BAB I PENDAHULUAN 1.1 Latar Belakang

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB I PENDAHULUAN 1.1 Latar Belakang"

Transkripsi

1 BAB I PENDAHULUAN 1.1 Latar Belakang Fuzzy set pertama kali diperkenalkan oleh Prof. Lotfi Zadeh pada tahun 1965 yang merupakan guru besar di University of California Berkeley pada papernya yang berjudul Fuzzy Set. Dalam paper tersebut dipaparkan ide dasar dari fuzzy set yaitu inclusion, union, intersection, complement, relation dan convexity. Logika fuzzy dapat memetakan suatu ruang input yang tidak pasti ke dalam suatu ruang output. Pada logika fuzzy terdapat beberapa tahapan, diantaranya fuzzifikasi, inference dan defuzzifikasi. Fuzzifikasi, pada penelitian ini digunakan 2 jenis fungsi keanggotaan yaitu fungsi keanggotaan bahu dan fungsi keanggotaan phi. Bentuk fungsi keanggotaan menggambarkan pola persebaran data, jadi fungsi keanggotaan dapat mempengaruhi analisis yang dihasilkan (Fiddin, Rakhmatsyah, & Dayawati). Terdapat beberapa metode fuzzy diantaranya metode fuzzy tsukamoto dan metode fuzzy mamdani. Metode-metode tersebut memiliki cara perhitungan pada mesin inferensi. Fuzzy mamdani menghasilkan output berupa bilangan fuzzy sedangkan fuzzy tsukamoto menghasilkan output berupa bilangan crisp karena sifatnya yang monoton. (Salman, 2012) Terdapat penelitian sebelumnya yang telah dilakukan yang membahas mengenai perbandingan kedua metode tersebut. Seperti penelitian yang berjudul Analisis Perbandingan Metode Fuzzy Tsukamoto dan Metode Fuzzy Mamdani Pada Perbandingan Harga Sepeda Motor Bekas (Istraniady, Adrian, & Mardiani) yang membahas mengenai bagaimana memeberikan solusi yang lebih baik dengan cara membandingkan metode fuzzy tsukamoto dengan metode fuzzy mamdani dalam kasus membandingkan harga sepeda motor bekas. Mengingat semakin banyaknya kebutuhan masyarakat dalam alat transportasi seperti mobil, maka menyebabkan semakin banyak mobil yang ada. Tercatat dari tahun 2008 sampai dengan tahun 2012 di Indonesia rata-rata jumlah 1

2 2 mobil penumpang bertambah sebanyak unit setiap tahunnya (Dephub, 2013). Secara tidak langsung peluang kendaraan yang mengalami kerusakan semakin banyak pula. Jadi mobil yang akan masuk ke bengkel akan mengalami peningkatan. Oleh karena itu, jika terdapat sistem yang dapat mendiagnosa tingkat kerusakan dari beberapa sistem mobil tentunya akan membantu mekanik untuk lebih cepat dalam menyelesaikan pekerjaannya. Jadi fuzzy mamdani dan fuzzy tsukamoto masing-masing akan diimplementasikan dengan kombinasi yang dilakukan pada jenis kurva bahu dan phi untuk membantu mendiagnosa tingkat kerusakan pada mobil. Pada nantinya kedua metode tersebut akan dianalisa hasilnya dan didapatkan kesimpulan perbedaan signifikan dari kedua metode tersebut pada kasus mendiagnosa tingkat kerusakan pada mobil. 1.2 Rumusan Masalah Berdasarkan uraian pada latar belakang, rumusan masalah yang ingin dipecahkan ialah bagaimana analisa perbedaan antara metode fuzzy mamdani dengan metode fuzzy tsukamoto dengan fungsi keanggotaan bahu dan phi yang digunakan pada dalam membandingkan kecenderungan kerusakan mobil? 1.3 Tujuan Penelitian Tujuan yang ingin dicapai dari penelitian ini adalah untuk menganalisa perbedaan antara penggunaan metode fuzzy mamdani dan metode fuzzy tsukamoto dengan fungsi keanggotaan bahu dan phi dalam membandingkan kecenderungan kerusakan mobil. Perbedaan dilihat dari segi akurasi dan waktu eksekusinya. 1.4 Batasan Masalah Batasan masalah yang digunakan pada penelitian ini antara lain: 1. Kendaraan yang dimaksud ialah kendaraan roda empat (mobil). 2. Mobil yang dimaksud ialah mobil yang berjenis minibus diproduksi oleh Daihatsu bernama Xenia diproduksi dari tahun 2004 sampai dengan 2011.

3 3 3. Kerusakan yang dapat didiagnosis merupakan kerusakan pada sistem bahan bakar dan sistem pendingin. 4. Bengkel yang dianjurkan ialah bengkel yang memiliki jasa perbaikan dari kerusakan kendaraan tersebut. 5. Data akan diambil dari beberapa bengkel resmi Daihatsu daerah Denpasar. 6. Metode yang digunakan ialah logika fuzzy mamdani dan logika fuzzy tsukamoto. 7. Fungsi keanggotaan yang digunakan ialah representasi kurva bahu dan representasi kurva phi. 8. Masukan yang digunakan yaitu temperatur mesin, putaran mesin, dan rasio konsumsi bahan bakar. 9. Keluaran yang dihasilkan yaitu tingkat kerusakan pada sistem bahan bakar dan sistem pendingin yang dimana masing-masing dari sistem tersebut memiliki 3 tingkatan yaitu rendah, sedang dan tinggi. 1.5 Manfaat Penelitian Hasil penelitian ini diharapkan dapat menambah wawasan penulis dan juga pembaca mengenai masalah yang penulis teliti juga mengenai metodemetode yang digunakan. 1.6 Metodologi Penelitian Desain Penelitian Desain penelitian yang digunakan pada penelitian ini ialah desain penelitian studi kasus. Dimana studi kasus memusatkan perhatian pada suatu kasus tertentu dengan menggunakan individu atau kelompok sebagai bahan studinya (Hasibuan, 2007). Objek yang dijadikan bahan studi disini ialah mobil daihatsu xenia yang datang ke suatu bengkel resmi Daihatsu di daerah Denpasar. Dari objek tersebut diperoleh data-data yang dibutuhkan dalam penelitian ini yaitu data temperatur mesin, putaran mesin dan rasio konsumsi bahan bakar. Data temperatur mesin dan putaran mesin didapatkan dengan menggunakan sebuah alat yang disebut DS2.

4 4 Sedangkan data rasio konsumsi bahan bakar didapatkan dari pemilik kendaraan itu sendiri. Penelitian ini dilakukan dengan menggunakan metode fuzzy mamdani dan fuzzy tsukamoto yang dimana nantinya kedua metode tersebut akan dibandingkan hasilnya dengan data riil. Pada kedua metode tersebut akan diterapkan beberapa fungsi keanggotaan untuk dianalisis fungsi keanggotaan mana yang lebih cocok digunakan pada objek penelitian pada masing-masing metode Pengumpulan Data Pada penelitian ini data untuk tahap pengujian nantinya yang digunakan adalah data dari mobil yang didapat dari beberapa bengkel Daihatsu resmi yang berada di daerah denpasar. Sedangkan untuk data-data awal yang digunakan untuk membuat aturan-aturannya didapatkan dari seorang pakar mekanik dan buku yang membahas mengenai mobil. Jenis data (data pengujian dan data awal) yang digunakan pada penelitian ini dari cara memperolehnya ialah data primer dimana data berasal dari sumber asli atau pertama. Data tersebut harus dicari melalui narasumber yang dijadikan objek penelitian atau orang yang dijadikan sebagai sarana mendapatkan informasi maupun data. Data dipaparkan dalam bentuk angka-angka yang pasti yang disebut data kuantitatif. Sifat dari data pengujian tersebut ialah diskrit, dimana nilainya merupakan bilangan asli. Sedangkan data awal dipaparkan dalam suatu interval tertentu (kontinyu) yang nantinya barulah di ambil kesimpulan kembali untuk mengubah data tersebut kedalam bentuk bilangan asli yang dilakukan oleh pakar mekanik tersebut. Menurut waktu pengumpulannya, data tersebut merupakan data time series, dari waktu ke waktu atau periode secara historis. Format dari data yang didapatkan ialah data numeric. Jadi data-data yang dimiliki ialah dalam bentuk angka. Jumlah data pengujian yang akan digunakan ialah sejumlah data yang didapatkan selama kurang lebih 2 bulan pada beberapa bengkel tersebut dan otomatis jumlah data hasil sama dengan jumlah mobil. Detail dari data untuk pengujian yang didapatkan dari setiap mobil ialah data kerusakan pada system bahan bakar dan pendingin, temperatur mesin,

