KARAKTERISTIK KOLEKTOR SURYA PLAT DATAR DENGAN VARIASI JARAK PENUTUP DAN SUDUT KEMIRINGAN KOLEKTOR

Ukuran: px
Mulai penontonan dengan halaman:

Download "KARAKTERISTIK KOLEKTOR SURYA PLAT DATAR DENGAN VARIASI JARAK PENUTUP DAN SUDUT KEMIRINGAN KOLEKTOR"

Transkripsi

1 KARAKTERISTIK KOLEKTOR SURYA PLAT DATAR DENGAN VARIASI JARAK PENUTUP DAN SUDUT KEMIRINGAN KOLEKTOR AULIYA BURHANUDDIN M2123 Juusan Fisika FMIPA UNS INTISARI Telah dilakukan penelitian untuk menentukan efisiensi kolektor panas surya plat datar. Pengujian kolektor dilakukan pada tanggal 3 November 2, 1, 3,, 6, 7 Desember 2 dengan variasi jarak satu kaca penutup 3 cm, 6 cm, dan 9 cm; dan variasi sudut kemiringan kolektor 1, 2, 3, dan 4. Kolektor panas surya menyerap energi radiasi dari matahari dan mengkonversikan menjadi panas diantara kaca penutup bawah dan plat penyerap. Parameter yang berpengaruh pada unjuk kerja kolektor diantaranya jarak plat penyerap dengan kaca penutup dan sudut kemiringannya. Dari hasil penelitian ini menunjukkan bahwa perbedaan temperatur output - input lebih besar pada jarak 3 cm dan sudut 1, karena sudut 1 lebih mendekati sudut zenit dibanding sudut lainnya. Efisiensi kolektor panas surya bukanlah suatu konstanta. Efisiensi kolektor surya bergantung pada intensitas radiasi matahari, perbedaan temperatur input-output, dan aliran udara. Pada sudut kemiringan kolektor surya terkecil, menyerap radiasi terbesar. Jika sudut kemiringan kolektor sama dengan sudut zenit maka radiasi yang terserap akan maksimal. Kata kunci : Kolektor surya plat datar, Efisiensi kolektor. I. PENDAHULUAN Indonesia beriklim tropis yang mempunyai temperatur lingkungan yang relatif tinggi, kelembaban relatif, serta pada beberapa tempat mempunyai curah hujan yang tinggi pula. Indonesia juga dikenal sebagai negara agraris yang menghasilkan selain makanan pokok juga menghasilkan produk pertanian lainnya seperti kakao, kopi, kopra, pala dan lain-lain. Komoditi tersebut kebanyakan harus segera dikeringkan setelah dipanen, karena bila terlambat akan terjadi proses pembusukan sehingga sangat merugikan. Untuk mengeringkan dibutuhkan energi yang sangat besar. Petani kebanyakan melakukan penjemuran di bawah teriknya sinar matahari. Temperatur lingkungan adalah sekitar 33 C, sedang temperatur pengeringan untuk komoditi pertanian kebanyak-an berkisar 6-7 C. Jika kita menggunakan udara pemanas bertemperatur lingkungan atau lebih rendah dari temperatur pengeringan tersebut, maka akan membutuhkan waktu yang lebih panjang. Untuk meningkatkan temperatur lingkungan adalah dengan cara mengumpulkan udara dalam suatu kolektor surya dan menghembuskannya ke komoditi. Energi fosil khususnya minyak bumi, merupakan sumber energi utama dan terbatas jumlahnya. Terbatasnya sumber energi fosil menyebabkan perlunya pengembangan energi terbarukan. Energi terbarukan adalah energi nonfosil yang berasal dari alam dan dapat diperbaharui. Bila dikelola dengan baik, sumber daya itu tidak akan habis. Indonesia, di satu pihak merupakan negara kepulauan sehingga transportasi energi komersial akan tetap menjadi kendala bagi penyediaan energi yang murah di tempat-tempat terpencil tersebut diatas. Di lain pihak, Indonesia memiliki potensi sumber energi terbarukan yang cukup besar. Di masa mendatang, potensi pengembangan sumber energi terbarukan mempunyai peluang besar dan bersifat strategis mengingat sumber energi terbarukan merupakan sumber energi bersih, ramah lingkungan, dan berkelanjutan. 1

2 II. TINJAUAN PUSTAKA 2.1. Energi Matahari dan pemanfaatannya. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar 1 juta km, sangatlah alami jika hanya pancaran energi matahari yang mempengaruhi dinamika atmosfer dan kehidupan di Bumi. Energi yang datang ke Bumi sebagian besar merupakan pancaran radiasi matahari. Energi ini kemudian ditransformasikan menjadi bermacammacam bentuk energi, misalkan pemanasan permukaan Bumi, gerak dan pemanasan atmosfer, gelombang lautan, fotosintesa tanaman dan reaksi fotokimia lainnya. Penyebaran sinar matahari setiap tahun dibelahan bumi bervariasi. Indonesia rata rata menerima sinar matahari delapan jam perhari dan intensitas sinar matahari yang masuk ditentukan posisi matahari terhadap kolektor Tinjauan perpindahan panas A Konduksi Panas mengalir secara konduksi dari daerah yang bertemperatur tinggi ke daerah yang bertemperatur rendah. Laju perpindahan panas konduksi dapat dinyatakan dengan hukum Fourier sebagai berikut (Wiranto Arismunandar, 198): dt ka dx Dimana q adalah laju perpindahan panas, W; k adalah konduktivitas termal, W/(m.K); A adalah luas penampang yang tegak lurus pada aliran panas m 2 dan dt/dx adalah gradien temperatur dalam arah aliran panas, -K/m. B Konveksi Udara yang mengalir di atas suatu permukaan logam pada sebuah alat pemanas udara surya, dipanasi secara konveksi. Ada dua jenis proses konveksi yaitukonveksi paksa dan konveksi alamiah. Laju perpindahan panas dapat dinyatakan dengan persamaan sebagai berikut (Wiranto Arismunandar, 198): q ha T w T ) ( (Wiranto Arismunandar, 198): f (2.2) cos di mana q adalah laju perpindahan panas, W; h z sin sin cos cos cos adalah koefisien konveksi, W/(m 2 Dimana.K); A adalah z adalah sudut zenith, adalah luas permukaan, m 2 deklinasi, adalah sudut lintang, dan adalah ; T w adalah temperatur sudut jam (1 per jam). Desklinasi, yaitu dinding; dan T adalah temperatur fluida, K. f Untuk pemanas surya yang bekerja dalam daerah bilangan Reynolds antara 2 sampai 1, dan nilai bilangan Nusselt sebesar (wiranto Arismunandar, 198): N u =,269. Re Re adalah bilangan Reynold yang biasanya berkisar antara 2 sampai 1 untuk aliran turbulen, dan di bawah 2 untuk aliran laminer. Bilangan Reynold dapat dirumuskan (Wiranto Arismunandar, 198): vdi Re Dimana R adalah bilangan Reynold, v e adalah kecepatan rata - rata dari fluida (m/s), adalah diameter pipa (m), adalah massa jenis (kg/m 3 ), adalah viskositas dinamik (kg/m.s). C Radiasi Perpindahan panas dari radiasi total benda hitam yang sempurna sebanding dengan pangkat empat dari temperatur benda tersebut. Ini merupakan hukum Stefan-Boltzman sehingga dapat dituliskan sebagai berikut (Beiser, 1981) : 4 E AT Dimana adalah konstanta Stefan-Boltzmann 8 yang besarnya.67 1 W/m 2.K 4, A adalah luas penampang benda (m 2 ), T adalah temperatur q mutlak benda (K). (2.1) 2.3 Tinjauan mekanika fluida Viskositas Viskositas merupakan sifat yang menentukan karakteristik fluida yaitu ukuran tahanan fluida terhadap tegangan geser. Viskositas dinamik didefinisikan sebagai perbandingan antara tegangan geser dan laju regangan geser. 2.4 Posisi Matahari Persamaan untuk sudut Zenit sudut zenit Ө z diperlihatkan sebagai sudut antara zenit z, atau garis lurus diatas kepala, dan garis pandang ke matahari. Persamaan untuk sudut zenit dapat dirumuskan sudut yang dibentuk oleh matahari dengan bidang ekuator, ternyata berubah sebagai akibat d i 2

