dengan nama {1,2,3,4} menggunakan rumus dibawah ini Sehingga diperoleh Dengan penghapusan baris dan kolom dari matriks terdapat jarak minimum yang nilainya o,370 yang berhubungan kelompok (1,2) dan (3,4) kmudian menambahkan baris dan kolom untuk kelompok (1,2,3,4) yang baru terbentuk, sehingga diperoleh matriks jarak baru: Matriks merupakan matriks jarak terakhir dengan semua jenis jagung akan mengelompok menjadi satu kelompok {1,2,3,4,5,6} dengan jarak d=0,461 Hasil pengelompokkan 6 jenis jagung dengan menggunakan metode Single Linkage dalam analisis cluster hirarki dapat disajikan dengan dendogram dibawah ini. Jurusan Pendidikan Matematika FMIPA UNY, 5 Desember
9 ,213 0,840 0,864 0,926 Gambar 1 Dari dendogram diatas dengan jarak minimum d=0,40 maka akan memperoleh dua cluster jenis jagung dan cluster jenis jagung {5,6}. Pada dasarnya batas nilai jarak d yang dipilih akan tergantung sejauh mana kekuatan yang diinginkan dengan memperhatikan semakin besar nilai jarak d akan semakin kuat pengelompokkan (cluster) itu. Jika dipilih d=0,50 maka keenam jenis jagung cukup dikelompokkan satu cluster saja, tetapi jika dipilih d=0,30 keenam jenis jagung dikelompokkan menjadi cluster, cluster {1,2}, cluster{3,4} dan cluster {5,6}. Daftar Pustaka 1. Jupranto,2004. Analisis Multivariat Arti dan Interpretasi,Penerbit Rineka Cipta,Jakarta. 2. Gaspersz,Vincent,1995. Teknik Analisis Dalam Penelitian Percobaan, Penerbit Tarsito Bandung, Bandung. Jurusan Pendidikan Matematika FMIPA UNY, 5 Desember
BAB I PENDAHULUAN. 1.1 Latar Belakang. Masalah dalam kehidupan sehari-hari tidak hanya didasarkan pada
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah dalam kehidupan sehari-hari tidak hanya didasarkan pada hubungan satu variabel atau dua variabel saja, akan tetapi cenderung melibatkan banyak variabel. Analisis
BAB I PENDAHULUAN. Analisis statistik multivariat adalah metode statistik di mana masalah yang
BAB I PENDAHULUAN 1.1. LATAR BELAKANG MASALAH Analisis statistik multivariat adalah metode statistik di mana masalah yang diteliti bersifat multidimensional dengan menggunakan tiga atau lebih variabel
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan diuraikan mengenai landasan teori yang akan digunakan dalam bab selanjutnya. 2.1 Matriks Sebuah matriks, biasanya dinotasikan dengan huruf kapital tebal seperti A,
Analisis Cluster, Analisis Diskriminan & Analisis Komponen Utama. Analisis Cluster
Analisis Cluster Analisis Cluster adalah suatu analisis statistik yang bertujuan memisahkan kasus/obyek ke dalam beberapa kelompok yang mempunyai sifat berbeda antar kelompok yang satu dengan yang lain.
*Corresponding Author:
PERBANDINGAN KINERJA METODE COMPLETE LINKAGE DAN AVERAGE LINKAGE DALAM MENENTUKAN HASIL ANALISIS CLUSTER (Studi Kasus: Produksi Palawija Provinsi Kalimantan Timur 2014/2015) Silvia Ningsih 1, Sri Wahyuningsih
BAB III K-MEDIANS CLUSTERING
BAB III 3.1 ANALISIS KLASTER Analisis klaster merupakan salah satu teknik multivariat metode interdependensi (saling ketergantungan). Metode interdependensi berfungsi untuk memberikan makna terhadap seperangkat
BAB I PENDAHULUAN. Masalah dalam kehidupan sehari-hari tidak hanya didasarkan pada
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah dalam kehidupan sehari-hari tidak hanya didasarkan pada hubungan satu variabel atau dua variabel saja, akan tetapi cenderung melibatkan banyak variabel. Analisis
Analisa Anggaran Pendapatan dan Belanja Daerah (APBD) dengan Metode Hierarchical Clustering
SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 Analisa Anggaran Pendapatan dan Belanja Daerah (APBD) dengan Metode Hierarchical Clustering Viga Apriliana Sari, Nur Insani Jurusan Pendidikan
BAB II KAJIAN TEORI. linier, varian dan simpangan baku, standarisasi data, koefisien korelasi, matriks
BAB II KAJIAN TEORI Pada bab II akan dibahas tentang materi-materi dasar yang digunakan untuk mendukung pembahasan pada bab selanjutnya, yaitu matriks, kombinasi linier, varian dan simpangan baku, standarisasi
BAB II TINJAUAN PUSTAKA. penelitian ini, yaitu analisis peubah ganda, analisis gerombol (cluster analysis),
