PENGONTROL BEBAN ELEKTRONIK PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENGONTROL BEBAN ELEKTRONIK PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO"

Transkripsi

1 PENGONTROL BEBAN ELEKTRONIK PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO Achmad Hasan P3 Teknologi Konversi dan Konservasi Energi Deputi Teknologi Informasi, Energi, Material dan Lingkungan Badan Pengkajian dan Penerapan Teknologi ABSTRACT The using of Electronic Load Controller (ELC) to replace governor in Microhydro Power Plant (PLTM) can hopefully manage the enormous changing of load by giving a quick system response and lower price than governor. Because of providing power for electricity require high cost and the geographic condition of Indonesia also the unbalance spread of load, so the PLTM is the most economic energy resource. PLTM is the right plant for providing energy especially for remote area with a low load crowd and far from PLN network. Keywords : Turbine, generator, governor, ELC, microhydro, power, complement load, consumer load. 1. PENDAHULUAN Selama ini ada semacam konsensus bahwa pembangunan Pembangkit Listrik Tenaga Mikrohidro (PLTM) harus mempunyai dampak ganda, baik untuk meningkatkan penyediaan dan pemerataan energi khususnya di daerah perdesaan maupun menjadikan wahana guna meningkatkan kemampuan industri dalam negeri untuk menangani pembangunan PLTM mulai dari tahap studi kelayakan, perencanaan, pembuatan mesin dan peralatan, sampai pemasangannya. Selain itu pola pengembangan PLTM diselaraskan dengan tingkat keberadaan yang berupa teknologi tepat guna di perdesaan. Teknologi perdesaan dalam pengembangan irigasi rakyat hampir sama polanya dengan pembangunan PLTM, hanya perlu penyempurnaan karena tenaga listrik tidak mengenal musim. PLTM itu sendiri merupakan teknologi madya yang sudah diaplikasikan sejak dahulu dan diharapkan mempunyai dampak positip terhadap kreatifitas Pengontrol Beban Elektronika Pada Pembangkit Listrik Tenaga Mikrohidro 45

2 dan dinamisme masyarakat pada pola hidup dalam rangka peningkatan kesejahteraan masyarakat perdesaan. Seperti diketahui bahwa governor pada PLTM merupakan peralatan pengatur jumlah air yang masuk ke dalam turbin agar tenaga air yang masuk turbin sesuai dengan daya listrik yang dikeluarkan oleh pembangkit hingga putaran akan konstan. Penggunaan governor tersebut kurang menguntungkan bila ditinjau secara ekonomis, karena harganya hampir sama bahkan melebihi harga turbin generator. Para produsen di dalam negeri masih belum sanggup bersaing dengan produksi luar negeri, baik dari segi kualitas maupun harganya. Untuk itu perlunya dibuat disain Electronic Load Controller (ELC) sebagai pengontrol beban komplemen pada PLTM dengan kapasitas sesuai yang dibutuhkan di lapangan. 2. PEMBANGKIT LISTRIK TENAGA MIKROHIDRO (PLTM) 2.1. Komponen PLTM Pada umumnya PLTM mempunyai tiga komponen utama yang masing-masing fungsinya sangat menentukan, yaitu : turbin air, generator, dan governor (ELC). Pada pembangkit, pengendalian putaran dimaksudkan untuk mengendalikan putaran (frekuensi) generator sehingga pengendalian putaran dalam hal ini diutamakan berfungsi sebagai pengendali frekuensi generator. Perubahan putaran (frekuensi) generator dapat disebabkan karena adanya perubahan daya penggerak. Jika daya air yang masuk ke turbin dibuat selalu tetap sehingga daya penggerak turbin selalu tetap, maka frekuensi dan respon generator akan menjadi fungsi dari beban. Agar frekuensi yang dihasilkan oleh generator besarnya selalu tetap, maka besar beban dari generator harus selalu tetap. Untuk itu diperlukan beban tiruan yang besar bebannya dapat diatur sesuai dengan pengurangan beban dari PLTM. Beban tiruan ini disebut beban komplemen. Pada suatu kondisi beban tertentu (misal pada beban sebesar 75% beban 46 Pengontrol Beban Elektronika Pada Pembangkit Listrik Tenaga Mikrohidro

3 penuh), daya air yang masuk ke turbin diatur sehingga diperoleh putaran generator yang dikehendaki. Jika pada beban konsumen terjadi penurunan beban sebesar I, maka beban komplemen akan dilewati arus yang rata-ratanya akan sebesar penurunan arus akibat turunnya beban konsumen ( I). Dengan demikian generator akan dibebani dengan total beban yang selalu konstan. Diagram blok dari uraian tersebut seperti ditunjukkan pada Gambar 1. GENERATOR I I I BEBAN KONSUMEN I BEBAN KOMPLEMEN Gambar 1. Diagram blok pembagian daya beban komplemen Oleh karena daya yang masuk ke turbin dibuat tetap dan beban yang dirasakan oleh generator juga selalu tetap, maka putaran generator senantiasa juga tetap. Dengan kata lain, jika debit air konstan maka generator harus dibebani dengan daya konstan agar putaran generator selalu tetap. Oleh karena beban konsumen tidak selalu konstan, maka untuk menjaga kestabilan putaran turbin generator diperlukan beban komplemen yang besarnya diatur oleh ELC sedemikian rupa sehingga : Beban Konsumen + Beban Komplemen = Kapasitas Nominal Generator Formula tersebut berlaku untuk setiap kondisi beban konsumen. Adapun daya yang tersedia pada terminal generator dapat dinyatakan dengan persamaan berikut : Pengontrol Beban Elektronika Pada Pembangkit Listrik Tenaga Mikrohidro 47

4 ρ Q H Q output (kw) = η h.η m.η g 0, Q H = η overall 0, = 9,8 Q H η overall Power P H n Hea Water flow Gambar 2. Grafik aplikasi lapangan untuk berbagai jenis turbin 48 Pengontrol Beban Elektronika Pada Pembangkit Listrik Tenaga Mikrohidro

5 di mana : Q = Debit air, (m 3 /detik) H = Head, (m) η h = Efisiensi hidrolik penggerak mula (turbin air), (%) η m = Efisiensi mekanik, (%) η g = Efisiensi generator, (%) η overall = Efisiensi turbin-generator, (%) ρ = Massa jenis air, (kg/m 3 ) Dari persamaan output generator tampak bahwa debit air berbanding terbalik dengan head, artinya jika debit airnya besar maka sudah tentu headnya rendah. Demikian pula sebaliknya, jika debit airnya besar maka headnya tinggi. Berdasarkan grafik aplikasi lapangan untuk berbagai jenis turbin, seperti yang diperlihatkan pada Gambar 2, maka untuk power rating P = 50 kva, diperoleh data sebagai berikut : Jenis turbin yang dapat dipakai adalah Cross Flow Turbine Q maks = 3,5 m 3 /detik untuk H min = 2 m Q min = 0,2 m 3 /detik untuk H maks = 35 m Dengan kata lain, persyaratan debit air yang memenuhi adalah berada dalam range antara 3,5 m 3 /detik untuk head antara 2 m hingga 35 m Sistem Kontrol Electronic Load Controller (ELC) Pengaturan putaran generator mikrohidro dengan beban komplemen menggunakan sakelar elektronik yang terdiri atas tiga bagian utama, yaitu : Sensor Arus dan Rangkaian Kontrol Alat ini berfungsi untuk mendeteksi perubahan arus beban yang dihasilkan oleh generator sebagai akibat adanya perubahan arus Pengontrol Beban Elektronika Pada Pembangkit Listrik Tenaga Mikrohidro 49

