BAB II LANDASAN TEORI
|
|
|
- Bambang Darmadi
- 9 tahun lalu
- Tontonan:
Transkripsi
1 2.1 Sistem Pendukung Keputusan BAB II LANDASAN TEORI [2] Manusia merupakan bagian dari alam karena hidupnya yang tidak terlepas dari alam. Proses kehidupan manusia merupakan unsur yang semakin lama semakin mendominasi unsur-unsur lainnya di alam. Hal ini disebabkan karena manusia dibekali kemampuan-kemampuan untuk bisa berkembang. Segala proses yang terjadi di sekelilingnya dan dalam dirinya dirasakan dan diamatinya dengan menggunakan semua indera yang dimilikinya, dipikirkannya lalu ia berbuat dan bertindak. Dalam menghadapi segala proses yang terjadi di sekelilingnya dan di dalam dirinya, hampir setiap saat manusia membuat atau mengambil keputusan dan melaksanakannya. Hal ini dilandasi dengan asumsi bahwa segala tindakan dilakukan secara sadar merupakan pencerminan hasil proses pengambilan keputusan dalam pikirannya, sehingga sebenarnya manusia sudah sangat terbiasa dalam membuat keputusan. Menurut Mangkusubroto dan Tresnadi, jika keputusan yang diambil tersebut perlu dipertanggungjawabkan kepada orang lain atau prosesnya memerlukan pengertian pihak lain, maka perlu untuk diungkapkan sasaran yang akan dicapai. 2.2 Pengertian Sistem Pendukung Keputusan [4] Konsep Sistem Pendukung Keputusan (SPK) atau Decision Support Systems (DSS) pertama kali diungkapkan pada awal tahun 1970-an oleh Michael S. Scott Morton dengan istilah Management Decision Systems. Morton mendefinisikan DSS sebagai Sistem Berbasis Komputer Interaktif, yang membantu para pengambil keputusan untuk menggunakan data dan berbagai model untuk memecahkan masalah-masalah yang tidak terstruktur. Menurut Alter, DSS merupakan sistem informasi interaktif yang menyediakan informasi, pemodelan dan pemanipulasian data. Sistem digunakan untuk membantu pengambilan keputusan dalam situasi yang semi terstruktur dan II-1
2 II-2 situasi yang tidak terstruktur, dimana tak seorang pun tahu secara pasti bagaimana keputusan seharusnya dibuat. DSS biasanya dibangun untuk mendukung solusi atas suatu masalah atau untuk mengevaluasi suatu peluang. DSS yang seperti itu disebut aplikasi DSS. Aplikasi DSS digunakan dalam pengambilan keputusan. Aplikasi DSS menggunakan CBIS (Computer Based Information Systems) yang fleksibel, interaktif, dan dapat diadaptasi, yang dikembangkan untuk mendukung solusi atas masalah manajemen spesifik yang tidak terstruktur. Aplikasi DSS menggunakan data, memberikan antarmuka pengguna yang mudah dan dapat menggabungkan pemikiran pengambil keputusan. DSS lebih ditujukan untuk mendukung manajemen dalam melakukan pekerjaan yang bersifat analitis dalam situasi yang kurang terstruktur dan dengan kriteria yang kurang jelas. DSS tidak dimaksudkan untuk mengotomatisasikan pengambilan keputusan tetapi memberikan perangkat interaktif yang memungkinkan pengambil keputusan untuk melakukan berbagai analisis menggunakan model-model yang tersedia. 2.3 Nilai Guna dan Karateristik Sistem Pendukung Keputusan [8] Pada dasarnya SPK ini merupakan pengembangan lebih lanjut dari Sistem Informasi Manajemen Terkomputerisasi (Computerized Manajement Information Systems), yang dirancang sedemikian rupa sehingga bersifat interaktif dengan pemakainya. Sifat interaktif ini dimaksudkan untuk memudahkan integrasi antara berbagai komponen dalam proses pengambilan keputusan, seperti prosedur, kebijakan, teknik analisis, serta pengalaman dan wawasan manajerial guna membentuk suatu kerangka keputusan yang bersifat fleksibel. Menurut Turban, tujuan dari DSS adalah sebagai berikut: 1. Membantu dalam pengambilan keputusan atas masalah yang terstruktur. 2. Memberikan dukungan atas pertimbangan manajer dan bukannya dimaksudkan untuk menggantikan fungsi manajer. 3. Meningkatkan efektivitas keputusan yang diambil lebih daripada perbaikan efisiensinya. 4. Kecepatan komputasi. Komputer memungkinkan para pengambil keputusan untuk melakukan banyak komputasi secara cepat dengan biaya yang rendah. 5. Peningkatan produktivitas.
3 II-3 6. Dukungan kualitas. 7. Berdaya saing. 8. Mengatasi keterbatasan kognitif dalam pemprosesan dan penyimpanan. Ciri-ciri SPK yang dirumuskan oleh Kusrini adalah sebagai berikut: 1. SPK ditujukan untuk membantu keputusan-keputusan yang kurang terstruktur. 2. SPK merupakan gabungan antara kumpulan model kualitatif dan kumpulan data. 3. SPK bersifat luwes dan dapat menyesuaikan dengan perubahan-perubahan yang terjadi. Beberapa karakteristik yang membedakan sistem pendukung keputusan dengan sistem informasi lain adalah sebagai berikut: 1. Sistem pendukung keputusan dirancang untuk membantu pengambilan keputusan dalam memecahkan masalah yang sifatnya semi terstruktur atau tidak terstruktur dengan menambahkan kebijaksanaan manusia dan informasi komputerisasi. 2. Proses pengolahannya, sistem pendukung keputusan mengkombinasikan penggunaan model-model analisis dengan teknik pemasukkan data konvensional serta fungsi-fungsi pencari atau pemeriksa informasi. 3. Sistem pendukung keputusan dapat digunakan atau dioperasikan dengan mudah oleh orang-orang yang tidak memiliki dasar kemampuan pengoperasian komputer yang tinggi. Pendekatan yang digunakan biasanya model interaktif. 4. Sistem pendukung keputusan dirancang dengan menekankan pada aspek fleksibilitas serta kemampuan adaptasi yang tinggi sehingga mudah disesuaikan dengan berbagai perubahan lingkungan yang terjadi dan kebutuhan pengguna. Sistem Pendukung Keputusan memberikan manfaat atau keuntungan bagi pemakainya. Keuntungan yang dimaksud di antaranya adalah sebagai berikut: 1. Sistem pendukung keputusan memperluas kemampuan pengambil keputusan dalam memproses data/informasi bagi pemakainya.