BAB II TINJAUAN PUSTAKA Pada bab ini akan dibahas beberapa konsep yang menjadi dasar dalam penelitian ini, yaitu analisis peubah ganda, analisis gerombol (cluster analysis), metode penggerombolan hirarki
LABORATORIUM DATA MINING JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS ISLAM INDONESIA. Modul II CLUSTERING
LABORATORIUM DATA MINING JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS ISLAM INDONESIA Modul II CLUSTERING TUJUA PRAKTIKUM 1. Mahasiswa mempunyai pengetahuan dan kemampuan dasar dalam
STK511 Analisis Statistika. Pertemuan 13 Peubah Ganda
STK511 Analisis Statistika Pertemuan 13 Peubah Ganda 13. Peubah Ganda: Pengantar Pengamatan Peubah Ganda Menggambarkan suatu objek tidak cukup menggunakan satu peubah saja Kasus pengamatan peubah ganda
Analisis Cluster Average Linkage Berdasarkan Faktor-Faktor Kemiskinan di Provinsi Jawa Timur
Analisis Cluster Average Linkage Berdasarkan Faktor-Faktor Kemiskinan di Provinsi Jawa Timur Qonitatin Nafisah, Novita Eka Chandra Jurusan Matematika Fakultas MIPA Universitas Islam Darul Ulum Lamongan
ANALISIS GEROMBOL CLUSTER ANALYSIS
ANALISIS GEROMBOL CLUSTER ANALYSIS Pendahuluan Tujuan dari analisis gerombol : Menggabungkan beberapa objek ke dalam kelompok-kelompok berdasarkan sifat kemiripan atau sifat ketidakmiripan antar objek
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Clustering Analysis Clustering analysis merupakan metode pengelompokkan setiap objek ke dalam satu atau lebih dari satu kelompok,sehingga tiap objek yang berada dalam satu kelompok
BAB I PENDAHULUAN. 7). Analisis ini dikelompokkan menjadi dua, yaitu analisis dependensi dan
BAB I PENDAHULUAN A. Latar Belakang Analisis multivariat merupakan analisis multivariabel yang berhubungan dengan semua teknik statistik yang secara simultan menganalisis sejumlah pengukuran pada individu
BAB III METODE PENELITIAN. Alasan memilih Ciputra Taman Dayu Pandaan dikarenakan Ciputra Taman Dayu
BAB III METODE PENELITIAN 1.1 Lokasi Penelitian Lokasi penelitian ini di Ciputra Taman Dayu Property Pandaan Pasuruan yang terletak di Jl. Raya Surabaya Km. 48 Pandaan 67156 Pasuruan Jawa Timur. Alasan
Prosiding Seminar Sains dan Teknologi FMIPA Unmul Vol. 1 No. 2 Desember 2015, Samarinda, Indonesia ISBN :
Clustering Data Status Tugas Belajar Dan Ijin Belajar Menggunakan Metode Fuzzy C-Means (Studi Kasus : Di Lingkungan Pemerintah Provinsi Kalimantan Timur) Fevin Triyas Rantika 1, Indah Fitri Astuti, M.Cs
BAB III K-MEANS CLUSTERING. Analisis klaster merupakan salah satu teknik multivariat metode
BAB III K-MEANS CLUSTERING 3.1 Analisis Klaster Analisis klaster merupakan salah satu teknik multivariat metode interdependensi (saling ketergantungan). Oleh karena itu, dalam analisis klaster tidak ada
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Analisis cluster merupakan teknik multivariat yang mempunyai tujuan utama untuk mengelompokkan objek-objek berdasarkan karakteristik yang dimilikinya. Analisis cluster
PENENTUAN JUMLAH CLUSTER OPTIMAL PADA MEDIAN LINKAGE DENGAN INDEKS VALIDITAS SILHOUETTE
Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 05, No. 2 (2016), hal 97 102. PENENTUAN JUMLAH CLUSTER OPTIMAL PADA MEDIAN LINKAGE DENGAN INDEKS VALIDITAS SILHOUETTE Nicolaus, Evy Sulistianingsih,
PENGELOMPOKAN PROVINSI DI INDONESIA BERDASARKAN PERSENTASE RUMAH TANGGA MENURUT KUALITAS FISIK AIR MINUM DENGAN MENGGUNAKAN K-MEANS CLUSTER
PENGELOMPOKAN PROVINSI DI INDONESIA BERDASARKAN PERSENTASE RUMAH TANGGA MENURUT KUALITAS FISIK AIR MINUM DENGAN MENGGUNAKAN K-MEANS CLUSTER Artanti Indrasetianingsih Dosen Program Studi Statistika, FMIPA
ANALISIS CLUSTER DENGAN METODE K-MEANS (TEORI DAN CONTOH STUDY KASUS)
ANALISIS MULTIVARIAT ANALISIS CLUSTER DENGAN METODE K-MEANS (TEORI DAN CONTOH STUDY KASUS) Oleh : Rizka Fauzia 1311 100 126 Dosen Pengampu: Santi Wulan Purnami S.Si., M.Si. PROGRAM STUDI SARJANA JURUSAN
METODE CLUSTERING DENGAN ALGORITMA K-MEANS. Oleh : Nengah Widya Utami