6 pada beban konsumen yang kemudian akan dibandingkan dengan harga referensi yang telah ditentukan. Selanjutnya rangkaian kontrol akan memberikan aksi atas perubahan tersebut dengan memberikan trigger pada SCR sesuai dengan perubahan yang terjadi. Sakelar Elektronik (SCR) Digunakannya SCR karena dengan mengguna-kan arus pengontrol yang kecil dapat men switch arus yang jauh lebih besar. SCR berfungsi sebagai pemutus dan penghantar arus ke beban komplemen yang pengoperasiannya diatur oleh modul kontrol berdasarkan perubahan yang terjadi. Penghantaran dan pemutusan arus dapat dilakukan dengan cara mengatur sudut penyalaan. Modul kontrol yang digunakan adalah modul kontrol yang mendeteksi perubahan arus dan mengubahnya menjadi tegangan, kemudian mengaktifkan gate SCR dengan perubahan arus yang terjadi. Beban Komplemen Beban komplemen digunakan sebagai tempat pengalihan daya dari perubahan yang terjadi pada beban sebenarnya dengan tujuan untuk menjaga agar putaran generator tetap konstan meskipun terjadi perubahan arus pada beban sebenarnya. Beban konsumen pada PLTM sebagian besar berupa beban penerangan untuk kebutuhan rumah tangga. Karenanya penyaluran daya yang dibutuhkan adalah per fasa, sehingga akan terjadi ketidakseimbangan daya. Sensor arus pada setiap fasa pada beban komplemen akan memberikan beban yang tetap konstan dan seimbang. PLTM akan mengalirkan arus ke beban konsumen pada setiap fasa melalui trafo arus sebagai sensor arus dari panel kontrol beban komplemen. Arus sensor ini berperan sebagai input pada rangkaian kontrol. Besar arus 50 Pengontrol Beban Elektronika Pada Pembangkit Listrik Tenaga Mikrohidro

7 sensor senantiasa sebanding dengan besar arus beban konsumen atau arus total generator pada setiap fasa. Fungsi arus sensor diubah dari yang semula fungsi arus menjadi fungsi tegangan, kemudian masuk ke rangkaian konverter. Di sini bentuk tegangan diubah menjadi tegangan searah sinus setengah gelombang. Oleh rangkaian operational amplifier (Op-Amp), bentuk tegangan ini akan diubah menjadi gelombang segitiga, dan selanjutnya akan dibandingkan dengan gelombang gigi gergaji yang nilainya konstan. Gelombang gigi gergaji dan gelombang segitiga mempunyai prioda yang sama, karena keduanya berasal dari sumber jala-jala yang sama dengan frekuensi 50 Hz. Besar tegangan gelombang segitiga akan dipengaruhi oleh perbandingan besar arus sensor dan tegangan referensi pada rangkaian setting kapasitas. Hasil perbandingan ini akan menentukan apakah outputnya berupa pulsa lebar ataukah pulsa sempit. Selanjutnya output tersebut akan masuk ke rangkaian logik bersama dengan pulsa cacah yang dihasilkan oleh rangkaian osilator konstan. Output rangkaian logik akan menginjeksi trafo pulsa melalui rangkaian darlington. Output trafo pulsa akan memberikan sudut kelambatan pernyalaan pada pulsa dua buah SCR yang dipasang anti paralel. Sudut kelambatan pernyataan ini akan dipengaruhi oleh perubahan beban. Jika beban konsumen besar, maka sudut kelambatan pernyalaan akan membesar pula. Hal ini akan menyebabkan konduktifitas pada SCR mengecil sehingga daya yang disalurkan ke beban komplemen juga kecil. Demikian pula sebaliknya, sehingga total beban akan tetap konstan. Diagram blok satu garis sistem kontrol ELC mikrohidro 50 kva seperti ditunjukkan pada Gambar 3. Pengontrol Beban Elektronika Pada Pembangkit Listrik Tenaga Mikrohidro 51

8 Gambar 3. Diagram blok satu garis sistem kontrol ELC mikrohidro 50 kva 2.3. SPESIFIKASI TEKNIS ELC Tabel 1. Spesifikasi teknis ELC mikrohidro 50 kva NO. U R A I A N KETERANGAN Tegangan Input Tegangan Output Jumlah Fasa Frekuensi Kapasitas Arus Output Maksimum Beban Komplemen Tahanan Beban Komplemen Sistem Kompensasi Beban Temperatur Kerja (ruang) Maksimum Box Panel : Tipe Tinggi Lebar Tebal Berat 220 / 380 Volt 220 / 380 Volt 3 50 Hz 50 kva 70 Amp / Fasa Resistif 3 Ohm / Fasa Linier 40 0 C Indoor, Wall Mounted 770 mm 654 mm 330 mm 60 kg 52 Pengontrol Beban Elektronika Pada Pembangkit Listrik Tenaga Mikrohidro

9 3. PEMBAHASAN 3.1. Analisis Rangkaian Analisis rangkaian kontrol ELC mikrohidro 50 kva ini mengacu pada Gambar 4. Untuk rangkaian sensor arus dan rangkaian kontrol diklasifikasikan atas beberapa bagian yang tergabung dalam satu modul, yaitu : Rangkaian catu kontrol Rangkaian referensi fasa yang dideteksi Rangkaian osilator Rangkaian deteksi perubahan arus Rangkaian integrasi Rangkaian trigger (kontrol) Rangkaian catu daya Gambar 4. Rangkaian kontrol linier ELC mikrohidro 50 kva Pengontrol Beban Elektronika Pada Pembangkit Listrik Tenaga Mikrohidro 53

10 Tegangan AC 220V, 50Hz dari generator PLTM diturunkan dengan bantuan trafo step down (T2) hingga menjadi 12V sebagai catu daya dan regerensi fasa. Tegangan tersebut disearahkan oleh dioda bridge untuk selanjutnya disalurkan ke IC LM324 sebagai referensi fasa yang dideteksi. Kemudian tegangan tersebut disalurkan ke regulator LM7812CK yang berfungsi mengatur tegangan agar tetap konstan sebesar 12V, selanjutnya dihubungkan ke pin 4 (reset) dan pin 8 (Vcc) IC LM555 (sebagai generator pulsa). Frekuensi gelombang tegangan generator sinusoida akan masuk ke pin 3 IC LM324 (U1A), di mana pada output pin 2 gelombangnya berbentuk pulsa persegi. Pulsa ini akan diumpan balik (feedback) ke IC LM555 (U4) melalui pin 7 (discharge), pin 6 (threshold), pin 2 (trigger), sebagai osilator input untuk memperoleh osilator output dengan frekuensi konstan. Output pin 2 pada IC LM555 (U4) tersebut terhubung dengan pin 5 pada IC LM324 (U1B) melalui tahanan 4k7 ohm, arus pada output pin 7 terbangkitkan pulsa berbentuk gigi gergaji. Selanjutnya output pin 7 dihubungkan ke pin 12 IC LM324 (U1D) untuk diperkuat outputnya pada pin 14, dan akan dibandingkan dengan hasil pulsa rangkaian pendeteksi perubahan pada beban sebenarnya. Hasil penyearahan oleh dioda bridge yang berbentuk tegangan DC akan dibangkitkan menjadi gelombang ramp oleh IC LM324 (U2A) melalui pin 2 dan diatur oleh pin 3 yang mengandung multiturn (R14, R16), untuk selanjutnya diperkuat yang mana bentuk gelombangnya diubah menjadi gigi gergaji untuk dibandingkan melalui pin 9 IC LM324 (U1C). Output pin 8 merupakan hasil penguatan pulsa perubahan beban sebenarnya yang akan dibandingkan dengan pulsa referensi pada pin 1 IC LM324 (U1A) melalui pin 5 dan pin 6 IC MC14011(U3B). Hasil perbandingan tersebut akan dibandingkan lagi dengan pulsa referensi yang fasanya konstan pada pin 7 IC LM555 (U4) melalui pin 12 dan pin 13 IC MC14011 (U3D), sehingga bila terjadi perubahan pada beban sebenarnya maka perubahannya mendekati linier. Pada 54 Pengontrol Beban Elektronika Pada Pembangkit Listrik Tenaga Mikrohidro

