OHMMETER DIGITAL BERBASIS MICROCONTROLLER
|
|
|
- Ade Hardja
- 9 tahun lalu
- Tontonan:
Transkripsi
1 OHMMETER DIGITAL BERBASIS MICROCONTROLLER DISUSUN OLEH : ZULVA TRI DIANTI ( ) ZENDY KURNIA WIDARTO ( ) DOSEN : EPYK SUNARNO, SST,MT JURUSAN TEKNIK ELEKTRO INDUSTRI POLITEKNIK ELEKTRONIKA NEGERI SURABAYA INSTITUT TEKNOLOGI SEPULUH NOPEMBER
2 I. ABSTRAK Ohmmeter Digital merupakan suatu alat yang digunakan untuk mengukur suatu tahanan atau hambatan. Dalam makalah ini, kami mencoba menjelaskan dan membuat suatu rangkaian ohmmeter digital yang sederhana dengan menggunakan mikrokontroller ATMega 8. Dengan alat ini kita bisa mengukur tahanan dari suatu hambatan. Tetapi hambatan yang bisa terdeteksi pada alat kami yang sederhana ini adalah hambatan antara 1KΩ sampai 10KΩ. Diluar range tersebut alat ini tidak dapat mendeteksi secara sempurna. Tetapi paling tidak alat sederhana ini dapat membantu dalam melakukan suatu pengukuran resistor yang resistansinya tidak terlalu besar dan tidak terlalu kecil. II. PRINSIP KERJA Prinsip kerja dari Ohmmeter Digital berbasis mikrokontroller ini sebenarnya sama dengan ohmmeter digital pada umumnya, yaitu pada saat akan mengukur sebuah resistor (misalnya resistor jenis karbon) maka pada kedua ujung dari resistor ini dihubungkan pada kutub positif dan negatif dari ohmmeter digital dengan menggunakan probe. Begitu juga dengan ohmmeter digital berbasis mikrokontroller ini, pada saat kita mengukur resistor dengan hambatan misalnya 1 KΩ maka pada layar LCD alat ini akan terbaca 1KΩ juga. Tetapi alat ini mempunyai batas minimal dan maksimal yaitu batas resistor yang dapat terbaca sebesar 1KΩ sampai dengan 10KΩ, diatas atau dibawah range tersebut alat ini tidak bisa membacanya, kalaupun bisa tidak akurat. Pada alat ini terdapat 1 buah push button untuk mereset agar nilai pada LCD kembali menunjuk angka 0 lagi. Pada alat ini kami menggunakan downloader ATMega 8 untuk menghubungkannya ke program AVR pada komputer. Downloader ini juga sebagai power supply alat ini. -2-
3 III. DASAR TEORI Ohmmeter merupakan suatu alat yang digunakan untuk mengukur resistansi dari suatu resistor yang mana apabila kita mengetahui resistansi dari suatu resistor tersebut maka kita dapat menggunakannya sebagai salah satu komponen untuk merangkai suatu rangkaian yang R nya sudah ditentukan. Tanpa kita mengetahui nilai R pada suatu resistor maka kita tidak dapat menggunakannya untuk merangkai suatu rangkaian karena dapat mempengaruhi cara kerjadari komponen-komponen lain pada rangkaian tersebut. Apabila ternyata R terlalu besar dari apa yang dikehendaki rangkaian maka rangkaian tersebut tidak akan jalan atau tidak bisa dipakai, sebaliknya apabila terlalu kecil R yang dipakai maka rangkaian juga akan rusak karena tidak ada keseimbangan antara R dengan komponen komponen yang lain. Kesimpulan yang diperoleh adalah apabila tidak mengetahui harga R yang akan kita gunakan untuk merangkai suatu rangkaian maka kita tidak dapat menggunakan rangkaian tersebut. Maka dari itu Ohmmeter sangat diperlukan dalam suatu Pengukuran Listrik, dengan ohmmeter kita dapat mengetahui resistansi dari suatu resistor yang akan kita gunakan. Ohmmeter mempunyai batas (range) yang telah ditentukan. Bataws (range) merupakan batas yang dapat digunakan untuk mendeteksi atau membaca resistansi resistor. Apabila R terlalu kecil atau terlalu besar (diluar dari range yang telah ditentukan) maka ohmmeter tidak dapat membacanya dengan baik (kurang akurat). Setiap Ohmmeter mempunyai batas range yang berbeda-beda. Ohmmeter digital merupakan suatu ohmmeter pada umumnya (ohmmeter analog) yang mana pemakaiannya lebih memudahkan si pemakai karena pada ohmmeter digital resistansi dari suatu resistor dapat langsung terbaca dengan cara menghubungkan kedua kutubnya pada probe ohmmeter digital. Tidak seperti ohmmeter analog yang pembacaannya melalui rumus : R = nilai pada jarum yang ditunjuk skala penu h x range yang digunakan -3-