METODE CLUSTERING DENGAN ALGORITMA K-MEANS Oleh : Nengah Widya Utami 1629101002 PROGRAM STUDI S2 ILMU KOMPUTER PROGRAM PASCASARJANA UNIVERSITAS PENDIDIKAN GANESHA SINGARAJA 2017 1. Definisi Clustering
InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 3, No.2, September 2014
APLIKASI METODE-METODE AGGLOMERATIVE DALAM ANALISIS KLASTER PADA DATA TINGKAT POLUSI UDARA Oleh: Dewi Rachmatin Jurusan Pendidikan Matematika, UniversitasPendidikan Indonesia [email protected] ABSTRAK
K-Means Clustering dan Average Linkage dalam Pembentukan Portfolio Saham
SEMINAR MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2017 T - 31 K-Means Clustering dan Average Linkage dalam Pembentukan Portfolio Saham Retno Subekti 1, Rosita Kusumawati 2, Eminugroho Ratna Sari 3 Jurusan
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Seperti yang kita ketahui, bahwa akhir-akhir ini nilai standar kelulusan Ujian Nasional (UN) di Indonesia terkhususnya pendidikan di tingkat SMA semakin tinggi. Oleh
BAB 2 LANDASAN TEORI
7 BAB 2 LANDASAN TEORI Bab ini membahas tentang teori penunjang dan penelitian sebelumnya yang berhubungan dengan penerapan algoritma hierarchical clustering dan k-means untuk pengelompokan desa tertinggal.
PENGELOMPOKAN KABUPATEN/KOTA DI KALIMANTAN BARAT BERDASARKAN INDIKATOR DALAM PEMERATAAN PENDIDIKAN MENGGUNAKAN METODE MINIMAX LINKAGE
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 05, No. 02 (2016), hal 253-260 PENGELOMPOKAN KABUPATEN/KOTA DI KALIMANTAN BARAT BERDASARKAN INDIKATOR DALAM PEMERATAAN PENDIDIKAN MENGGUNAKAN
Kata kunci: Cluster, Knowledge Discovery in Database, Algoritma K-Means,
K- Pembentukan cluster dalam Knowledge Discovery in Database dengan Algoritma K-Means Oleh: Sri Andayani Jurusan Pendidikan Matematika FMIPA UNY,email: [email protected] Abstrak Pembentukan cluster merupakan
(M.8) STRATEGI PENILAIAN SAHAM BERDASARKAN UKURAN TINGKAT LIKUIDITASNYA SEBAGAI ACUAN PENDUKUNG INDEKS LQ45
(M.8) STRATEGI PENILAIAN SAHAM BERDASARKAN UKURAN TINGKAT LIKUIDITASNYA SEBAGAI ACUAN PENDUKUNG INDEKS LQ45 Muhammad Rifqi Syauqi PT Bursa Efek Indonesia Jl. Jend. Sudirman Kav. 52-53 Jakarta 12190 [email protected]
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Traveling Salesmen Problem (TSP) Travelling Salesman Problem (TSP) merupakan sebuah permasalahan optimasi yang dapat diterapkan pada berbagai kegiatan seperti routing. Masalah
BAB III PEMBAHASAN. survei yang dilakukan BPS pada 31 Oktober Langkah selanjutnya yang
BAB III PEMBAHASAN Data yang digunakan dalam skripsi ini merupakan data sekunder yang diperoleh dari buku saku Ikhtisar Data Pendidikan Tahun 2016/2017. Data tersebut dapat dilihat pada Lampiran 1. Data
PENGELOMPOKAN DESA/KELURAHAN DI KOTA DENPASAR MENURUT INDIKATOR PENDIDIKAN
E-Jurnal Matematika Vol. (), Mei, pp. - ISSN: - PENGELOMPOKAN DESA/KELURAHAN DI KOTA DENPASAR MENURUT INDIKATOR PENDIDIKAN Ni Wayan Aris Aprilia A.P, I Gusti Ayu Made Srinadi, Kartika Sari Jurusan Matematika,
1.2 Rumusan Masalah 1.3 Batasan Masalah 1.4 Tujuan Penelitian
Penerapan Data Mining dengan Menggunakan Metode Clustering K-Mean Untuk Mengukur Tingkat Ketepatan Kelulusan Mahasiswa Program Teknik Informatika S1 Fakultas Ilmu Komputer Universitas Dian Nuswantoro Semarang
dengan Algoritma K Means
K Pembentukan cluster dalam Knowledge Discovery in Database dengan Algoritma K Means Oleh: Sri Andayani Jurusan Pendidikan Matematika FMIPA UNY,email: [email protected] Abstrak Pembentukan cluster merupakan
Pertemuan 14 HIERARCHICAL CLUSTERING METHODS
Pertemuan 14 HIERARCHICAL CLUSTERING METHODS berdasar gambar berdasar warna A A A A Q Q Q Q K K K K J J J J 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10 A K Q J (a). Individual
Proses mengelompokkan suatu set objek ke dalam kelompok-kelompok objek yang sejenis. Bentuk yang paling umum digunakan adalah unsupervised learning
CLUSTERING DEFINISI Clustering : Proses mengelompokkan suatu set objek ke dalam kelompok-kelompok objek yang sejenis Bentuk yang paling umum digunakan adalah unsupervised learning # Unsupervised learning
Universitas Negeri Malang Kata Kunci: cluster, single linkage, complete linkage, silhouette, pembangunan manusia.