11 rangkaian pencatu daya terdapat penguat darlington yang berfungsi memperbesar daya dalam penyalaan SCR. Pada rangkaian ini, output pin 10 IC MC14011 (U3C) akan diperkuat oleh rangkaian darlington untuk selanjutnya dibagi ke pencatu daya SCR sesuai dengan perubahan yang terjadi pada pendeteksian rangkaian kontrol (trigger). SCR bekerja (ON) setelah memperoleh sinyal trigger yang berasal dari rangkaian kontrol, dan tegangan di anoda lebih besar dari pada tegangan di katoda. Jika terjadi perubahan arus beban generator maka rangkaian kontrol arus akan mengaktifkan SCR dengan memberikan sinyal trigger pada gate sehingga SCR akan menghantar (ON). SCR berkonduktansi dari 0 0 hingga C. Konduktansi SCR ditentukan oleh sudut penyalaannya. SCR akan menjadi OFF (tidak menghantar) bila tegangan di anoda lebih kecil dari pada tegangan di katoda, dan arus tersebut telah merosot pada aras (level) yang rendah atau pada titik nol. Dengan kata lain, SCR akan menjadi OFF bila tegangan yang diberikan pada SCR berubah dari setengah gelombang positip ke gelombang negatip Printed Circuit Board (PCB) PCB pada ELC mikrohidro 50 kva terdiri dari tiga buah kontrol linier (untuk fasa R, S, dan T). Sensor untuk kontrol linier diambil dari output generator. Di atas PCB kontrol linier, dipasang berbagai jenis komponen elektronis. Adapun tata letak komponen kontrol linier tersebut seperti diperlihatkan pada Gambar 5. Perlu diperhatikan bahwa setiap selesai pemasangan jenis komponen, timah solder harus melekat pada jalur yang benar. Untuk itu perlu memperhatikan bottom layer PCB kontrol linier seperti ditunjukkan pada Gambar 6. Pengontrol Beban Elektronika Pada Pembangkit Listrik Tenaga Mikrohidro 55

12 Gambar 5. Tata letak komponen kontrol linier 56 Gambar 6. Bottom layer PCB kontrol linier Pengontrol Beban Elektronika Pada Pembangkit Listrik Tenaga Mikrohidro

13 Untuk mengetahui bagaimana tahapan kegiatan yang dilakukan dalam pembuatan prototipe pengontrol beban elektronik mikrohidro 50 kva, seperti ditunjukkan pada flowchart Gambar 7 MULAI Gambar 7. Flowchart pembuatan prototipe ELC mikrohidro 50 kva A DISAINRANGKAIAN PEMASANGAN DAN WIRING PCB PADA PANEL PEGANGAN KOMPONEN UNTUK BREAD- BOARDING PERIKSA HUBUNGAN WIRING UJI KINERJA OK TIDAK OK TIDAK YA YA PEMBUATAN PENGUKIAN PANEL KONTROL DI LEM DISAIN BOX PERAKITAN DAN UJI KINERJA PCB FINISHING DAN PERBAIKAN DISAIN TATA LETAK KOMPONEN & WIRING PEGANGAN BAHAN MEKANIK, ELEKTRIK & ELEKTRONIK OK YA PENGESETAN MODUL PCB TIDAK PENGUMPULAN PENYUSUNAN DATA PENGUJIAN PANEL KONTROL DI INSTANSI PEMBUATAN BOX Berdasarkan hasil penelitian dan analisis TIDAK rangkaian, maka dapat OK TDK OK ASSEMBLING PANEL KOMPONEN POWER DAN WIRING A YA PENGESETAN MODUL PCB SELESAI YA Pengontrol Beban Elektronika Pada Pembangkit Listrik Tenaga Mikrohidro 57

14 4. KESIMPULAN DAN SARAN Berdasarkan hasil penelitian dan analisis rangkaian, maka dapat diambil kesimpulan dan saran sebagai berikut : 1. PLTM dengan sistem beban komplemen, membutuhkan ketersediaan air yang cukup melimpah, dan generator senantiasa terbebani penuh secara terus-menerus. 2. Dengan menggunakan pengontrol beban elektronik (ELC) sebagai pengganti governor pada PLTM dan beban komplemen, maka selain sangat ekonomis juga konstruksi turbin menjadi lebih sederhana, karena tidak memerlukan pengaturan sudut. 3. Frekuensi sistem PLTM sepenuhnya bergantung pada kecepatan generator yang diputar oleh penggerak mulanya (turbin air). Oleh karena itu kontrol frekuensi pada dasarnya adalah kontrol kecepatan putaran turbin generator pada unit pembangkitan tersebut. 4. Untuk memperoleh kinerja yang lebih baik, maka ELC dapat didisain agar sistem pengontrolannya dapat dihubungkan dengan micro controller, yaitu dalam bentuk program perangkat lunak. DAFTAR PUSTAKA [1]. Burr Brown, Operational Amplifier : Design and Application, McGraw Hill, Kogakusha Ltd., Revised Edition, [2]. Harry, S, Konsep-Konsep Pengendalian Frekuensi Untuk PLTM, ITB, Bandung, [3]. Henderson, D.S, and Macpherson, D.E, Development of a Three Phase, Micro Processor Based Electronic Load Controller for Microhydro Generation, Dept. of Electrical Engineering, University of Edinburgh, [4]. Muchlison, Pengembangan Sumber Energi Mikrohidro di Indonesia, Lokakarya ASEAN Energi Non Konvensional dan Terbarukan, Bandung, Desember, [5]. Suryadi, Chamid, Pengendali Elektronik Putaran Turbin, Lokakarya PLTM, PLN PPMK, Jakarta, Pengontrol Beban Elektronika Pada Pembangkit Listrik Tenaga Mikrohidro

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Tingkat performansi dari suatu sistem pembangkit listrik ditentukan oleh frekuensi output yang dihasilkan. Pada suatu pembangkit listrik yang menggunakan energi renewable

Lebih terperinci

SISTEM PENGATURAN BEBAN PADA MIKROHIDRO SEBAGAI ENERGI LISTRIK PEDESAAN

SISTEM PENGATURAN BEBAN PADA MIKROHIDRO SEBAGAI ENERGI LISTRIK PEDESAAN Prosiding SNaPP2012 : Sains, Teknologi, dan Kesehatan ISSN 2089-3582 SISTEM PENGATURAN BEBAN PADA MIKROHIDRO SEBAGAI ENERGI LISTRIK PEDESAAN 1 Ari Rahayuningtyas, 2 Teguh Santoso dan 3 Maulana Furqon 1,2,,3