4 IV. KOMPONEN Komponen dari Ohmmeter Digital adalah sebagai berikut : 1. IC ATMega 8 + socket 1 2. Xtal 11, Capasitor 33 pf 2 4. Resistor 10 KΩ ¼ W 1 5. Resistor 1 KΩ 2 6. LED 3 mm 1 7. IC Conector 2 pin putih 3 9. LCD 8 x DB 25 male + socket Kabel Pelangi 1 meter 12. Kabel Jumper 1 meter 13. Conector putih 6 pin PCB kosongan Diode Zener 5 V Kapasitor 16 V 470 M Push Button Header 1 pin VR 10 K 1-4-
5 V. BLOG DIAGRAM SYSTEM -5-
6 VI. FLOWCHART Berikut ini adalah flowchart dari ohmmeter digital START read_adc d=bx0, e=d/5-d cetak e end -6-
7 VII. PROGRAM AVR Berikut ini merupakan program sederhana dari Ohmmeter Digital #include <mega8.h> #include <stdio.h> #include <delay.h> // Alphanumeric LCD Module functions #asm.equ lcd_port=0x12 ;PORTD #endasm #include <lcd.h> #include <delay.h> #define ADC_VREF_TYPE 0x60 // Read the 8 most significant bits // of the AD conversion result unsigned char read_adc(unsigned char adc_input) { ADMUX=adc_input (ADC_VREF_TYPE & 0xff); // Delay needed for the stabilization of the ADC input voltage delay_us(10); // Start the AD conversion ADCSRA =0x40; // Wait for the AD conversion to complete while ((ADCSRA & 0x10)==0); ADCSRA =0x10; return ADCH; } // Declare your global variables here void H2BCD(int bilangan) { int ratusan,puluhan,satuan; ratusan= bilangan/100; // misal bilangan=231 // 231/100= 2 puluhan = (bilangan - (ratusan*100))/10; // (231-(2*100))/10 // ( )/10 = 31/10 = 3 satuan = bilangan - (puluhan*10) - (ratusan*100); lcd_putchar(ratusan+0x30); lcd_putchar(puluhan+0x30); lcd_putchar(satuan+0x30); } void main(void) { char lcd_buffer[33]; -7-
8 float Rin; unsigned int temp; PORTB=0x00; DDRB=0x00; PORTC=0x00; DDRC=0x00; //lcd PORTD=0x00; DDRD=0xff; // ADC initialization // ADC Clock frequency: 691,200 khz // ADC Voltage Reference: AVCC pin // Only the 8 most significant bits of // the AD conversion result are used ADMUX=ADC_VREF_TYPE & 0xff; ADCSRA=0x84; // LCD module initialization lcd_init(8); lcd_putsf ("WELCOME"); lcd_gotoxy (2,1); lcd_putsf ("TO"); delay_ms(1000); lcd_putsf ("OUR"); lcd_putsf ("PROJECT"); delay_ms(1000); lcd_putsf ("DIGITAL"); lcd_putsf ("OHMMETER"); delay_ms(1000); lcd_putsf ("b"); lcd_gotoxy (1,0); lcd_putsf ("y"); -8-
9 lcd_putsf ("2"); lcd_gotoxy (1,1); lcd_putsf ("D"); lcd_gotoxy (2,1); lcd_putsf ("3"); lcd_gotoxy (3,1); lcd_putsf ("E"); lcd_gotoxy (4,1); lcd_putsf ("L"); lcd_gotoxy (5,1); lcd_putsf ("I"); lcd_gotoxy (6,1); lcd_putsf ("N"); lcd_gotoxy (7,1); lcd_putsf ("B"); lcd_putsf ("by"); lcd_putsf ("2D3ELINB "); delay_ms(2000); lcd_putsf ("ZULVA TD"); lcd_putsf ("ZENDY KW"); delay_ms(2000); lcd_putsf ("READY"); lcd_putsf ("TO READ"); -9-
10 delay_ms(1000); while (1) { lcd_putsf ("Ohmmeter"); lcd_putsf ("R:"); lcd_gotoxy(3,1); b=read_adc(0); d=b* ; e=((d)/(5-d)); sprintf(lcd_buffer,"%.2f",e); lcd_puts(lcd_buffer); lcd_gotoxy(7,1); lcd_putsf (" k"); }; } -10-
BAB 3 PERANCANGAN ALAT. Rangkaian Catu daya (Power Supply Adaptor) ini terdiri dari satu keluaran, yaitu 5
BAB 3 PERANCANGAN ALAT 3.1. Perancangan Rangkaian Catu Daya Rangkaian ini berfungsi untuk mensupplay tegangan ke seluruh rangkaian yang ada. Rangkaian Catu daya (Power Supply Adaptor) ini terdiri dari
Standar Operasional Prosedur Alat
LAMPIRAN Standar Operasional Prosedur Alat 1. Letakkan sampel/objek yang akan dibersihkan pada keranjang didalam chamber 2. Pastikan chamber telah terisi oleh air sebelum alat dihidupkan. Isi air secukupnya
Tabel Data Pengujian 5x Perubahan Posisi. Kanan (V) Kiri (V)
LAMPIRAN Tabel Data Pengujian 5x Perubahan Posisi 1. Motor 2 tak Kawasaki Ninja 2011 Waktu (menit) Tengah Kanan Kiri Atas Bawah Ratarata 3 8,60 8,62 8,60 8,63 8,62 8,614 6 8,60 8,52 8,54 8,66 8,65 8,594
Gambar 3.1 Blok Diagram Timbangan Bayi
34 BAB III METODE PENELITIAN 3.1 Perancangan Perangkat Keras 3.1.1 Diagram Blok Sistem Diagram blok sistem merupakan salah satu bagian terpenting dalam perancangan dan pembuatan alat ini, karena dari diagram
Listing Program. // Declare your global variables here
Listing Program #include // standart input/output library #include // delay library #include // Alphanumeric LCD functions #include // adc mode avcc 10bit #define ADC_VREF_TYPE