3 kemiringan bumi, dari +23,4 musim panas (21 Juni) ke-23,4 di musim dingin (21 Desember). Harga deklinasi pada tiap saat dapat diperkirakan dengan dari persamaan berikut ini (Wiranto Arismunandar, 198): 284 n 23,4sin di mana n adalah hari dari tahun yang bersangkutan Intensitas Radiasi pada bidang miring komponen radiasi pada suatu permukaan miring, yaitu komponen sorotan I bt diperoleh dengan mengubah radiasi sorotan pada permukaan horizontal menjadi masuk normal dengan mengunakan sudut zenit, dan kemudian mendapatkan komponen pada permukaan miring dengan menggunakan sudut masuk. Radiasi sorotan I bt pada permukaan miring dapat dihitung dari radiasi sorotan (terukur) I pada sebuah permukaan horizontal (Wiranto Arismunandar, 198). sin sin cos cos cos I bt I sin sin cos cos cos 2. Macam - macam kolektor panas surya a. Kolektor surya plat datar b. Kolektor terkonsentrasi c. Kolektor tabung terevakuasi d. Kolektor pasif 2.6 Analisa kerja dari kolektor panas surya tipe datar Persamaan Kesetimbangan Energi Persamaan kesetimbangan laju energi panas pada kolektor termal dapat dinyatakan dengan persamaan : q q q Dimana u u i l q adalah energi yang dipakai (J/s), adalah energi yang masuk (J/s) dan ql adalah energi yang hilang (J/s). 1 Laju energi panas yang masuk Laju energi panas yang masuk pada kolektor termal energi surya (J/s) dipengaruhi oleh I bt jumlah intensitas radiasi matahari pada permukaan miring (watt/m 2 ), A p luas plat penyerap kolektor termal (m 2 ), dan hasil kali transmivisitas kaca penutup-absorbsivitas plat penyerap (.). dinyatakan dengan persamaan : q A. I.(. ) i p bt q i 2. Laju energi panas yang digunakan Laju energi panas yang keluar dari kolektor termal energi surya dapat dinyatakan dalam persamaan : q u = m.c p.(t T 1 ) 3 Laju energi panas yang hilang Tidak semua energi panas yang masuk dapat dipakai seluruhnya sebab ada faktor kerugian panas pada kolektor termal. Kerugian panas ini terjadi pada bagian atas kolektor panas surya yang disebut kerugian panas bagian atas dan pada bagian bawah kolektor panas surya disebut kerugian panas bagian bawah. Dimana jumlah dari kedua kerugian panas merupakan kerugian panas total. a. Kerugian laju energi panas bagian atas (top loss) q tl b. Kerugian laju energi panas bagian bawah (bottom loss) q bl Efisiensi Kolektor Surya Definisi dari efisiensi kolektor surya yaitu perbandingan antara energi yang digunakan dengan jumlah energi surya yang diterima pada waktu tertentu oleh kolektor surya mc p ( T Ti ) A ( ) I p laju aliran massa udara merupakan jumlah massa udara yang mengalir tiap satuan waktu dan dapat dinyatakan sebagai berikut : m V m t u t u III. METODE PENELITIAN 3.1 Tempat dan Waktu Pengambilan Data Penelitian ini dilaksanakan di halaman belakang laboratorium pusat UNS Surakarta. pada tanggal 3 Novembar 2 sampai 7 Desember 2 pukul WIB. 3.2 Alat alat 1. Termokopel 2. Anemometer testo 3. Termometer digital 4. Light Meter Model Li- 2 No Sri LMA Sensor pyranometer No seri PY Prosedur Penelitian bt Perancangan Kolektor Termal 3

4 Pembuatan Kolektor Termal Pengujian Kolektor Termal mendung tebal yang menghalangi radiasi matahari sampai ke bumi. b Intensitas matahari pada variasi sudut Hasil pengukuran intensitas radiasi matahari pada bidang miring dengan variasi sudut kemiringan kolektor pada Gambar 4.2. Desember 2 Variasi jarak kaca penutup Plot Grafik I r, T p, T k, Analisa Grafik Variasi Intensitas matahari (W/m 2 ) Jam Pengamatan sudut 1 sudut 2 IV. HASIL DAN PEMBAHASAN 4.1 Intensitas Radiasi Surya a Intensitas matahari pada bidang datar Pengukuran intensitas radiasi matahari dapat dilihat pada Gambar 4.1. Intensitas matahari (W/m2) Perhitungan Efisiensi Termal Plot Grafik - T Kesimpulan I Radiasi Gambar 4.1 Grafik Intensitas Matahari terhadap waktu Dari Gambar 4.1, dapat kita lihat bahwa pengambilan data dilakukan dari pukul 1. sampai dengan 14.. intensitas sebaran yang terlihat tidak teratur. Intensitas matahari yang seharusnya pada pukul 1. sampai dengan 12. akan naik dan pada pukul 12. sampai dengan 14. akan turun tidak semuanya terjadi, sehingga terlihat bahwa intensitas yang terjadi sangat fluktuatif. Hal ini dapat terlihat dari kenaikan dan penurunan intensitas yang cukup tajam. Fluktuatif yang terjadi tersebut disebabkan karena kondisi cuaca yang berubah yang disebabkan adanya gumpalan awan dan Intensitas Matahari (W/m2) Intensitas matahari (W/m2) 6 Desember Desember sudut 2 sudut 3 sudut 2 sudut 4 Gambar 4.2 Grafik Intensitas Matahari pada variasi sudut kemiringan kolektor Dari Gambar 4.2 intensitas matahari yang terjadi fluktuatif yang disebabkan kondisi cuaca yang tidak menentu karena adanya gumpalan awan dan mendung tebal yang menghalangi radiasi matahari. Dari grafik dapat kita lihat besar intensitas yang masuk ke kolektor dengan variasi sudut per hari besarnya berbeda. Jika kita bandingkan variasi sudutnya perhari, maka kita dapatkan data desember 2 intensitas yang masuk ke kolektor dengan sudut 1 besarnya lebih tinggi dibandingkan sudut 2. Hal ini karena kemiringan kolektor pada sudut 1 mendekati sudut zenit dibandingkan dengan sudut 2.Pada 6 desembar 2 intensitas dengan sudut 2 besarnya lebih tinggi dibandingkan sudut 3. Hal ini karena kemiringan kolektor pada sudut 2 mendekati sudut zenit dibandingkan dengan sudut 3. 4

5 Sedangkan pada tanggal 7 desember 2 intensitas dengan sudut 2 besarnya lebih tinggi dibandingkan sudut 4. Hal ini karena kemiringan kolektor pada sudut 2 mendekati sudut zenit dibandingkan sudut 4. Karena sudut zenit permukaan kolektor adalah 14,8. Sehingga intensitas matahari yang masuk ke kolektor akan maksimum jika permukaan kolektor tegak lurus dengan posisi matahari. Dari grafik dapat dilihat bahwa variasi sudut akan mempengaruhi besar intensitas yang masuk ke kolektor dan besar intensitas matahari setiap hari tidak sama karena perubahan posisi matahari. 4.2 Temperatur Kolektor Surya a Temperatur kolektor pada variasi jarak kaca penutup Hasil pengukuran temperatur masukan dan temperatur keluaran pada penelitian yang dilakukan pada tanggal 1 Desember 2 dengan jarak 3 cm dan 9 cm dapat dilihat pada Gambar 4.3 dan Gambar 4.4. T e m p eratu r ( C ) Data 1 Desember 2 Jarak 3 cm Jam Pengamatan T in T out Gambar 4.3 Grafik temperatur dengan jam pengamatan pada jarak 3 cm Temperatur ( C) Data 1 Desember 2 Jarak 9 cm Jam Pengamatan T in T out Gambar 4.4 Grafik temperatur dengan jam pengamatan pada jarak 9 cm Pada Gambar 4.3 dan Gambar 4.4 dapat kita lihat bahwa besar temperatur keluarannya lebih besar dari temperatur masukannya. Pada jarak plat 3 cm perbedaan nilai temperatur masukan dan keluaran terbesar mencapai 23,1 C dan perbedaan terkecil 9,9 C. Temperatur keluaran tertinggi mencapai 63,8 C pada pukul 11.4 dan temperatur masukan mencapai 41,7 C pada pukul Pada jarak plat 9 cm perbedaan nilai masukan dan keluaran terbesar mencapai 13 C dan perbedaan terkecil,4 C. Temperatur keluaran tertinggi mencapai 1,2 C pada pukul 11.4 dan temperatur masukan mencapai 42,6 C pada pukul a Temperatur kolektor pada variasi jarak kaca penutup Hasil temperatur kolektor surya dapat dilihat pada grafik perbedaan temperatur masuknya (T in ) dan temperatur keluarnya (T out ) terhadap jam pengamatan. input-output ( C) November Gambar 4.3 Grafik perbedaan temperatur input-output pada jarak 3 cm dan 6 cm input-output ( C) Desember Jam Pengamatan 3 cm 6 cm 3 cm 9 cm Gambar 4.4 Grafik perbedaan temperatur input-output pada jarak 3 cm dan 9 cm inputoutput ( C) Desember cm 9 cm Gambar 4. Grafik perbedaan temperatur input-output pada jarak 6 cm dan 9 cm Pada Gambar 4.3, Gambar 4.4, dan Gambar 4. dapat kita lihat bahwa pada 3 November 2, perbedaan temperatur pada jarak kaca 3 cm hasilnya lebih tinggi dari jarak kaca 6 cm. Tetapi ada 2 data yang hasilnya

6 kebalikannya, hal ini karena adanya perubahan aliran yang bergerak di sekitar kolektor. Pada 1 Desember 2, perbedaan temperatur pada jarak kaca 3 cm hasilnya lebih tinggi dari jarak kaca 9 cm. Hal ini karena pada jarak kaca 9 cm panas yang hilang ke lingkungan semakin besar. Sehingga penyerapan panas pada plat berkurang. sedangkan pada 3 Desember 2, perbedaan temperatur pada jarak kaca 6 cm hasilnya sebagian besar lebih tinggi dari jarak kaca 9 cm. Pada jarak kaca 9 cm banyak panas yang hilang ke lingkungan. Tetapi ada beberapa keadaan dimana besarnya berkebalikan, hal ini dikarenakan adanya perbedaan aliran udara yang bergerak di sekitar kolektor.dari hasil pengukuran dapat disimpulkan bahwa variasi jarak kaca berpengaruh terhadap perbedaan temperatur kolektor. Dimana perbedaan temperatur akan maksimum pada jarak kaca kecil, karena sedikit energi panas yang hilang ke lingkungan. b Temperatur kolektor pada variasi sudut kemiringan kolektor Hasil temperatur pada kolektor surya dapat dilihat pada grafik perbedaan temperatur masuknya (T in ) dan temperatur keluarnya (T out ) terhadap jam pengamatan: input-output ( C) Desember sudut 1 sudut 2 Gambar 4.6 Grafik perbedaan temperatur input-output pada sudut 1 dan 2 input-output ( C) Desember sudut 2 sudut 3 Gambar 4.7 Grafik perbedaan temperatur input-output pada sudut 2 dan 3 input-output ( C) Desember sudut 2 sudut 4 Gambar 4.8 Grafik perbedaan temperatur input-output pada sudut 2 dan 4 Pada Gambar 4.6, Gambar 4.7, dan Gambar 4.8 dapat kita lihat bahwa pada tanggal Desember 2, besar perbedaan temperaturnya pada sudut 1 ada yang lebih besar dari perbedaan temperatur pada sudut 2, tetapi ada yang kebalikannya. Hal ini karena perbedaan temperatur akan maksimal jika kemiringan kolektor sesuai dengan sudut zenit. Pada penelitian ini sudut zenit dari permukaan kolektor sebesar 14,8. Pada 6 Desember 2, besar perbedaan temperatur pada sudut 2 lebih besar dari pada sudut 3. Hal ini karena sudut 2 mendekati sudut zenit dibandingkan sudut 3. Pada 7 Desember 2, besar perbedaan temperatur pada sudut 2 sebagian besar hasilnya lebih tinggi dibandingkan perbedaan temperatur pada sudut 4. hal ini karena sudut 2 lebih mendekati sudut zenit dibandingkan sudut 4. Tetapi pada grafik terlihat adanya beberapa nilai pada sudut 2 yang hasilnya lebih kecil dibandingkan sudut 4, hal ini disebabkan adanya aliran udara balik. Hal ini juga yang dapat mengakibatkan basar temperatur masukan menjadi lebih besar dari temperatur keluarannya. Dari hasil di atas dapat disimpulkan bahwa variasi sudut berpengaruh terhadap perbedaan temperatur kolektor. Dimana perbedaan temperatur akan maksimum jika permukaan kolektor tegak lurus dengan posisi matahari. b c Efisiensi kolektor Surya Efisiensi kolektor surya pada variasi jarak kaca Hasil efisiensi pada kolektor surya dapat dilihat pada grafik efisiensi kolektor surya terhadap perbedaan temperatur masuknya (T in ) dan temperatur keluarnya (T out ), yaitu pada Gambar 4.9, Gambar 4.1, dan Gambar