Lebih terperinci

Desain Kontrol Beban Elektronik pada Pembangkit Listrik Tenaga Mikrohidro

Desain Kontrol Beban Elektronik pada Pembangkit Listrik Tenaga Mikrohidro 176 JURNAL ILMIAH SEMESTA TEKNIKA Vol. 12, No. 2, 176-184, November 2009 Desain Kontrol Beban Elektronik pada Pembangkit Listrik Tenaga Mikrohidro (Electronic load controller design on microhydro power

Lebih terperinci

STUDI PEMODELAN ELECTRONIC LOAD CONTROLLER SEBAGAI ALAT PENGATUR BEBAN II. PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO

STUDI PEMODELAN ELECTRONIC LOAD CONTROLLER SEBAGAI ALAT PENGATUR BEBAN II. PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO STUDI PEMODELAN ELECTRONIC LOAD CONTROLLER SEBAGAI ALAT PENGATUR BEBAN PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO Anggi Muhammad Sabri Saragih 13204200 / Teknik Tenaga Elektrik Sekolah Teknik Elektro dan Informatika

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 2 BAB III METODE PENELITIAN Pada skripsi ini metode penelitian yang digunakan adalah eksperimen (uji coba). Tujuan yang ingin dicapai adalah membuat suatu alat yang dapat mengkonversi tegangan DC ke AC.

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT Flow Chart Perancangan dan Pembuatan Alat. Mulai. Tinjauan pustaka

BAB III PERANCANGAN DAN PEMBUATAN ALAT Flow Chart Perancangan dan Pembuatan Alat. Mulai. Tinjauan pustaka 59 BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1. Flow Chart Perancangan dan Pembuatan Alat Mulai Tinjauan pustaka Simulasi dan perancangan alat untuk pengendali kecepatan motor DC dengan kontroler PID analog

Lebih terperinci

RANGKAIAN PENYEARAH GELOMBANG (RECTIFIER) OLEH: SRI SUPATMI,S.KOM

RANGKAIAN PENYEARAH GELOMBANG (RECTIFIER) OLEH: SRI SUPATMI,S.KOM RANGKAIAN PENYEARAH GELOMBANG (RECTIFIER) OLEH: SRI SUPATMI,S.KOM RANGKAIAN PENYEARAH (RECTIFIER) Rangkaian penyearah gelombang merupakan rangkaian yang berfungsi untuk merubah arus bolak-balik (alternating

Lebih terperinci

Dengan : f = frekuensi stator (Hz) n s = kecepatan putar medan magnet atau kecepatan putar rotor (rpm) p = jumlah kutub.

Dengan : f = frekuensi stator (Hz) n s = kecepatan putar medan magnet atau kecepatan putar rotor (rpm) p = jumlah kutub. PERANCANGAN ELECTRONIC LOAD CONTROLLER (ELC) SEBAGAI PENSTABIL FREKUENSI PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO (PLTMH) Erdyan Setyo W¹, Mochammad Rif an, ST., MT.,², Teguh Utomo, Ir., MT ³ ¹Mahasiswa

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan perancangan sistem perangkat keras dari UPS (Uninterruptible Power Supply) yang dibuat dengan menggunakan inverter PWM level... Gambaran Sistem input

Lebih terperinci

TUGAS AKHIR - TE STUDI PENGONTROL BEBAN ELEKTRONIK PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO SELOLIMAN, TRAWAS KABUPATEN MOJOKERTO

TUGAS AKHIR - TE STUDI PENGONTROL BEBAN ELEKTRONIK PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO SELOLIMAN, TRAWAS KABUPATEN MOJOKERTO TUGAS AKHIR - TE091398 STUDI PENGONTROL BEBAN ELEKTRONIK PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO SELOLIMAN, TRAWAS KABUPATEN MOJOKERTO ARDHA SANDY P NRP 2206 100 132 Dosen pembimbing Ir. Sjamsjul Anam,

Lebih terperinci

ELECTRONIC LOAD CONTROLLER (ELC) PADA SISTEM PEMBANGKIT LISTRIK TENAGA MIKROHIDRO (PLTM) ABSTRAK

ELECTRONIC LOAD CONTROLLER (ELC) PADA SISTEM PEMBANGKIT LISTRIK TENAGA MIKROHIDRO (PLTM) ABSTRAK ELECTRONIC LOAD CONTROLLER (ELC) PADA SISTEM PEMBANGKIT LISTRIK TENAGA MIKROHIDRO (PLTM) Disusun oleh : Maulana Jayalaksana 0822061 Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha,

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan mulai pada November 2011 hingga Mei Adapun tempat

III. METODE PENELITIAN. Penelitian ini dilaksanakan mulai pada November 2011 hingga Mei Adapun tempat III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan mulai pada November 2011 hingga Mei 2012. Adapun tempat pelaksanaan penelitian ini adalah di Laboratorium Elektronika Dasar

Lebih terperinci

BAB II LANDASAN SISTEM

BAB II LANDASAN SISTEM BAB II LANDASAN SISTEM Berikut adalah penjabaran mengenai sistem yang dibuat dan teori-teori ilmiah yang mendukung sehingga dapat terealisasi dengan baik. Pada latar belakang penulisan sudah dituliskan

Lebih terperinci

ADLN - PERPUSTAKAAN UNIVERSITAS AIRLANGGA BAB III METODE PENELITIAN. Instrumentasi Medis Departemen Fisika, Fakultas Sains dan Teknologi

ADLN - PERPUSTAKAAN UNIVERSITAS AIRLANGGA BAB III METODE PENELITIAN. Instrumentasi Medis Departemen Fisika, Fakultas Sains dan Teknologi BAB III METODE PENELITIAN 3.1 Tempat dan Waktu Pelaksanaan Penelitian dilakukan di Laboratorium Elektronika, dan Laboratorium Instrumentasi Medis Departemen Fisika, Fakultas Sains dan Teknologi Universitas

Lebih terperinci

DESAIN SENSORLESS (MINIMUM SENSOR) KONTROL MOTOR INDUKSI 1 FASA PADA MESIN PERONTOK PADI. Toni Putra Agus Setiawan, Hari Putranto

DESAIN SENSORLESS (MINIMUM SENSOR) KONTROL MOTOR INDUKSI 1 FASA PADA MESIN PERONTOK PADI. Toni Putra Agus Setiawan, Hari Putranto Putra Agus S, Putranto, Desain Sensorless (Minimum Sensor) Kontrol Motor Induksi 1 Fasa Pada DESAIN SENSORLESS (MINIMUM SENSOR) KONTROL MOTOR INDUKSI 1 FASA PADA MESIN PERONTOK PADI Toni Putra Agus Setiawan,

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT 1.1 Blok Diagram Sensor Kunci kontak Transmiter GSM Modem Recivier Handphone Switch Aktif Sistem pengamanan Mikrokontroler Relay Pemutus CDI LED indikator aktif Alarm Buzzer Gambar

Lebih terperinci

DAFTAR ISI ABSTRAK... DAFTAR ISI...

DAFTAR ISI ABSTRAK... DAFTAR ISI... DAFTAR ISI Halaman KATA PENGANTAR... ABSTRAK... DAFTAR ISI... i iii iv BAB I PENDAHULUAN 1.1. Latar belakang masalah... 1 1.2. Permasalahan... 1 1.3. Batasan masalah... 2 1.4. Tujuan dan manfaat penelitian...