Kajian Pustaka. Spesifikasi - Krisbow KW Fitur - Krisbow KW06-290
LAMPIRAN Kajian Pustaka Fitur - Krisbow KW06-290 Dua modus memberikan 2.5dB 3.5dB atau akurasi A dan berat C pengukuran tinggi dan rendah berkisar: Rendah (35 sampai 100dB) tinggi (65 sampai 130dB) Resolusi
LAMPIRAN. Lay Out Minimum Sistem dengan ATMega8
LAMPIRAN - Lay Out PCB Lay Out Minimum Sistem dengan ATMega8 Lay Out LCD Lay Out Instrumentasi (Op-Amp) 1. List Program #include //preprocessor menyertakan library IC ATmega 8 #include
LAMPIRAN A RANGKAIAN LENGKAP dan FOTO PENGUAT KELAS D
A RANGKAIAN LENGKAP dan FOTO PENGUAT KELAS D A1 LAMPIRAN A2 Rangkaian Low Pass Filter Butterworth dan Level Shifter Rangkaian Low Pass Filter Pasif A3 Rangkaian AT mega16 dan L293D B PROGRAM AT MEGA16
LAMPIRAN. A. Pembuatan Minimun system dan Penanaman Program 1. Rangkaian Minimum System yang telah dilarutkan, di bor dan dipasang komponen
LAMPIRAN A. Pembuatan Minimun system dan Penanaman Program 1. Rangkaian Minimum System yang telah dilarutkan, di bor dan dipasang komponen 2. Rangkaian Driver relay dan sensor suhu yang telah dilarutkan
BAB III DESAIN DAN PEMBUATAN
23 BAB III DESAIN DAN PEMBUATAN 3. 1 Prinsip Kerja dan Perencanaan Perancangan dan pembuatan perangkat keras mencakup pembuatan rancangan layout, penempatan komponen elektronika didalam sirkuit PCB sampai
MIKROKONTROLER ATMEGA BERBASIS CODEVISION AVR (ADC DAN APLIKASI TERMOMETER) dins D E P O K I N S T R U M E N T S
MIKROKONTROLER ATMEGA BERBASIS CODEVISION AVR (ADC DAN APLIKASI TERMOMETER) dins D E P O K I N S T R U M E N T S ADC Konsep Dasar ADC ADC = Analog to Digital Converter Pengubah sinyal analog menjadi sinyal
DAFTAR PUSTAKA. Universitas Sumatera Utara
DAFTAR PUSTAKA Andrianto, Heri. 2008. Pemrograman Mikrokontroler AVR ATmega16 Menggunakan Bahasa C. Bandung: Penerbit Informatika. Bejo, Agus. 2007. C & AVR Rahasia Kemudahan Bahasa C Dalam Mikrokontroler
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN 3.1 Perancangan Perangkat Keras 3.1.1 Blok Diagram Diagram blok pengembangan breastpump elektrik berbasis mikrokontroler ATMega8535 dilengkapi dengan pengatur waktu dan tekanan
BAB 4 HASIL DAN PEMBAHASAN
BAB 4 HASIL DAN PEMBAHASAN Tahap pengujian sistem dilakukan dengan tujuan adalah untuk mengetahui hasil dari perancangan yang telah dibuat pada Bab 3. Pengujian sistem ini terdiri dari beberapa tahapan,
LAMPIRAN. #include <mega16.h> //menambahkan library atmega16 #include <delay.h> //menambahkan library delay #define ADC_VREF_TYPE 0x40
LAMPIRAN #include //menambahkan library atmega16 #include //menambahkan library delay #define ADC_VREF_TYPE 0x40 // Fungsi untuk mengaktifkan dan membaca nilai adc unsigned int read_adc(unsigned
LAMPIRAN A PROGRAM CODE VISION AVR
LAMPIRAN A PROGRAM CODE VISION AVR A-1 /***************************************************** This program was produced by the CodeWizardAVR V2.05.0 Evaluation Automatic Program Generator Copyright 1998-2010
BAB III METODOLOGI PENELITIAN. Berikut alat dan bahan yang digunakan. Bahan yang digunakan pada pembuatan dan penelitian ini adalah:
25 BAB III METODOLOGI PENELITIAN 3.1. Perancangan Perangkat Keras 3.1.1. Alat dan Bahan Dalam pembuatan modul termometer digital dengan output suara berbasis ATmega 16 ini dalam pengerjaanya membutuhkan
BAB IV HASIL DAN UJI COBA
BAB IV HASIL DAN UJI COBA IV.1. Software Instalasi merupakan hal yang sangat penting karena merupakan proses penginputan data dari komputer ke dalam mikrokontroler. Sebelum melakukan instalasi, hubungkan
PRAKTIKUM III Robot Line Follower Sederhana
PRAKTIKUM III Robot Line Follower Sederhana A. Tujuan 1. Mahasiswa dapat mengkombinasikan antara pengontrolan motor dengan PWM, dengan sensor proximity dengan ADC. 2. Mahasiswa dapat membuat program robot
Tata letak konektor DT-AVR ATMEGA168 BMS adalah sebagai berikut: Persiapan hardware DT-AVR ATMEGA168 BMS adalah sebagai berikut:
DT-AVR ATMEGA168 BMS Application Note Oleh: Tim IE Application Note (AN) ini disusun untuk memberikan penjelasan tentang cara penggunaan DT-AVR ATMEGA168 Bootloader Micro System beserta software pendukungnya.