1 PERBANDINGAN JUMLAH KELOMPOK OPTIMAL PADA METODE SINGLE LINKAGE DAN COMPLETE LINKAGE DENGAN INDEKS VALIDITAS SILHOUETTE: Studi Kasus pada Data Pembangunan Manusia Jawa Timur Yuli Novita Indriani 1, Abadyo
ANALISIS KELOMPOK DENGAN MENGGUNAKAN METODE HIERARKI UNTUK PENGELOMPOKAN KABUPATEN/KOTA DI JAWA TIMUR BERDASAR INDIKATOR KESEHATAN
1 ANALISIS KELOMPOK DENGAN MENGGUNAKAN METODE HIERARKI UNTUK PENGELOMPOKAN KABUPATEN/KOTA DI JAWA TIMUR BERDASAR INDIKATOR KESEHATAN, dan, Universitas Negeri Malang Email: [email protected] ABSTRAK:
Clustering. Virginia Postrel
8 Clustering Most of us cluster somewhere in the middle of most statistical distributions. But there are lots of bell curves, and pretty much everyone is on a tail of at least one of them. We may collect
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Product Bundling Product bundling adalah strategi penjualan yang diterapkan di pemasaran. Product bundling mempunyai tujuan untuk memaksimalkan keuntungan dalam berbagai macam
PENGGUNAAN METODE PENGKLASTERAN UNTUK MENENTUKAN BIDANG TUGAS AKHIR MAHASISWA TEKNIK INFORMATIKA PENS BERDASARKAN NILAI
PENGGUNAAN PENGKLASTERAN UNTUK MENENTUKAN BIDANG TUGAS AKHIR MAHASISWA TEKNIK INFORMATIKA PENS BERDASARKAN NILAI Entin Martiana S.Kom,M.Kom, Nur Rosyid Mubtada i S. Kom, Edi Purnomo Jurusan Teknik Informatika
Rotasi Varimax dan Median Hirarki Cluster Pada Program Raskin di Kabupaten Lombok Barat
Jurnal Matematika Vol. 5 No.1, Juni 2015. ISSN: 1693-1394 Rotasi Varimax dan Median Hirarki Cluster Pada Program Raskin di Kabupaten Lombok Barat Desy Komalasari Fakultas MIPA Fakultas MIPA, Universitas
BAB I PENDAHULUAN. 1.1 Latar Belakang
10 BAB I PENDAHULUAN 1.1 Latar Belakang Dalam upaya meningkatkan Sumber Daya Manusia (SDM) yang bermutu, bidang pendidikan memegang peranan penting. Dengan pendidikan diharapkan kemampuan mutu pendidikan
MULTI KOLLINIERITAS DALAM REGRESI MULTIPLE LOGISTIK. Hery Tri Sutanto Jurusan Matematika MIPA Unesa Surabaya. Abstrak
MULTI KOLLINIERITAS DALAM REGRESI MULTIPLE LOGISTIK S-16 Hery Tri Sutanto Jurusan Matematika MIPA Unesa Surabaya Abstrak Adanya korelasi yang tinggi antar variabel bebas menandakan adanya kolinearity dalam
Analisis Klaster untuk Pengelompokan Kemiskinan di Jawa Barat Berdasarkan Indeks Kemiskinan 2016
Analisis Klaster untuk Pengelompokan Kemiskinan di Jawa Barat Berdasarkan Indeks Kemiskinan 2016 Rana Amani Desenaldo 1 Universitas Padjadjaran 1 [email protected] ABSTRAK Kesejahteraan sosial adalah
BAB 1 PENDAHULUAN 1.1. Latar Belakang
BAB 1 PENDAHULUAN 1.1. Latar Belakang Analisis cluster merupakan salah satu alat yang penting dalam pengolahan data statistik untuk melakukan analisis data. Analisis cluster merupakan seperangkat metodologi
commit to user 5 BAB II TINJAUAN PUSTAKA 2.1 Dasar Teori Text mining
BAB II TINJAUAN PUSTAKA 2.1 Dasar Teori 2.1.1 Text mining Text mining adalah proses menemukan hal baru, yang sebelumnya tidak diketahui, mengenai informasi yang berpotensi untuk diambil manfaatnya dari
KOMBINASI ALGORITMA AGGLOMERATIVE CLUSTERING DAN K-MEANS UNTUK SEGMENTASI PENGUNJUNG WEBSITE
KOMBINASI ALGORITMA AGGLOMERATIVE CLUSTERING DAN K-MEANS UNTUK SEGMENTASI PENGUNJUNG WEBSITE Yudha Agung Wirawan, Dra.Indwiarti,M.Si, Yuliant Sibaroni,S.SI., M,T Program Studi Ilmu Komputasi Fakultas Informatika