4 II-4 2. Sistem pendukung keputusan membantu pengambil keputusan dalam hal penghematan waktu yang dibutuhkan untuk memecahkan masalah terutama berbagai masalah yang sangat kompleks dan tidak terstruktur. 3. Sistem pendukung keputusan dapat menghasilkan solusi dengan lebih cepat serta hasilnya dapat diandalkan. 4. Walaupun suatu sistem pendukung keputusan, mungkin saja tidak mampu memecahkan masalah yang dihadapi oleh pengambil keputusan, namun ia dapat menjadi stimulan bagi pengambil keputusan dalam memahami persoalannya. Hal ini dikarenakan sistem pendukung keputusan mampu menyajikan berbagai alternatif. Pada saat ini sistem pendukung keputusan telah banyak diterapkan dalam berbagai bidang seperti kedokteran, komputer, ekonomi dan lain-lain. Contoh dalam bidang kedokteran adalah perancangan aplikasi sistem penentuan penyakit Diabetes Mellitus menggunakan metode AHP berbasis sistem pendukung keputusan. AHP merupakan salah satu metode untuk membantu menyusun suatu prioritas dari berbagai pilihan dengan menggunakan beberapa kriteria (multicriteria). Karena sifatnya yang multi kriteria, AHP cukup banyak digunakan dalam penyusunan prioritas. Kriteria- kriteria penentu penyakit Diabetes Mellitus dimasukkan dalam bobot yang telah ditentukan dengan metode AHP. Pengambilan keputusan dari sistem tergantung kepada pengguna sistem (pengambil keputusan). Sistem hanya menjadi alat bantu bagi para pengambil keputusan untuk memperluas kapabilitas, namun tidak untuk menggantikan penilaian dan tidak ditekankan untuk membuat keputusan. Aplikasi sistem penentuan penyakit Diabetes Mellitus dapat digunakan sebagai alat bantu dalam pengambilan keputusan penentuan penyakit Diabetes Mellitus [6]. 2.4 Komponen-Komponen Sistem Pendukung Keputusan [2] SPK dapat terdiri dari tiga subsistem utama yang menentukan kapabilitas teknis SPK yaitu sebagai berikut: 1. Subsistem Manajemen Database (Database Management Subsystem) 2. Subsistem Manajemen Basis Model (Model Base Management Subsystem) 3. Subsistem Perangkat Lunak Penyelenggara Dialog (Dialog Generation and Management Software)
5 II Subsistem Manajemen Database [11] Ada beberapa perbedaan antara database untuk SPK dan Non-SPK. Pertama, sumber data untuk SPK lebih kaya dari pada non-spk dimana data harus berasal dari luar dan dari dalam karena proses pengambilan keputusan. Perbedaan lain adalah proses pengambilan dan ekstraksi data dari sumber data yang sangat besar. SPK membutuhkan proses ekstraksi dan DBMS yang dalam pengelolaannya harus cukup fleksibel untuk memungkinkan penambahan dan pengurangan secara cepat. Dalam hal ini, kemampuan yang dibutuhkan dari manajemen database dapat diringkas, sebagai berikut: 1. Kemampuan untuk mengkombinasikan berbagai variasi data melalui pengambilan dan ekstraksi data. 2. Kemampuan untuk menambahkan sumber data secara cepat dan mudah. 3. Kemampuan untuk menggambarkan struktur data logikal sesuai dengan pengertian pemakai sehingga pemakai mengetahui apa yang tersedia dan dapat menentukan kebutuhan penambahan dan pengurangan. 4. Kemampuan untuk menangani data secara personel sehingga pemakai dapat mencoba berbagai alternatif pertimbangan personel. 5. Kemampuan untuk mengelola berbagai variasi data Subsistem Manajemen Basis Model Salah satu keunggulan SPK adalah kemampuan untuk mengintegrasikan akses data dan model-model keputusan. Hal ini dapat dilakukan dengan menambahkan model-model keputusan ke dalam sistem informasi yang menggunakan database sebagai mekanisme integrasi dan komunikasi di antara model-model. Karakteristik ini menyatukan kekuatan pencarian dan pelaporan data. Salah satu persoalan yang berkaitan dengan model adalah bahwa penyusunan model seringkali terikat pada struktur model yang mengasumsikan adanya masukan yang benar dan cara keluaran yang tepat. Sementara itu, model cenderung tidak mencukupi karena adanya kesulitan dalam mengembangkan
6 II-6 model yang terintegrasi untuk menangani sekumpulan keputusan yang saling bergantungan. Cara untuk menangani persoalan ini dengan menggunakan koleksi berbagai model yang terpisah, dimana setiap model digunakan untuk menangani bagian yang berbeda dari masalah yang dihadapi. Komunikasi antara berbagai model digunakan untuk menangani bagian yang berbeda dari masalah tersebut. Komunikasi antara berbagai model yang saling berhubungan diserahkan kepada pengambil keputusan sebagai proses intelektual dan manual. Kemampuan yang dimiliki subsistem basis model meliputi hal-hal sebagai berikut: 1. Kemampuan untuk menciptakan model-model baru secara cepat dan mudah. 2. Kemampuan untuk mengakses dan mengintegrasikan model-model keputusan. 3. Kemampuan untuk mengelola basis model dengan fungsi manajemen yang analog dan manajemen database (seperti mekanisme untuk menyimpan, membuat dialog, menghubungkan, dan mengakses model) Subsistem Perangkat Lunak Penyelenggara Dialog Fleksibilitas dan kekuatan karakteristik SPK timbul dari kemampuan interaksi antara sistem dan pemakai, yang dinamakan subsistem dialog. Bennet mendefinisikan pemakai, terminal, dan sistem perangkat lunak sebagai komponen-komponen dari sistem dialog sehingga subsistem dialog terbagi menjadi tiga bagian sebagai berikut: 1. Bahasa aksi, meliputi apa yang dapat digunakan oleh pemakai dalam berkomunikasi dengan sistem. Hal ini meliputi pemilihan-pemilihan seperti papan ketik (keyboard), panel-panel sentuh, joystick, perintah suara dan sebagainya. 2. Bahasa tampilan dan presentasi, meliputi apa yang harus diketahui oleh pemakai. Bahasa tampilan meliputi pilihan-pilihan seperti printer, tampilan layar, grafik, warna, plotter, keluaran suara, dan sebagainya. 3. Basis pengetahuan, meliputi apa yang harus diketahui oleh pemakai agar pemakaian sistem bisa efektif. Basis pengetahuan bisa berada dalam
7 II-7 pikiran pemakai, pada kartu referensi atau petunjuk, dalam buku manual, dan sebagainya. Kombinasi dari kemampuan-kemampuan di atas terdiri dari apa yang disebut gaya dialog misalnya pendekatan tanya jawab, bahasa perintah, menumenu, dan mengisi tempat kosong. Kemampuan yang harus dimiliki oleh SPK untuk mendukung dialog pemakai atau sistem meliputi hal-hal sebagai berikut: 1. Kemampuan untuk menangani berbagai variasi dialog, bahkan jika mungkin untuk mengkombinasikan berbagai gaya dialog sesuai dengan pilihan pemakai. 2. Kemampuan untuk mengakomodasikan tindakan pemakai dengan berbagai peralatan masukan. 3. Kemampuan untuk menampilkan data dengan berbagai variasi format dan peralatan keluaran. 4. Kemampuan untuk memberikan dukungan yang fleksibel untuk mengetahui basis pengetahuan pemakai. 2.5 Analytical Hierarchy Process (AHP) Metode Analytical Hierarchy Process (AHP) dikembangkan awal tahun 1970-an oleh Thomas L. Saaty, seorang ahli matematika dari Universitas Pittsburg. AHP pada dasarnya didesain untuk menangkap secara rasional persepsi orang yang berhubungan sangat erat dengan permasalahan tertentu melalui prosedur yang didesain untuk sampai pada suatu skala preferensi di antara berbagai set alternatif. Analisis ini ditujukan untuk membuat suatu model permasalahan yang tidak mempunyai struktur, biasanya ditetapkan untuk memecahkan masalah yang terukur (kuantitatif), masalah yang memerlukan pendapat (judgement) maupun pada situasi yang kompleks atau tidak terkerangka, pada situasi dimana data statistik sangat minim atau tidak ada sama sekali dan hanya bersifat kualitatif yang didasari oleh persepsi, pengalaman ataupun intuisi. AHP ini juga banyak digunakan pada keputusan untuk banyak kriteria, perencanaan, alokasi sumber daya dan penentuan prioritas dari strategi-strategi yang dimiliki pemain dalam situasi konflik [11]. Jadi, AHP merupakan analisis yang