PELATIHAN: Pemrograman Mikrokontroler Tipe AVR bagi Guru-guru SMK
PELATIHAN: Pemrograman Mikrokontroler Tipe AVR bagi Guru-guru SMK Disusun oleh: Pipit Utami. M.Pd Fakultas Teknik UNIVERSITAS NEGERI YOGYAKARTA 2015 Page1 Praktik Mikrokontroler TOPIK: AKSES LCD KAJIAN
LAMPIRAN A. Gambar A. Layout alat tongkat tunanetra. Ubiversitas Sumatera Utara
LAMPIRAN A Pada gambar A. di bawah ini menjelaskan tentang layout atau susunan komponen yang mencakup semuanya alat tongkat tunanetra selanjutnya dapat di lihat pada gambar sebagai berikut : Gambar A.
POLITEKNIK CALTEX RIAU
BAB 1 SOFTWARE COMPILER CODEVISION AVR 1.1 PENGENALAN CodeVisionAVR merupakan salah satu software gratis yang berfungsi sebagai text editor dalam menulis baris perintah sekaligus sebagai compiler yang
BAB III METODOLOGI PENELITIAN. dengan suhu dan timer berbasis mikrokontroler ATMega8535, dapat
BAB III METODOLOGI PENELITIAN 3.1 Perancangan Perangkat Keras 3.1.1 Diagram Blok Sistem Adapun blok diagram sistem dari inkubator bakteri dilengkapi dengan suhu dan timer berbasis mikrokontroler ATMega8535,
DAFTAR PUSTAKA. Bejo, Agus C & AVR Rahasia Kemudahan Bahasa C Dalam Mikrokontroler ATMega 8535.Yogyakarta:Graha Ilmu.
DAFTAR PUSTAKA Bejo, Agus.2008. C & AVR Rahasia Kemudahan Bahasa C Dalam Mikrokontroler ATMega 8535.Yogyakarta:Graha Ilmu. Jamilah. Pengenalan Bahasa C. http://jamilah.staff.gunadarma.ac.id/downloads/
RANCANG BANGUN PERBAIKAN FAKTOR DAYA
RANCANG BANGUN PERBAIKAN FAKTOR DAYA Setia Graha (1) (1) Staf Pengajar Jurusan Teknik Elektro Politeknik Negeri Banjarmasin Ringkasan Penggunaan beban-beban reaktif dalam suatu sistem tenaga listrik akan
BAB IV HASIL DAN UJICOBA
BAB IV HASIL DAN UJICOBA IV.1. Instalasi Interface Instalasi rangkaian seluruhnya merupakan hal yang sangat penting karena merupakan proses penginputan data dari komputer ke mikrokontroller. Sebelum melakukan
CLAMP-METER PENGUKUR ARUS AC BERBASIS MIKROKONTROLER TUGAS AKHIR
CLAMP-METER PENGUKUR ARUS AC BERBASIS MIKROKONTROLER TUGAS AKHIR Oleh: TANU DWITAMA (3210701018) Disusun untuk memenuhi syarat kelulusan Program Diploma III Program Studi Teknik Elektro Politeknik Batam
TPA81 Thermopile Array
TPA81 Thermopile Array 1. Karakteristik Thermopile Array TPA81 dapat mendeteksi sinar infra merah dengan panjang gelombang 2um-22um (1mikro meter = sepersejuta meter). Panjang gelombang ini dihasilkan
Pulsa = Frekuensi * 60/20 ; atau Pulsa = frekuensi*30;
JUDUL : Penghitung Kecepatan Motor DC dengan Display LCD 16X2 Berbasis Mikrokontroler ATMega16 TUJUAN : - Menghitung nilai kecepatan motor dc dengan satuan rpm - Menampilkan nilai rpm ke tampilan LCD -
C. RUMUSAN MASALAH 1. Bagaimana cara membuat timbangan digital? 2. Apa tujuan pembuatan timbangan digital?
A. PENDAHULUAN Perkembangan dunia digital akhir-akhir ini tampak semakin berkembang dan banyak sekali peminat dari berbagai kalangan baik itu sebagai pembuat atau programmer maupun sebagai user atau pemakainya.