7 November perbedaan temperatur input-output ( C) 3 cm 6 cm Gambar 4.9 Grafik efisiensi termal dengan jarak kaca penutup dengan plat penyerap 3 cm dan 6 cm Desember perbedaan temperatur input-output ( C) 3 cm 9 cm Gambar 4.1 Grafik efisiensi termal dengan jarak kaca penutup dengan plat penyerap 3 cm dan 9 cm Desember perbedaan temperatur input-output ( C) Gambar 4.11 Grafik efisiensi termal dengan jarak kaca penutup dengan plat penyerap 6 cm dan 9 cm Pada Gambar 4.9, Gambar 4.1, dan Gambar 4.11 dapat kita lihat bahwa pada tanggal 3 November 2, efisiensi termal tertinggi pada jarak kaca 3 cm mencapai 72,82 % dan terendah 33, %. Sedangkan pada jarak kaca 6 cm efisiensi termal tertinggi mencapai 97,9 % dan terendah 23,6 %. Pada tanggal 1 Desember 2, efisiensi termal tertinggi pada jarak kaca 3 cm mencapai 81,8 % dan terendah 29,22 %. Sedangkan pada jarak kaca 9 cm efisiensi termal tertinggi mencapai 98,9 % dan terendah 11,2 %. Pada tanggal 3 Desember 2, efisiensi termal tertinggi pada jarak kaca 6 cm mencapai 82,48 % dan terendah 28,47 %. Sedangkan pada jarak kaca 9 cm efisiensi termal tertinggi mencapai 81,1 % dan terendah 23,6 %. 6 cm 9 cm Sehingga dapat dikatakan bahwa hasil perhitungan efisiensi termal dari kolektor surya dalam penelitian ini bukanlah suatu konstanta melainkan sebuah karakteristik dengan variabel yang tergantung dari intensitas matahari, temperatur masukan, temperatur keluaran, dan aliran udara. Dimana intensitas matahari yang diterima kolektor tidak fluktuatif, aliran udara yang laminer, dan perbedaan temperatur masukan dan keluaran maksimum. Perbedaan temperatur akan maksimum pada jarak kaca kecil. d Efisiensi kolektor surya pada variasi sudut kemiringan kolektor Hasil efisiensi pada kolektor surya dapat dilihat pada grafik efisiensi kolektor surya terhadap perbedaan temperatur masuknya (T in ) dan temperatur keluarnya (T out ), yaitu pada Gambar 4.12, Gambar 4.13, dan Gambar Desember perbedaan temperatur input-output ( C) sudut 1 sudut 2 Gambar 4.12 Grafik efisiensi termal dengan sudut 1 dan Desember perbedaan temperatur input-output ( C) sudut 2 sudut 3 Gambar 4.13 Grafik efisiensi termal dengan sudut 2 dan Desember input-output ( C) sudut 2 sudut 4 Gambar 4.14 Grafik efisiensi termal dengan sudut 2 dan 4 7

8 Pada Gambar 4.12, Gambar 4.13, dan Gambar 4.14 dapat kita lihat bahwa pada tanggal desember 2, efisiensi termal tertinggi pada sudut 1 mencapai 94,46 % dan terendah 31,26 %. Sedangkan pada sudut 2 efisiensi termal tertinggi mencapai 93,4 % dan terendah 3,23 %. Pada tanggal 6 desember 2, efisiensi termal tertinggi pada sudut 2 mencapai 99,23 % dan terendah 2,92 %. Sedangkan pada sudut 3 efisiensi termal tertinggi mencapai 97,3 % dan terendah 22,64 %. Pada tanggal 7 desember 2, efisiensi termal tertinggi pada sudut 2 mencapai 96,29 % dan terendah 18,1 %. Sedangkan pada sudut 4 efisiensi termal tertinggi mencapai 96,43 % dan terendah 28, %. Sehingga dapat dikatakan bahwa hasil perhitungan efisiensi termal dari kolektor surya dalam penelitian ini bukanlah suatu konstanta melainkan sebuah karakteristik dengan variabel yang tergantung dari intensitas matahari, temperatur masukan, temperatur keluaran, dan aliran udara. Dimana intensitas matahari yang diterima kolektor tidak fluktuatif dan permukaan kolektor tegak lurus dengan posisi matahari, aliran udara yang laminer, dan perbedaan temperatur masukan dan keluaran maksimum. akan maksimum jika permukaan kolektor tegak lurus dengan posisi matahari. V. KESIMPULAN DAN SARAN.1 Kesimpulan 1. Pada ketiga variasi jarak plat penyerap dengan kaca transparan, didapatkan nilai perbedaan temperatur input-output tertinggi pada jarak 3 cm dan terendah pada jarak 9 cm, dan plat penyerap akan menyerap radiasi matahari secara maksimal jika posisi plat tersebut tegak lurus dengan arah datang radiasi matahari. 2. kemiringan kolektor surya semakin mendekati sudut zenit maka perbedaan temperatur input-output semakin besar. 3. Efisiensi termal bergantung dari intensitas matahari, temperatur masukan, temperatur keluaran, dan aliran udara efisiensi termal..2 Saran 1 Menggunakan sensor temperatur yang mencukupi pada setiap titik temperatur yang dapat di hitung secara bersamaan. 2 Perlu dilakukan uji-coba kolektor thermal di ruang tertutup untuk mengetahui pengaruh aliran udara yang terkontrol. 3 Mengganti plat datar dengan plat gelombang dan menggunakan plat dari bahan logam lain. 4 Mengganti insulator dengan menggunakan serbuk gergaji. Menggunakan batu-batuan dan tempat penyimpanan air yang dilapisi insulator sebagai medium untuk penyimpanan panas. 6 Pengukuran kecapatan aliran udara dengan menggunakan alat standar internasional. VI. DAFTAR PUSTAKA - Anonim, 2: web site: tanggal 21 November 2. - Anonim, 26: Hubungan Matahari dan Bumi, Web site: ~dhani/ole_anginmatahari.htm, tanggal 1 Februari Anonim, 26: Sumber Energi Terbarukan Untuk Antisipasi Krisis BBM?, web site: - Sumber Energi Terbarukan Untuk Antisipasi Krisis BBM.htm, Februari Arko Prijono M.Sc.,1986: Prinsip- prinsip perpindahan panas, PT Saksama, Jakarta. - Beiser, A., 199: Concept of Modern Physics, th edition, Mc Grow Hill, New York. - Culp Jr, A. W, 1991, Prinsip-prinsip konversi energi, Penerbit Erlangga, Jakarta - Duffie, J.A. dan Beckman, W.A., 1991: Solar Engineering of Thermal Processes, John Willey and Sons Inc, Wisconsin - E. Jasjfi, 199, Perpindahan kalor, Penerbit Erlangga, Jakarta. - Ekadewi Anggraini Handoyo, 22: Jurnal Teknik Mesin Universitas PETRA, Surabaya. - Giancoli, D.C, 1998, Fisika Edisi kelima (terjemahan Yuhiza Hanum), Penerbit Erlangga, Jakarta. - Mawardi Silaban, 2: PENGUJIAN ALAT PENGERING ENERGI MATAHARI UNTUK 8

9 KOMODITAS PERTANIAN SKALA PILOT PLANT, web site: x.php?doc=a1, tanggal 23 Novembar 2. - Sibuk Ginting, 26: KAJI EKSPERIMENTAL BERBAGAI KOLEKTOR UDARA SURYA DENGAN BANTUAN DATA AKUSISI, Web site: - Departemen Teknik Sipil ITB - GDL 4_.htm, tanggal Februari Wiranto Arismunandar, 198: Teknologi Rekayasa Surya, edisi pertama, PT Pradnya Paramita, Jakarta. - Wisnu Arya Wardhana, 26: Reaksi Termonuklir sebagai Sumber Energi Matahari, web site: ( er31. html), tanggal 1 Februari Yuli Setyo Indartono, 26: PERSPEKTIF, web site: IPTEK ONLINE - PERSPEKTIF Sumber Energi.htm, tanggal 1 Februari 26. 9

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar BAB NJAUAN PUSAKA Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar 150.000.000 km, sangatlah alami jika hanya pancaran energi matahari yang mempengaruhi dinamika atmosfer

Lebih terperinci

KARAKTERISTIK KOLEKTOR SURYA PLAT DATAR DENGAN VARIASI JARAK (KAJIAN PUSTAKA)