Lebih terperinci

ANALISIS SISTEM KONTROL MOTOR DC SEBAGAI FUNGSI DAYA DAN TEGANGAN TERHADAP KALOR

ANALISIS SISTEM KONTROL MOTOR DC SEBAGAI FUNGSI DAYA DAN TEGANGAN TERHADAP KALOR Akhmad Dzakwan, Analisis Sistem Kontrol ANALISIS SISTEM KONTROL MOTOR DC SEBAGAI FUNGSI DAYA DAN TEGANGAN TERHADAP KALOR (DC MOTOR CONTROL SYSTEMS ANALYSIS AS A FUNCTION OF POWER AND VOLTAGE OF HEAT) Akhmad

Lebih terperinci

Rangkaian Pembangkit Gelombang dengan menggunakan IC XR-2206

Rangkaian Pembangkit Gelombang dengan menggunakan IC XR-2206 Eddy Nurraharjo Program Studi Teknik Informatika, Universitas Stikubank email : eddynurraharjo@gmail.com Abstrak Sebuah sinyal dapat dihasilkan dari suatu pembangkit sinyal yang berupa sebuah rangkaian

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT 39 BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras elektronik (hardware) dan pembuatan mekanik Eskalator. Sedangkan untuk pembuatan

Lebih terperinci

ANALISIS SISTEM CYCLOCONVERTER PADA BEBAN NON LINEAR

ANALISIS SISTEM CYCLOCONVERTER PADA BEBAN NON LINEAR PRO S ID IN G 20 1 2 HASIL PENELITIAN FAKULTAS TEKNIK ANALISIS SISTEM CYCLOCONVERTER PADA BEBAN NON LINEAR Muhammad Tola 1), Setiawan 2) & Anggang Sujarwadi 3) Jurusan Teknik Elektro Fakultas Teknik Universitas

Lebih terperinci

BAB IV HASIL PERCOBAAN DAN ANALISIS

BAB IV HASIL PERCOBAAN DAN ANALISIS BAB IV HASIL PERCOBAAN DAN ANALISIS 4.1. Topik 1. Rangkaian Pemicu SCR dengan Menggunakan Rangkaian RC (Penyearah Setengah Gelombang dan Penyearah Gelombang Penuh). A. Penyearah Setengah Gelombang Gambar

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Dalam merealisasikan suatu alat diperlukan dasar teori untuk menunjang hasil yang optimal. Pada bab ini akan dibahas secara singkat mengenai teori dasar yang digunakan untuk merealisasikan

Lebih terperinci

BAB 3 PERANCANGAN SISTEM

BAB 3 PERANCANGAN SISTEM BAB 3 PERACAGA SISTEM Pada bab ini penulis akan menjelaskan mengenai perencanaan modul pengatur mas pada mobile x-ray berbasis mikrokontroller atmega8535 yang meliputi perencanaan dan pembuatan rangkaian

Lebih terperinci

TAKARIR. periode atau satu masa kerjanya dimana periodenya adalah nol.

TAKARIR. periode atau satu masa kerjanya dimana periodenya adalah nol. TAKARIR AC {Alternating Current) Adalah sistem arus listrik. Sistem AC adalah cara bekerjanya arus bolakbalik. Dimana arus yang berskala dengan harga rata-rata selama satu periode atau satu masa kerjanya

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilakukan pada bulan Oktober 2013 sampai dengan Maret 2014,

III. METODE PENELITIAN. Penelitian ini dilakukan pada bulan Oktober 2013 sampai dengan Maret 2014, 41 III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilakukan pada bulan Oktober 2013 sampai dengan Maret 2014, bertempat di Laboratorium Instrumentasi Jurusan Fisika Fakultas Matematika

Lebih terperinci

TINJAUAN PUSTAKA. Sistem kontrol adalah suatu alat yang berfungsi untuk mengendalikan,

TINJAUAN PUSTAKA. Sistem kontrol adalah suatu alat yang berfungsi untuk mengendalikan, 5 II. TINJAUAN PUSTAKA 2.1 Sistem kontrol (control system) Sistem kontrol adalah suatu alat yang berfungsi untuk mengendalikan, memerintah dan mengatur keadaan dari suatu sistem. [1] Sistem kontrol terbagi

Lebih terperinci

II. TINJAUAN PUSTAKA. alternatif seperti matahari, angin, mikro/minihidro dan biomassa dengan teknologi

II. TINJAUAN PUSTAKA. alternatif seperti matahari, angin, mikro/minihidro dan biomassa dengan teknologi II. TINJAUAN PUSTAKA 2.1 Sistem Pembangkit Hibrid Sistem pembangkit hibrid adalah kombinasi dari satu atau lebih sumber energi alternatif seperti matahari, angin, mikro/minihidro dan biomassa dengan teknologi

Lebih terperinci

Teknik Tenaga Listrik(FTG2J2)

Teknik Tenaga Listrik(FTG2J2) Teknik Tenaga Listrik(FTG2J2) Generator Sinkron Ahmad Qurthobi, MT. Teknik Fisika Telkom University Ahmad Qurthobi, MT. (Teknik Fisika Telkom University) Teknik Tenaga Listrik(FTG2J2) 1 / 35 Outline 1

Lebih terperinci

BAB III PERANCANGAN ALAT. Dalam perancangan dan realisasi alat pengontrol lampu ini diharapkan

BAB III PERANCANGAN ALAT. Dalam perancangan dan realisasi alat pengontrol lampu ini diharapkan III-1 BAB III PERANCANGAN ALAT 3.1. Perancangan Dalam perancangan dan realisasi alat pengontrol lampu ini diharapkan menghasilkan suatu sistem yang dapat mengontrol cahaya pada lampu pijar untuk pencahayaanya

Lebih terperinci

RANCANG BANGUN MOTOR INDUKSI SEBAGAI GENERATOR (MISG) PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO

RANCANG BANGUN MOTOR INDUKSI SEBAGAI GENERATOR (MISG) PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO RANCANG BANGUN MOTOR INDUKSI SEBAGAI GENERATOR (MISG) PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO Machmud Effendy Jurusan Teknik Elektro, Universitas Muhammadiyah Malang Kampus III: Jl. Raya Tlogomas No.