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN 3.1 Perancangan Alat Dalam merealisasikan sebuah sistem elektronik diperlukan perancangan komponen secara tepat dan akurat. Tahap perancangan sangat penting dilakukan untuk mempermudah
I. Pendahuluan. II. Tujuan. III. Gambaran Disain. MODUL 7 Monitoring Suhu dan Cahaya ke PC
MODUL 7 Monitoring Suhu dan Cahaya ke PC I. Pendahuluan Pada praktikum ini, anda akan mencoba memanfaatkan fasilitas komunikasi serial pada mikrokontroler AVR ATmega8535. Modul praktikum sebelumnya adalah
BAB III METODOLOGI PENELITIAN. yang sebelumnya telah dihaluskan dan melalui proses quality control
23 BAB III METODOLOGI PENELITIAN 3.1 Diagram Mekanis Sistem Sistem mekanis yang penulis buat menggunakan bahan plat logam yang sebelumnya telah dihaluskan dan melalui proses quality control sehingga diharapkan
STIKOM SURABAYA BAB IV PEMBAHASAN. 4.1 Perangkat Keras. Informasi waktu yang akan ditunjukkan oleh jarum dan motor power
BAB IV PEMBAHASAN 4.1 Perangkat Keras Informasi waktu yang akan ditunjukkan oleh jarum dan motor power window yang telah dimodifikasi menggunakan gear akan digunakan sebagai penggerak jarum jam. Informasi
Tabel 1. Karakteristik Potensiometer Putaran Kedua No Sudut (derajat) Teori (KΩ) Praktik (KΩ) Error (%) ,00 45,50 1, ,86 45,30 0,97 2
Tabel 1. Karakteristik Potensiometer Putaran Kedua No Sudut (derajat) Teori (KΩ) Praktik (KΩ) Error (%) 0 0 45,00 45,50 1,10 1 10 44,86 45,30 0,97 2 20 44,72 45,10 0,84 3 30 44,58 45,00 0,93 4 40 44,44
BAB IV PENGUJIAN ALAT DAN ANALISA
37 BAB IV PENGUJIAN ALAT DAN ANALISA 4.1. Tujuan Setelah tahap perancangan hingga terciptanya sebuah alat maka tahap selanjutnya adalah pengukuran dan pengujian. Langkah ini ditempuh agar dapat diketahui
BAB III PERANCANGAN DAN PEMBUATAN SISTEM. perangkat keras maupun perangkat lunak yang meliputi:
48 BAB III PERANCANGAN DAN PEMBUATAN SISTEM Pada bab ini akan membahas tentang cara perencanaan dan pembuatan perangkat keras maupun perangkat lunak yang meliputi: 3.1 Konstruksi Fisik Pendulum Terbalik
MIKROKONTROLER ATMEGA BERBASIS CODEVISION AVR (I2C DAN APLIKASI RTC) dins D E P O K I N S T R U M E N T S
MIKROKONTROLER ATMEGA BERBASIS CODEVISION AVR (IC DAN APLIKASI RTC) dins D E P O K I N S T R U M E N T S Teori IC/I C IC/I C (Baca: I-Two-C atau I-Squared-C) = Inter-Integrated Circuit adalah salah satu
BAB III PERANCANGAN DAN REALISASI SISTEM
BAB III PERANCANGAN DAN REALISASI SISTEM Pada bab ini akan dibahas tentang perancangan dan realisasi sistem dari setiap modul yang dibuat. Blok Diagram alat yang dibuat ditunjukkan oleh Gambar 3.. Penguat
PENGEMBANGAN MODUL PRAKTIKUM MIKROKONTROLER (AVR) MENGGUNAKAN PERANGKAT LUNAK PROTEUS PROFESSIONAL v7.5 SP3
PENGEMBANGAN MODUL PRAKTIKUM MIKROKONTROLER (AVR) MENGGUNAKAN PERANGKAT LUNAK PROTEUS PROFESSIONAL v7.5 SP3 Kadarisman Tejo Yuwono & Suprapto Dosen Jurusan Pendidikan Teknik Elektronika F.T. UNY ABSTRAK
BAB V KESIMPULAN DAN SARAN. melakukan analisa terhadap rancang bangun monitoring volume air mineral
80 BAB V KESIMPULAN DAN SARAN A. KESIMPULAN Setelah melakukan pengamatan, mengumpulkan data dan melakukan analisa terhadap rancang bangun monitoring volume air mineral menggunakan Mikrokontroler At Mega
MODUL PELATIHAN MIKROKONTROLLER UNTUK PEMULA DI SMK N I BANTUL OLEH: TIM PENGABDIAN MASYARAKAT JURUSAN TEKNIK ELEKTRO
MODUL PELATIHAN MIKROKONTROLLER UNTUK PEMULA DI SMK N I BANTUL OLEH: TIM PENGABDIAN MASYARAKAT JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH YOGYAKARTA 2016 MIKROKONTROLER UNTUK PEMULA
Project : Version : Date : 15/05/2013 Author : F4CG Company : F4CG Comments:
48 Program Keseluruhan ********************************************************************* This program was produced by the CodeWizardAVR V1.25.8 Standard Automatic Program Generator Copyright 1998-2007
BAB 3 PERANCANGAN ALAT. Sensor Utrasonik. Relay. Relay
BAB 3 PERANCANGAN ALAT 3.1 Diagram Blok Berikut ini adalah diagram blok sistem rancang bangun alat pengontrol volume air dan aerator pada kolam budidaya udang menggunakan mikrokontroler. Sensor Utrasonik
Ping))) Paralax Ultrasonic Range Finder By : Hendawan Soebhakti
Ping))) Paralax Ultrasonic Range Finder By : Hendawan Soebhakti 1. Karakteristik Ping))) Paralax Ultrasonik, sebutan untuk jenis suara diatas batas suara yang bisa didengar manusia. Seperti diketahui,
BAB III METODOLOGI PENELITIAN. Gambar blok diagram dari sistem kerja alat dapat dilihat pada Gambar 3.1
BAB III METODOLOGI PENELITIAN 3.1 Diagram Blok Gambar blok diagram dari sistem kerja alat dapat dilihat pada Gambar 3.1 sebagai berikut. Sampel Air Sensor TDS Modul Sensor Program Mikrokontroller ATMega16
Rancang Bangun Alat Pemberian Pakan Ikan Otomatis Berdasarkan Pilihan Waktu. DISUSUN OLEH : : Sagileorus Rahayu Alilludin NPM :
Rancang Bangun Alat Pemberian Pakan Ikan Otomatis Berdasarkan Pilihan Waktu DISUSUN OLEH : Nama : Sagileorus Rahayu Alilludin NPM : 42109739 Kelas : 3DC01 Latar Belakang Tidak teraturnya pemberian pakan
BAB III METODOLOGI PENELITIAN
BAB III METODOLOGI PENELITIAN Penjelasan mengenai sistem instrumen alat ukur kelembaban, dapat dilihat dalam bentuk Blok diagram berikut: Power Supply 5Vdc Sensor Kelembaban HCZ-H6 Non Inverting Amplifier
MIKROKONTROLER ATMEGA BERBASIS CODEVISION AVR (SERIAL U(S)ART) dins D E P O K I N S T R U M E N T S
MIKROKONTROLER ATMEGA BERBASIS CODEVISION AVR (SERIAL U(S)ART) dins D E P O K I N S T R U M E N T S Teori U(S)ART U(S)ART = Universal (Syncronous) Asyncronous Rx Tx adalah standar komunikasi serial Serial
BAB III PEMBUATAN ALAT. 1. Alat yang dibuat berupa pengedali motor DC berupa miniatur konveyor.