KARAKTERISTIK KOLEKTOR SURYA PLAT DATAR DENGAN VARIASI JARAK (KAJIAN PUSTAKA) KARAKTERISTIK KOLEKTOR SURYA PLAT DATAR DENGAN VARIASI JARAK (KAJIAN PUSTAKA) CHARACTERISTICS OF FLAT PLATE SOLAR COLLECTOR BECAUSE OF VARIATION DISTANCE (LITERATUR RIVIEW) Muhamad Jafri Staf Pengajar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. PENGERINGAN Pengeringan adalah proses pengurangan kelebihan air yang (kelembaban) sederhana untuk mencapai standar spesifikasi kandungan kelembaban dari suatu bahan. Pengeringan

Lebih terperinci

TEKNOLOGI ALAT PENGERING SURYA UNTUK HASIL PERTANIAN MENGGUNAKAN KOLEKTOR BERPENUTUP MIRING

TEKNOLOGI ALAT PENGERING SURYA UNTUK HASIL PERTANIAN MENGGUNAKAN KOLEKTOR BERPENUTUP MIRING TEKNOLOGI ALAT PENGERING SURYA UNTUK HASIL PERTANIAN MENGGUNAKAN KOLEKTOR BERPENUTUP MIRING Maksi Ginting, Salomo, Egi Yuliora Jurusan Fisika-Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau

Lebih terperinci

Analisa Performansi Kolektor Surya Pelat Bergelombang untuk Pengering Bunga Kamboja

Analisa Performansi Kolektor Surya Pelat Bergelombang untuk Pengering Bunga Kamboja Proceeding Seminar Nasional Tahunan Teknik Mesin XIV (SNTTM XIV Analisa Performansi Kolektor Surya Pelat Bergelombang untuk Pengering Bunga Kamboja Ketut Astawa1, Nengah Suarnadwipa2, Widya Putra3 1.2,3

Lebih terperinci

RANCANG BANGUN KONVERSI ENERGI SURYA MENJADI ENERGI LISTRIK DENGAN MODEL ELEVATED SOLAR TOWER

RANCANG BANGUN KONVERSI ENERGI SURYA MENJADI ENERGI LISTRIK DENGAN MODEL ELEVATED SOLAR TOWER RANCANG BANGUN KONVERSI ENERGI SURYA MENJADI ENERGI LISTRIK DENGAN MODEL ELEVATED SOLAR TOWER Oleh: Zainul Hasan 1, Erika Rani 2 ABSTRAK: Konversi energi adalah proses perubahan energi. Alat konversi energi

Lebih terperinci

SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING

SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING Mulyanef 1, Marsal 2, Rizky Arman 3 dan K. Sopian 4 1,2,3 Jurusan Teknik Mesin Universitas Bung Hatta,

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Self Dryer dengan kolektor terpisah. (sumber : L szl Imre, 2006).

BAB II DASAR TEORI. Gambar 2.1 Self Dryer dengan kolektor terpisah. (sumber : L szl Imre, 2006). 3 BAB II DASAR TEORI 2.1 Pengering Surya Pengering surya memanfaatkan energi matahari sebagai energi utama dalam proses pengeringan dengan bantuan kolektor surya. Ada tiga klasifikasi utama pengering surya

Lebih terperinci

PENGARUH BENTUK DAN OPTIMASI LUASAN PERMUKAAN PELAT PENYERAP TERHADAP EFISIENSI SOLAR WATER HEATER ABSTRAK

PENGARUH BENTUK DAN OPTIMASI LUASAN PERMUKAAN PELAT PENYERAP TERHADAP EFISIENSI SOLAR WATER HEATER ABSTRAK PENGARUH BENTUK DAN OPTIMASI LUASAN PERMUKAAN PELAT PENYERAP TERHADAP EFISIENSI SOLAR WATER HEATER Arief Rizki Fadhillah 1, Andi Kurniawan 2, Hendra Kurniawan 3, Nova Risdiyanto Ismail 4 ABSTRAK Pemanas

Lebih terperinci

ANALISA KARAKTERISTIK ALAT PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNG PARABOLA

ANALISA KARAKTERISTIK ALAT PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNG PARABOLA ANALISA KARAKTERISTIK ALAT PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNG PARABOLA Walfred Tambunan 1), Maksi Ginting 2, Antonius Surbakti 3 Jurusan Fisika FMIPA Universitas Riau Pekanbaru 1) e-mail:walfred_t@yahoo.com

Lebih terperinci

Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Print) B-204 Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Lebih terperinci

Pengaruh Jarak Kaca Ke Plat Terhadap Panas Yang Diterima Suatu Kolektor Surya Plat Datar

Pengaruh Jarak Kaca Ke Plat Terhadap Panas Yang Diterima Suatu Kolektor Surya Plat Datar JURNA TEKNIK MESIN Vol. 3, No. 2, Oktober 2001: 52 56 Pengaruh Jarak Kaca Ke Plat Terhadap Panas Yang Diterima Suatu Kolektor Surya Plat Datar Ekadewi Anggraini Handoyo Dosen Fakultas Teknik, Jurusan Teknik

Lebih terperinci

PENGUJIAN MESIN PENGERING KAKAO ENERGI SURYA

PENGUJIAN MESIN PENGERING KAKAO ENERGI SURYA PENGUJIAN MESIN PENGERING KAKAO ENERGI SURYA Tekad Sitepu Departemen Teknik Mesin Fakultas Teknik Universitas Sumatera Utara ABSTRAK Pengembangan mesin-mesin pengering tenaga surya dapat membantu untuk

Lebih terperinci

Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik TAMBA GURNING NIM SKRIPSI

Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik TAMBA GURNING NIM SKRIPSI KAJIAN EKSPERIMENTAL PENGARUH INTENSITAS CAHAYA DAN LAJU ALIRAN TERHADAP EFISIENSI TERMAL DENGAN MENGGUNAKAN SOLAR ENERGY DEMONSTRATION TYPE LS-17055-2 DOUBLE SPOT LIGHT SKRIPSI Skripsi Yang Diajukan Untuk

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. 1. Temperatur udara masuk kolektor (T in ). T in = 30 O C. 2. Temperatur udara keluar kolektor (T out ). T out = 70 O C.

BAB IV HASIL DAN PEMBAHASAN. 1. Temperatur udara masuk kolektor (T in ). T in = 30 O C. 2. Temperatur udara keluar kolektor (T out ). T out = 70 O C. BAB IV HASIL DAN PEMBAHASAN 4.1 Spesifikasi Alat Pengering Surya Berdasarkan hasil perhitungan yang dilakukan pada perancangan dan pembuatan alat pengering surya (solar dryer) adalah : Desain Termal 1.

Lebih terperinci

BAB II KAJIAN PUSTAKA. untuk membuat agar bahan makanan menjadi awet. Prinsip dasar dari pengeringan

BAB II KAJIAN PUSTAKA. untuk membuat agar bahan makanan menjadi awet. Prinsip dasar dari pengeringan BAB II KAJIAN PUSTAKA 2.1 Pengertian Dasar Pengeringan Dari sejak dahulu pengeringan sudah dikenal sebagai salah satu metode untuk membuat agar bahan makanan menjadi awet. Prinsip dasar dari pengeringan

Lebih terperinci

Jurnal Flywheel, Volume 2, Nomor 1, Juni 2009 ISSN :

Jurnal Flywheel, Volume 2, Nomor 1, Juni 2009 ISSN : PERBEDAAN LAJU ALIRAN PANAS YANG DISERAP AIR DALAM PEMANAS AIR BERTENAGA SURYA DITINJAU DARI PERBEDAAN LAJU ALIRAN AIR DALAM PIPA KOLEKTOR PANAS Sumanto Jurusan Teknik Industri Fakultas Teknologi Industri

Lebih terperinci

Studi Eksperimental Efektivitas Penambahan Annular Fins Pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Studi Eksperimental Efektivitas Penambahan Annular Fins Pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: 2301-9271 1 Studi Eksperimental Efektivitas Penambahan Annular Fins Pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup Edo Wirapraja, Bambang

Lebih terperinci

SKRIPSI KARAKTERISTIK KOLEKTOR SURYA PLAT DATAR DENGAN VARIASI JARAK KACA PENUTUP DAN SUDUT KEMIRINGAN KOLEKTOR

SKRIPSI KARAKTERISTIK KOLEKTOR SURYA PLAT DATAR DENGAN VARIASI JARAK KACA PENUTUP DAN SUDUT KEMIRINGAN KOLEKTOR SKRIPSI KARAKTERISTIK KOLEKTOR SURYA PLAT DATAR DENGAN VARIASI JARAK KACA PENUTUP DAN SUDUT KEMIRINGAN KOLEKTOR AULIYA BURHANUDDIN M0201023 Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

PEMBUATAN ALAT PENGERING SURYA UNTUK HASIL PERTANIAN MENGGUNAKAN KOLEKTOR BERPENUTUP PRISMA SEGITIGA

PEMBUATAN ALAT PENGERING SURYA UNTUK HASIL PERTANIAN MENGGUNAKAN KOLEKTOR BERPENUTUP PRISMA SEGITIGA Pembuatan Alat Pengering Surya PEMBUATAN ALAT PENGERING SURYA UNTUK HASIL PERTANIAN MENGGUNAKAN KOLEKTOR BERPENUTUP PRISMA SEGITIGA Salomo 1, M. Ginting 2, R. Akbar 3 ABSTRAK Telah dibuat alat pengering

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah :

BAB IV HASIL DAN PEMBAHASAN. 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah : BAB IV HASIL DAN PEMBAHASAN 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah : Desain Termal 1. Temperatur udara masuk kolektor (T in ). T

Lebih terperinci

SISTEM PEMANFAATAN ENERGI SURYA UNTUK PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNGAN. Fatmawati, Maksi Ginting, Walfred Tambunan