5 5 putaran mesin dan rasio konsumsi bahan bakar. Untuk data hasil output berupa diagnosa jumlah kerusakan pada masing-masing system (bahan bakar dan pendingin) Metode Yang Digunakan Terdapat 2 metode yang digunakan pada penelitian ini, yaitu fuzzy mamdani dan fuzzy tsukamoto. Dan pada fuzzifikasi diterapkan beberapa fungsi keanggotaan yaitu representasi kurva bahu dan representasi kurva phi. Algoritmanya sebagai berikut: Input data masukan (temperatur, putaran mesin, rasio konsumsi bahan bakar) Fuzzifikasi input dengan fungsi keanggotaan bahu dan phi Inference dengan fuzzy mamdani dan fuzzy tsukamoto Defuzzifikasi Gambar 1.1 : Alur kerja sistem Sehingga pada sistem akan terdapat 4 kombinasi metode yang akan diproses untuk didapatkan nilai akurasinya seperti pada tabel 1.1 Tabel 1.1 Kombinasi metode dan fungsi keanggotaan Kombinasi Akurasi Metode tsukamoto dengan fungsi keanggotaan phi (TP) Metode tsukamoto dengan fungsi keanggotaan bahu (TB) Metode mamdani dengan fungsi keanggotaan phi (MP) Metode mamdani dengan fungsi keanggotaan bahu (MB) Menunjuk pada apa yang telah dipaparkan pada poin 6, yaitu mengenai logika fuzzy mamdani dan logika fuzzy tsukamoto, maka berikut akan dijelaskan lebih spesifik lagi mengenai bagaimana algoritma dari logika fuzzy mamdani dan logika fuzzy tsukamoto pada penelitian ini: Step 1 Fuzzifikasi input. Terdapat 3 variabel inputan yaitu temperatur, putaran mesin, dan rasio. Digunakan 3 fungsi keanggotaan yaitu representasi kurva bahu dan representasi kurva phi. Dimana setiap variabel input

6 6 dibagi kedalam 5 variabel linguistik, diantaranya SR (Sangat Rendah), R (Rendah), S (Sedang), T (Tinggi), dan ST (Sangat Tinggi). Untuk setiap variabel input petakan kedalam domainnya dan untuk mendapatkan nilai keanggotaannya gunakan fungsi keanggotaan kurva berbentuk bahu dan fungsi keanggotaan kurva berbentuk phi. Step 1a Untuk fungsi keanggotaan yang direpresentasikan dengan kurva berbentuk bahu : Gambar 1.2 : Kurva bahu input temperature Gambar 1.2 merupakan gambar kurva dari fungsi keanggotaan berbentuk bahu untuk input temperatur. Gambar 1.3 : Kurva bahu input putaran mesin Gambar 1.3 merupakan gambar kurva dari fungsi keanggotaan berbentuk bahu untuk input putaran mesin. Gambar 1.4 merupakan gambar kurva dari fungsi keanggotaan berbentuk bahu untuk input rasio konsumsi bahan bakar.

7 7 Gambar 1.4 : Kurva bahu input rasio konsumsi bahan bakar Persamaan yang digunakan untuk mendapat nilai keanggotaan dari kurva bahu pada fuzzifikasi dapat dilihat pada persamaan (1.1) 0, 1; x a, x c x a μ[x] = { ; a x b b a.(1.1) c x ; b x c c b Keterangan : μ[x]= derajat keanggotaan x = nilai asli a = batas kiri b = batas tengah c = batas kanan Step 1b Untuk fungsi keanggotaan yang direpresentasikan dengan kurva berbentuk phi : Gambar 1.5 : Kurva phi input temperatur

8 8 Gambar 1.5 merupakan gambar kurva dari fungsi keanggotaan berbentuk phi untuk input temperatur. Gambar 1.6 : Kurva phi input putaran mesin Gambar 1.6 merupakan gambar kurva dari fungsi keanggotaan berbentuk phi untuk input putaran mesin. Gambar 1.7 : Kurva phi input rasio konsumsi bahan bakar Gambar 1.7 merupakan gambar kurva dari fungsi keanggotaan berbentuk phi untuk input rasio konsumsi bahan bakar. Persamaan yang digunakan untuk mendapat nilai keanggotaan dari kurva phi dapat dilihat pada persamaan (1.2) μ[x; a, b, c] phi = { μ[x; c z, c z 2, c] sigmoid; jika x c μ[x; c, c + z 2, c + z] sigmoid; jika x > c...(1.2) Keterangan : μ[x; a, b, c] phi = derajat keanggotaan x = nilai asli

9 9 a = batas kiri b = batas tengah c = batas kanan z = b - a Step 2 Setelah proses pada step 1 dilakukan (fuzzifikasi) maka akan didapatkan nilai keanggotaan juga kelompok himpunan fuzzynya. Selanjutnya dilakukan proses inference. Setiap input awal (temperatur, putaran mesin, rasio konsumsi bahan bakar) yang telah difuzzifikasi akan dikombinasikan, kemudian diproses dengan basis pengetahuan seperti pada table 1.2 untuk mendapat variable linguistik output dari system bahan bakar dan pendingin. Terdapat basis pengetahuan fuzzy yang telah dibentuk untuk mesin inferensi seperti berikut Tabel 1.2 : Aturan inference Aturan Sistem Bahan Aturan Sistem Pendingin ke- Bakar 1 IF Temp SR AND PM SR AND Rasio SR Output BB1 Output Pend1 2 IF Temp SR AND PM SR AND Rasio S Output BB2 Output Pend2 3 IF Temp SR AND PM SR AND Rasio R Output BB3 Output Pend3 4 IF Temp SR AND PM SR AND Rasio T Output BB4 Output Pend4 5 IF Temp SR AND PM SR AND Rasio ST Output BB5 Output Pend5 123 IF Temp ST AND PM ST AND Rasio R Output BB123 Output Pend IF Temp ST AND PM ST AND Rasio T Output BB124 Output Pend IF Temp ST AND PM ST AND Rasio ST Output BB125 Output Pend125 Keterangan : Temp PM Rasio ST T S R SR : Temperatur : Putaran Mesin : Rasio konsumsi bahan bakar : Sangat Tinggi : Tinggi : Sedang : Rendah : Sangat Rendah

10 10 Output BBx Output Pendx : Output pada sistem bahan bakar yang ke x : Output pada sistem pendingin yang ke x Step 3a Step 3b Step 4 Step 5 Evaluasi dalam inferensi pada metode mamdani dilakukan dengan menggunakan fungsi MIN dan komposisi antar-rule menggunakan fungsi MAX untuk menghasilkan himpunan fuzzy baru. Evaluasi dalam inferensi pada metode tsukamoto dilakukan dengan menggunakan fungsi implikasi MIN untuk mendapatkan nilai α- predikat tiap-tiap rule (α1, α2, α3,... αn). Masing-masing nilai α- predikat digunakan untuk menghitung hasil inferensi secara tegas (crisp) masing-masing rule (z1, z2, z3,... zn). Terdapat 2 jenis output disini yaitu sistem bahan bakar dan sistem pendingingan. Setiap output terbagi atas 3 variabel linguistik, yaitu R (Rendah), S (Sedang), dan T (Tinggi). Proses defuzzifikasi menggunakan metode weighted average dengan rumus berikut: Keterangan : z = a 1.z 1 (1.3) a 1 z = hasil defuzzifikasi a n = nilai min z n = nilai linguistic output / alpha predikat Evaluasi dan Validasi Hasil Evaluasi dan validasi hasil dilakukan untuk menganalisa perbedaan antara metode fuzzy mamdani dan metode fuzzy tsukamoto juga pada fungsi keanggotaan yang diterapkan pada masing-masing metode tersebut pada diagnosa tingkat kerusakan mobil dengan keadaan nyata.