BAB III PEMBUATAN ALAT 3.1 Spesifikasi Alat 1. Alat yang dibuat berupa pengedali motor DC berupa miniatur konveyor. 2. karena berupa miniatur maka motor DC yand dipakai hanya menggunakan motor DC dengan
MAX6675 K-Type Thermocouple Temperature Sensor
MAX6675 K-Type Thermocouple Temperature Sensor User Manual Indo-ware Electronic Easy & Fun Email Customer: [email protected] Email Technical: [email protected] Facebook: www.facebook.com/indoware
BAB IV HASIL DAN UJI COBA
BAB IV HASIL DAN UJI COBA IV.1. Instalasi Interface Instalasi rangkaian seluruhnya merupakan hal yang sangat penting karena merupakan proses penginputan data dari komputer ke mikrokontroller. Sebelum melakukan
BAB IV PENGUJIAN DAN SIMULASI PENGENDALIAN SUHU RUANG PENETAS TELUR
1 BAB IV PENGUJIAN DAN SIMULASI PENGENDALIAN SUHU RUANG PENETAS TELUR Dalam bab ini akan dibahas tentang pengujian berdasarkan perencanaan dari sistem yang dibuat. Pengujian ini dilakukan untuk mengetahui
I. Pendahuluan. II. Tujuan. III. Gambaran Disain. MODUL 6 Meter Cahaya Digital
MODUL 6 Meter Cahaya Digital I. Pendahuluan Pada praktikum ini, anda akan mencoba memanfaatkan fasilitas masukan analog pada mikrokontroler AVR ATmega8535. ATmega8535 mempunyai ADC (Analog to Digital Converter)
Langkah-langkah pemrograman: 1. Pilih File >> New:
Kondisi sistem: Mikrokontroler yang digunakan adalah ATmega8535, dalam hal ini untuk memudahkan digunakan DI-Smart AVR System. Tujuan pemrogram adalah untuk menampilkan tulisan Apa Kabar Dunia? SEMANGAT!
A-1 LISTING PROGRAM MIKROKONTROLER
A-1 LISTING PROGRAM MIKROKONTROLER de #inclu #include #include #include #include // Alphanumeric LCD functions #include // Declare your global
Gambar 4.1 Rangkaian keseluruhan
24 BAB IV IMPLEMENTASI DATA DAN ANALISIS 4.1 Pengujian Dalam bab ini akan dibahas mengenai pengujian dan analisa dari simulasi sistem perancangan program. Tujuan simulasi adalah untuk mengetahui kebenaran
BAB 3 PERANCANGAN ALAT DAN PEMBUATAN SISTEM
27 BAB 3 PERANCANGAN ALAT DAN PEMBUATAN SISTEM 3.1. Diagram Blok Sistem Diagram merupakan pernyataan hubungan yang berurutan dari satu atau lebih komponen yang memiliki satuam kerja tersendiri dan setiap
BAB 3 PERANCANGAN DAN PEMBUATAN
BAB 3 PERANCANGAN DAN PEMBUATAN 3.1. Diagram Blok Rangkaian Power Suplay infrared Photodioda LCD Mikrokontroller Keypad Solenoid Door lock Gambar 3.1. Diagram Blok Rangkaian 3.1.1 Fungsi Tiap Blok Blok
Digital Compass CMPS03 By : Hendawan Soebhakti
Digital Compass CMPS03 By : Hendawan Soebhakti 1. Karakteristik Digital Compass Mobile robot, adalah istilah yang sering digunakan untuk menyebut sebuah robot yang memiliki kemampuan menjelajah. Tidak
MODUL 8 Analog Digital Converter (ADC)
MODUL 8 Analog Digital Converter (ADC) AVR ATMega16 merupakan tipe AVR yang telah dilengkapi dengan 8 saluran ADC internal dengan resolusi 10 bit. Dalam mode operasinya, ADC dapatdi konfigurasi, baik single
DT-AVR Application Note
DT-AVR Application Note AN75 Pendeteksi Gerak dengan Infra Merah Oleh: Tim IE Aplikasi ini merupakan salah satu contoh penggunaan ADC internal ATmega8535 pada DT-AVR Low Cost Micro System. Aplikasi ini
MODUL V: Timer dan Counter