8 II-8 digunakan dalam pengambilan keputusan dengan pendekatan sistem, dimana pengambil keputusan berusaha memahami suatu kondisi sistem dan membantu melakukan prediksi dalam mengambil keputusan. Model AHP memakai persepsi manusia yang dianggap expert sebagai input utamanya. Kriteria ekspert disini bukan berarti bahwa orang tersebut haruslah jenius, pintar, bergelar doktor dan sebagainya tetapi lebih mengacu pada orang yang mengerti benar permasalahan yang dilakukan, merasakan akibat suatu masalah atau punya kepentingan terhadap masalah tersebut. Pengukuran hal-hal kualitatif merupakan hal yang sangat penting mengingat makin kompleksnya permasalahan di dunia dan tingkat ketidakpastian yang makin tinggi. Selain itu, AHP juga menguji konsistensi penilaian. Bila terjadi penyimpangan yang terlalu jauh dari nilai konsisten sempurna maka penilaian perlu diperbaiki atau hirarki harus distruktur ulang. Dalam menyelesaikan persoalan dengan AHP ada beberapa prinsip dasar yang harus dipahami antara lain: 1. Dekomposisi. Setelah mendefinisikan permasalahan/persoalan, maka perlu dilakukan dekomposisi, yaitu: memecah persoalan yang utuh menjadi unsurunsurnya. Jika ingin mendapatkan hasil yang akurat, maka pemecahan terhadap unsur-unsurnya dilakukan hingga tidak memungkinkan dilakukan pemecahan lebih lanjut. Pemecahan tersebut akan menghasilkan beberapa tingkatan dari suatu persoalan. Oleh karena itu, proses analisis ini dinamakan hierarki (hierachy). Struktur hierarki AHP dapat dilihat pada Gambar 2.1. Gambar 2.1 Struktur Hierarki AHP [7]
9 II-9 2. Penilaian Komparasi (Comparative Judgement). Prinsip ini berarti membuat penilaian tentang kepentingan relatif duaelemen pada suatu tingkat tertentu dalam kaitannya dengan tingkatan di atasnya. Penilaian ini merupakan inti dari AHP, karena akan berpengaruh terhadap prioritas elemen-elemen. Hasil dari penilaian ini lebih mudah disajikan dalam bentuk matriks perbandingan berpasangan (Pairwise Comparison). 3. Penentuan Prioritas (Synthesis of Priority). Dari setiap matriks pairwise comparison akan didapatkan prioritas lokal. Karena matriks pairwise comparison terdapat pada setiap tingkat, maka untuk menentukan prioritas global harus dilakukan sintesis di antara prioritas lokal. Prosedur melakukan sintesis berbeda menurut bentuk hierarki. 4. Konsistensi Logis (Logical Consistency). Konsistensi memiliki dua makna. Pertama adalah bahwa objek-objek yang serupa dapat dikelompokkan sesuai keseragaman dan elevansinya. Kedua adalah tingkat hubungan antara objekobjek yang didasarkan pada kriteria tertentu. [11] Sebagaimana langkah yang dijelaskan oleh Saaty, metode AHP dapat digunakan untuk membantu pengambilan keputusan dengan cara sebagai berikut: 1. Menentukan tujuan, kriteria, dan alternatif keputusan 2. Membuat pohon hierarki (hierarchical tree) untuk berbagai kriteria dan alternatif keputusan. Contoh pohon hierarki dapat dilihat pada Gambar 2.2. Gambar 2.2 Pohon Hierarki [7] 3. Membentuk sebuah matriks perbandingan berpasangan (pairwise comparison), misalnya diberi nama matriks A. Angka di dalam baris ke-i dan kolom ke-j (Ai,j) merupakan relative importance Ai dibandingkan dengan Aj. Untuk berbagai persoalan, skala 1 sampai 9 adalah skala terbaik dalam
10 II-10 mengekspresikan pendapat. Nilai dan definisi pendapat kualitatif dari skala perbandingan Saaty dapat dilihat pada Tabel 2.1. Intensitas Kepentingan ,4,6,8 Keterangan Kedua elemen sama pentingnya Elemen yang satu sedikit lebih penting daripada elemen yang lainnya Elemen yang satu lebih penting daripada yang lainnya Satu elemen jelas lebih mutlak penting daripada elemen lainnya Satu elemen mutlak penting daripada elemen lainnya Nilai-nilai antara dua nilai pertimbangan-pertimbangan yang berdekatan Tabel 2.1 Skala Penilaian Perbandingan [7] Apabila suatu elemen dibandingkan dengan dirinya sendiri maka diberi nilai 1. Jika elemen i (Ai) dibandingkan dengan elemen j (Aj) mendapatkan nilai tertentu, maka Aj dibandingkan dengan Ai merupakan kebalikannya. 4. Membuat peringkat prioritas dari matriks pairwise dengan menentukan eigenvector. Caranya yaitu sebagai berikut: 1. Mengkuadratkan matriks pairwise comparison Prinsip umum perkalian matriks adalah perkalian antara baris dari matriks pertama dengan kolom dari matriks kedua. 2. Menjumlahkan setiap baris dari matriks hasil penguadratan cara (a), kemudian dinormalisasi, caranya yaitu membagi jumlah baris dengan total baris hingga diperoleh nilai eigenvector (1) 3. Untuk mengecek ulang nilai eigenvector, matriks hasil penguadratan cara (a) dikuadratkan kembali dan lakukan kembali cara (b), hingga diperoleh eigenvector yang baru. Kemudian, bandingkan eigenvector pertama dan kedua. Jika di antara keduanya, tidak ada perubahan nilai atau hanya sedikit mengalami perubahan maka nilai eigenvector pertama sudah benar. Akan tetapi, jika sebaliknya, maka nilai eigenvector pertama masih salah
11 II-11 dan lakukan kembali cara (a) sampai dengan(c), hingga nilai eigenvector tidak berubah atau hanya sedikit berubah. 5. Membuat peringkat alternatif dari matriks pairwise masing-masing alternatif dengan menentukan eigenvector setiap alternatif. Cara yang digunakan sama ketika membuat peringkat prioritas di atas. 1. Menentukan matriks pairwise comparisons masing-masing alternatif 2. Menentukan nilai eigenvector masing-masing alternatif 3. Menentukan peringkat alternatif Peringkat alternatif dapat ditentukan dengan mengalikan nilai eigenvector alternatif dengan nilai eigenvector kriteria. 6. Konsistensi Logis Semua elemen dikelompokkan secara logis dan diperingatkan secara konsisten sesuai dengan suatu kriteria yang logis. Matriks bobot yang diperoleh dari hasil perbandingan secara berpasangan tersebut harus mempunyai hubungan kardinal dan ordinal. Hubungan tersebut dapat ditunjukkan sebagai berikut: Hubungan kardinal: a ij. a jk = a ik Hubungan ordinal : A i > A j, A j > A k maka A i > A k Hubungan diatas dapat dilihat dari dua hal sebagai berikut : 1. Dengan melihat preferensi multiplikatif, misalnya bila anggur lebih enak empat kali dari mangga dan mangga lebih enak dua kali dari pisang maka anggur lebih enak delapan kali dari pisang. 2. Dengan melihat preferensi transitif, misalnya anggur lebih enak dari mangga dan mangga lebih enak dari pisang maka anggur lebih enak dari pisang. Pada keadaan sebenarnya akan terjadi beberapa penyimpangan dari hubungan tersebut, sehingga matriks tersebut tidak konsisten sempurna. Hal ini terjadi karena ketidakkonsistenan dalam preferensi seseorang. Untuk mengetahui apakah hasil penilaian bersifat konsisten, maka ada beberapa langkah untuk menghitung rasio inkonsitensi untuk menguji konsistensi penilaian atau konsistensi logis.