Lebih terperinci

OKTOBER 2011. KONTROL DAN PROTEKSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO By Dja far Sodiq

OKTOBER 2011. KONTROL DAN PROTEKSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO By Dja far Sodiq OKTOBER 2011 KONTROL DAN PROTEKSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO By Dja far Sodiq KLASIFIKASI PEMBANGKIT LISTRIK TENAGA AIR A. KAPASITAS MICRO-HYDRO SD 100 KW MINI-HYDRO 100 KW 1 MW SMALL-HYDRO 1

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dibahas mengenai perancangan dan realisasi dari skripsi meliputi gambaran alat, cara kerja sistem dan modul yang digunakan. Gambar 3.1 merupakan diagram cara

Lebih terperinci

BAB III METODE PENELITIAN. Berikut sistem dari modul Hot Plate Magnetic Stirrer dapat dilihat pada

BAB III METODE PENELITIAN. Berikut sistem dari modul Hot Plate Magnetic Stirrer dapat dilihat pada 20 BAB III METODE PENELITIAN 3.1. Sistem Hot Plate Magnetic Stirrer Berikut sistem dari modul Hot Plate Magnetic Stirrer dapat dilihat pada Gambar 3.1. Gambar 3.1 Diagram Blok alat 20 21 Fungsi masing-masing

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT Pada bab tiga ini akan dijelaskan mengenai perancangan dari perangkat keras dan perangkat lunak yang digunakan pada alat ini. Dimulai dari uraian perangkat keras lalu uraian perancangan

Lebih terperinci

TEORI DASAR. 2.1 Pengertian

TEORI DASAR. 2.1 Pengertian TEORI DASAR 2.1 Pengertian Dioda adalah piranti elektronik yang hanya dapat melewatkan arus/tegangan dalam satu arah saja, dimana dioda merupakan jenis VACUUM tube yang memiliki dua buah elektroda. Karena

Lebih terperinci

BAB III ANALISA DAN PERANCANGAN RANGKAIAN

BAB III ANALISA DAN PERANCANGAN RANGKAIAN BAB III ANALISA DAN PERANCANGAN RANGKAIAN 3.1. Blok Diagram Sistem Untuk mempermudah penjelasan dan cara kerja alat ini, maka dibuat blok diagram. Masing-masing blok diagram akan dijelaskan lebih rinci

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari 2015 sampai dengan bulan Juli

METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari 2015 sampai dengan bulan Juli 36 III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Februari 2015 sampai dengan bulan Juli 2015. Perancangan, pembuatan dan pengambilan data dilaksanakan di

Lebih terperinci

SINKRONISASI DAN PENGAMANAN MODUL GENERATOR LAB-TST BERBASIS PLC (HARDWARE) ABSTRAK

SINKRONISASI DAN PENGAMANAN MODUL GENERATOR LAB-TST BERBASIS PLC (HARDWARE) ABSTRAK SINKRONISASI DAN PENGAMANAN MODUL GENERATOR LAB-TST BERBASIS PLC (HARDWARE) Tri Prasetya F. Ir. Yahya C A, MT. 2 Suhariningsih, S.ST MT. 3 Mahasiswa Jurusan Elektro Industri, Dosen Pembimbing 2 Dosen Pembimbing

Lebih terperinci

INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 2 (PENGUAT INVERTING)

INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 2 (PENGUAT INVERTING) INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 2 (PENGUAT INVERTING) I. TUJUAN Tujuan dari pembuatan modul Penguat Inverting ini adalah: 1. Mahasiswa mengetahui karakteristik rangkaian penguat inverting sebagai

Lebih terperinci

BAB III PERANCANGAN DAN REALISASI ALAT

BAB III PERANCANGAN DAN REALISASI ALAT BAB III PERANCANGAN DAN REALISASI ALA 3.1 Perancangan Hardware 3.1.1 Perancangan Alat Simulator Sebagai proses awal perancangan blok diagram di bawah ini akan sangat membantu untuk memberikan rancangan

Lebih terperinci

BAB III PROSES PERANCANGAN

BAB III PROSES PERANCANGAN BAB III PROSES PERANCANGAN 3.1 Tinjauan Umum Perancangan prototipe sistem pengontrolan level air ini mengacu pada sistem pengambilan dan penampungan air pada umumnya yang terdapat di perumahan. Tujuan

Lebih terperinci

DESAIN DAN IMPLEMENTASI INVERTER SATU PHASA 500 V.A. Habibullah 1 Ari Rizki Ramadani 2 ABSTRACT

DESAIN DAN IMPLEMENTASI INVERTER SATU PHASA 500 V.A. Habibullah 1 Ari Rizki Ramadani 2 ABSTRACT DESAIN DAN IMPLEMENTASI INVERTER SATU PHASA 500 V.A Habibullah 1 Ari Rizki Ramadani 2 ABSTRACT This research aims to create a single phase inverter which serves to complement the performance of a hybrid

Lebih terperinci

BAB III ANALISIS DAN DESAIN SISTEM

BAB III ANALISIS DAN DESAIN SISTEM BAB III ANALISIS DAN DESAIN SISTEM III.1. Analisis Masalah Dalam perancangan dan implementasi jari animatronik berbasis mikrokontroler ini menggunakan beberapa metode rancang bangun yang pembuatannya terdapat

Lebih terperinci

Bab III. Operational Amplifier

Bab III. Operational Amplifier Bab III Operational Amplifier 30 3.1. Masalah Interfacing Interfacing sebagai cara untuk menggabungkan antara setiap komponen sensor dengan pengontrol. Dalam diagram blok terlihat hanya berupa garis saja

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. Hasil dari perancangan perangkat keras sistem penyiraman tanaman secara

IV. HASIL DAN PEMBAHASAN. Hasil dari perancangan perangkat keras sistem penyiraman tanaman secara IV. HASIL DAN PEMBAHASAN A. Realisasi Perangkat Keras Hasil dari perancangan perangkat keras sistem penyiraman tanaman secara otomatis menggunakan sensor suhu LM35 ditunjukkan pada gambar berikut : 8 6

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Bab ini menguraikan perancangan mekanik, perangkat elektronik dan perangkat lunak untuk membangun Pematrian komponen SMD dengan menggunakan conveyor untuk indutri kecil dengan

Lebih terperinci

BAB IV SISTEM KONVERSI ENERGI LISTRIK AC KE DC PADA STO SLIPI

BAB IV SISTEM KONVERSI ENERGI LISTRIK AC KE DC PADA STO SLIPI BAB IV SISTEM KONVERSI ENERGI LISTRIK AC KE DC PADA STO SLIPI 4.1 Umum Seperti yang telah dibahas pada bab III, energi listrik dapat diubah ubah jenis arusnya. Dari AC menjadi DC atau sebaliknya. Pengkonversian

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras elektronik (hardware) dan pembuatan mekanik robot. Sedangkan untuk pembuatan perangkat

Lebih terperinci

VOLTAGE PROTECTOR. SUTONO, MOCHAMAD FAJAR WICAKSONO Program Studi Teknik Komputer, Fakultas Teknik dan Ilmu Komputer Universitas Komputer Indonesia

VOLTAGE PROTECTOR. SUTONO, MOCHAMAD FAJAR WICAKSONO Program Studi Teknik Komputer, Fakultas Teknik dan Ilmu Komputer Universitas Komputer Indonesia bidang TEKNIK VOLTAGE PROTECTOR SUTONO, MOCHAMAD FAJAR WICAKSONO Program Studi Teknik Komputer, Fakultas Teknik dan Ilmu Komputer Universitas Komputer Indonesia Listrik merupakan kebutuhan yang sangat

Lebih terperinci

yaitu, rangkaian pemancar ultrasonik, rangkaian detektor, dan rangkaian kendali

yaitu, rangkaian pemancar ultrasonik, rangkaian detektor, dan rangkaian kendali BAB III PERANCANGAN 3.1. Blok Diagram Pada dasarnya rangkaian elektronik penggerak kamera ini menggunakan beberapa rangkaian analok yang terbagi menjadi beberapa blok rangkaian utama, yaitu, rangkaian

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Tahap Proses Perancangan Alat Penelitian ini didasarkan pada masalah yang bersifat aplikatif, yang dapat dirumuskan menjadi 3 permasalahan utama, yaitu bagaimana merancang