11 11 Untuk setiap data yang ada akan dilakukan perhitungan dengan kombinasi kedua metode dan 3 fungsi keanggotaan kemudian dibandingkan hasilnya. Dari perbandingan yang dilakukan kemudian akan dilakukan analisa bagimana perbedaan hasil itu terjadi dan kombinasi metode dan fungsi keanggotaan mana yang lebih cocok digunakan pada objek penelitian. Menurut pakar untuk mendiagnosa kerusakan pada sistem bahan bakar dapat dilihat dari beberapa konponen yaitu: 1. Tekanan pada pompa bahan bakar 2. Injektor 3. Saringan bahan bakar 4. Saluran bahan bakar Dan untuk mendiagnosa kerusakan pada sistem pendingin dapat dilihat dari beberapa komponen yaitu: 1. Volume cairan pendingin 2. Extra kipas 3. Sensor temperatur 4. Termostart 5. Saluran pendingin Untuk dapat mengatakan suatu sistem (bahan bakar maupun pendingin) itu rusak, dapat dilakukan dengan melihat komponen-komponen tersebut, jika terdapat satu bahkan lebih komponen yang bermasalah maka dapat dikatakan sistem terkait juga mengalami masalah. Untuk validasi hasil sistem dengan data riil dilakukan dengan cara membandingkan hasil dari penelitian dengan hasil pengecekan manual yang dilakukan oleh montir. Untuk sistem bahan bakar, - 1 komponen = a - b - 2 komponen = c - d komponen = e - f Sedangkan untuk sistem pendingin,

12 12-1 komponen = g - h komponen = i - j komponen = k l Dimana a l merupakan angka hasil dari proses fuzzy, yang akan diobservasi kembali kepada pakar. Dengan dilakukannya perbandingan itu maka akan diketahui seberapa valid sistem ini dengan data riil. Semakin besar jumlah dari hasil yang sama, semakin besar tingkat akurasi dari penelitian ini, begitu pula sebaliknya.

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Komponen Mobil Mesin terdiri atas beberapa bagian yang memiliki fungsinya masingmaning. Bagian-bagian atau komponen-komponen tersebut bekerja bersama-sama untuk menghasilkan

Lebih terperinci

BAB II LANDASAN TEORI. papernya yang monumental Fuzzy Set (Nasution, 2012). Dengan

BAB II LANDASAN TEORI. papernya yang monumental Fuzzy Set (Nasution, 2012). Dengan BAB II LANDASAN TEORI 2.. Logika Fuzzy Fuzzy set pertama kali diperkenalkan oleh Prof. Lotfi Zadeh, 965 orang Iran yang menjadi guru besar di University of California at Berkeley dalam papernya yang monumental

Lebih terperinci

LOGIKA FUZZY. Kelompok Rhio Bagus P Ishak Yusuf Martinus N Cendra Rossa Rahmat Adhi Chipty Zaimima

LOGIKA FUZZY. Kelompok Rhio Bagus P Ishak Yusuf Martinus N Cendra Rossa Rahmat Adhi Chipty Zaimima Sistem Berbasis Pengetahuan LOGIKA FUZZY Kelompok Rhio Bagus P 1308010 Ishak Yusuf 1308011 Martinus N 1308012 Cendra Rossa 1308013 Rahmat Adhi 1308014 Chipty Zaimima 1308069 Sekolah Tinggi Manajemen Industri

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Logika Fuzzy Fuzzy secara bahasa diartikan sebagai kabur atau samar yang artinya suatu nilai dapat bernilai benar atau salah secara bersamaan. Dalam fuzzy dikenal derajat keanggotan

Lebih terperinci

FUZZY LOGIC CONTROL 1. LOGIKA FUZZY

FUZZY LOGIC CONTROL 1. LOGIKA FUZZY 1. LOGIKA FUZZY Logika fuzzy adalah suatu cara tepat untuk memetakan suatu ruang input ke dalam suatu ruang output. Teknik ini menggunakan teori matematis himpunan fuzzy. Logika fuzzy berhubungan dengan

Lebih terperinci

Erwien Tjipta Wijaya, ST.,M.Kom

Erwien Tjipta Wijaya, ST.,M.Kom Erwien Tjipta Wijaya, ST.,M.Kom PENDAHULUAN Logika Fuzzy pertama kali dikenalkan oleh Prof. Lotfi A. Zadeh tahun 1965 Dasar Logika Fuzzy adalah teori himpunan fuzzy. Teori himpunan fuzzy adalah peranan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1. Metode Pengumpulan Data Dalam penelitian diagnosa penyakit asma dengan menggunakan metode fuzzy Tsukamoto, dibutuhkan data mengenai gejala penyakit dari seorang pakar atau

Lebih terperinci

Pengantar Kecerdasan Buatan (AK045218) Logika Fuzzy

Pengantar Kecerdasan Buatan (AK045218) Logika Fuzzy Logika Fuzzy Pendahuluan Alasan digunakannya Logika Fuzzy Aplikasi Himpunan Fuzzy Fungsi keanggotaan Operator Dasar Zadeh Penalaran Monoton Fungsi Impilkasi Sistem Inferensi Fuzzy Basis Data Fuzzy Referensi

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Objek Penelitian Objek penelitian dalam tugas akhir ini adalah BPR BKK Kendal yang beralamatkan di jalan Soekarno Hatta No 335 Kendal. Penelitian ini berlangsung dari bulan

Lebih terperinci

Analisis Perbandingan Metode Fuzzy Mamdani dan Metode Fuzzy Tsukamoto pada Diagnosa Tingkat Kerusakan Mobil KOMPETENSI KOMPUTASI SKRIPSI

Analisis Perbandingan Metode Fuzzy Mamdani dan Metode Fuzzy Tsukamoto pada Diagnosa Tingkat Kerusakan Mobil KOMPETENSI KOMPUTASI SKRIPSI Analisis Perbandingan Metode Fuzzy Mamdani dan Metode Fuzzy Tsukamoto pada Diagnosa Tingkat Kerusakan Mobil KOMPETENSI KOMPUTASI SKRIPSI LUH TRISNA ARYANTINI NIM. 1008605031 PROGRAM STUDI TEKNIK INFORMATIKA

Lebih terperinci

Aplikasi Prediksi Harga Bekas Sepeda Motor Yamaha. Menggunakan Fuzzy Logic

Aplikasi Prediksi Harga Bekas Sepeda Motor Yamaha. Menggunakan Fuzzy Logic Aplikasi Prediksi Harga Bekas Sepeda Motor Yamaha Menggunakan Fuzzy Logic 1. Pendahuluan Jual beli motor merupakan suatu kegiatan transaksi yang mungkin sering kita temukan di kehidupan sehari-hari. Untuk

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini penulis akan menjelaskan mengenai landasan teori yang digunakan pada penelitian ini. Penjabaran ini bertujuan untuk memberikan pemahaman lebih mendalam kepada penulis

Lebih terperinci

Logika fuzzy pertama kali dikembangkan oleh Lotfi A. Zadeh melalui tulisannya pada tahun 1965 tentang teori himpunan fuzzy.