SISTEM PEMANFAATAN ENERGI SURYA UNTUK PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNGAN. Fatmawati, Maksi Ginting, Walfred Tambunan SISTEM PEMANFAATAN ENERGI SURYA UNTUK PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNGAN Fatmawati, Maksi Ginting, Walfred Tambunan Mahasiswa Program S1 Fisika Bidang Fisika Energi Jurusan Fisika Fakultas

Lebih terperinci

Pengaruh Tebal Plat Dan Jarak Antar Pipa Terhadap Performansi Kolektor Surya Plat Datar

Pengaruh Tebal Plat Dan Jarak Antar Pipa Terhadap Performansi Kolektor Surya Plat Datar Pengaruh Tebal Plat Dan Jarak Antar Pipa Terhadap Performansi Kolektor Surya Plat Datar Philip Kristanto Dosen Fakultas Teknik, Jurusan Teknik Mesin - Universitas Kristen Petra Yoe Kiem San Alumnus Fakultas

Lebih terperinci

BAB III METODE PENELITIAN (BAHAN DAN METODE) keperluan. Prinsip kerja kolektor pemanas udara yaitu : pelat absorber menyerap

BAB III METODE PENELITIAN (BAHAN DAN METODE) keperluan. Prinsip kerja kolektor pemanas udara yaitu : pelat absorber menyerap BAB III METODE PENELITIAN (BAHAN DAN METODE) Pemanfaatan energi surya memakai teknologi kolektor adalah usaha yang paling banyak dilakukan. Kolektor berfungsi sebagai pengkonversi energi surya untuk menaikan

Lebih terperinci

Proceeding Seminar Nasional Tahunan Teknik Mesin XI (SNTTM XI) & Thermofluid IV Universitas Gadjah Mada (UGM), Yogyakarta, Oktober 2012

Proceeding Seminar Nasional Tahunan Teknik Mesin XI (SNTTM XI) & Thermofluid IV Universitas Gadjah Mada (UGM), Yogyakarta, Oktober 2012 1 2 3 4 Pengaruh Konveksi Paksa Terhadap Unjuk Kerja Ruang Pengering Pada Alat Pengering Kakao Tenaga Surya Pelat Bersirip Longitudinal Harmen 1* dan A. Muhilal 1 1 Jurusan Teknik Mesin, Fakultas Teknik,

Lebih terperinci

Performansi Kolektor Surya Tubular Terkonsentrasi Dengan Pipa Penyerap Dibentuk Anulus Dengan Variasi Posisi Pipa Penyerap

Performansi Kolektor Surya Tubular Terkonsentrasi Dengan Pipa Penyerap Dibentuk Anulus Dengan Variasi Posisi Pipa Penyerap Jurnal Ilmiah Teknik Mesin Vol. 5 No.1. April 2011 (98-102) Performansi Kolektor Surya Tubular Terkonsentrasi Dengan Pipa Penyerap Dibentuk Anulus Dengan Variasi Posisi Pipa Penyerap Made Sucipta, Ketut

Lebih terperinci

STUDI EKSPERIMENTAL PENGARUH SUDUT KEMIRINGAN TERHADAP PERPINDAHAN KALOR PADA MODUL PHOTOVOLTAIC UNTUK MENINGKATKAN DAYA KELUARAN

STUDI EKSPERIMENTAL PENGARUH SUDUT KEMIRINGAN TERHADAP PERPINDAHAN KALOR PADA MODUL PHOTOVOLTAIC UNTUK MENINGKATKAN DAYA KELUARAN Studi Eksperimental Pengaruh Sudut Kemiringan... (Nabilah dkk.) STUDI EKSPERIMENTAL PENGARUH SUDUT KEMIRINGAN TERHADAP PERPINDAHAN KALOR PADA MODUL PHOTOVOLTAIC UNTUK MENINGKATKAN DAYA KELUARAN Inas Nabilah

Lebih terperinci

Perbandingan Konfigurasi Pipa Paralel dan Unjuk Kerja Kolektor Surya Plat Datar

Perbandingan Konfigurasi Pipa Paralel dan Unjuk Kerja Kolektor Surya Plat Datar JURNAL TEKNIK MESIN Vol., No. 1, April : 68-7 Perbandingan Konfigurasi Pipa Paralel dan Unjuk Kerja Kolektor Surya Plat Datar Terhadap Ekadewi Anggraini Handoyo Dosen Fakultas Teknik, Jurusan Teknik Mesin

Lebih terperinci

ALAT PENGERING SINGKONG TENAGA SURYA TIPE KOLEKTOR BERPENUTUP MIRING

ALAT PENGERING SINGKONG TENAGA SURYA TIPE KOLEKTOR BERPENUTUP MIRING ALAT PENGERING SINGKONG TENAGA SURYA TIPE KOLEKTOR BERPENUTUP MIRING Maksi Ginting, Minarni,Walfred Tambunan, Egi Yuliora Jurusan Fisika, FMIPA Universitas RiauKampus bina Widya, Abstrak. Sistem pengering

Lebih terperinci

SUDUT PASANG SOLAR WATER HEATER DALAM OPTIMALISASI PENYERAPAN RADIASI MATAHARI DI DAERAH CILEGON

SUDUT PASANG SOLAR WATER HEATER DALAM OPTIMALISASI PENYERAPAN RADIASI MATAHARI DI DAERAH CILEGON SUDUT PASANG SOLAR WATER HEATER DALAM OPTIMALISASI PENYERAPAN RADIASI MATAHARI DI DAERAH CILEGON Caturwati NK, Agung S, Chandra Dwi Jurusan Teknik Mesin Universitas Sultan Ageng Tirtayasa Jl. Jend. Sudirman

Lebih terperinci

STUDI EKSPERIMENTAL PENGARUH PERUBAHAN DEBIT ALIRAN PADA EFISIENSI TERMAL SOLAR WATER HEATER DENGAN PENAMBAHAN FINNED TUBE

STUDI EKSPERIMENTAL PENGARUH PERUBAHAN DEBIT ALIRAN PADA EFISIENSI TERMAL SOLAR WATER HEATER DENGAN PENAMBAHAN FINNED TUBE Studi Eksperimental Pengaruh Perubahan Debit Aliran... (Kristian dkk.) STUDI EKSPERIMENTAL PENGARUH PERUBAHAN DEBIT ALIRAN PADA EFISIENSI TERMAL SOLAR WATER HEATER DENGAN PENAMBAHAN FINNED TUBE Rio Adi

Lebih terperinci

PENGANTAR PINDAH PANAS

PENGANTAR PINDAH PANAS 1 PENGANTAR PINDAH PANAS Oleh : Prof. Dr. Ir. Santosa, MP Guru Besar pada Program Studi Teknik Pertanian, Fakultas Teknologi Pertanian Universitas Andalas Padang, September 2009 Pindah Panas Konduksi (Hantaran)

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 19 BAB I PENDAHULUAN 1.1. Latar Belakang Kebutuhan akan air panas pada saat ini sangat tinggi. Tidak hanya konsumen rumah tangga yang memerlukan air panas ini, melainkan juga rumah sakit, perhotelan, industri,

Lebih terperinci

POTENSI PENGGUNAAN KOMPOR ENERGI SURYA UNTUK KEBUTUHAN RUMAH TANGGA

POTENSI PENGGUNAAN KOMPOR ENERGI SURYA UNTUK KEBUTUHAN RUMAH TANGGA Prosiding Seminar Nasional AVoER ke-3 POTENSI PENGGUNAAN KOMPOR ENERGI SURYA UNTUK KEBUTUHAN RUMAH TANGGA KMT-8 Marwani Jurusan Teknik Mesin, Fakultas Teknik Universitas Sriwijaya, Palembang Prabumulih

Lebih terperinci

Studi Eksperimental Sistem Pengering Tenaga Surya Menggunakan Tipe Greenhouse dengan Kotak Kaca

Studi Eksperimental Sistem Pengering Tenaga Surya Menggunakan Tipe Greenhouse dengan Kotak Kaca JURNAL TEKNIK POMITS Vol.,, (03) ISSN: 337-3539 (30-97 Print) B-30 Studi Eksperimental Sistem Pengering Tenaga Surya Menggunakan Tipe Greenhouse dengan Kotak Kaca Indriyati Fanani Putri, Ridho Hantoro,

Lebih terperinci

Gambar 2. Profil suhu dan radiasi pada percobaan 1

Gambar 2. Profil suhu dan radiasi pada percobaan 1 HASIL DAN PEMBAHASAN A. Pengaruh Penggunaan Kolektor Terhadap Suhu Ruang Pengering Energi surya untuk proses pengeringan didasarkan atas curahan iradisai yang diterima rumah kaca dari matahari. Iradiasi

Lebih terperinci

PENGHITUNGAN EFISIENSI KOLEKTOR SURYA PADA PENGERING SURYA TIPE AKTIF TIDAK LANGSUNG PADA LABORATORIUM SURYA ITB

PENGHITUNGAN EFISIENSI KOLEKTOR SURYA PADA PENGERING SURYA TIPE AKTIF TIDAK LANGSUNG PADA LABORATORIUM SURYA ITB No. 31 Vol. Thn. XVI April 9 ISSN: 854-8471 PENGHITUNGAN EFISIENSI KOLEKTOR SURYA PADA PENGERING SURYA TIPE AKTIF TIDAK LANGSUNG PADA LABORATORIUM SURYA ITB Endri Yani Jurusan Teknik Mesin Universitas

Lebih terperinci

TEKNOLOGI PEMANAS AIR MENGGUNAKAN KOLEKTOR TIPE TRAPEZOIDAL BERPENUTUP DUA LAPIS

TEKNOLOGI PEMANAS AIR MENGGUNAKAN KOLEKTOR TIPE TRAPEZOIDAL BERPENUTUP DUA LAPIS TEKNOLOGI PEMANAS AIR MENGGUNAKAN KOLEKTOR TIPE TRAPEZOIDAL BERPENUTUP DUA LAPIS Ayu Wardana 1, Maksi Ginting 2, Sugianto 2 1 Mahasiswa Program S1 Fisika 2 Dosen Bidang Energi Jurusan Fisika Fakultas Matematika

Lebih terperinci

PENENTUAN EFISIENSI DARI ALAT PENGERING SURYA TIPE KABINET BERPENUTUP KACA

PENENTUAN EFISIENSI DARI ALAT PENGERING SURYA TIPE KABINET BERPENUTUP KACA PENENTUAN EFISIENSI DARI ALAT PENGERING SURYA TIPE KABINET BERPENUTUP KACA Meilisa, Maksi Ginting, Antonius Surbakti Mahasiswa Program S1 Fisika Bidang Fisika Energi Jurusan Fisika Fakultas Matematika

Lebih terperinci

Radiasi ekstraterestrial pada bidang horizontal untuk periode 1 jam

Radiasi ekstraterestrial pada bidang horizontal untuk periode 1 jam Pendekatan Perhitungan untuk intensitas radiasi langsung (beam) Sudut deklinasi Pada 4 januari, n = 4 δ = 22.74 Solar time Solar time = Standard time + 4 ( L st L loc ) + E Sudut jam Radiasi ekstraterestrial

Lebih terperinci

Analisis performansi kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder

Analisis performansi kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder Analisis performansi kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder Ketut Astawa, I Ketut Gede Wirawan, I Made Budiana Putra Jurusan Teknik Mesin, Universitas Udayana, Bali-Indonesia

Lebih terperinci

Gambar 8. Profil suhu lingkungan, ruang pengering, dan outlet pada percobaan I.