Lebih terperinci

BAB IV ANALISIS RANGKAIAN ELEKTRONIK

BAB IV ANALISIS RANGKAIAN ELEKTRONIK BAB IV ANALISIS RANGKAIAN ELEKTRONIK 4.1 Rangkaian Pengontrol Bagian pengontrol sistem kontrol daya listrik, menggunakan mikrokontroler PIC18F4520 seperti yang ditunjukkan pada Gambar 30. Dengan osilator

Lebih terperinci

RANCANG BANGUN SENSOR PARKIR MOBIL PADA GARASI BERBASIS MIKROKONTROLER ARDUINO MEGA 2560

RANCANG BANGUN SENSOR PARKIR MOBIL PADA GARASI BERBASIS MIKROKONTROLER ARDUINO MEGA 2560 RANCANG BANGUN SENSOR PARKIR MOBIL PADA GARASI BERBASIS MIKROKONTROLER ARDUINO MEGA 2560 Oleh : Andreas Hamonangan S NPM : 10411790 Pembimbing 1 : Dr. Erma Triawati Ch, ST., MT. Pembimbing 2 : Desy Kristyawati,

Lebih terperinci

KENDALI PENSTABIL FREKUENSI DAN TEGANGAN UNTUK PEMBANGKIT LISTRIK MIKROHIDRO MENGGUNAKAN BEBAN KOMPLEMEN DENGAN PENGENDALI PID DAN PWM

KENDALI PENSTABIL FREKUENSI DAN TEGANGAN UNTUK PEMBANGKIT LISTRIK MIKROHIDRO MENGGUNAKAN BEBAN KOMPLEMEN DENGAN PENGENDALI PID DAN PWM KENDALI PENSTABIL FREKUENSI DAN TEGANGAN UNTUK PEMBANGKIT LISTRIK MIKROHIDRO MENGGUNAKAN BEBAN KOMPLEMEN DENGAN PENGENDALI PID DAN PWM Ana Ningsih 1, Oyas Wahyunggoro 2, M Isnaeni BS 3 Fakultas Teknik

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS

BAB IV PENGUJIAN DAN ANALISIS BAB IV PENGUJIAN DAN ANALISIS Pada bab ini akan dibahas mengenai pengujian alat serta analisis dari hasil pengujian. Tujuan dilakukan pengujian adalah mengetahui sejauh mana kinerja hasil perancangan yang

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT 3.1. Perancangan Perancangan merupakan suatu tahap yang sangat penting dalam pembuatan suatu alat, sebab dengan menganalisa komponen yang digunakan maka alat yang akan dibuat dapat

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dibahas mengenai perancangan dan realisasi sistem yang dibuat. Gambar 3.1 menunjukkan blok diagram sistem secara keseluruhan. Anak Tangga I Anak Tangga II Anak

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Juli 2014 sampai dengan Januari 2015.

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Juli 2014 sampai dengan Januari 2015. 28 III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Juli 2014 sampai dengan Januari 2015. Perancangan, pembuatan dan pengambilan data dilaksanakan di Laboratorium

Lebih terperinci

BAB III DESAIN DAN PERANCANGAN

BAB III DESAIN DAN PERANCANGAN 13 BAB III DESAIN DAN PERANCANGAN 3.1 Perancangan Sistem Aplikasi ini membahas tentang penggunaan IC AT89S51 untuk kontrol suhu pada peralatan bantal terapi listrik. Untuk mendeteksi suhu bantal terapi

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Adapun blok diagram modul baby incubator ditunjukkan pada Gambar 3.1.

BAB III METODOLOGI PENELITIAN. Adapun blok diagram modul baby incubator ditunjukkan pada Gambar 3.1. 23 BAB III METODOLOGI PENELITIAN 3.1 Blok Diagram Modul Baby Incubator Adapun blok diagram modul baby incubator ditunjukkan pada Gambar 3.1. PLN THERMOSTAT POWER SUPPLY FAN HEATER DRIVER HEATER DISPLAY

Lebih terperinci

BAB III RANGKAIAN PENGENDALI DAN PROGRAM PENGENDALI SIMULATOR MESIN PEMBEGKOK

BAB III RANGKAIAN PENGENDALI DAN PROGRAM PENGENDALI SIMULATOR MESIN PEMBEGKOK BAB III RANGKAIAN PENGENDALI DAN PROGRAM PENGENDALI SIMULATOR MESIN PEMBEGKOK Pada bab ini dibahas tentang perangkat mekanik simulator mesin pembengkok, konstruksi motor DC servo, konstruksi motor stepper,

Lebih terperinci

Rancang Bangun Rangkaian AC to DC Full Converter Tiga Fasa dengan Harmonisa Rendah

Rancang Bangun Rangkaian AC to DC Full Converter Tiga Fasa dengan Harmonisa Rendah Rancang Bangun Rangkaian AC to DC Full Converter Tiga Fasa dengan Harmonisa Rendah Mochammad Abdillah, Endro Wahyono,SST, MT ¹, Ir.Hendik Eko H.S., MT ² 1 Mahasiswa D4 Jurusan Teknik Elektro Industri Dosen

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Didalam merancang sistem yang akan dibuat ada beberapa hal yang perlu diperhatikan sebelumnya, pertama-tama mengetahui prinsip kerja secara umum dari sistem yang akan dibuat

Lebih terperinci

Gambar 2.1. Rangkaian Komutasi Alami.

Gambar 2.1. Rangkaian Komutasi Alami. BAB II DASAR TEORI Thyristor merupakan komponen utama dalam peragaan ini. Untuk dapat membuat thyristor aktif yang utama dilakukan adalah membuat tegangan pada kaki anodanya lebih besar daripada kaki katoda.

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1 Metode Penelitian Metode penelitian yang digunakan adalah research and development, dimana metode tersebut biasa dipakai untuk menghasilkan sebuah produk inovasi yang belum

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 34 BAB III METODE PENELITIAN 3.1 Tahap Proses Perancangan Alat Perancangan rangkaian daya Proteksi perangkat daya Penentuan strategi kontrol Perancangan rangkaian logika dan nilai nominal Gambar 3.1 Proses

Lebih terperinci

1. PRINSIP KERJA CATU DAYA LINEAR

1. PRINSIP KERJA CATU DAYA LINEAR 1. PRINSIP KERJA CATU DAYA LINEAR Perangkat elektronika mestinya dicatu oleh suplai arus searah DC (direct current) yang stabil agar dapat bekerja dengan baik. Baterai atau accu adalah sumber catu daya

Lebih terperinci

BAB III PERENCANAAN. 3.1 Perencanaan kerja alat Secara Blok Diagram. Rangkaian Setting. Rangkaian Pengendali. Rangkaian Output. Elektroda. Gambar 3.