CLUSTERING LULUSAN MAHASISWA MATEMATIKA FMIPA UNTAN PONTIANAK MENGGUNAKAN ALGORITMA FUZZY C-MEANS
Buletin Ilmiah Mat. Stat. Dan Terapannya (Bimaster) Volume 02, No.1(2013), hal. 21-26 CLUSTERING LULUSAN MAHASISWA MATEMATIKA FMIPA UNTAN PONTIANAK MENGGUNAKAN ALGORITMA FUZZY C-MEANS Cary Lineker Simbolon,
METODE PAUTAN TERBAIK DALAM PENGELOMPOKAN DESA/KELURAHAN DI KOTA DENPASAR MENURUT INDIKATOR PENDIDIKAN KOMPETENSI STATISTIKA SKRIPSI
35 METODE PAUTAN TERBAIK DALAM PENGELOMPOKAN DESA/KELURAHAN DI KOTA DENPASAR MENURUT INDIKATOR PENDIDIKAN KOMPETENSI STATISTIKA SKRIPSI NI WAYAN ARIS APRILIA A.P 1008405033 JURUSAN MATEMATIKA FAKULTAS
BAB III METODOLOGI PENELITIAN. Jenis penelitian yang digunakan dalam menyusun skripsi ini menggunakan
BAB III METODOLOGI PENELITIAN A. Jenis Penelitian Jenis penelitian yang digunakan dalam menyusun skripsi ini menggunakan metode deskriptif. Menurut Sugiono dalam bukunya Metodologi Penelitian Bisnis (2009)
ANALISIS KARAKTERISTIK POLA BELANJA KELUARGA DENGAN ANALISIS KLASTER
ISSN: 2088-687X 73 ANALISIS KARAKTERISTIK POLA BELANJA KELUARGA DENGAN ANALISIS KLASTER Nur Arina Hidayati Program Studi Pendidikan Matematika FKIP UAD Jl. Prof. Dr. Soepomo, SH. Janturan Yogyakarta [email protected]
KLASTERISASI KOMPETENSI GURU MENGGUNAKAN HASIL PENILAIAN PORTOFOLIO SERTIFIKASI GURU DENGAN METODE DATA MINING
KLASTERISASI KOMPETENSI GURU MENGGUNAKAN HASIL PENILAIAN PORTOFOLIO SERTIFIKASI GURU DENGAN METODE DATA MINING Ari Kurniawan, Mochamad Hariadi S2 Teknik Elektro (Telematika), Institut Teknologi Sepuluh
Analisis Tingkat Kepuasan Mahasiswa Terhadap Kualitas Pelayanan Akademik Menggunakan Analisis Faktor
Prosiding Semirata FMIPA Universitas Lampung, 2013 Analisis Tingkat Kepuasan Mahasiswa Terhadap Kualitas Novi Rustiana Dewi Jurusan Matematika FMIPA Universitas Sriwijaya E-mail: [email protected]
PENINGKATAN KINERJA ALGORITMA K-MEANS DENGAN FUNGSI KERNEL POLYNOMIAL UNTUK KLASTERISASI OBJEK DATA
PENINGKATAN KINERJA ALGORITMA K-MEANS DENGAN FUNGSI KERNEL POLYNOMIAL UNTUK KLASTERISASI OBJEK DATA Heri Awalul Ilhamsah Jurusan Teknik Industri Universitas Trunojoyo Madura Kampus Universitas Trunojoyo
Pengenalan Pola. Hierarchical Clustering
Pengenalan Pola Hierarchical Clustering PTIIK - 2014 Course Contents 1 Agglomerative Hierarchical Clustering (AHC) 2 Stui Kasus 3 Latihan an Diskusi 4 Progress Final Project Hierarchical Clustering Hierarchical
Bab 1 PENDAHULUAN. 1.1 Latar Belakang
Bab 1 PENDAHULUAN 1.1 Latar Belakang Dalam upaya meningkatkan Sumber Daya Manusia (SDM) yang bermutu, bidang pendidikan memegang peranan penting. Dengan pendidikan diharapkan kemampuan mutu pendidikan
ANALISIS CLUSTER PADA DOKUMEN TEKS
Text dan Web Mining - FTI UKDW - BUDI SUSANTO 1 ANALISIS CLUSTER PADA DOKUMEN TEKS Budi Susanto (versi 1.3) Text dan Web Mining - FTI UKDW - BUDI SUSANTO 2 Tujuan Memahami konsep analisis clustering Memahami
BAB 2 LANDASAN TEORI
6 BAB 2 LANDASAN TEORI 21 Kemiskinan Definisi tentang kemiskinan telah mengalami perluasan, seiring dengan semakin kompleksnya faktor penyebab, indikator, maupun permasalahan lain yang melingkupinya Kemiskinan
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