12 II-12 Penghitungan konsistensi logis dilakukan dengan mengikuti langkahlangkah sebagai berikut: 1. Menentukan vektor jumlah tertimbang (weighted sum vector). Hal ini dilakukan dengan mengalikan baris pertama matriks prioritas dengan kolom pertama matriks perbandingan, kemudian baris kedua matriks prioritas dikalikan dengan kolom kedua matriks perbandingan, selanjutnya mengalikan baris ketiga matriks prioritas dengan kolom ketiga matriks perbandingan, dan seterusnya. Kemudian hasil perkalian tersebut dijumlahkan untuk setiap baris atau secara mendatar. 2. Menghitung Vektor Konsistensi (VK) Langkah berikutnya adalah membagi masing-masing elemen VJT dengan masing-masing elemen matriks PRIORITAS. 3. Menghitung Lambda dan Indeks Konsistensi Lambda (λ) adalah nilai rata-rata Vektor Konsistensi. 4. Formula untuk menghitung Indeks Konsistensi adalah:...(1) dimana n adalah jumlah faktor yang sedang dibandingkan. 5. Perhitungan rasio konsistensi. Rasio Konsistensi merupakan Indeks Konsistensi dibagi dengan Indeks Random/Acak (IR). Untuk lebih jelasnya, lihat formula berikut ini.... (2) Indeks Random adalah fungsi langsung dari jumlah alternatif atau sistem yang sedang diperbandingkan. Indeks Random disajikan pada Tabel 2.2. Ukuran Matriks Nilai RI 1,2 0,00 3 0,58 4 0,90 5 1,12 6 1,24 7 1,32 8 1,41 9 1, , , ,48
13 II , , ,59 Tabel 2.2 Nilai Indeks Random [8]. Untuk metode AHP, tingkat inkonsistensi yang masih dapat diterima adalah sebesar 10% ke bawah. Jadi jika nilai RK <= 0,1 (10%), maka hasil perbandingan preferensi konsisten dan sebaliknya jika RK > 0,1 (10%), maka hasil perbandingan preferensi tidak konsisten. Apabila tidak konsisten, maka terdapat 2 pilihan, yaitu mengulang perbandingan preferensi atau melakukan proses autokoreksi. 2.6 Technique For Order Preference By Similarity To Ideal Solution Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) adalah salah satu metode pengambilan keputusan multikriteria yang pertama kali diperkenalkan oleh Yonn dan Hwang pada tahun Ide dasar dari metode ini adalah bahwa alternatif yang dipilih memiliki jarak terdekat dengan solusi ideal dan yang terjauh dari solusi ideal negatif. TOPSIS memperhatikan jarak ke solusi ideal maupun jarak ke solusi ideal negatif dengan mengambil hubungan kedekatan menuju solusi ideal. Dengan melakukan perbandingan pada keduanya, urutan pilihan dapat ditentukan. Berikut ini adalah matriks keputusan C yang memiliki m alternatif dengan n kriteria, dimana x ij adalah pengukuran pilihan dari alternatif ke-i dalam hubungannya dengan kriteria ke-j C = M m m2 Langkah-langkah yang dilakukan dalam penyelesaian masalah menggunakan metode TOPSIS adalah sebagai berikut: 1. Normalisasi matriks keputusan 23 m3 Setiap elemen pada matriks C dinormalisasi untuk mendapatkan matriks normalisasi R. Setiap normalisasi dari nilai r ij dapat dilakukan dengan perhitungan sebagai berikut: n 2n mn
14 II-14 Dimana: r ij = matriks ternormalisasi [i][j] x ij = matriks keputusan [i][j] 2. Pembobotan pada matriks yang telah dinormalisasi Diberikan bobot W = (W 1, W 2,..., W n ), sehingga weighted normalised matrix V dapat dihasilkan sebagai berikut:...(4) Secara matematis, weighted normalised matrix ini dapat diperoleh dengan rumus berikut ini: Dimana: V ij = W j. r ij...(5) v i,j = matriks normalisasi terbobot [i][j] w j = vektor bobot [j] r ij = matriks ternormalisasi [i][j] 3. Menentukan solusi ideal positif dan solusi ideal negatif Solusi ideal positif dinotasikan dengan A + dan solusi ideal negatif dinotasikan dengan A -. Untuk lebih jelasnya, dapat dilihat dibawah ini: max,, 1,2,3,..,#$ % %, '...(6) ( min,+,, 1,2,3,..,#$ % %, '...(7) Dimana: J = {1, 2,..., n dan j berhubungan dengan benefit criteria} J = {1, 2,..., n dan j berhubungan dengan cost criteria} V j + = solusi ideal positif [j] V j - = solusi ideal negatif [j]...(3) Pembangunan A + dan A - adalah untuk mewakili alternatif yang most preferable ke solusi ideal dan yang least preferable secara berurutan.
15 II Menghitung Separation Measure Separation measure ini merupakan pengukuran jarak dari suatu alternatif ke solusi ideal positif dan solusi ideal negatif. Perhitungan matematisnya adalah sebagai berikut: 1. Rumus pengukuran jarak dari suatu alternatif ke solusi ideal positif S i + = n j= 1 + j 2 ( v i v ), untuk i=1,2,3,...,m... (8) j Dimana: S + i = jarak alternatif Ai dengan sokusi ideal positif V ij = matriks normalisasi terbobot[i][j] V + j = solusi ideal positif [j] 2. Rumus pengukuran jarak dari suatu alternatif ke solusi ideal negatif S i - = n j= 1 j 2 ( v i v ), untuk i=1,2,3,...,m... (9) j Dimana: S - i = jarak alternatif Ai dengan sokusi ideal negatif V ij = matriks normalisasi terbobot[i][j] V - j = solusi ideal negatif [j] 5. Menghitung kedekatan relatif dengan solusi ideal Kedekatan relatif dari alternatif A i dengan solusi ideal positif A + direpresentasikan dengan: C i + = S Si + i + S i, dimana 0 < C i + < 1 dan i = 1, 2, 3,..., m... (10) Dimana: Ci+ = kedekatan tiap alternatif terhadap solusi ideal positif Si+ = jarak alternatif Ai dengan sokusi ideal positif Si- = jarak alternatif Ai dengan sokusi ideal negatif + Dikatakan alternatif A i dekat dengan solusi ideal positif apabila C i mendekati 1. Jadi C + i =1 jika A i =A + dan C - i =0 jika A i = A - 6. Mengurutkan pilihan Pilihan akan diurutkan berdasarkan pada nilai C + i sehingga alternatif yang memiliki jarak terpendek dengan solusi ideal positif adalah alternatif yang
16 II-16 terbaik. Dengan kata lain, alternatif yang memiliki nilai C + i yang lebih besar itulah yang lebih dipilih. Jadi, dalam menangani masalah penentuan mahasiswa berprestasi yang akan dikirim ke suatu event, sistem ini menggunakan metode AHP dan TOPSIS. Secara garis besar, proses yang akan dilakukan oleh sistem untuk menangani masalah tersebut dapat dilihat pada blok diagram seperti Gambar 2.3. Gambar 2.3 Blok Diagram Proses Metode AHP dan TOPSIS [9] Secara lebih detail, proses untuk metode AHP dapat digambarkan seperti yang tampak pada Gambar 2.4. Gambar 2.4 Bagan Alir Proses Metode AHP [7] Untuk proses mencari vektor eigen pada metode AHP dapat digambarkan seperti yang tampak pada Gambar 2.5.
17 II-17 Mulai Menjumlahkan tiap baris dari hasil matriks perbandingan berpasangan Menghitung jumlah total tiap baris Menmbagi jumlah tiap baris dengan total dari jumlah tiap baris Mulai Gambar 2.5 Bagan Alir Proses Mencari Vektor Eigen Pada Metode AHP [7] Untuk proses cek/uji konsistensi pada metode AHP dapat digambarkan seperti yang tampak pada Gambar 2.6. Gambar 2.6 Bagan Alir Proses Uji/Cek Konsistensi Pada Metode AHP. Untuk proses autokoreksi pada metode AHP dapat digambarkan seperti yang tampak pada Gambar 2.7.
18 II-18 Gambar 2.7 Bagan Alir Proses Autokoreksi Pada Metode AHP [7] Setelah proses metode AHP dilakukan, hasil dari proses metode AHP yaitu vektor eigen yang konsisten akan dijadikan input pada proses metode TOPSIS. Untuk proses metode TOPSIS lebih detail dapat dilihat pada Gambar 2.8. n j= 1 n j= 1 ( v i v ) j j + j j ( v i v ) 2 2 S + S i i + S i Gambar 2.8 Bagan Alir Proses Metode TOPSIS [9]
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Konsep Dasar Sistem Suatu sistem pada dasarnya adalah sekolompok unsur yang erat hubungannya satu dengan yang lain, yang berfungsi bersama-sama untuk mencapai tujuan tertentu.