Logika fuzzy pertama kali dikembangkan oleh Lotfi A. Zadeh melalui tulisannya pada tahun 1965 tentang teori himpunan fuzzy. LOGIKA FUZZY UTHIE Intro Pendahuluan Logika fuzzy pertama kali dikembangkan oleh Lotfi A. Zadeh melalui tulisannya pada tahun 1965 tentang teori himpunan fuzzy. Lotfi Asker Zadeh adalah seorang ilmuwan

Lebih terperinci

Analisis Fungsi Keanggotaan Fuzzy Tsukamoto Dalam Menentukan Status Kesehatan Tubuh Seseorang

Analisis Fungsi Keanggotaan Fuzzy Tsukamoto Dalam Menentukan Status Kesehatan Tubuh Seseorang Analisis Fungsi Keanggotaan Fuzzy Tsukamoto Dalam Menentukan Status Kesehatan Tubuh Seseorang Nurul Khairina Politeknik Ganesha Medan Jl. Veteran No. 190 Pasar VI Manunggal [email protected] Abstrak

Lebih terperinci

PENGENDALIAN KECEPATAN KENDARAAN RODA EMPAT DENGAN MENGGUNAKAN FUZZY INFERENCE SYSTEM METODE MAMDANI

PENGENDALIAN KECEPATAN KENDARAAN RODA EMPAT DENGAN MENGGUNAKAN FUZZY INFERENCE SYSTEM METODE MAMDANI Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 03, No. (204), hal 39-46. PENGENDALIAN KECEPATAN KENDARAAN RODA EMPAT DENGAN MENGGUNAKAN FUZZY INFERENCE SYSTEM METODE MAMDANI Yoakim Marinus

Lebih terperinci

Penerapan Metode Fuzzy Mamdani Pada Rem Otomatis Mobil Cerdas

Penerapan Metode Fuzzy Mamdani Pada Rem Otomatis Mobil Cerdas Penerapan Metode Fuzzy Mamdani Pada Rem Otomatis Mobil Cerdas Zulfikar Sembiring Jurusan Teknik Informatika, Fakultas Teknik, Universitas Medan Area [email protected] Abstrak Logika Fuzzy telah banyak

Lebih terperinci

ANALISIS PERBANDINGAN HARGA MOBIL BEKAS MENGGUNAKAN METODE FUZZY INFERENCE SYSTEM (FIS) MAMDANI DAN TSUKAMOTO

ANALISIS PERBANDINGAN HARGA MOBIL BEKAS MENGGUNAKAN METODE FUZZY INFERENCE SYSTEM (FIS) MAMDANI DAN TSUKAMOTO Jur. Ris. Ap. Mat. Vol. 1, No. 1 (2017), pp. 1 52. Jurnal Riset dan Aplikasi Matematika e-issn 2581-0154 URL: journal.unesa.ac.id/index.php/jram ANALISIS PERBANDINGAN HARGA MOBIL BEKAS MENGGUNAKAN METODE

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Logika Fuzzy Zadeh (1965) memperkenalkan konsep fuzzy sebagai sarana untuk menggambarkan sistem yang kompleks tanpa persyaratan untuk presisi. Dalam jurnalnya Hoseeinzadeh et

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Permintaan, Persediaan dan Produksi 2.1.1 Permintaan Permintaan adalah banyaknya jumlah barang yang diminta pada suatu pasar tertentu dengan tingkat harga tertentu pada tingkat

Lebih terperinci

BAB 1 PENDAHULUAN. Logika fuzzy memberikan solusi praktis dan ekonomis untuk mengendalikan

BAB 1 PENDAHULUAN. Logika fuzzy memberikan solusi praktis dan ekonomis untuk mengendalikan BAB 1 PENDAHULUAN 1.1. Latar Belakang Logika fuzzy memberikan solusi praktis dan ekonomis untuk mengendalikan sistem yang kompleks. Logika fuzzy memberikan rangka kerja yang kuat dalam memecahkan masalah

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Sekarang ini hampir semua perusahaan yang bergerak di bidang industri dihadapkan pada suatu masalah yaitu adanya tingkat persaingan yang semakin kompetitif. Hal ini

Lebih terperinci

SISTEM INFERENSI FUZZY (METODE TSUKAMOTO) UNTUK PENENTUAN KEBUTUHAN KALORI HARIAN OLEH

SISTEM INFERENSI FUZZY (METODE TSUKAMOTO) UNTUK PENENTUAN KEBUTUHAN KALORI HARIAN OLEH KECERDASAN BUATAN SISTEM INFERENSI FUZZY (METODE TSUKAMOTO) UNTUK PENENTUAN KEBUTUHAN KALORI HARIAN OLEH AMARILIS ARI SADELA (E1E1 10 086) SITI MUTHMAINNAH (E1E1 10 082) SAMSUL (E1E1 10 091) NUR IMRAN

Lebih terperinci

SISTEM PENDUKUNG KEPUTUSAN PENERIMAAN BEASISWA BIDIK MISI DI POLITEKNIK NEGERI JEMBER MENGGUNAKAN LOGIKA FUZZY

SISTEM PENDUKUNG KEPUTUSAN PENERIMAAN BEASISWA BIDIK MISI DI POLITEKNIK NEGERI JEMBER MENGGUNAKAN LOGIKA FUZZY SISTEM PENDUKUNG KEPUTUSAN PENERIMAAN BEASISWA BIDIK MISI DI POLITEKNIK NEGERI JEMBER MENGGUNAKAN LOGIKA FUZZY oleh: 1 I Putu Dody Lesmana, 2 Arfian Siswo Bintoro 1,2 Jurusan Teknologi Informasi, Politeknik

Lebih terperinci

BAB III METODE FUZZY MAMDANI

BAB III METODE FUZZY MAMDANI 29 BAB III METODE FUZZY MAMDANI Fuzzy Inference System merupakan sebuah kerangka kerja perhitungan berdasarkan konsep teori himpunan fuzzy dan pemikiran fuzzy yang digunakan dalam penarikan kesimpulan

Lebih terperinci

Himpunan Tegas (Crisp)

Himpunan Tegas (Crisp) Logika Fuzzy Logika Fuzzy Suatu cara untuk merepresentasikan dan menangani masalah ketidakpastian (keraguan, ketidaktepatan, kekuranglengkapan informasi, dan kebenaran yang bersifat sebagian). Fuzzy System

Lebih terperinci

Penerapan FuzzyTsukamotodalam Menentukan Jumlah Produksi

Penerapan FuzzyTsukamotodalam Menentukan Jumlah Produksi Penerapan FuzzyTsukamotodalam Menentukan Jumlah Produksi Berdasarkan Data Persediaan dan Jumlah Permintaan Ria Rahmadita Surbakti 1), Marlina Setia Sinaga 2) Jurusan Matematika FMIPA UNIMED [email protected]

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Logika Fuzzy Logika fuzzy merupakan suatu metode pengambilan keputusan berbasis aturan yang digunakan untuk memecahkan keabu-abuan masalah pada sistem yang sulit dimodelkan

Lebih terperinci

LOGIKA FUZZY. Dr. Ade Gafar Abdullah JPTE-UPI

LOGIKA FUZZY. Dr. Ade Gafar Abdullah JPTE-UPI LOGIKA FUZZY Dr. Ade Gafar Abdullah JPTE-UPI Introduction Logika fuzzy adalah cabang dari sistem kecerdasan buatan (Artificial Intelegent) yang mengemulasi kemampuan manusia dalam berfikir ke dalam bentuk

Lebih terperinci

Penentuan Jumlah Produksi Kue Bolu pada Nella Cake Padang dengan Sistem Inferensi Fuzzy Metode Sugeno

Penentuan Jumlah Produksi Kue Bolu pada Nella Cake Padang dengan Sistem Inferensi Fuzzy Metode Sugeno Penentuan Kue Bolu pada Nella Cake Padang dengan Sistem Inferensi Fuzzy Metode Sugeno Shenna Miranda #1, Minora Longgom Nasution *2, Muhammad Subhan #3 #1 Student of Mathematics department State University

Lebih terperinci

BAB VII LOGIKA FUZZY

BAB VII LOGIKA FUZZY BAB VII LOGIKA FUZZY Logika fuzzy adalah suatu cara untuk memetakan suatu ruang input ke dalam suatu ruang output. Skema logika fuzzy : Antara input dan output terdapat suatu kotak hitam yang harus memetakan

Lebih terperinci

LOGIKA FUZZY FUNGSI KEANGGOTAAN

LOGIKA FUZZY FUNGSI KEANGGOTAAN LOGIKA FUZZY FUNGSI KEANGGOTAAN FUNGSI KEANGGOTAAN (Membership function) adalah suatu kurva yang menunjukkan pemetaan titik-titik input data ke dalam nilai/derajat keanggotaannya yang memiliki interval

Lebih terperinci

Proses Defuzzifikasi pada Metode Mamdani dalam Memprediksi Jumlah Produksi Menggunakan Metode Mean Of Maximum

Proses Defuzzifikasi pada Metode Mamdani dalam Memprediksi Jumlah Produksi Menggunakan Metode Mean Of Maximum Prosiding Penelitian SPeSIA Unisba 2015 ISSN: 2460-6464 Proses Defuzzifikasi pada Metode Mamdani dalam Memprediksi Jumlah Produksi Menggunakan Metode Mean Of Maximum 1 Fitria Tri Suwarmi, 2 M. Yusuf Fajar,