Gambar 8. Profil suhu lingkungan, ruang pengering, dan outlet pada percobaan I. IV. HASIL DAN PEMBAHASAN A. Suhu Ruang Pengering dan Sebarannya A.1. Suhu Lingkungan, Suhu Ruang, dan Suhu Outlet Udara pengering berasal dari udara lingkungan yang dihisap oleh kipas pembuang, kemudian

Lebih terperinci

Karakteristik Pengering Surya (Solar Dryer) Menggunakan Rak Bertingkat Jenis Pemanasan Langsung dengan Penyimpan Panas dan Tanpa Penyimpan Panas

Karakteristik Pengering Surya (Solar Dryer) Menggunakan Rak Bertingkat Jenis Pemanasan Langsung dengan Penyimpan Panas dan Tanpa Penyimpan Panas Karakteristik Pengering Surya (Solar Dryer) Menggunakan Rak Bertingkat Jenis Pemanasan Langsung dengan Penyimpan Panas dan Tanpa Penyimpan Panas Azridjal Aziz Jurusan Teknik Mesin, Fakultas Teknik, Universitas

Lebih terperinci

Performansi Kolektor Surya Pemanas Air dengan Penambahan External Helical Fins pada Pipa dengan Variasi Sudut Kemiringan Kolektor

Performansi Kolektor Surya Pemanas Air dengan Penambahan External Helical Fins pada Pipa dengan Variasi Sudut Kemiringan Kolektor B-68 Performansi Kolektor Surya Pemanas Air dengan Penambahan External Helical Fins pada Pipa dengan Variasi Sudut Kemiringan Kolektor Dendi Nugraha dan Bambang Arip Dwiyantoro Jurusan Teknik Mesin, Fakultas

Lebih terperinci

PENINGKATAN KUALITAS PENGERINGAN IKAN DENGAN SISTEM TRAY DRYING

PENINGKATAN KUALITAS PENGERINGAN IKAN DENGAN SISTEM TRAY DRYING PENINGKATAN KUALITAS PENGERINGAN IKAN DENGAN SISTEM TRAY DRYING Bambang Setyoko, Seno Darmanto, Rahmat Program Studi Diploma III Teknik Mesin Fakultas Teknik UNDIP Jl. Prof H. Sudharto, SH, Tembalang,

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan energi surya dalam berbagai bidang telah lama dikembangkan di dunia. Berbagai teknologi terkait pemanfaatan energi surya mulai diterapkan pada berbagai

Lebih terperinci

besarnya energi panas yang dapat dimanfaatkan atau dihasilkan oleh sistem tungku tersebut. Disamping itu rancangan tungku juga akan dapat menentukan

besarnya energi panas yang dapat dimanfaatkan atau dihasilkan oleh sistem tungku tersebut. Disamping itu rancangan tungku juga akan dapat menentukan TINJAUAN PUSTAKA A. Pengeringan Tipe Efek Rumah Kaca (ERK) Pengeringan merupakan salah satu proses pasca panen yang umum dilakukan pada berbagai produk pertanian yang ditujukan untuk menurunkan kadar air

Lebih terperinci

BAB II DASAR TEORI. 2.1 Energi Matahari

BAB II DASAR TEORI. 2.1 Energi Matahari BAB II DASAR TEORI 2.1 Energi Matahari Matahari merupakan sebuah bola yang sangat panas dengan diameter 1.39 x 10 9 meter atau 1.39 juta kilometer. Kalau matahari dianggap benda hitam sempurna, maka energi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengeringan Gabah Proses gabah menjadi beras melalui tahapan dimulai dari kegiatan pemanenan, perontokan, pengeringan dan penggilingan. Setiap tahap kegiatan memerlukan penanganan

Lebih terperinci

PENGARUH JARAK ANTAR PIPA PADA KOLEKTOR TERHADAP PANAS YANG DIHASILKAN SOLAR WATER HEATER (SWH)

PENGARUH JARAK ANTAR PIPA PADA KOLEKTOR TERHADAP PANAS YANG DIHASILKAN SOLAR WATER HEATER (SWH) TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH JARAK ANTAR PIPA PADA KOLEKTOR TERHADAP

Lebih terperinci

BAB IV. HASIL PENGUJIAN dan PENGOLAHAN DATA

BAB IV. HASIL PENGUJIAN dan PENGOLAHAN DATA BAB IV HASIL PENGUJIAN dan PENGOLAHAN DATA Data hasil pengukuran temperatur pada alat pemanas air dengan menggabungkan ke-8 buah kolektor plat datar dengan 2 buah kolektor parabolic dengan judul Analisa

Lebih terperinci

BAB I PENDAHULUAN. khatulistiwa, maka wilayah Indonesia akan selalu disinari matahari selama jam

BAB I PENDAHULUAN. khatulistiwa, maka wilayah Indonesia akan selalu disinari matahari selama jam BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan negara yang memiliki berbagai jenis sumber daya energi dalam jumlah yang cukup melimpah. Letak Indonesia yang berada pada daerah khatulistiwa, maka

Lebih terperinci

Laporan Tugas Akhir BAB I PENDAHULUAN

Laporan Tugas Akhir BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Belakangan ini terus dilakukan beberapa usaha penghematan energi fosil dengan pengembangan energi alternatif yang ramah lingkungan. Salah satunya yaitu dengan pemanfaatan

Lebih terperinci

PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI

PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh

Lebih terperinci

Analisa performansi kolektor surya pelat bergelombang dengan variasi kecepatan udara

Analisa performansi kolektor surya pelat bergelombang dengan variasi kecepatan udara Jurnal Ilmiah TEKNIK DESAIN MEKANIKA Vol. No., Juli 2016 (1 6) Analisa performansi kolektor surya pelat bergelombang dengan variasi kecepatan udara I Kadek Danu Wiranugraha, Hendra Wijaksana dan Ketut

Lebih terperinci

Pengaruh Tebal Isolasi Termal Terhadap Efektivitas Plate Heat Exchanger

Pengaruh Tebal Isolasi Termal Terhadap Efektivitas Plate Heat Exchanger Pengaruh Tebal Isolasi Thermal Terhadap Efektivitas Plate Heat Exchanger (Ekadewi Anggraini Handoyo Pengaruh Tebal Isolasi Termal Terhadap Efektivitas Plate Heat Exchanger Ekadewi Anggraini Handoyo Dosen

Lebih terperinci

Tugas akhir BAB III METODE PENELETIAN. alat destilasi tersebut banyak atau sedikit, maka diujilah dengan penyerap

Tugas akhir BAB III METODE PENELETIAN. alat destilasi tersebut banyak atau sedikit, maka diujilah dengan penyerap BAB III METODE PENELETIAN Metode yang digunakan dalam pengujian ini dalah pengujian eksperimental terhadap alat destilasi surya dengan memvariasikan plat penyerap dengan bahan dasar plastik yang bertujuan

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN A. Pengujian Tanpa Beban Untuk mengetahui profil sebaran suhu dalam mesin pengering ERK hibrid tipe bak yang diuji dilakukan dua kali percobaan tanpa beban yang dilakukan pada

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG

SUMBER BELAJAR PENUNJANG PLPG SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN FISIKA BAB V PERPINDAHAN KALOR Prof. Dr. Susilo, M.S KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL GURU DAN TENAGA KEPENDIDIKAN

Lebih terperinci

Analisa Performa Kolektor Surya Pelat Datar Bersirip dengan Aliran di Atas Pelat Penyerap

Analisa Performa Kolektor Surya Pelat Datar Bersirip dengan Aliran di Atas Pelat Penyerap Jurnal Ilmiah Teknik Mesin CakraM Vol. 4 No.1. April 2010 (7-15) Analisa Performa Kolektor Surya Pelat Datar Bersirip dengan Aliran di Atas Pelat Penyerap I Gst.Ketut Sukadana, Made Sucipta & I Made Dhanu

Lebih terperinci

PENENTUAN EFISIENSI KOLEKTOR PELAT DATAR DENGAN PENUTUP KACA PADA SISTEM PEMANAS AIR SURYA

PENENTUAN EFISIENSI KOLEKTOR PELAT DATAR DENGAN PENUTUP KACA PADA SISTEM PEMANAS AIR SURYA PENENUAN EFISIENSI KOLEKOR PELA DAAR DENGAN PENUUP KACA PADA SISEM PEMANAS AIR SURYA Zelviana, Maksi Ginting, Sugianto Mahasiswa Program S1 Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