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Sistem Pendukung Keputusan Pada dasarnya Sistem Pendukung Keputusan ini merupakan pengembangan lebih lanjut dari sistem informasi manajemen terkomputerisasi yang dirancang sedemikian
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1 Sistem Pendukung Keputusan Sistem pendukung keputusan (decision support systems disingkat DSS) adalah bagian dari sistem informasi berbasis komputer (termasuk sistem berbasis
BAB II LANDASAN TEORI
7 BAB II LANDASAN TEORI 2.1. Kajian Literatur Berikut adalah beberapa penelitian serupa mengenai kualitas yang telah dilakukan dilakukan sebelumnya, yaitu: 1. Harwati (2013), yaitu: Model Pengukuran Kinerja
Bab II Analytic Hierarchy Process
Bab II Analytic Hierarchy Process 2.1. Pengertian Analytic Hierarchy Process (AHP) Metode AHP merupakan salah satu metode pengambilan keputusan yang menggunakan faktor-faktor logika, intuisi, pengalaman,
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1 Defenisi, Karakteristik dan Kriteria Jasa Kurir 2.1.1 Defenisi Jasa Kurir Jasa adalah sebagai aktivitas dari suatu hakikat yang tidak berwujud yang berinteraksi antara konsumen
MATERI PRAKTIKUM. Praktikum 1 Analytic Hierarchy Proses (AHP)
Praktikum 1 Analytic Hierarchy Proses (AHP) Definisi AHP (Analytic Hierarchy Process) merupakan suatu model pengambil keputusan yang dikembangkan oleh Thomas L. Saaty yang menguraikan masalah multifaktor
MATERI PRAKTIKUM. Praktikum 1 Analytic Hierarchy Proses (AHP)
Praktikum 1 Analytic Hierarchy Proses (AHP) Definisi AHP (Analytic Hierarchy Process) merupakan suatu model pengambil keputusan yang dikembangkan oleh Thomas L. Saaty yang menguraikan masalah multifaktor
BAB II LANDASAN TEORI. Menurut Pujawan dan Erawan (2010) memilih supplier merupakan
BAB II LANDASAN TEORI 2.1 Pemilihan Supplier Menurut Pujawan dan Erawan (2010) memilih supplier merupakan kegiatan strategis terutama apabila supplier tersebut memasok item yang kritis atau akan digunakan
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Dasar Teori 2.1.1 Sistem Pendukung Keputusan Pada dasarnya sistem pendukung keputusan merupakan pengembangan lebih lanjut dari sistem informasi manajemen terkomputerisasi. Sistem
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA A. Konsep Sistem Pendukung Keputusan 1. Pengertian Keputusan Davis mengemukakan, Keputusan adalah hasil pemecahan masalah yang dihadapinya dengan tegas. Suatu keputusan merupakan
ISSN VOL 15, NO 2, OKTOBER 2014
PENERAPAN METODE TOPSIS DAN AHP PADA SISTEM PENUNJANG KEPUTUSAN PENERIMAAN ANGGOTA BARU, STUDI KASUS: IKATAN MAHASISWA SISTEM INFORMASI STMIK MIKROSKIL MEDAN Gunawan 1, Fandi Halim 2, Wilson 3 Program
ANALYTICAL HIERARCHY PROCESS (AHP) Amalia, ST, MT
ANALYTICAL HIERARCHY PROCESS (AHP) Amalia, ST, MT Multi-Attribute Decision Making (MADM) Permasalahan untuk pencarian terhadap solusi terbaik dari sejumlah alternatif dapat dilakukan dengan beberapa teknik,
Strategi Pemilihan Sistem Operasi Untuk Personal Computer
Strategi Pemilihan Sistem Operasi Untuk Personal Computer Fitriyani STMIK Atma Luhur Pangkalpinang; Jl.Jend. Sudirman Selindung Lama - Pangkalpinang Jurusan Sistem Informasi, STMIK Atma Luhur Pangkalpinang
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan dibahas teori mengenai Sistem Pendukung Keputusan, penelitan lain yang berhubungan dengan sistem pendukung keputusan, Simple Additve Weighting (SAW), dan Weighted
BAB III TEORI HIERARKI ANALITIK. Proses Hierarki Analitik (PHA) atau Analytical Hierarchy Process (AHP)
BAB III TEORI HIERARKI ANALITIK 3.1 Pengertian Proses Hierarki Analitik Proses Hierarki Analitik (PHA) atau Analytical Hierarchy Process (AHP) pertama kali dikembangkan oleh Thomas Lorie Saaty dari Wharton
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Analytic Hierarchy Process (AHP) Sumber kerumitan masalah keputusan bukan hanya dikarenakan faktor ketidakpasatian atau ketidaksempurnaan informasi saja. Namun masih terdapat penyebab
SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN PERUMAHAN DENGAN METODE AHP (Analytical Hierarchy Process)
SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN PERUMAHAN DENGAN METODE AHP (Analytical Hierarchy Process) SKRIPSI Diajukan Untuk Memenuhi Sebagai Syarat Guna Memperoleh Gelar Sarjana Komputer (S.Kom)Pada Jurusan
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA A. Sistem Pendukung Keputusan 1. Pengertian Sistem Pendukung Keputusan Menurut Alter (dalam Kusrini, 2007), Sistem pendukung keputusan merupakan sistem informasi interaktif yang
SISTEM PENDUKUNG KEPUTUSAN PENJURUSAN SMA MENGGUNAKAN METODE AHP
SISTEM PENDUKUNG KEPUTUSAN PENJURUSAN SMA MENGGUNAKAN METODE AHP Fitriyani Jurusan Sistem Informasi, STMIK Atma Luhur Pangkalpinang Email : [email protected] ABSTRAK Sistem Pendukung Keputusan dirancang
PENERAPAN AHP SEBAGAI MODEL SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN RUMAH BERSALIN CONTOH KASUS KOTA PANGKALPINANG
PENERAPAN AHP SEBAGAI MODEL SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN RUMAH BERSALIN CONTOH KASUS KOTA PANGKALPINANG Fitriyani STMIK Atma Luhur Pangkalpinang Jl. Jend. Sudirman Selindung Pangkalpinang [email protected]
BAB 2 TINJAUAN PUSTAKA DAN LANDASAN TEORI
BAB 2 TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Penelitian Terkait Menurut penelitian terdahulu yang dilakukan oleh Dita Monita seorang mahasiswa program studi teknik informatika dari STMIK Budi Darma Medan
THEOREMA BAYES DALAM APLIKASI SISTEM PENDUKUNG KEPUTUSAN UNTUK PENYELESAIAN MASALAH
THEOREMA BAYES DALAM APLIKASI SISTEM PENDUKUNG KEPUTUSAN UNTUK PENYELESAIAN MASALAH Edi Faizal Program Studi Teknik Komputer STMIK EL RAHMA YOGYAKARTA Jl. Sisingamangaraja 76 Yogyakarta Abstract Decision
BAB 2 TINJAUAN TEORITIS
BAB 2 TINJAUAN TEORITIS 2.1 Sistem Pendukung Keputusan Sistem pendukung keputusan ( decision support systems disingkat DSS) adalah bagian dari sistem informasi berbasis computer termasuk sistem berbasis
Sistem Pendukung Keputusan Memilih Perguruan Tinggi Swasta di Palembang Sebagai Pilihan Tempat Kuliah
Sistem Pendukung Keputusan Memilih Perguruan Tinggi Swasta di Palembang Sebagai Pilihan Tempat Kuliah A Yani Ranius Fakultas Ilmu Komputer Universitas Bina Darma Palembang [email protected] Abstrak Sistem
BAB 2 TINJAUAN PUSTAKA Definisi Sistem, Keputusan dan Sistem Pendukung Keputusan
22 BAB 2 TINJAUAN PUSTAKA 2.1. Definisi Sistem, Keputusan dan Sistem Pendukung Keputusan 2.1.1. Definisi Sistem Sistem adalah kumpulan objek seperti orang, sumber daya, konsep dan prosedur yang dimaksudkan
BAB II LANDASAN TEORI. negara, atau instansi. Sedangkan transportasi adalah pengangkutan atau