Lebih terperinci

MENENTUKAN HARGA MOBIL BEKAS TOYOTA AVANZA MENGGUNAKAN METODE TSUKAMOTO

MENENTUKAN HARGA MOBIL BEKAS TOYOTA AVANZA MENGGUNAKAN METODE TSUKAMOTO MENENTUKAN HARGA MOBIL BEKAS TOYOTA AVANZA MENGGUNAKAN METODE TSUKAMOTO Ganjar Ramadhan Jurusan Teknik Informatika, Universitas Islam Negeri Syarif Hidayatullah Jakarta Email : [email protected]

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA A. Penjurusan di SMA Sepanjang perkembangan Pendidikan formal di Indonesia teramati bahwa penjurusan di SMA telah dilaksanakan sejak awal kemerdekaan yaitu tahun 1945 sampai sekarang,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Bab ini berisi tentang pemahaman dari logika fuzzy dan data mining. Pada bab ini juga akan dijelaskan bagian-bagian yang perlu diketahui dalam logika fuzzy dan data mining, sehingga

Lebih terperinci

Presentasi TA DETEKSI PENYAKIT PARU-PARU OBSTRUKTIF KRONIS MENGGUNAKAN METODE FUZZY : STUDI KASUS DI RUMAH SAKIT XYZ. Muhammad Reza Budiman

Presentasi TA DETEKSI PENYAKIT PARU-PARU OBSTRUKTIF KRONIS MENGGUNAKAN METODE FUZZY : STUDI KASUS DI RUMAH SAKIT XYZ. Muhammad Reza Budiman Presentasi TA DETEKSI PENYAKIT PARU-PARU OBSTRUKTIF KRONIS MENGGUNAKAN METODE FUZZY : STUDI KASUS DI RUMAH SAKIT XYZ Muhammad Reza Budiman 5209100075 Jurusan Sistem Informasi Fakultas Teknologi Informasi

Lebih terperinci

Kata kunci: Sistem pendukung keputusan metode Sugeno, tingkat kepribadian siswa

Kata kunci: Sistem pendukung keputusan metode Sugeno, tingkat kepribadian siswa SISTEM PENDUKUNG KEPUTUSAN METODE SUGENO DALAM MENENTUKAN TINGKAT KEPRIBADIAN SISWA BERDASARKAN PENDIDIKAN (STUDI KASUS DI MI MIFTAHUL ULUM GONDANGLEGI MALANG) Wildan Hakim, 2 Turmudi, 3 Wahyu H. Irawan

Lebih terperinci

Himpunan Fuzzy. Sistem Pakar Program Studi : S1 sistem Informasi

Himpunan Fuzzy. Sistem Pakar Program Studi : S1 sistem Informasi Himpunan Fuzzy Sistem Pakar Program Studi : S1 sistem Informasi Outline Himpunan CRISP Himpunan Fuzzy Himpunan CRISP Pada himpunan tegas (crisp), nilai keanggotaan suatu item dalam suatu himpunan A, yang

Lebih terperinci

DENIA FADILA RUSMAN

DENIA FADILA RUSMAN Sidang Tugas Akhir INVENTORY CONTROL SYSTEM UNTUK MENENTUKAN ORDER QUANTITY DAN REORDER POINT BAHAN BAKU POKOK TRANSFORMER MENGGUNAKAN METODE FUZZY (STUDI KASUS : PT BAMBANG DJAJA SURABAYA) DENIA FADILA

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 4 BAB 2 TINJAUAN PUSTAKA 2.1. Pengertian Fuzzy Logika fuzzy adalah suatu cara yang tepat untuk memetakan suatu ruang input kedalam suatu ruang output. Titik awal dari konsep modern

Lebih terperinci

BAB II: TINJAUAN PUSTAKA

BAB II: TINJAUAN PUSTAKA BAB II: TINJAUAN PUSTAKA Bab ini akan memberikan penjelasan awal mengenai konsep logika fuzzy beserta pengenalan sistem inferensi fuzzy secara umum. 2.1 LOGIKA FUZZY Konsep mengenai logika fuzzy diawali

Lebih terperinci

PENALARAN FUZZY SISTEM PAKAR DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR 2012

PENALARAN FUZZY SISTEM PAKAR DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR 2012 PENALARAN FUZZY SISTEM PAKAR DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR 2012 PENALARAN FUZZY Digunakan untuk menghasilkan suatu keputusan tunggal / crisp saat defuzzifikasi Penggunaan akan bergantung

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Himpunan Himpunan adalah kata benda yang berasal dari kata himpun. Kata kerjanya adalah menghimpun. Menghimpun adalah kegiatan yang berhubungan dengan berbagai objek apa saja.

Lebih terperinci

SIDANG TUGAS AKHIR IMPLEMENTASI FUZZY RULES UNTUK PERENCANAAN DAN PENENTUAN PRIORITAS DI PDAM KOTA SURABAYA. oleh: WINDA ZULVINA

SIDANG TUGAS AKHIR IMPLEMENTASI FUZZY RULES UNTUK PERENCANAAN DAN PENENTUAN PRIORITAS DI PDAM KOTA SURABAYA. oleh: WINDA ZULVINA SIDANG TUGAS AKHIR IMPLEMENTASI FUZZY RULES UNTUK PERENCANAAN DAN PENENTUAN PRIORITAS PEMELIHARAAN PERALATAN PRODUKSI DI PDAM KOTA SURABAYA oleh: WINDA ZULVINA 5206100040 Dosen Pembimbing : Mahendrawathi

Lebih terperinci

1.1. Latar Belakang Masalah

1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Salah satu aplikasi sistem cerdas yang paling sukses dan masih berkembang saat ini yaitu peramalan beban listrik. Peramalan beban listrik adalah suatu ilmu

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) REPRESENTASI EMOSI MENGGUNAKAN LOGIKA FUZZY PADA PERMAINAN BONNY S TOOTH BOOTH

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) REPRESENTASI EMOSI MENGGUNAKAN LOGIKA FUZZY PADA PERMAINAN BONNY S TOOTH BOOTH 68 REPRESENTASI EMOSI MENGGUNAKAN LOGIKA FUZZY PADA PERMAINAN BONNY S TOOTH BOOTH Septiani Nur Hasanah 1, Nelly Indriani Widiastuti 2 Program Studi Teknik Informatika. Universitas Komputer Indonesia. Jl.

Lebih terperinci

LOGIKA FUZZY. By: Intan Cahyanti K, ST

LOGIKA FUZZY. By: Intan Cahyanti K, ST LOGIKA FUZZY By: Intan Cahyanti K, ST Pengertian Adalah suatu cara untuk memetakan suatu ruang input kedalam suatu ruang output. Skema Logika Fuzzy Antara input dan output terdapat suatu kotak hitam yang

Lebih terperinci

BAB II LANDASAN TEORI. Dalam kondisi yang nyata, beberapa aspek dalam dunia nyata selalu atau biasanya

BAB II LANDASAN TEORI. Dalam kondisi yang nyata, beberapa aspek dalam dunia nyata selalu atau biasanya BAB II LANDASAN TEORI A. Logika Fuzzy Dalam kondisi yang nyata, beberapa aspek dalam dunia nyata selalu atau biasanya berada di luar model matematis dan bersifat inexact. Konsep ketidakpastian inilah yang

Lebih terperinci

SIMULASI SISTEM UNTUK PENGONTROLAN LAMPU DAN AIR CONDITIONER DENGAN MENGGUNAKAN LOGIKA FUZZY

SIMULASI SISTEM UNTUK PENGONTROLAN LAMPU DAN AIR CONDITIONER DENGAN MENGGUNAKAN LOGIKA FUZZY SIMULASI SISTEM UNTUK PENGONTROLAN LAMPU DAN AIR CONDITIONER DENGAN MENGGUNAKAN LOGIKA FUZZY Nesi Syafitri. N Teknik Informatika, Fakultas Teknik Universitas Islam Riau, Jalan Kaharuddin Nasution No. 3,