11 BAB 1 PENDAHULUAN 1.1 Latar Belakang Bangsa yang besar adalah bangsa yang berpendidikan. Keberhasilan suatu bangsa ditentukan oleh seberapa majunya pendidikan bangsa tersebut. Pada saat ini kondisi
Analisis Klaster Hierarki Untuk Pengelompokkan Kabupaten/Kota Di Jawa Tengah Berdsarkan Indikator Indeks Pembangunan Manusia (IPM) Tahun 2015
Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai Islami) Vol.1, No.1, Juli 2017, Hal. 229-239 p-issn: 2580-4596; e-issn: 2580-460X Halaman 229 Analisis Klaster Hierarki Untuk Pengelompokkan
PENGGEROMBOLAN SMA/MA DI KOTA PADANG BERDASARKAN INDIKATOR MUTU PENDIDIKAN DENGAN MENGGUNAKAN METODE CLUSTER ENSEMBLE
Jurnal Matematika UNAND Vol. 3 No. 4 Hal. 13 23 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENGGEROMBOLAN SMA/MA DI KOTA PADANG BERDASARKAN INDIKATOR MUTU PENDIDIKAN DENGAN MENGGUNAKAN METODE CLUSTER
Pemanfaatan Algoritma FCM Dalam Pengelompokan Kinerja Akademik Mahasiswa
Konferensi Nasional Sistem & Informatika 2015 STMIK STIKOM Bali, 9 10 Oktober 2015 Pemanfaatan Algoritma FCM Dalam Pengelompokan Kinerja Akademik Mahasiswa Aidina Ristyawan 1), Kusrini 2), Andi Sunyoto
Analisis Cluster terhadap Tingkat Pencemaran Udara pada Sektor Industri di Sumatera Selatan
Jurnal Penelitian Sains Volume 14 Nomer 3(A) 14303 Analisis Cluster terhadap Tingkat Pencemaran Udara pada Sektor Industri di Sumatera Selatan Robinson Sitepu, Irmeilyana, dan Berry Gultom Jurusan Matematika,
Analisis cluster pengorganisasian kumpulan pola ke dalam cluster (kelompok-kelompok) berdasar atas kesamaannya. Pola-pola dalam suatu cluster akan
Analisis cluster pengorganisasian kumpulan pola ke dalam cluster (kelompok-kelompok) berdasar atas kesamaannya. Pola-pola dalam suatu cluster akan memiliki kesamaan ciri/sifat daripada pola-pola dalam
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA A. Tinjauan Pustaka Pada penelitian yang dilakukan oleh (Chen, Sain, & Guo, 2012) berfokus untuk mengetahui pola penjualan, pelanggan mana yang paling berharga, pelanggan mana yang
PENDAHULUAN. 1.1 Latar Belakang
DAFTAR TABEL Tabel 3-1 Dokumen Term 1... 17 Tabel 3-2 Representasi... 18 Tabel 3-3 Centroid pada pengulangan ke-0... 19 Tabel 3-4 Hasil Perhitungan Jarak... 19 Tabel 3-5 Hasil Perhitungan Jarak dan Pengelompokkan
BAB IV METODE PENELITIAN
44 BAB IV METODE PENELITIAN 4.1. Lokasi Penelitian Penelitian ini dilakukan pada industri kecil dan menengah di Kawasan Sarbagita, Bali yang terdiri dari empat wilayah, yaitu : Kota Denpasar, Kabupaten
BAB II TINJAUAN PUSTAKA
II.1 BAB II TINJAUAN PUSTAKA 2.1 Travelling Salesman Problem (TSP) Permasalahan tentang Traveling Salesman Problem dikemukakan pada tahun 1800 oleh matematikawan Irlandia William Rowan Hamilton dan matematikawan
TINJAUAN PUSTAKA Analisis Gerombol
3 TINJAUAN PUSTAKA Analisis Gerombol Analisis gerombol merupakan analisis statistika peubah ganda yang digunakan untuk menggerombolkan n buah obyek. Obyek-obyek tersebut mempunyai p buah peubah. Penggerombolannya
BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan
BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Berdasarkan Peraturan Pemerintah Nomor 37 tahun 2009, dosen merupakan pendidik profesional dan ilmuwan dengan tugas utama mentransformasikan, mengembangkan,