BAB II LANDASAN TEORI 2.1. Konsep Jasa Transportasi (Angkutan) Jasa memiliki arti perbuatan yang berguna dan bernilai bagi orang lain, negara, atau instansi. Sedangkan transportasi adalah pengangkutan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Sistem Pendukung Keputusan (SPK) SPK adalah sebuah sistem komputer yang mengolah data menjadi informasi untuk mengambil keputusan dari masalah semi-terstruktur yang spesifik Sistem
Sistem Pendukung Keputusan Pemilihan Perumahan Methode AHP Dan GIS Statis Kota Medan Sebagai Salah Satu Kriteria Pemilihan
EKSPLORA INFORMATIKA 43 Sistem Pendukung Keputusan Pemilihan Perumahan Methode AHP Dan GIS Statis Kota Medan Sebagai Salah Satu Kriteria Pemilihan Yudi Fakultas Ilmu Komputer Program Studi Sistem Informasi
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2. Sistem Pendukung Keputusan (Decission Support System) 2.1 Konsep dasar sistem pendukung keputusan (DSS) Sistem Pendukung Keputusan (Decission Suport System) merupakan salah satu
APLIKASI AHP SEBAGAI MODEL SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN TEMPAT KULIAH DI BANGKA BELITUNG
APLIKASI AHP SEBAGAI MODEL SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN TEMPAT KULIAH DI BANGKA BELITUNG Fitriyani Jurusan Sistem Informasi, STMIK Atma Luhur Pangkalpinang Jl.Raya Selindung Baru Pangkalpinang
BAB II LANDASAN TEORI. keputusan atau biasa disebut Decision Support System (DSS) merupakan sistem
7 BAB II LANDASAN TEORI 2.1 Sistem Pendukung Keputusan (SPK) Menurut Alter dalam buku yang ditulis oleh Kusrini (2007), sistem pendukung keputusan atau biasa disebut Decision Support System (DSS) merupakan
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1. Sistem Pendukung Keputusan 2.1.1. Definisi Keputusan Keputusan (decision) yaitu pilihan dari dua atau lebih kemungkinan. Keputusan dapat dilihat pada kaitannya dengan proses,
SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN GURU BERPRESTASI BERDASARKAN KINERJA (STUDI KASUS : SMK Ma arif 1 Kalirejo)
SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN GURU BERPRESTASI BERDASARKAN KINERJA (STUDI KASUS : SMK Ma arif 1 Kalirejo) Jurusan Sistem Informasi STMIKPringsewu Lampung Jl. Wisma Rini No. 09 pringsewu Lampung
RANCANG BANGUN APLIKASI SISTEM PENDUKUNG KEPUTUSAN MENGGUNAKAN MODEL ANALYTICAL HIERARCHY PROCESS UNTUK PEMBERIAN BONUS KARYAWAN
RANCANG BANGUN APLIKASI SISTEM PENDUKUNG KEPUTUSAN MENGGUNAKAN MODEL ANALYTICAL HIERARCHY PROCESS UNTUK PEMBERIAN BONUS KARYAWAN Yosep Agus Pranoto Jurusan Teknik Informatika, Fakultas Teknologi Industri
IMPLEMENTASI SISTEM PENDUKUNG KEPUTUSAN PENERIMA BERAS UNTUK KELUARGA MISKIN ( RASKIN ) MENGGUNAKAN METODE AHP (ANALYTICAL HIERARCHY PROCESS) Ilyas
IMPLEMENTASI SISTEM PENDUKUNG KEPUTUSAN PENERIMA BERAS UNTUK KELUARGA MISKIN ( RASKIN ) MENGGUNAKAN METODE AHP (ANALYTICAL HIERARCHY PROCESS) Ilyas Program Studi Sistem Informasi, Fakultas Teknik dan Ilmu
BAB 2 LANDASAN TEORI. 2.1 Konsep Sistem Pendukung Keputusan (SPK)
BAB 2 LANDASAN TEORI 2.1 Konsep Sistem Pendukung Keputusan (SPK) Sistem pendukung keputusan merupakan sistem informasi interaktif yang menyediakan informasi, pemodelan, dan pemanipulasian data. Sistem
SISTEM INFORMASI PENDUKUNG KEPUTUSAN PADA SELEKSI PENERIMAAN PEGAWAI MENGGUNAKAN METODE ANALYTICAL HIERARCHY PROCESS
SISTEM INFORMASI PENDUKUNG KEPUTUSAN PADA SELEKSI PENERIMAAN PEGAWAI MENGGUNAKAN METODE ANALYTICAL HIERARCHY PROCESS (AHP) Oleh : Imam Husni A Abstrak - Penelitian ini mengembangankan Sistem Pendukung
ANALISIS DAN USULAN SOLUSI SISTEM UNTUK MENDUKUNG KEPUTUSAN PENILAIAN KINERJA DOSEN MENGGUNAKAN METODE ANALYTICAL HIERARCHY PROCESS (AHP)
ANALISIS DAN USULAN SOLUSI SISTEM UNTUK MENDUKUNG KEPUTUSAN PENILAIAN KINERJA DOSEN MENGGUNAKAN METODE ANALYTICAL HIERARCHY PROCESS (AHP) Petrus Wolo 1, Ernawati 2, Paulus Mudjihartono 3 Program Studi
BAB II TINJAUAN PUSTAKA
5 BAB II TINJAUAN PUSTAKA 2.1 Landasan Teori 2.1.1 Beasiswa PPA dan BBM Fakultas Teknik Universitas Negeri Gorontalo Beasiswa merupakan suatu bentuk penghargaan terhadap siswa maupun mahasiswa selama menjalani
SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN PERGURUAN TINGGI UNTUK SISWA YANG MELANJUTKAN KULIAH PADA SMA N 1 TEGAL
SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN PERGURUAN TINGGI UNTUK SISWA YANG MELANJUTKAN KULIAH PADA SMA N 1 TEGAL Asep Nurhidayat Jurusan Teknik Informatika, Fakultas Ilmu Komputer Universitas Dian Nuswantoro
PEMILIHAN GURU BERPRESTASI MENGGUNAKAN METODE AHP DAN TOPSIS
Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 14 Mei 2011 PEMILIHAN GURU BERPRESTASI MENGGUNAKAN METODE AHP DAN TOPSIS Juliyanti 1,
P11 AHP. A. Sidiq P.
P11 AHP A. Sidiq P. http://sidiq.mercubuana-yogya.ac.id Program Studi Teknik Informatika Fakultas Teknologi Informasi Universitas Mercu Buana Yogyakarta Tujuan Mahasiswa dapat memahami dan menjelaskan
SISTEM INFORMASI PENDUKUNG KEPUTUSAN
Mk. Penerapan Komputer Dosen : Toto Haryanto, S.Kom, M.Si Tugas ke-1 Hari/tanggal : Senin, 7 November 2011 Tempat: Ruang B1 D SISTEM INFORMASI PENDUKUNG KEPUTUSAN Kelompok 2 Oleh: Defi Syukria Cahyaningrum
SISTEM PENUNJANG KEPUTUSAN PENERIMAAN BEASISWA MENGGUNAKAN METODE ANALYTICAL HIERARCHY PROCESS (STUDI KASUS PENERIMAAN BEASISWA DI SMAN2 METRO)
SISTEM PENUNJANG KEPUTUSAN PENERIMAAN BEASISWA MENGGUNAKAN METODE ANALYTICAL HIERARCHY PROCESS (STUDI KASUS PENERIMAAN BEASISWA DI SMAN2 METRO) Aulia Vitari dan Muhammad Said Hasibuan Magister Teknologi
BAB 2 LANDASAN TEORI Sistem Pendukung Keputusan Pengertian Keputusan. Universitas Sumatera Utara
6 BAB 3: ANALISIS DAN PERANCANGAN SISTEM Bab ini menjabarkan tentang tujuan dari perancangan sistem, kriteria dan pilihan kesimpulan dalam menentukan pemilihan pegawai terbaik. Selain itu juga tahapan
Sesi XIII AHP (Analytical Hierarchy Process)
Mata Kuliah :: Riset Operasi Kode MK : TKS 4019 Pengampu : Achfas Zacoeb Sesi XIII AHP (Analytical Hierarchy Process) e-mail : [email protected] www.zacoeb.lecture.ub.ac.id Hp. 081233978339 Pendahuluan AHP
PENENTUAN DALAM PEMILIHAN JASA PENGIRIMAN BARANG TRANSAKSI E-COMMERCE ONLINE
PENENTUAN DALAM PEMILIHAN JASA PENGIRIMAN BARANG TRANSAKSI E-COMMERCE ONLINE Nunu Kustian Program Studi Teknik Informatika, Fakultas Teknik, Matematika dan IPA Email: [email protected] ABSTRAK Kebutuhan
BAB 2 LANDASAN TEORI
19 BAB 2 LANDASAN TEORI 2.1 Analytic Hierarchy Process (AHP) Metode Analytic Hierarchy Process (AHP) dikembangkan oleh Thomas L. Saaty pada tahun 70 an ketika di Warston school. Metode AHP merupakan salah
BAB II LANDASAN TEORI 2.1 PASKIBRAKA
BAB II LANDASAN TEORI 2.1 PASKIBRAKA Pasukan Pengibar Bendera Pusaka atau yang lebih sering dikenal dengan PASKIBRAKA, merupakan suatu pasukan yang bertugas dalam mengibarkan duplikat bendera pusaka dalam
Pemodelan Sistem Penunjang Keputusan (DSS) Dengan Analytic Hierarchical Proces (AHP).