Lebih terperinci

APLIKASI PENGAMBILAN KEPUTUSAN DENGAN METODE TSUKAMOTO PADA PENENTUAN TINGKAT KEPUASAN PELANGGAN (STUDI KASUS DI TOKO KENCANA KEDIRI)

APLIKASI PENGAMBILAN KEPUTUSAN DENGAN METODE TSUKAMOTO PADA PENENTUAN TINGKAT KEPUASAN PELANGGAN (STUDI KASUS DI TOKO KENCANA KEDIRI) APLIKASI PENGAMBILAN KEPUTUSAN DENGAN METODE TSUKAMOTO PADA PENENTUAN TINGKAT KEPUASAN PELANGGAN (STUDI KASUS DI TOKO KENCANA KEDIRI) 1Venny Riana Agustin, 2 Wahyu H. Irawan 1 Jurusan Matematika, Universitas

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Himpunan Himpunan adalah setiap daftar, kumpulan atau kelas objek-objek yang didefenisikan secara jelas, objek-objek dalam himpunan-himpunan yang dapat berupa apa saja: bilangan, orang,

Lebih terperinci

Logika Himpunan Fuzzy

Logika Himpunan Fuzzy Logika Himpunan Fuzzy 1 Fungsi Keanggotaan untuk crisp logic True False 1 0 80F Panas Temperature f temperature >= 25C, Panas (1 atau Benar); f temperature < 25C, tidak Panas (0 atau Salah). Fungsi keanggotaan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Bab landasan teori bertujuan untuk memberikan penjelasan mengenai metode atau pun teori yang digunakan dalam laporan tugas akhir ini, sehingga dapat membangun pemahaman yang sama antara

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Permintaan 2.1.1 Pengertian Permintaan Permintaan adalah banyaknya jumlah barang yang diminta pada suatu pasar tertentu dengan tingkat harga tertentu pada tingkat pendapatan tertentu

Lebih terperinci

PENGEMBANGAN SISTEM PAKAR FUZZY

PENGEMBANGAN SISTEM PAKAR FUZZY FUZZY EXPERT SYSTEM FUZZY INFERENCE SYSTEM FUZZY REASONING Toto Haryanto MATA KULIAH SISTEM PAKAR DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR PENGEMBANGAN SISTEM PAKAR FUZZY Domain Masalah Fuzzifikasi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 5 BAB 2 LANDASAN TEORI 2.1 Logika Fuzzy Logika fuzzy adalah cabang dari sistem kecerdasan buatan (Artificial Inteligent) yang mengemulasi kemampuan manusia dalam berfikir ke dalam bentuk algoritma yang

Lebih terperinci

Jurnal Informatika SIMANTIK Vol. 2 No. 2 September 2017 ISSN:

Jurnal Informatika SIMANTIK Vol. 2 No. 2 September 2017 ISSN: PENERAPAN LOGIKA FUZZY UNTUK MENENTUKAN MAHASISWA BERPRESTASI DI STMIK CIKARANG MENGGUNAKAN JAVA NETBEANS DAN MYSQL Ema Dili Giyanti 1), Ali Mulyanto 2) 1) Program Studi Teknik Informatika, STMIK Cikarang

Lebih terperinci

PERBANDINGAN METODE TSUKAMOTO, METODE MAMDANI DAN METODE SUGENO UNTUK MENENTUKAN PRODUKSI DUPA (Studi Kasus : CV. Dewi Bulan)

PERBANDINGAN METODE TSUKAMOTO, METODE MAMDANI DAN METODE SUGENO UNTUK MENENTUKAN PRODUKSI DUPA (Studi Kasus : CV. Dewi Bulan) PERBANDINGAN METODE TSUKAMOTO, METODE MAMDANI DAN METODE SUGENO UNTUK MENENTUKAN PRODUKSI DUPA (Studi Kasus : CV. Dewi Bulan) Komang Wahyudi Suardika 1, G.K. Gandhiadi 2, Luh Putu Ida Harini 3 1 Program

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini berisi tentang teori mengenai permasalahan yang akan dibahas

BAB II LANDASAN TEORI. Pada bab ini berisi tentang teori mengenai permasalahan yang akan dibahas BAB II LANDASAN TEORI Pada bab ini berisi tentang teori mengenai permasalahan yang akan dibahas dalam pembuatan tugas akhir ini. Secara garis besar teori penjelasan akan dimulai dari definisi logika fuzzy,

Lebih terperinci

Metode Fuzzy. Analisis Keputusan TIP FTP UB

Metode Fuzzy. Analisis Keputusan TIP FTP UB Metode Fuzzy Analisis Keputusan TIP FTP UB Pokok Bahasan Pendahuluan Logika Klasik dan Proposisi Himpunan Fuzzy Logika Fuzzy Operasi Fuzzy Contoh Pendahuluan Penggunaan istilah samar yang bersifat kualitatif

Lebih terperinci

LOGIKA FUZZY (Lanjutan)

LOGIKA FUZZY (Lanjutan) Metode Mamdani Metode mamdani sering dikenal sebagai metode Max-Min. Metode ini diperkenalkan oleh Ebrahim Mamdani pada tahun 1975. Menurut metode ini, ada empat tahap yang harus dilalui untuk mendapatkan

Lebih terperinci

Tahap Sistem Pakar Berbasis Fuzzy

Tahap Sistem Pakar Berbasis Fuzzy Company LOGO Penalaran Mamdani dan Tsukamoto Pada pendekatan Fuzzy Inference System Departemen Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor 2011 www.company.com

Lebih terperinci

KECERDASAN BUATAN (Artificial Intelligence) Materi 8. Entin Martiana

KECERDASAN BUATAN (Artificial Intelligence) Materi 8. Entin Martiana Logika Fuzzy KECERDASAN BUATAN (Artificial Intelligence) Materi 8 Entin Martiana 1 Kasus fuzzy dalam kehidupan sehari-hari Tinggi badan saya: Andi menilai bahwa tinggi badan saya termasuk tinggi Nina menilai

Lebih terperinci

ARTIFICIAL INTELLIGENCE MENENTUKAN KUALITAS KEHAMILAN PADA WANITA PEKERJA

ARTIFICIAL INTELLIGENCE MENENTUKAN KUALITAS KEHAMILAN PADA WANITA PEKERJA ARTIFICIAL INTELLIGENCE MENENTUKAN KUALITAS KEHAMILAN PADA WANITA PEKERJA Rima Liana Gema, Devia Kartika, Mutiana Pratiwi Universitas Putra Indonesia YPTK Padang email: [email protected] ABSTRAK

Lebih terperinci

Praktikum sistem Pakar Fuzzy Expert System

Praktikum sistem Pakar Fuzzy Expert System Praktikum sistem Pakar Fuzzy Expert System Ketentuan Praktikum 1. Lembar Kerja Praktikum ini dibuat sebagai panduan bagi mahasiswa untuk praktikum pertemuan ke - 8 2. Mahasiswa akan mendapatkan penjelasan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Sistem Pendukung Keputusan Sistem Pendukung Keputusan dapat diartikan sebagai sebuah sistem yang dimaksudkan untuk mendukung para pengambil keputusan dalam situasi tertentu. Sistem

Lebih terperinci

Logika Fuzzy. Farah Zakiyah Rahmanti 2016

Logika Fuzzy. Farah Zakiyah Rahmanti 2016 Logika Fuzzy Farah Zakiyah Rahmanti 2016 Topik Bahasa Alami Crisp Logic VS Fuzzy Logic Fungsi Keanggotaan (Membership Function) Fuzzifikasi (Fuzzyfication) Inferensi (Inference) Komposisi (Composition)

Lebih terperinci

Fuzzy Logic. Untuk merepresentasikan masalah yang mengandung ketidakpastian ke dalam suatu bahasa formal yang dipahami komputer digunakan fuzzy logic.