MODUL V: Timer dan Counter.1 DASAR TEORI Gambar.1 Prinsip Dasar Timer/Counter pada Mikrokontroler Ttimer = Tosc*(-TCNT0)*N ( bit = ) Ttimer = Tosc*(-TCNT1)*N (1 bit = ) Gambar. Diagram Blok Timer/Counter
BAB IV HASIL DAN UJI COBA
BAB IV HASIL DAN UJI COBA IV.1. Software Instalasi merupakan hal yang sangat penting karena merupakan proses penginputan data dari komputer ke dalam mikrokontroler. Sebelum melakukan instalasi, hubungkan
PENGEMBANGAN ALAT DETEKSI TINGKAT DEHIDRASI BERDASARKAN WARNA URINE MENGGUNAKAN LED DAN FOTODIODA
PENGEMBANGAN ALAT DETEKSI TINGKAT DEHIDRASI BERDASARKAN WARNA URINE MENGGUNAKAN LED DAN FOTODIODA SKRIPSI Untuk memenuhi sebagian persayaratan Mencapai derajat Sarjana S-1 Program Studi Fisika Diajukan
Pengenalan CodeVisionAVR
Pengenalan CodeVisionAVR Hendawan Soebhakti Oktober 2009 Sub Pokok Bahasan Pengenalan CodeVision Menampilkan Data Ke Port Output Membaca Data Dari Port Input 2 CodeVisionAVR C Compiler CodeVisionAVR C
LAMPIRAN 1 DATA SHEET SERVO GWS S677
LAMPIRAN 1 DATA SHEET SERVO GWS S677 LAMPIRAN 2 DATA SHEET ATMEGA 8535 LAMPIRAN 3 DATA SHEET CMPS03 LAMPIRAN 4 GAMBAR RANGKAIAN LENGKAP Jalur data I/O Mikrokontroler ATmega 8535 LAMPIRAN 5 LISTING PROGRAM
LAMPIRAN A. Gambar A. Skematik Perancangan Solar Tracker Dual Axis. 54 Universitas Sumatera Utara
LAMPIRAN A Pada gambar A. di bawah ini menjelaskan tentang layout atau susunan komponen yang mencakup semuanya alat perancangan solar tracker dual axis selanjutnya dapat di lihat pada gambar sebagai berikut
BAB 3. Perancangan Sistem Blind Spot Detection System. Berbasiskan ATMEGA 168
BAB 3 Perancangan Sistem Blind Spot Detection System Berbasiskan ATMEGA 168 3.1 Perancangan Perangkat Keras Perancangan perangkat keras blind spot detection system, berbasiskan ATMEGA 168, ini terbagi
Modul SerLog - Easy Serial Logger
Modul SerLog - Easy Serial Logger w w w. d e p o i n o v a s i. c o m Modul "SerLog" - Easy Serial Logger. Modul ini diaplikasikan dalam project "Data Logger". Anda dapat melakukan pencatatan dan pembacaan
BAB III METODOLOGI PENELITIAN. yang memiliki tegangan listrik AC 220 Volt. Saklar ON/OFF merupakan sebuah
BAB III METODOLOGI PENELITIAN 3.1 Blok Diagram PLN merupakan sumber daya yang berasal dari perusahaan listrik Negara yang memiliki tegangan listrik AC 220 Volt. Saklar ON/OFF merupakan sebuah saklar yang
SKEMATIK RANGKAIAN A V R 12V. Out. Gnd. Kontak Motor. Accu 12V. Klakson ISP CONNECTOR PA0 PB0 PB1 PA2 PA4 MOSI MISO PA6. 10uF SCK RST. 10uF. 47uF.
SKEMATIK RANGKAIAN 5V 4 U L N 0 0 3 8 15 13 5V NOR CLOSED NOR OPEN 1V Klakson IGNITION COIL Accu ISP CONNECTOR 5 4 3 1 PB0 PB1 A V R PA0 PA D B 9 M A L E 3 7 4 5 1uF 16 1 1uF 3 4 1uF 5 7 8 14 M A X 3 15
BAB III METODE PENELITIAN
37 BAB III METODE PENELITIAN 3.1. Blok Diagram Indikator r Sensor suhu LM35 Push Button Mikrokontroler ATmega8535 Driver Display Suhu dan Timer Buzzer Heater Program Counter Down Gambar 3.1. Blok Diagram
BAB IV HASIL DAN PEMBAHASAN. Hasil dan pembahasan merupakan pemaparan dari spesifikasi alat, kinerja
BAB IV HASIL DAN PEMBAHASAN Hasil dan pembahasan merupakan pemaparan dari spesifikasi alat, kinerja alat, serta analisa dari hasil pengukuran untuk mengetahui alat berfungsi dengan baik sesuai dengan yang
BAB III METODE PENELITIAN. oleh karenanya akan dibuat seperti pada Gambar 3.1.