Pemodelan Sistem Penunjang Keputusan (DSS) Dengan Analytic Hierarchical Proces (AHP). Pengembangan Pendekatan SPK Pengembangan SPK membutuhkan pendekatan yg unik. Pengembangan SPK Terdapat 3 (tiga) pendekatan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Konsep Dasar Sistem Menurut Jogiyanto (2001), sistem adalah jaringan kerja dari prosedur - prosedur yang saling berhubungan, berkumpul bersama-sama untuk melakukan suatu kegiatan
BAB 2 LANDASAN TEORI Analytial Hierarchy Process (AHP) Pengertian Analytical Hierarchy Process (AHP)
BAB 2 LANDASAN TEORI 2 1 Analytial Hierarchy Process (AHP) 2 1 1 Pengertian Analytical Hierarchy Process (AHP) Metode AHP merupakan salah satu metode pengambilan keputusan yang menggunakan faktor-faktor
ANALYTICAL HIERARCHY PROCESS SEBAGAI PENDUKUNG KEPUTUSAN (DECISION SUPPORT) PEMILIHAN LOKASI PEMBANGUNAN RUMAH KOS UNTUK KARYAWAN
Jurnal Informatika Mulawarman Vol. 7 No. 3 Edisi September 2012 75 ANALYTICAL HIERARCHY PROCESS SEBAGAI PENDUKUNG KEPUTUSAN (DECISION SUPPORT) PEMILIHAN LOKASI PEMBANGUNAN RUMAH KOS UNTUK KARYAWAN Dyna
SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN PESERTA KAPAL PEMUDA NUSANTARA DENGAN MENGGUNAKAN METODE WEIGHTED PRODUCT (WP)
SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN PESERTA KAPAL PEMUDA NUSANTARA DENGAN MENGGUNAKAN METODE WEIGHTED PRODUCT (WP) Noprin Pakaya 1 dan Amiruddin 2 1 [email protected], 2 [email protected] 1,2
KOMBINASI METODE AHP DAN TOPSIS PADA SISTEM PENDUKUNG KEPUTUSAN
KOMBINASI METODE AHP DAN TOPSIS PADA SISTEM PENDUKUNG KEPUTUSAN Ahmad Abdul Chamid 1*, Alif Catur Murti 1 1 Program Studi Teknik Informatika, Fakultas Teknik, Universitas Muria Kudus Gondangmanis, PO Box
PENERAPAN METODE ANP DALAM MELAKUKAN PENILAIAN KINERJA KEPALA BAGIAN PRODUKSI (STUDI KASUS : PT. MAS PUTIH BELITUNG)
PENERAPAN METODE ANP DALAM MELAKUKAN PENILAIAN KINERJA KEPALA BAGIAN PRODUKSI (STUDI KASUS : PT. MAS PUTIH BELITUNG) Frans Ikorasaki 1 1,2 Sistem Informasi, Tehnik dan Ilmu Komputer, Universitas Potensi
SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN DUTA MAHASISWA GENERASI BERENCANA BKKBN DENGAN METODE WEIGHTED PRODUCT (WP)
SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN DUTA MAHASISWA GENERASI BERENCANA BKKBN DENGAN METODE WEIGHTED PRODUCT (WP) Nurhayati Mursalin 1 dan Rezqiwati Ishak 2 1 [email protected], 2 [email protected]
BAB III ANP DAN TOPSIS
BAB III ANP DAN TOPSIS 3.1 Analytic Network Process (ANP) Analytic Network Process atau ANP adalah teori matematis yang memungkinkan seorang pengambil keputusan menghadapi faktor-faktor yang saling berhubungan
Jurnal SCRIPT Vol. 3 No. 1 Desember 2015
PENERAPAN METODE ANALYTICAL HIERARCHY PROCESS ( AHP ) PADA SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN MAHASISWA BERPRESTASI MENGGUNAKAN FRAMEWORK LARAVEL (STUDI KASUS : INSTITUT SAINS & TEKNOLOGI AKPRIND YOGYAKARTA)
Sistem pendukung keputusan pemilihan program studi pada perguruan tinggi melalui jalur SNMPTN pada SMA N 16 Semarang
Sistem pendukung keputusan pemilihan program studi pada perguruan tinggi melalui jalur SNMPTN pada SMA N 16 Semarang Nufus Wirastama Strata satu Sistem Imformasi Universitas Dian Nuswantoro ABSTRAK Sistem
BAB III METODE FUZZY ANP DAN TOPSIS
BAB III METODE FUZZY ANP DAN TOPSIS 3.1 Penggunaan Konsep Fuzzy Apabila skala penilaian menggunakan variabel linguistik maka harus dilakukan proses pengubahan variabel linguistik ke dalam bilangan fuzzy.
SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN BARANG ELEKTRONIK BERBASIS WEB DENGAN METODE TOPSIS
1 SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN BARANG ELEKTRONIK BERBASIS WEB DENGAN METODE TOPSIS Muhammad Ulil Abror, Program Studi Teknik Informatika, S1, Fakultas Ilmu Komputer, Universitas Dian Nuswantoro,
TEKNOSI, Vol. 02, No. 02, Agustus
TEKNOSI, Vol. 02, No. 02, Agustus 2016 109 Sistem Pendukung Keputusan Pemilihan Mahasiswa Berprestasi di STMIK Atma Luhur Pangkalpinang dengan Menggunakan Metode Analytical Hierarchy Process (AHP) Fitriyani
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Sistem Pendukung Keputusan [4] Sistem pendukung keputusan atau DSS (Decision Support System) merupakan sistem informasi interaktif yang menyediakan informasi, pemodelan, dan pemanipulasian
BAB 2 LANDASAN TEORI
20 BAB 2 LANDASAN TEORI Mengambil sebuah keputusan tidak pernah lepas dari kehidupan setiap orang, setiap detik dari hidupnya hampir selalu membuat keputusan dari keputusan yang sederhana hingga keputusan
BAB II TINJAUAN PUSTAKA Sistem Pendukung Keputusan
BAB II TINJAUAN PUSTAKA 2.1. Sistem Pendukung Keputusan Sistem pendukung keputusan adalah sebuah sistem yang efektif dalam membantu mengambil suatu keputusan yang kompleks, sistem ini menggunakan aturan
SISTEM PENDUKUNG KEPUTUSAN PENYELEKSIAN CALON SISWA BARU DI SMA NEGERI 3 GARUT
SISTEM PENDUKUNG KEPUTUSAN PENYELEKSIAN CALON SISWA BARU DI SMA NEGERI 3 GARUT Asep Hendar Rustiawan 1, Dini Destiani 2, Andri Ikhwana 3 Jurnal Algoritma Sekolah Tinggi Teknologi Garut Jl. Mayor Syamsu
SISTEM PENDUKUNG KEPUTUSAN MENEJMEN KARIR PEGAWAI. (Studi Kasus STMIK Pringsewu) Mailasari. Jurusan sistem informasi, STMIK PRINGSEWU
1 SISTEM PENDUKUNG KEPUTUSAN MENEJMEN KARIR PEGAWAI (Studi Kasus STMIK Pringsewu) Mailasari Jurusan sistem informasi, STMIK PRINGSEWU E-mail:[email protected] Abstrak Dalam penentuan pegawai dan Dosen
SISTEM PENDUKUNG KEPUTUSAN SELEKSI PENERIMA BEASISWA PADA SMA 1 BOJA DENGAN MENGGUNAKAN METODE ANALYTICAL HIERARCHY PROCESS (AHP)
SISTEM PENDUKUNG KEPUTUSAN SELEKSI PENERIMA BEASISWA PADA SMA 1 BOJA DENGAN MENGGUNAKAN METODE ANALYTICAL HIERARCHY PROCESS (AHP) Bagas Dista Ariyadi Jurusan Sistem Informasi, Fakultas Ilmu Komputer, Universitas
SISTEM PENDUKUNG KEPUTUSAN PENGENAL MINAT SISWA PADA BIDANG EKSTRAKULIKULER SEKOLAH DENGAN METODE TOPSIS
SISTEM PENDUKUNG KEPUTUSAN PENGENAL MINAT SISWA PADA BIDANG EKSTRAKULIKULER SEKOLAH DENGAN METODE TOPSIS Zufrianto Wibowo (0911180) Mahasiswa Program Studi Teknik Informatika STMIK Budi Darma Medan Jl.