Fuzzy Logic. Untuk merepresentasikan masalah yang mengandung ketidakpastian ke dalam suatu bahasa formal yang dipahami komputer digunakan fuzzy logic. Fuzzy Systems Fuzzy Logic Untuk merepresentasikan masalah yang mengandung ketidakpastian ke dalam suatu bahasa formal yang dipahami komputer digunakan fuzzy logic. Masalah: Pemberian beasiswa Misalkan

Lebih terperinci

PENERAPAN METODE FUZZY TSUKAMOTO UNTUK MEMPREDIKSI HASIL PRODUKSI KELAPA SAWIT (STUDI KASUS : PT. AMAL TANI PERKEBUNAN TANJUNG PUTRI BAHOROK)

PENERAPAN METODE FUZZY TSUKAMOTO UNTUK MEMPREDIKSI HASIL PRODUKSI KELAPA SAWIT (STUDI KASUS : PT. AMAL TANI PERKEBUNAN TANJUNG PUTRI BAHOROK) PENERAPAN METODE FUZZY TSUKAMOTO UNTUK MEMPREDIKSI HASIL PRODUKSI KELAPA SAWIT (STUDI KASUS : PT. AMAL TANI PERKEBUNAN TANJUNG PUTRI BAHOROK) Andrian Juliansyah ( 1011287) Mahasiswa Program Studi Teknik

Lebih terperinci

NURAIDA, IRYANTO, DJAKARIA SEBAYANG

NURAIDA, IRYANTO, DJAKARIA SEBAYANG Saintia Matematika Vol. 1, No. 6 (2013), pp. 543 555. ANALISIS TINGKAT KEPUASAN KONSUMEN BERDASARKAN PELAYANAN, HARGA DAN KUALITAS MAKANAN MENGGUNAKAN FUZZY MAMDANI (Studi Kasus pada Restoran Cepat Saji

Lebih terperinci

STUDY TENTANG APLIKASI FUZZY LOGIC MAMDANI DALAM PENENTUAN PRESTASI BELAJAR SISWA (STUDY KASUS: SMP PEMBANGUNAN NASIONAL PAGAR MERBAU)

STUDY TENTANG APLIKASI FUZZY LOGIC MAMDANI DALAM PENENTUAN PRESTASI BELAJAR SISWA (STUDY KASUS: SMP PEMBANGUNAN NASIONAL PAGAR MERBAU) STUDY TENTANG APLIKASI FUZZY LOGIC MAMDANI DALAM PENENTUAN PRESTASI BELAJAR SISWA (STUDY KASUS: SMP PEMBANGUNAN NASIONAL PAGAR MERBAU) Desi Vinsensia Program Studi Teknik Informatika STMIK Pelita Nusantara

Lebih terperinci

VII. LOGIKA FUZZY. Antara input dan output terdapat suatu kotak hitam yang harus memetakan input ke output yang sesuai. Misal : Ruang Input

VII. LOGIKA FUZZY. Antara input dan output terdapat suatu kotak hitam yang harus memetakan input ke output yang sesuai. Misal : Ruang Input VII. LOGIKA FUZZY 8 Logika fuzzy adalah suatu cara untuk memetakan suatu ruang input ke dalam suatu ruang output. Skema logika fuzzy : Ruang output Ruang input Variabel input KOTAK HITAM Variabel output

Lebih terperinci

Fuzzy Inference System untuk Mengurangi Kemacetan di Perempatan Jalan

Fuzzy Inference System untuk Mengurangi Kemacetan di Perempatan Jalan Fuzzy Inference System untuk Mengurangi Kemacetan di Perempatan Jalan Edwin Romelta / 13508052 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

SIMULASI MENENTUKAN WAKTU MEMASAK BUAH KELAPA SAWIT MENGGUNAKAN FUZZY MAMDANI

SIMULASI MENENTUKAN WAKTU MEMASAK BUAH KELAPA SAWIT MENGGUNAKAN FUZZY MAMDANI SIMULASI MENENTUKAN WAKTU MEMASAK BUAH KELAPA SAWIT MENGGUNAKAN FUZZY MAMDANI Nofriadi * 1), Havid Syafwan 2) 1) Program Studi Sistem Informasi, STMIK Royal Kisaran Jl. Prof. M. Yamin 173 Kisaran, Sumatera

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Logika Fuzzy Logika Fuzzy pertama kali dikembangkan oleh Lotfi A. Zadeh pada tahun1965. Teori ini banyak diterapkan di berbagai bidang, antara lain representasipikiran manusia

Lebih terperinci

KECERDASAN BUATAN (Artificial Intelligence) Materi 8. Entin Martiana

KECERDASAN BUATAN (Artificial Intelligence) Materi 8. Entin Martiana Logika Fuzzy KECERDASAN BUATAN (Artificial Intelligence) Materi 8 Entin Martiana 1 Kasus fuzzy dalam kehidupan sehari-hari Tinggi badan saya: Andi menilai bahwa tinggi badan saya termasuk tinggi Nina menilai

Lebih terperinci

manusia diantaranya penyakit mata konjungtivitis, keratitis, dan glaukoma.

manusia diantaranya penyakit mata konjungtivitis, keratitis, dan glaukoma. 6 BAB II TINJAUAN PUSTAKA 2.1 Gambaran Tentang Mata Mata merupakan organ tubuh manusia yang paling sensitif apabila terkena benda asing misal asap dan debu. Debu akan membuat mata kita terasa perih atau

Lebih terperinci

PENDAPATAN MASYARAKAT DENGAN ADANYA KAMPUS MENGGUNAKAN FUZZY TSUKAMOTO

PENDAPATAN MASYARAKAT DENGAN ADANYA KAMPUS MENGGUNAKAN FUZZY TSUKAMOTO PENDAPATAN MASYARAKAT DENGAN ADANYA KAMPUS MENGGUNAKAN FUZZY TSUKAMOTO Asrianda 1 [email protected] Abstrak Bertambahnya permintaan mahasiswa atas kebutuhan makan seharihari, berkembangnya usaha warung

Lebih terperinci

MATERI KULIAH (PERTEMUAN 12,13) Lecturer : M. Miftakul Amin, M. Eng. Logika Fuzzy. Politeknik Negeri Sriwijaya Palembang

MATERI KULIAH (PERTEMUAN 12,13) Lecturer : M. Miftakul Amin, M. Eng. Logika Fuzzy. Politeknik Negeri Sriwijaya Palembang HIMPUNAN FUZZY MATERI KULIAH (PERTEMUAN 2,3) Lecturer : M. Miftakul Amin, M. Eng. Logika Fuzzy Jurusan Teknik Komputer Politeknik Negeri Sriwijaya Palembang Pokok Bahasan Sistem fuzzy Logika fuzzy Aplikasi

Lebih terperinci

BAB IV KONSEP FUZZY LOGIC DAN PENERAPAN PADA SISTEM KONTROL. asing. Dalam pengalaman keseharian kita, permasalahan yang berkaitan dengan fuzzy

BAB IV KONSEP FUZZY LOGIC DAN PENERAPAN PADA SISTEM KONTROL. asing. Dalam pengalaman keseharian kita, permasalahan yang berkaitan dengan fuzzy BAB IV KONSEP FUZZY LOGIC DAN PENERAPAN PADA SISTEM KONTROL 4.1 Pengenalan konsep fuzzy logic Konsep mengenai fuzzy logic bukanlah merupakan sesuatu yang baru dan asing. Dalam pengalaman keseharian kita,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Beras merupakan salah satu kebutuhan pokok manusia yang sangat penting dalam kelangsungan hidupnya. Untuk memenuhi kebutuhan beras, setiap manusia mempunyai cara-cara

Lebih terperinci

LOGIKA FUZZY PADA PROSES PELET PAKAN IKAN

LOGIKA FUZZY PADA PROSES PELET PAKAN IKAN LOGIKA FUZZY PADA PROSES PELET PAKAN IKAN Agung Saputra 1), Wisnu Broto 2), Ainil Syafitri 3) Prodi Elektro Fakultas Teknik Univ. Pancasila, Srengseng Sawah Jagakarsa, Jakarta, 12640 Email: 1) [email protected]

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. Dalam tinjauan pustaka dibawah ini terdapat 5 referensi dan 1 referensi dari

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. Dalam tinjauan pustaka dibawah ini terdapat 5 referensi dan 1 referensi dari BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 1.1 Tinjauan Pustaka Dalam tinjauan pustaka dibawah ini terdapat 5 referensi dan 1 referensi dari penulis sebagai berikut: Tabel 2.1 Perbandingan Metode Penelitian