ANALISIS PERPINDAHAN PANAS PADA KOLEKTOR PEMANAS AIR TENAGA SURYA DENGAN TURBULENCE ENHANCER

ANALISIS PERPINDAHAN PANAS PADA KOLEKTOR PEMANAS AIR TENAGA SURYA DENGAN TURBULENCE ENHANCER ANALISIS PERPINDAHAN PANAS PADA KOLEKTOR PEMANAS AIR TENAGA SURYA DENGAN TURBULENCE ENHANCER Nizar Ramadhan 1, Sudjito Soeparman 2, Agung Widodo 3 1, 2, 3 Jurusan Teknik Mesin Fakultas Teknik Universitas

Lebih terperinci

Preparasi pengukuran suhu kolektor surya dan fluida kerja dengan Datapaq Easytrack2 System

Preparasi pengukuran suhu kolektor surya dan fluida kerja dengan Datapaq Easytrack2 System Spektra: Jurnal Fisika dan Aplikasinya, Vol. XI No.1 Mei 2011 Preparasi pengukuran suhu kolektor surya dan fluida kerja dengan Datapaq Easytrack2 System Handjoko Permana a, Hadi Nasbey a a Staf Pengajar

Lebih terperinci

PEMBUATAN ALAT UKUR KONDUKTIVITAS PANAS BAHAN PADAT UNTUK MEDIA PRAKTEK PEMBELAJARAN KEILMUAN FISIKA

PEMBUATAN ALAT UKUR KONDUKTIVITAS PANAS BAHAN PADAT UNTUK MEDIA PRAKTEK PEMBELAJARAN KEILMUAN FISIKA Edu Physic Vol. 3, Tahun 2012 PEMBUATAN ALAT UKUR KONDUKTIVITAS PANAS BAHAN PADAT UNTUK MEDIA PRAKTEK PEMBELAJARAN KEILMUAN FISIKA Vandri Ahmad Isnaini, S.Si., M.Si Program Studi Pendidikan Fisika IAIN

Lebih terperinci

II. TINJAUAN PUSTAKA. Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi

II. TINJAUAN PUSTAKA. Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi II. TINJAUAN PUSTAKA 2.1. Energi Surya Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi panas surya (Matahari) melalui peralatan tertentu menjadi sumber daya dalam bentuk lain.

Lebih terperinci

PERPINDAHAN PANAS DAN MASSA

PERPINDAHAN PANAS DAN MASSA DIKTAT KULIAH PERPINDAHAN PANAS DAN MASSA JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS DARMA PERSADA 009 DIKTAT KULIAH PERPINDAHAN PANAS DAN MASSA Disusun : ASYARI DARAMI YUNUS Jurusan Teknik Mesin,

Lebih terperinci

ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK

ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK Diajukan untuk memenuhi salah satu persyaratan menyelesaikan Program Strata Satu (S1) pada program Studi Teknik Mesin Oleh N a m a : CHOLID

Lebih terperinci

PENGOLAHAN AIR LAUT MENJADI AIR BERSIH DAN GARAM DENGAN DESTILASI TENAGA SURYA

PENGOLAHAN AIR LAUT MENJADI AIR BERSIH DAN GARAM DENGAN DESTILASI TENAGA SURYA PENGOLAHAN AIR LAUT MENJADI AIR BERSIH DAN GARAM DENGAN DESTILASI TENAGA SURYA Oleh : Mulyanef, Burmawi dan Muslimin K. Jurusan Teknik Mesin, Fakultas Teknologi Industri, Universitas Bung Hatta Jl. Gajah

Lebih terperinci

Lingga Ruhmanto Asmoro NRP Dosen Pembimbing: Dedy Zulhidayat Noor, ST. MT. Ph.D NIP

Lingga Ruhmanto Asmoro NRP Dosen Pembimbing: Dedy Zulhidayat Noor, ST. MT. Ph.D NIP RANCANG BANGUN ALAT PENGERING IKAN MENGGUNAKAN KOLEKTOR SURYA PLAT GELOMBANG DENGAN PENAMBAHAN CYCLONE UNTUK MENINGKATKAN KAPASITAS ALIRAN UDARA PENGERINGAN Lingga Ruhmanto Asmoro NRP. 2109030047 Dosen

Lebih terperinci

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian METODOLOGI PENELITIAN Waktu dan Tempat Penelitian Penelitian ini telah dilaksanakan dari bulan Januari hingga November 2011, yang bertempat di Laboratorium Sumber Daya Air, Departemen Teknik Sipil dan

Lebih terperinci

Analisa Pengaruh Konfigurasi Pipa Pemanas Air Surya Terhadap Efisiensi

Analisa Pengaruh Konfigurasi Pipa Pemanas Air Surya Terhadap Efisiensi Analisa Pengaruh Konfigurasi Pipa Pemanas Air Surya Terhadap Efisiensi Darwin Departement Of Mechanical Engineering, Syiah Kuala University Jl. Tgk. Syeh Abdurrafuf No. 7 Darussalam - Banda Aceh 23111,

Lebih terperinci

KARAKTERISTIK PENGERINGAN BIJI KOPI BERDASARKAN VARIASI KECEPATAN ALIRAN UDARA PADA SOLAR DRYER

KARAKTERISTIK PENGERINGAN BIJI KOPI BERDASARKAN VARIASI KECEPATAN ALIRAN UDARA PADA SOLAR DRYER KARAKTERISTIK PENGERINGAN BIJI KOPI BERDASARKAN VARIASI KECEPATAN ALIRAN UDARA PADA SOLAR DRYER Endri Yani* & Suryadi Fajrin Jurusan Teknik Mesin Fakultas Teknik Universitas Andalas Kampus Limau Manis

Lebih terperinci

DAFTAR ISI. i ii iii iv v vi

DAFTAR ISI. i ii iii iv v vi DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN HALAMAN PERNYATAAN HALAMAN PERSEMBAHAN INTISARI KATA PENGANTAR DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI DAN SINGKATAN i ii iii iv v vi viii x xii

Lebih terperinci

DAFTAR ISI. LEMBAR PERSETUJUAN... i. LEMBAR PENGESAHAN... ii. LEMBAR PERNYATAAN... iii. ABSTRAK... iv. ABSTRACT... v. KATA PENGANTAR...

DAFTAR ISI. LEMBAR PERSETUJUAN... i. LEMBAR PENGESAHAN... ii. LEMBAR PERNYATAAN... iii. ABSTRAK... iv. ABSTRACT... v. KATA PENGANTAR... DAFTAR ISI LEMBAR PERSETUJUAN... i LEMBAR PENGESAHAN... ii LEMBAR PERNYATAAN... iii ABSTRAK... iv ABSTRACT... v KATA PENGANTAR... vi DAFTAR ISI... vii DAFTAR TABEL x DAFTAR GAMBAR...xii BAB I PENDAHULUAN...

Lebih terperinci

JURNAL TEKNIK ITS Vol. 4, No. 1, (2015) ISSN: ( Print)

JURNAL TEKNIK ITS Vol. 4, No. 1, (2015) ISSN: ( Print) B-62 Studi Eksperimental Pengaruh Laju Aliran Air terhadap Efisiensi Thermal pada Kolektor Surya Pemanas Air dengan Penambahan External Helical Fins pada Pipa Sandy Pramirtha dan Bambang Arip Dwiyantoro

Lebih terperinci

BAB I PENDAHULUAN. menjadi sumber energi pengganti yang sangat berpontensi. Kebutuhan energi di

BAB I PENDAHULUAN. menjadi sumber energi pengganti yang sangat berpontensi. Kebutuhan energi di 1.1 Latar Belakang BAB I PENDAHULUAN Matahari adalah sumber energi tak terbatas dan sangat diharapkan dapat menjadi sumber energi pengganti yang sangat berpontensi. Kebutuhan energi di Indonesia masih

Lebih terperinci

PEMANFAATAN ENERGI SURYA UNTUK MEMANASKAN AIR MENGGUNAKAN KOLEKTOR PARABOLA MEMAKAI CERMIN SEBAGAI REFLEKTOR

PEMANFAATAN ENERGI SURYA UNTUK MEMANASKAN AIR MENGGUNAKAN KOLEKTOR PARABOLA MEMAKAI CERMIN SEBAGAI REFLEKTOR PEMANFAATAN ENERGI SURYA UNTUK MEMANASKAN AIR MENGGUNAKAN KOLEKTOR PARABOLA MEMAKAI CERMIN SEBAGAI REFLEKTOR Nafisha Amelya Razak 1, Maksi Ginting 2, Riad Syech 2 1 Mahasiswa Program S1 Fisika 2 Dosen

Lebih terperinci

REKAYASA KOLEKTOR PEMANAS AIR TENAGA SURYA MODEL PLAT DATAR ROSYID KUS RAHMADI

REKAYASA KOLEKTOR PEMANAS AIR TENAGA SURYA MODEL PLAT DATAR ROSYID KUS RAHMADI digilib.uns.ac.id REKAYASA KOLEKTOR PEMANAS AIR TENAGA SURYA MODEL PLAT DATAR Disusun Oleh: ROSYID KUS RAHMADI M0206060 SKRIPSI Diajukan Untuk Memenuhi Sebagian Persyaratan Mendapat Gelar Sarjana Sains

Lebih terperinci

MENENTUKAN JUMLAH KALOR YANG DIPERLUKAN PADA PROSES PENGERINGAN KACANG TANAH. Oleh S. Wahyu Nugroho Universitas Soerjo Ngawi ABSTRAK

MENENTUKAN JUMLAH KALOR YANG DIPERLUKAN PADA PROSES PENGERINGAN KACANG TANAH. Oleh S. Wahyu Nugroho Universitas Soerjo Ngawi ABSTRAK 112 MENENTUKAN JUMLAH KALOR YANG DIPERLUKAN PADA PROSES PENGERINGAN KACANG TANAH Oleh S. Wahyu Nugroho Universitas Soerjo Ngawi ABSTRAK Dalam bidang pertanian dan perkebunan selain persiapan lahan dan