SISTEM PENDUKUNG KEPUTUSAN PENERIMA BEASISWA PERGURUAN TINNGI NEGERI SINAR MAS DENGAN METODE TOPSIS (STUDI KASUS: SMK NEGERI 1 GALANG)
Volume : IV, Nomor :, September 04 ISSN : 9-0X SISTEM PENDUKUNG KEPUTUSAN PENERIMA BEASISWA PERGURUAN TINNGI NEGERI SINAR MAS DENGAN METODE TOPSIS (STUDI KASUS: SMK NEGERI GALANG) Helen Yenifer Silvia
Techno.COM, Vol. 12, No. 4, November 2013:
Techno.COM, Vol. 12, No. 4, November 2013: 223-230 MODEL ANALYTICAL HIERARCHY PROCESS UNTUK SISTEM PENDUKUNG KEPUTUSAN PENILAIAN KARYAWAN PADA INSTANSI KESATUAN BANGSA POLITIK DAN PELINDUNGAN MASYARAKAT
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1. MCDM (Multiple Criteria Decision Making) Multi-Criteria Decision Making (MCDM) adalah suatu metode pengambilan keputusan untuk menetapkan alternatif terbaik dari sejumlah alternatif
JURNAL. SISTEM PENDUKUNG KEPUTUSAN KENAIKAN JABATAN PADA PT BANK CENTRAL ASIA Tbk. (BCA) MENGGUNAKAN METODE ANALITYC HEARARCHY PROCESS
JURNAL SISTEM PENDUKUNG KEPUTUSAN KENAIKAN JABATAN PADA PT BANK CENTRAL ASIA Tbk. (BCA) MENGGUNAKAN METODE ANALITYC HEARARCHY PROCESS V.M.Eduardo Christian S A11.2008.03931 Teknik Informatika Udinus TEKNIK
Pertemuan 5. Pemodelan Sistem Penunjang Keputusan (DSS) Dengan Analytic Hierarchical Proces (AHP).
Pertemuan 5 Pemodelan Sistem Penunjang Keputusan (DSS) Dengan Analytic Hierarchical Proces (AHP). Pengembangan Pendekatan SPK (II) Pengembangan Pendekatan SPK (II) Pengembangan SPK membutuhkan pendekatan
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN A. Objek Penelitian Penelitian ini dilakukan di daerah Kabupaten Sleman, yang merupakan salah satu Kabupaten yang berada di Provinsi Daerah Istimewa Yogyakarta. Penelitian dilakukan
IMPLEMENTASI SISTEM REKOMENDASIAN PENERIMAAN BEASISWA DENGAN MENGGUNAKAN FMADM
IMPLEMENTASI SISTEM REKOMENDASIAN PENERIMAAN BEASISWA DENGAN MENGGUNAKAN FMADM Anis Yusrotun Nadhiroh Jurusan Teknik Informatika - STT Nurul Jadid Paiton [email protected] ABSTRAK Sesuai dengan peraturan
BAB II LANDASAN TEORI. pengambilan keputusan baik yang maha penting maupun yang sepele.
BAB II LANDASAN TEORI 2.1 Manusia dan Pengambilan Keputusan Setiap detik, setiap saat, manusia selalu dihadapkan dengan masalah pengambilan keputusan baik yang maha penting maupun yang sepele. Bagaimanapun
IMPLEMENTASI ANALYTIC HIERARCHY PROCESS DALAM PENENTUAN PRIORITAS KONSUMEN PENERIMA KREDIT. Sahat Sonang S, M.Kom (Politeknik Bisnis Indonesia)
IMPLEMENTASI ANALYTIC HIERARCHY PROCESS DALAM PENENTUAN PRIORITAS KONSUMEN PENERIMA KREDIT Sahat Sonang S, M.Kom (Politeknik Bisnis Indonesia) ABSTRAK Sistem pengambilan keputusan adalah sistem yang membantu
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1 Keputusan dan Pengambilan Keputusan 2.1.1 Definisi James A.F.Stoner mendefinisikan keputusan sebagai pemilihan diantara alternatifalternatif. Definisi lainnya yaitu menurut Prof.
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Sistem Pendukung Keputusan (SPK) Pada dasarnya SPK merupakan pengembangan lebih lanjut dari Sistem Informasi Manajemen terkomputerisasi yang dirancang sedemikian rupa sehingga
APLIKASI ANALYTICAL HIERARCHY PROCESS (AHP) PADA PEMILIHAN SOFTWARE MANAJEMEN PROYEK
APLIKASI ANALYTICAL HIERARCHY PROCESS (AHP) PADA PEMILIHAN SOFTWARE MANAJEMEN PROYEK Siti Komsiyah Mathematics Department, School of Computer Science, Binus University Jl. K.H. Syahdan No. 9, Palmerah,
SISTEM PENDUKUNG KEPUTUSAN UNTUK PEMILIHAN PERGURUAN TINGGI KOMPUTER SWASTA
SISTEM PENDUKUNG KEPUTUSAN UNTUK PEMILIHAN PERGURUAN TINGGI KOMPUTER SWASTA Yuli Astuti 1, M. Suyanto 2, Kusrini 3 Mahasiswa 1, Pembimbing 1 2, Pembimbing 2 3 Program Studi Magister Informatika STMIK AMIKOM
METODE PENELITIAN. Kabupaten Sukabumi, Provinsi Jawa Barat. Pemilihan lokasi dilakukan secara
IV. METODE PENELITIAN 4.1. Lokasi dan Waktu Penelitian Penelitian ini dilakukan di daerah sepanjang jalan Cicurug-Parungkuda, Kabupaten Sukabumi, Provinsi Jawa Barat. Pemilihan lokasi dilakukan secara
PENENTUAN PEMINATAN PESERTA DIDIK MENGGUNAKAN METODE AHP-TOPSIS (STUDI KASUS SMA NEGERI 6 SEMARANG)
PENENTUAN PEMINATAN PESERTA DIDIK MENGGUNAKAN METODE AHP-TOPSIS (STUDI KASUS SMA NEGERI 6 SEMARANG) Rahmawan Bagus Trianto 1 1 Teknik Informatika Universitas Dian Nuswantoro Semarang E-mail : [email protected]
SISTEM PENDUKUNG KEPUTUSAN UNTUK INVESTASI PROPERTI
SISTEM PENDUKUNG KEPUTUSAN UNTUK INVESTASI PROPERTI 1 Nur aini Abstaksi Dalam penentuan investasi properti oleh Investor terdapat beberapa faktor yang menjadi penilaian, misal kerawanan kejahatan, gangguan
SISTEM PENUNJANG KEPUTUSAN PENERIMAAN BEASISWA MENGGUNAKAN METODE ANALYTICAL HIERARCHY PROCESS (STUDI KASUS PENERIMAAN BEASISWA DI SMP N 5 PRINGSEWU)
SISTEM PENUNJANG KEPUTUSAN PENERIMAAN BEASISWA MENGGUNAKAN METODE ANALYTICAL HIERARCHY PROCESS (STUDI KASUS PENERIMAAN BEASISWA DI SMP N 5 PRINGSEWU) Jumirin, Sudewi STMIK Pringsewu Jl. Wisma Rini No.
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Bab ini menjelaskan mengenai metode Analytic Hierarchy Process (AHP) sebagai metode yang digunakan untuk memilih obat terbaik dalam penelitian ini. Disini juga dijelaskan prosedur
Sistem Pendukung Keputusan Penentuan Gaji Bonus Karyawan Pada Restoran KL Express Dengan Metode TOPSIS
Jurnal Ilmiah Teknologi dan Informasi ASIA (JITIKA) Vol.11, No.1, Februari 2017 ISSN: 0852-730X Sistem Pendukung Keputusan Penentuan Gaji Bonus Karyawan Pada Restoran KL Express Dengan Metode TOPSIS Dwija
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1 Sistem Pendukung Keputusan Keputusan adalah suatu pengakhiran daripada proses pemikiran tentang suatu masalah atau problema untuk menjawab pertanyaan apa yang harus diperbuat
SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN PERUMAHAN DENGAN METODE ANALYTICAL HIERARCHY PROCESS
ISSN : 2338-4018 SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN PERUMAHAN DENGAN METODE ANALYTICAL HIERARCHY PROCESS Ambar Widayanti ([email protected]) Muhammad Hasbi ([email protected]) Teguh Susyanto ([email protected])
SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN MAKANAN PADA BAYI LIMA TAHUN (BALITA) DENGAN MENGGUNAKAN METODE ANALYTICAL HIERARCHY PROCESS (AHP)
SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN MAKANAN PADA BAYI LIMA TAHUN (BALITA) DENGAN MENGGUNAKAN METODE ANALYTICAL HIERARCHY PROCESS (AHP) Rudiansyah Mahasiswa Program Studi Teknik Informatika, STMIK Budidarma
Pemanfaatan Analytical Hierarchy Process(AHP) sebagai Model Sistem Pendukung Keputusan Seleksi Penerimaan Karyawan
Pemanfaatan Analytical Hierarchy Process(AHP) sebagai Model Sistem Pendukung Keputusan Seleksi Penerimaan Karyawan Kusrini dan Ester Sulistyawati STMIK AMIKOM Yogyakarta Jl.Ringroad Utara Condong Catur,