Lebih terperinci

Penerapan Logika Fuzzy

Penerapan Logika Fuzzy 1 Penerapan Logika Fuzzy M. Faisal Baehaki - 13506108 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia 1 [email protected]

Lebih terperinci

: Sistem Pendukung Keputusan, Siswa berprestasi, Tsukamoto

: Sistem Pendukung Keputusan, Siswa berprestasi, Tsukamoto SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN SISWA BERPRESTASI BERBASIS WEB DENGAN METODE TSUKAMOTO PADA SMA INSTITUT INDONESIA Eko Purwanto Program Studi Teknik Informatika, Fakultas Ilmu Komputer Universitas

Lebih terperinci

REVIEW JURNAL LOGIKA FUZZY

REVIEW JURNAL LOGIKA FUZZY REVIEW JURNAL LOGIKA FUZZY Disusun oleh : Gita Adinda Permata 1341177004309 PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER UNIVERSITAS NEGERI SINGAPERBANGSA KARAWANG KATA PENGANTAR Assalamualaikum

Lebih terperinci

PENENTUAN TINGKAT PELUNASAN PEMBAYARAN KREDIT PEMILIKAN MOBIL DI PT AUTO 2000 MENGGUNAKAN FUZZY MAMDANI

PENENTUAN TINGKAT PELUNASAN PEMBAYARAN KREDIT PEMILIKAN MOBIL DI PT AUTO 2000 MENGGUNAKAN FUZZY MAMDANI PENENTUAN TINGKAT PELUNASAN PEMBAYARAN KREDIT PEMILIKAN MOBIL DI PT AUTO 2000 MENGGUNAKAN FUZZY MAMDANI Hilda Lutfiah, Amar Sumarsa 2, dan Sri Setyaningsih 2. Program Studi Matematika Fakultas Matematika

Lebih terperinci

Ci Crisp Logic. Crisp logic is concerned with absolutes-true or false, there is no in-between. Contoh:

Ci Crisp Logic. Crisp logic is concerned with absolutes-true or false, there is no in-between. Contoh: Logika Fuzzy 1 Teori Dasar Ci Crisp Logic Crisp logic is concerned with absolutes-true or false, there is no in-between. Contoh: Rule: If the temperature is higher than 80F, it is hot; otherwise, it is

Lebih terperinci

BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Sistem Definisi Sistem

BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Sistem Definisi Sistem BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Sistem 2.1.1 Definisi Sistem Menurut Mustakini (2009:34), Sistem dapat didefinisikan dengan pendekatan prosedur dan pendekatan komponen, sistem dapat didefinisikan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 4 BAB 2 TINJAUAN PUSTAKA 2.1. Pengertian Fuzzy Logika fuzzy adalah suatu cara yang tepat untuk memetakan suatu ruang input kedalam suatu ruang output. Titik awal dari konsep modern mengenai ketidakpastian

Lebih terperinci

ANALISIS PERBANDINGAN METODE FUZZY TSUKAMOTO DAN METODE FUZZY MAMDANI PADA PERBANDINGAN HARGA SEPEDA MOTOR BEKAS

ANALISIS PERBANDINGAN METODE FUZZY TSUKAMOTO DAN METODE FUZZY MAMDANI PADA PERBANDINGAN HARGA SEPEDA MOTOR BEKAS ANALISIS PERBANDINGAN METODE FUZZY TSUKAMOTO DAN METODE FUZZY MAMDANI PADA PERBANDINGAN HARGA SEPEDA MOTOR BEKAS Istraniady ([email protected]), Priko Andrian ([email protected]) Mardiani ([email protected])

Lebih terperinci

Perencanaan Sistem Kontrol Pembersih Kaca Mobil dengan Fuzzy Kontrol Metode Mamdani

Perencanaan Sistem Kontrol Pembersih Kaca Mobil dengan Fuzzy Kontrol Metode Mamdani SEMINAR MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2017 Perencanaan Sistem Kontrol Pembersih Kaca Mobil dengan Fuzzy Kontrol Metode Mamdani T - 19 Naela Faza Fariha, Zahrul Jannah Nur Rochim, Agus Maman

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Descriptive Research Penelitian deskriptif adalah metode penelitian yang digunakan untuk menmukan pengetahuan yang seluas-luasnya terhadap objek penelitian pada suatu masa

Lebih terperinci

SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN HANDPHONE BERDASARKAN KEBUTUHAN KONSUMEN MENGGUNAKAN LOGIKA FUZZY. Abstraksi

SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN HANDPHONE BERDASARKAN KEBUTUHAN KONSUMEN MENGGUNAKAN LOGIKA FUZZY. Abstraksi SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN HANDPHONE BERDASARKAN KEBUTUHAN KONSUMEN MENGGUNAKAN LOGIKA FUZZY Denny Cristiono T.S., Yugowati P.,Sri Yulianto J.P. Fakultas Teknologi Informasi Universitas Kristen

Lebih terperinci

adalahkelompok profesi terbesar dan berperan vital dalam sistem tersebut yang menyebabkan ABSTRAK

adalahkelompok profesi terbesar dan berperan vital dalam sistem tersebut yang menyebabkan ABSTRAK 1 Evaluasi Kinerja Pelayanan Perawat Menggunakan Fuzzy Inference System (FIS) Mamdani ( Studi Kasus : Puskesmas Bonang 1 Demak) ARIS MUTHOHAR Program Studi Teknik Informatika S1, Fakultas Ilmu Komputer,

Lebih terperinci

Bab III TEORI DAN PENGONTOR BERBASIS LOGIKA FUZZI

Bab III TEORI DAN PENGONTOR BERBASIS LOGIKA FUZZI Bab III TEORI DAN PENGONTOR BERBASIS LOGIKA FUZZI III.1 Teori Logika fuzzi III.1.1 Logika fuzzi Secara Umum Logika fuzzi adalah teori yang memetakan ruangan input ke ruang output dengan menggunakan aturan-aturan

Lebih terperinci

PREDIKSI JUMLAH PRODUKSI BARANG BEDASARKAN JUMLAH PERMINTAAN DAN DATA JUMLAH PERSEDIAAN CV.CIHANJUANG INTI TEKNIK MENGGUNAKAN LOGIKA FUZZY MAMDANI

PREDIKSI JUMLAH PRODUKSI BARANG BEDASARKAN JUMLAH PERMINTAAN DAN DATA JUMLAH PERSEDIAAN CV.CIHANJUANG INTI TEKNIK MENGGUNAKAN LOGIKA FUZZY MAMDANI PREDIKSI JUMLAH PRODUKSI BARANG BEDASARKAN JUMLAH PERMINTAAN DAN DATA JUMLAH PERSEDIAAN CV.CIHANJUANG INTI TEKNIK MENGGUNAKAN LOGIKA FUZZY MAMDANI Rizka Munia Yogaswara 1), Gunawan Abdillah 2), Dian Nursantika

Lebih terperinci

FUZZY MULTI-CRITERIA DECISION MAKING

FUZZY MULTI-CRITERIA DECISION MAKING Media Informatika, Vol. 3 No. 1, Juni 2005, 25-38 ISSN: 0854-4743 FUZZY MULTI-CRITERIA DECISION MAKING Sri Kusumadewi, Idham Guswaludin Jurusan Teknik Informatika, Fakultas Teknologi Industri, Universitas

Lebih terperinci

Versi Online tersedia di : JURNAL TECH-E (Online)

Versi Online tersedia di :  JURNAL TECH-E (Online) JURNAL TECH-E - VOL. 1 NO. 1 (17) Versi Online tersedia di : http://bsti.ubd.ac.id/e-jurnal JURNAL TECH-E 2581-1916 (Online) Artikel Perancangan Aplikasi Penentu Jurusan IPA atau IPS Pada SMA Menggunakan

Lebih terperinci

SISTEM INFERENSI FUZZY MAMDANI BERBASIS WEB

SISTEM INFERENSI FUZZY MAMDANI BERBASIS WEB JURNAL MATRIX VOL. 3, NO. 1, MARET 2013 39 SISTEM INFERENSI FUZZY MAMDANI BERBASIS WEB I Ketut Suwintana Jurusan Akuntansi Politeknik Negeri Bali Kampus Bukit Jimbaran Bali Telp. +62 361 701981 Abstrak:.Logika

Lebih terperinci