BAB III METODE PENELITIAN 3.1 Model Penelitian Agar mendapatkan hasil yang diinginkan maka diperlukan suatu rancangan agar dapat mempermudah dalam memahami sistem yang akan dibuat, oleh karenanya akan
III. METODE PENELITIAN. Teknik Elektro Universitas Lampung (khususnya Laboratorium teknik digital) dan
41 III. METODE PENELITIAN 3.1 Tempat dan Waktu Penelitian Penelitian dan perancangan tugas akhir dilakukan di Laboratorium Terpadu Teknik Elektro Universitas Lampung (khususnya Laboratorium teknik digital)
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN 3.1. Jenis Metode Penelitian Sesuai dengan permasalahan yang telah dikemukakan sebelumnya, maka jenis penelitian ini adalah penelitian eksperimen. Penelitian eksperimen adalah
BAB IV PENGUJIAN SISTEM
BAB IV PENGUJIAN SISTEM Pengujian sistem yang dilakukan penulis merupakan pengujian terhadap perangkat keras dan perangkat lunak dari sistem secara keseluruhan yang telah selesai dibuat untuk mengetahui
BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM
BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM III.1. Analisa Masalah Dalam perancangan sistem otomatisasi pemakaian listrik pada ruang belajar berbasis mikrokontroler terdapat beberapa masalah yang harus
Robot Light Follower With LCD Berbasis AtMega 8535
Robot Light Follower With LCD Berbasis AtMega 8535 Nama : Juantadi Angga S NPM : 23110795 Jurusan : Sistem Komputer Pembimbing : Jalinas, SKom,MM UNIVERSITAS GUNADARMA FAKULTAS ILMU KOMPUTER & TEKNOLOGI
BAB IV HASIL DAN UJI COBA
BAB IV HASIL DAN UJI COBA IV.1. Hasil Adapun hasil jadi rangkaian alat pendeteksi kebakaran dengan menggunakan sensor asap berbasis mikrokontroler ATmega8535 pada Gambar IV.1 sebagai berikut : Gambar IV.1.
LAMPIRAN A RANGKAIAN ELEKTRONIKA LENGKAP
6 LAMPIRAN A RANGKAIAN ELEKTRONIKA LENGKAP. Rangkaian biopotential amplifier dan low-pass filter J RL RL R buffer 3 vcc+ vcc- J5 3 supply J6 3 ke PS J RA LA LA LA C 3.9K J4 vcc- 3 4 INA4 R 655.555 8 7
PENGONTROLAN KETCHUP DISPENSER BERBASIS MIKROKONTROLLER ATMEGA8535 TUGAS AKHIR
PENGONTROLAN KETCHUP DISPENSER BERBASIS MIKROKONTROLLER ATMEGA8535 TUGAS AKHIR Oleh : RIADI PUTRA 3210701003 Disusun untuk memenuhi syarat kelulusan Program Diploma III Program Studi Teknik Elektronika
LAMPIRAN A SKEMATIK RANGKAIAN
LAMPIRAN A SKEMATIK RANGKAIAN LA-1 GAMBAR RANGKAIAN CONVERTER TEGANGAN UNTUK LED BERUKURAN 8X8 Vcc R4 R3 Q4 Vcc1 Q3 R6 R5 Q6 Vcc2 Q5 R7 R8 Q7 Vcc3 Q8 R9 R10 Q9 Vcc4 Q10 Output Input Scanning(1/0) R12 R11
BAB III METODOLOGI PENELITIAN
BAB III METODOLOGI PENELITIAN 3.1 Alat dan Bahan Adapun alat dan bahan yang digunakan oleh penulis dalam merancang alat ini adalah sebagai berikut: 3.1.1 Alat Dalam melakukan penelitian ini penulis menggunakan
Robot Dengan Kendali Cahaya
Robot Dengan Kendali Cahaya Nama : Andrie Hermawan NPM : 20110758 Jurusan : Sistem Komputer Pembimbing : Dr.Ridha Iskandar,SSI,MM UNIVERSITAS GUNADARMA FAKULTAS ILMU KOMPUTER & TEKNOLOGI INFORMASI 2013
III. METODOLOGI PENELITIAN. bertempat di Laboratorium Elektronika Jurusan Teknik Elektro Universitas
III. METODOLOGI PENELITIAN 3.1. Waktu dan Tempat Penelitian dan perancangan tugas akhir ini dilakukan dari bulan Maret 2013, bertempat di Laboratorium Elektronika Jurusan Teknik Elektro Universitas Lampung.
BAB IV PEMBAHASAN ALAT
BAB IV PEMBAHASAN ALAT Pada bab pembahasan alat ini penulis akan menguraikan mengenai pengujian dan analisa prototipe. Untuk mendukung pengujian dan analisa modul terlebih dahulu penulis akan menguraikan
KIPAS ANGIN OTOMATIS DENGAN SENSOR SUHU BERBASIS MIKROKONTROLER ATMEGA 8535
KIPAS ANGIN OTOMATIS DENGAN SENSOR SUHU BERBASIS MIKROKONTROLER ATMEGA 8535 Blog Diagram Blog Diagram Input : inputan pada blog input adalah sensor LM35 yang dihubungkan pada port PA.0 pada kaki IC 40.
BAB III METODOLOGI PENELITIAN
BAB III METODOLOGI PENELITIAN 3.1 Blok Diagram Untuk memberikan pemahaman mengenai blok diagram alat yang akan dibuat dapat dilihat pada Gambar 3.1. PLN Power supplay LCD Up, down, ok, back Limit switch
BAB III METODOLOGI PENELITIAN. Rangkaian. Instrumen
3.1 Perancangan Modul BAB III METODOLOGI PENELITIAN Elektroda 1 Rangkaian Instrumen FILTER (HPF LPF-) Adder Elektroda 2 VISUAL INTERFACE Modul Bluetooth ATMega328 Gambar 3.1 Blok Diagram Sistem Elektroda
BAB 3 PERANCANGAN DAN PEMBUATAN
29 BAB 3 PERANCANGAN DAN PEMBUATAN 3.1.Diagram Blok Sistem Power Supply LCD Sensor DHT22 Atmega8 Buzzer Gambar 3.1 Diagram Blok System 3.1.1.Fungsi-fungsi diagram blok 1. Blok Power Supply sebagai pemberi