Lebih terperinci

ALAT PENGERING HASIL - HASIL PERTANIAN UNTUK DAERAH PEDESAAN DI SUMATERA BARAT

ALAT PENGERING HASIL - HASIL PERTANIAN UNTUK DAERAH PEDESAAN DI SUMATERA BARAT ALAT PENGERING HASIL - HASIL PERTANIAN UNTUK DAERAH PEDESAAN DI SUMATERA BARAT Oleh : M. Yahya Staf Pengajar Jurusan Teknik Mesin Institut Teknologi Padang Abstrak Provinsi Sumatera Barat memiliki luas

Lebih terperinci

Kaji Eksperimental Pemisah Garam dan Air Bersih Dari Air LAut Mengunakan Kolektor Plat Alumunium Dengan Mengunakan Energi Surya

Kaji Eksperimental Pemisah Garam dan Air Bersih Dari Air LAut Mengunakan Kolektor Plat Alumunium Dengan Mengunakan Energi Surya Kaji Eksperimental Pemisah Garam dan Air Bersih Dari Air LAut Mengunakan Kolektor Plat Alumunium Dengan Mengunakan Energi Surya Dino Sinatra, Mulyanef dan Burmawi Jurusan Teknik Mesin,FTI.UBH. Email: dinosinatra@yahoo.com

Lebih terperinci

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer Soal Suhu dan Kalor Fisika SMA Kelas X Contoh soal kalibrasi termometer 1. Pipa kaca tak berskala berisi alkohol hendak dijadikan termometer. Tinggi kolom alkohol ketika ujung bawah pipa kaca dimasukkan

Lebih terperinci

PENGARUH BENTUK PLAT ARBSORBER PADA SOLAR WATER HEATER TERHADAP EFISIENSI KOLEKTOR. Galuh Renggani Wilis ST.,MT. ABSTRAK

PENGARUH BENTUK PLAT ARBSORBER PADA SOLAR WATER HEATER TERHADAP EFISIENSI KOLEKTOR. Galuh Renggani Wilis ST.,MT. ABSTRAK PENGARUH BENTUK PLAT ARBSORBER PADA SOLAR WATER HEATER TERHADAP EFISIENSI KOLEKTOR Galuh Renggani Wilis ST.,MT. ABSTRAK Energi fosil di bumi sangat terbatas jumlahnya. Sedangkan pertumbuhan penduduk dan

Lebih terperinci

PERANCANGAN TANGKI PEMANAS AIR TENAGA SURYA KAPASITAS 60 LITER DAN INSULASI TERMALNYA

PERANCANGAN TANGKI PEMANAS AIR TENAGA SURYA KAPASITAS 60 LITER DAN INSULASI TERMALNYA PERANCANGAN TANGKI PEMANAS AIR TENAGA SURYA KAPASITAS 60 LITER DAN INSULASI TERMALNYA Rasyid Atmodigdo 1, Muhammad Nadjib 2, TitoHadji Agung Santoso 3 Program Studi S-1 Teknik Mesin, Fakultas Teknik, Universitas

Lebih terperinci

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving PERPINDAHAN PANAS Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving force/resistensi Proses bisa steady

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 32 BB III METODOLOGI PENELITIN Metode yang digunakan dalam pengujian ini adalah pengujian eksperimental terhadap lat Distilasi Surya dengan menvariasi penyerapnya dengan plastik hitam dan aluminium foil.

Lebih terperinci

BAB 1 PENDAHULUAN. I.1. Latar Belakang

BAB 1 PENDAHULUAN. I.1. Latar Belakang BAB 1 PENDAHULUAN I.1. Latar Belakang Energi merupakan kebutuhan utama setiap manusia. Energi memainkan peranan penting dalam setiap aspek kehidupan manusia. Semua kalangan tanpa terkecuali bergantung

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN BAB IV ANALISA DAN PERHITUNGAN 4.1. Hot Water Heater Pemanasan bahan bakar dibagi menjadi dua cara, pemanasan yang di ambil dari Sistem pendinginan mesin yaitu radiator, panasnya di ambil dari saluran

Lebih terperinci

KAJI EKSPERIMENTAL ALAT PENGOLAHAN AIR LAUT MENGGUNAKAN ENERGI SURYA UNTUK MEMPRODUKSI GARAM DAN AIR TAWAR

KAJI EKSPERIMENTAL ALAT PENGOLAHAN AIR LAUT MENGGUNAKAN ENERGI SURYA UNTUK MEMPRODUKSI GARAM DAN AIR TAWAR KAJI EKSPERIMENTAL ALAT PENGOLAHAN AIR LAUT MENGGUNAKAN ENERGI SURYA UNTUK MEMPRODUKSI GARAM DAN AIR TAWAR Mulyanef *, Rio Ade Saputra, Kaidir dan Duskiardi Jurusan Teknik Mesin Universitas Bung Hatta

Lebih terperinci

PENGARUH BENTUK PLAT KOLEKTOR MATAHARI TERHADAP PRODUKSI KONDENSAT

PENGARUH BENTUK PLAT KOLEKTOR MATAHARI TERHADAP PRODUKSI KONDENSAT PENGARUH BENTUK PLAT KOLEKTOR MATAHARI TERHADAP PRODUKSI KONDENSAT Sugiyarta 1), Yohanes Suyoko 2), Joko Sukarno 3) Teknik Mesin dan Teknik Otomotif Politeknik Pratama Mulia Surakarta ABSTRACT The effect

Lebih terperinci

Jurnal e-dinamis, Volume II, No.2 September 2012 ISSN

Jurnal e-dinamis, Volume II, No.2 September 2012 ISSN PENGUJIAN PROSES DISCHARGING SEBUAH PEMANAS AIR ENERGI SURYA TIPE KOTAK SEDERHANA YANG DILENGKAPI PHASE CHANGE MATERIAL DENGAN KAPASITAS 100 LITER AIR Putra Setiawan 1, Tekad Sitepu 2, Himsar Ambarita

Lebih terperinci

Pengaruh variasi jenis pasir sebagai media penyimpan panas terhadap performansi kolektor suya tubular dengan pipa penyerap disusun secara seri

Pengaruh variasi jenis pasir sebagai media penyimpan panas terhadap performansi kolektor suya tubular dengan pipa penyerap disusun secara seri Jurnal Energi dan Manufaktur Vol 9. No. 2, Oktober 2016 (161-165) http://ojs.unud.ac.id/index.php/jem ISSN: 2302-5255 (p) ISSN: 2541-5328 (e) Pengaruh variasi jenis pasir sebagai media penyimpan panas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA Prinsip kerja kolektor surya pelat penyerap adalah memindahkan radiasi matahari ke fluida kerja. Radiasi matahari yang jatuh pada cover kaca sebagian akan langsung dipantulkan,

Lebih terperinci

PENINGKATAN KAPASITAS PEMANAS AIR KOLEKTOR PEMANAS AIR SURYA PLAT DATAR DENGAN PENAMBAHAN BAHAN PENYIMPAN KALOR

PENINGKATAN KAPASITAS PEMANAS AIR KOLEKTOR PEMANAS AIR SURYA PLAT DATAR DENGAN PENAMBAHAN BAHAN PENYIMPAN KALOR Peningkatan Kapasitas Pemanas Air Kolektor Pemanas Air Surya PENINGKATAN KAPASITAS PEMANAS AIR KOLEKTOR PEMANAS AIR SURYA PLAT DATAR DENGAN PENAMBAHAN BAHAN PENYIMPAN KALOR Suharti 1*, Andi Hasniar 1,

Lebih terperinci

P I N D A H P A N A S PENDAHULUAN

P I N D A H P A N A S PENDAHULUAN P I N D A H P A N A S PENDAHULUAN RINI YULIANINGSIH APA ITU PINDAH PANAS? Pindah panas adalah ilmu yang mempelajari transfer energi diantara benda yang disebabkan karena perbedaan suhu Termodinamika digunakan

Lebih terperinci

Analisis Performa Kolektor Surya Pelat Bersirip Dengan Variasi Luasan Permukaan Sirip

Analisis Performa Kolektor Surya Pelat Bersirip Dengan Variasi Luasan Permukaan Sirip Jurnal Ilmiah Teknik Mesin Vol. 4 No.2. Oktober 2010 (88-92) Analisis Performa Kolektor Surya Pelat Bersirip Dengan Variasi Luasan Permukaan Sirip Made Sucipta, I Made Suardamana, Ketut Astawa Jurusan

Lebih terperinci

PERENCANAAN KETEL UAP PIPA AIR SEBAGAI PENGGERAK TURBIN DENGAN KAPASITAS UAP HASIL. 40 TON/JAM, TEKANAN KERJA 17 ATM DAN SUHU UAP 350 o C

PERENCANAAN KETEL UAP PIPA AIR SEBAGAI PENGGERAK TURBIN DENGAN KAPASITAS UAP HASIL. 40 TON/JAM, TEKANAN KERJA 17 ATM DAN SUHU UAP 350 o C NASKAH PUBLIKASI PERENCANAAN KETEL UAP PIPA AIR SEBAGAI PENGGERAK TURBIN DENGAN KAPASITAS UAP HASIL 40 TON/JAM, TEKANAN KERJA 17 ATM DAN SUHU UAP 350 o C Makalah Seminar Tugas Akhir ini disusun sebagai

Lebih terperinci

OPTIMALISASI PENYERAPAN RADIASI MATAHARI PADA SOLAR WATER HEATER MENGGUNAKAN VARIASI SUDUT KEMIRINGAN

OPTIMALISASI PENYERAPAN RADIASI MATAHARI PADA SOLAR WATER HEATER MENGGUNAKAN VARIASI SUDUT KEMIRINGAN Optimalisasi Penyerapan Radiasi Matahari Pada Solar Water Heater... (Sulistyo dkk.) OPTIMALISASI PENYERAPAN RADIASI MATAHARI PADA SOLAR WATER HEATER MENGGUNAKAN VARIASI SUDUT KEMIRINGAN Agam Sulistyo *,

Lebih terperinci