BAB II TINJAUAN PUSTAKA. mengelompokkan anggota-anggota yang mirip atau mempunyai karakteristik yang
BAB II TINJAUAN PUSTAKA 2.1 Analisis Gerombol 2.1.1 Pengertian Analisis Gerombol Cluster atau gerombol dapat diartikan kelompok dengan demikian, pada dasarnya analisis gerombol akan menghasilkan sejumlah
APLIKASI ANALISIS DISKRIMINAN PADA PREFERENSI MAHASISWA JURUSAN PENDIDIKAN MATEMATIKA IAIN STS JAMBI TERHADAP MATA KULIAH STRUKTUR ALJABAR
APLIKASI ANALISIS DISKRIMINAN PADA PREFERENSI MAHASISWA JURUSAN PENDIDIKAN MATEMATIKA IAIN STS JAMBI TERHADAP MATA KULIAH STRUKTUR ALJABAR Mustika Aidilla 1, Ali Murtadlo 2, Rini Warti 3 1,2,3 Jurusan
PENGELOMPOKKAN KABUPATEN DI PROVINSI BALI BERDASARKAN PERKEMBANGAN FASILITAS PARIWISATA
E-Jurnal Matematika Vol. 2, No.3, Agustus 2013, 53-58 ISSN: 2303-1751 PENGELOMPOKKAN KABUPATEN DI PROVINSI BALI BERDASARKAN PERKEMBANGAN FASILITAS PARIWISATA NOVA SARI BARUS 1, I PUTU EKA NILA KENCANA
BAB II LANDASAN TEORI
perpustakaanunsacid digilibunsacid BAB II LANDASAN TEORI Pada bagian pertama bab kedua ini diberikan tinjuan pustaka yang berisi penelitian sebelumnya yang mendasari penelitian ini Pada bagian kedua bab
KAJIAN METODE BERBASIS MODEL PADA ANALISIS CLUSTER DENGAN PERANGKAT LUNAK MCLUST
LAPORAN PENELITIAN BIDANG ILMU KELOMPOK TINGKAT LANJUT KAJIAN METODE BERBASIS MODEL PADA ANALISIS CLUSTER DENGAN PERANGKAT LUNAK MCLUST Oleh: Drs. Timbul Pardede, M.Si Drs. Budi Prasetyo, M.Si FAKULTAS
Dhiani Tresna Absari,ST. Dosen Jurusan Teknik Informatika Universitas Surabaya
PERENCANAAN PEMBUATAN SISTEM PENUNJANG KEPUTUSAN DENGAN MENGGUNAKAN METODE CLUSTERING PADA STUDI KELAYAKAN PEMBUKAAN JARINGAN TRAYEK ANGKUTAN KOTA (SISTEM PENUNJANG KEPUTUSAN JARINGAN TRAYEK ANGKUTAN KOTA)
ANALISIS KELOMPOK METODE HIRARKI UNTUK PENGELOMPOKAN KOTA/KABUPATEN DI JAWA TIMUR BERDASARKAN INDIKATOR KETENAGAKERJAAN,,
1 ANALISIS KELOMPOK METODE HIRARKI UNTUK PENGELOMPOKAN KOTA/KABUPATEN DI JAWA TIMUR BERDASARKAN INDIKATOR KETENAGAKERJAAN,, Universitas Negeri Malang E-mail: [email protected] Abstrak: Dengan
BAB 2 PENELITIAN TERKAIT DAN LANDASAN TEORI
BAB 2 PENELITIAN TERKAIT DAN LANDASAN TEORI 2.1 Penelitian Terkait Ada beberapa penelitian terkait dengan penggunaan Data Mining metode cluster dengan menggunakan Algoritma Fuzzy C-Means untuk dapat mengelompokkan
Fuzzy C-means Clustering menggunakan Cluster Center Displacement
Fuzzy C-means Clustering menggunakan Cluster Center Displacement Fitri Hidayah Sundawati 1), Jadi Suprijadi 2), Titi Purwandari 3) 1) Mahasiswa Statistika Terapan, UniversitasPadjadjaran-Indonesia 2) Pengajar
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Data menjadi sesuatu yang sangat berharga saat ini. Tidak hanya badan pemerintah saja, perusahaan-perusahaan saat ini pun sangat membutuhkan informasi dari data yang
BAB IV ANALISIS DAN PERANCANGAN
BAB IV ANALISIS DAN PERANCANGAN 4.1. Analisa 4.1.1 Analisis Data Pada tahap analisa data ini akan dibahas mengenai citra CT Scan yang akan dilakukan proses segmentasi atau pengelompokan data. Data citra
ANALISIS PEUBAH GANDA ANALISIS GEROMBOL HAZMIRA YOZZA JURUSAN MATEMATIKA UNAND LOGO
ANALISIS PEUBAH GANDA ANALISIS GEROMBOL HAZMIRA YOZZA JURUSAN MATEMATIKA UNAND Kompetensi menghitung jarak antar individu Membentuk gerombol dengan menggunakan metode gerombol berhierarkhi Membentuk gerombol
BAB 4 Sistem Persamaan Linear. Sistem m persamaan linear dalam n variabel LG=C adalah himpunan persamaan linear
BAB 4 Sistem Persamaan Linear berbentuk Sistem m persamaan linear dalam n variabel LG=C adalah himpunan persamaan linear Dengan koefisien dan adalah bilangan-bilangan yang diberikan. Sistem ini disebut
PERBANDINGAN KINERJA METODE COMPLETE LINKAGE, METODE AVERAGE LINKAGE, DAN METODE K-MEANS DALAM MENENTUKAN HASIL ANALISIS CLUSTER
PERBANDINGAN KINERJA METODE COMPLETE LINKAGE, METODE AVERAGE LINKAGE, DAN METODE K-MEANS DALAM MENENTUKAN HASIL ANALISIS CLUSTER SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas
Tugas akhir disajikan sebagai salah satu syarat untuk memperoleh gelar Ahli Madya Program Studi Statistika Terapan dan Komputasi
PERBANDINGAN ANALISIS KLASTER MENGGUNAKAN METODE SINGLE LINKAGE, COMPLETE LINKAGE, AVERAGE LINKAGE DAN K-MEANS UNTUK PENGELOMPOKAN KECAMATAN BERDASARKAN VARIABEL JENIS TERNAK DI KABUPATEN SEMARANG Tugas
Minggu II STATISTIKA MULTIVARIATE TERAPAN
Minggu II STATISTIKA MULTIVARIATE TERAPAN (PENDAHULUAN) Herni U Universitas Gadjah Mada Outline 1 Analisis Statistika Multivariat 2 Contoh Kasus Multivariat 3 Organisasi Data Outline 1 Analisis Statistika
BAB II LANDASAN TEORI. Teori teori yang digunakan sebagai landasan dalam desain dan. implementasi dari sistem ini adalah sebagai berikut :
BAB II LANDASAN TEORI Teori teori yang digunakan sebagai landasan dalam desain dan implementasi dari sistem ini adalah sebagai berikut : 2.1. Sistem Informasi Manajemen Sistem Informasi Manajemen adalah
ANALISIS CLUSTER PADA DOKUMEN TEKS
Budi Susanto ANALISIS CLUSTER PADA DOKUMEN TEKS Text dan Web Mining - FTI UKDW - BUDI SUSANTO 1 Tujuan Memahami konsep analisis clustering Memahami tipe-tipe data dalam clustering Memahami beberapa algoritma
Jumlah persentase ini tidak harus persis seperti diatas tetapi bisa bervariasi tergantung di perusahaan mana metode ini diterapkan.
BAB 2 TINJAUAN PUSTAKA 2.1 Metode Pengelompokan ABC Pada abad ke-18, Villfredo Pareto, dalam penelitiannya mengenai distribusi kekayaan penduduk di Milan Italia, menemukan bahwa 20% dari total populasi
Jurnal EKSPONENSIAL Volume 7, Nomor 1, Mei 2016 ISSN
Perbandingan Hasil Analisis Cluster dengan Menggunakan Metode Single Linkage dan Metode C-Means (Studi Kasus: Data Tingkat Kualitas Udara Ambien pada Perusahaan Perkebunan di Kabupaten Kutai Barat Tahun
3 PEWILAYAHAN CURAH HUJAN
3 PEWILAYAHAN CURAH HUJAN Pendahuluan Daerah prakiraan musim (DPM) merupakan daerah dengan tipe hujan yang memiliki perbedaan yang jelas antara periode musim kemarau dan musim hujan berdasarkan pola hujan
Pengenalan Pola. Klasterisasi Data
Pengenalan Pola Klasterisasi Data PTIIK - 2014 Course Contents 1 Konsep Dasar 2 Tahapan Proses Klasterisasi 3 Ukuran Kemiripan Data 4 Algoritma Klasterisasi Konsep Dasar Klusterisasi Data, atau Data Clustering
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1. Sistem Informasi Pengertian Sistem Informasi pada dasarnya merupakan hasil dari dua arti, yakni sistem dan informasi yang digabungkan. Berikut definisi sistem menurut para ahli