BAB III PERENCANAAN. 3.1 Perencanaan kerja alat Secara Blok Diagram. Rangkaian Setting. Rangkaian Pengendali. Rangkaian Output. Elektroda. Gambar 3. 27 BAB III PERENCANAAN 3.1 Perencanaan kerja alat Secara Blok Diagram Power Supply Rangkaian Setting Indikator (Led) Rangkaian Pengendali Rangkaian Output Line AC Elektroda Gambar 3.1 Blok Diagram Untuk

Lebih terperinci

LEMBAR KERJA V KOMPARATOR

LEMBAR KERJA V KOMPARATOR LEMBAR KERJA V KOMPARATOR 5.1. Tujuan 1. Mahasiswa mampu mengoperasikan op amp sebagai rangkaian komparator inverting dan non inverting 2. Mahasiswa mampu membandingkan dan menganalisis keluaran dari rangkaian

Lebih terperinci

BAB 3 PERANCANGAN SISTEM

BAB 3 PERANCANGAN SISTEM BAB 3 PERANCANGAN SISTEM 3.1. Gambaran Umum Sistem Sistem ini terdiri dari 2 bagian besar, yaitu, sistem untuk bagian dari panel surya ke baterai dan sistem untuk bagian dari baterai ke lampu jalan. Blok

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Dalam merealisasikan suatu alat diperlukan dasar teori untuk menunjang hasil yang optimal. Pada bab ini akan dibahas secara singkat mengenai teori dasar yang digunakan untuk merealisasikan

Lebih terperinci

CATU DAYA MENGGUNAKAN SEVEN SEGMENT

CATU DAYA MENGGUNAKAN SEVEN SEGMENT CATU DAYA MENGGUNAKAN SEVEN SEGMENT Hendrickson 13410221 Jurusan Teknik Elektro Fakultas Teknologi Industri Universitas Gunadarma 2010 Dosen Pembimbing : Diah Nur Ainingsih, ST., MT. Latar Belakang Untuk

Lebih terperinci

ANALISIS SISTEM KENDALI BEBAN ELEKTRONIK (ELC) SEBAGAI STABILISASI ENERGI LISTRIK BERBASIS MIKROKONTROLER

ANALISIS SISTEM KENDALI BEBAN ELEKTRONIK (ELC) SEBAGAI STABILISASI ENERGI LISTRIK BERBASIS MIKROKONTROLER ANALISIS SISTEM KENDALI BEBAN ELEKTRONIK (ELC) SEBAGAI STABILISASI ENERGI LISTRIK BERBASIS MIKROKONTROLER SUJATNO STTN BATAN, Jl : Babarsari Kotak Pos 6101 YKBB, Jogjakarta 55281 Email : Ontayus1@Yahoo.com

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan dari bulan Maret - Mei 2015 dan tempat

III. METODE PENELITIAN. Penelitian ini dilaksanakan dari bulan Maret - Mei 2015 dan tempat III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan dari bulan Maret - Mei 205 dan tempat pelaksanaan penelitian ini di Laboratorium Elektronika Jurusan Fisika Fakultas Matematika

Lebih terperinci

PERCOBAAN 9 RANGKAIAN COMPARATOR OP-AMP

PERCOBAAN 9 RANGKAIAN COMPARATOR OP-AMP PERCOBAAN 9 RANGKAIAN COMPARATOR OP-AMP 9.1 Tujuan : 1) Mendemonstrasikan prinsip kerja dari rangkaian comparator inverting dan non inverting dengan menggunakan op-amp 741. 2) Rangkaian comparator menentukan

Lebih terperinci

REKAYASA CATU DAYA MULTIGUNA SEBAGAI PENDUKUNG KEGIATAN PRAKTIKUM DI LABORATORIUM. M. Rahmad

REKAYASA CATU DAYA MULTIGUNA SEBAGAI PENDUKUNG KEGIATAN PRAKTIKUM DI LABORATORIUM. M. Rahmad REKAYASA CATU DAYA MULTIGUNA SEBAGAI PENDUKUNG KEGIATAN PRAKTIKUM DI LABORATORIUM M. Rahmad Laoratorium Pendidikan Fisika PMIPA FKIP UR e-mail: rahmadm10@yahoo.com ABSTRAK Penelitian ini adalah untuk merekayasa

Lebih terperinci

STUDI PENGONTROL BEBAN ELEKTRONIK PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO SELOLIMAN, TRAWAS KABUPATEN MOJOKERTO

STUDI PENGONTROL BEBAN ELEKTRONIK PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO SELOLIMAN, TRAWAS KABUPATEN MOJOKERTO STUDI PENGONTROL BEBAN ELEKTRONIK PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO SELOLIMAN, TRAWAS KABUPATEN MOJOKERTO Ardha Sandy P Jurusan Teknik Elektro FTI, Institut Teknologi Sepuluh Nopember Kampus ITS,

Lebih terperinci

BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM

BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM 3.1. Spesifikasi Sistem Sebelum merancang blok diagram dan rangkaian terlebih dahulu membuat spesifikasi awal rangkaian untuk mempermudah proses pembacaan, spesifikasi

Lebih terperinci

JOBSHEET 2 PENGUAT INVERTING

JOBSHEET 2 PENGUAT INVERTING JOBSHEET 2 PENGUAT INVERTING A. TUJUAN Tujuan dari pembuatan modul Penguat Inverting ini adalah: 1. Mahasiswa mengetahui karakteristik rangkaian penguat inverting sebagai aplikasi dari rangkaian Op-Amp.

Lebih terperinci

Adaptor. Rate This PRINSIP DASAR POWER SUPPLY UMUM

Adaptor. Rate This PRINSIP DASAR POWER SUPPLY UMUM Adaptor Rate This Alat-alat elektronika yang kita gunakan hampir semuanya membutuhkan sumber energi listrik untuk bekerja. Perangkat elektronika mestinya dicatu oleh suplai arus searah DC (direct current)

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA

BAB IV PENGUJIAN DAN ANALISA 54 BAB IV PENGUJIAN DAN ANALISA Dalam bab ini akan dibahas tentang pengujian berdasarkan perencanaan dari sistem yang dibuat. Pengujian ini dilakukan untuk mengetahui kinerja dari sistem mulai dari blok-blok

Lebih terperinci

Desain Sistem Kontrol Sudut Penyalaan Thyristor Komutasi Jaringan Berbasis Mikrokontroler PIC 16F877

Desain Sistem Kontrol Sudut Penyalaan Thyristor Komutasi Jaringan Berbasis Mikrokontroler PIC 16F877 16 Jurnal Rekayasa Elektrika Vol. 9, No. 1, April 010 Desain Sistem Kontrol Sudut Penyalaan Thyristor Komutasi Jaringan Berbasis Mikrokontroler PIC 16F877 Tarmizi Jurusan Teknik Elektro, Fakultas Teknik,

Lebih terperinci

II. KAJIAN PUSTAKA

II. KAJIAN PUSTAKA RANCANG BANGUN AVR PADA SISI TEGANGAN RENDAH (TEGANGAN KONSUMEN) BERBASIS ATMEGA8 Syamsir #1, Bomo Sanjaya #2, Syaifurrahman #3 Jurusan Teknik Elektro, Fakultas Teknik Universitas Tanjungpura 1 syamsir6788@gmail.com

Lebih terperinci

BAB III PERANCANGAN DAN CARA KERJA RANGKAIAN

BAB III PERANCANGAN DAN CARA KERJA RANGKAIAN BAB III PERANCANGAN DAN CARA KERJA RANGKAIAN 3.1 Diagram Blok Rangkaian Secara Detail Pada rangkaian yang penulis buat berdasarkan cara kerja rangkaian secara keseluruhan penulis membagi rangkaian menjadi

Lebih terperinci

BAB III PERANCANGAN. pembuatan tugas akhir. Maka untuk memenuhi syarat tersebut, penulis mencoba

BAB III PERANCANGAN. pembuatan tugas akhir. Maka untuk memenuhi syarat tersebut, penulis mencoba BAB III PERANCANGAN 3.1 Tujuan Perancangan Sebagai tahap akhir dalam perkuliahan yang mana setiap mahasiswa wajib memenuhi salah satu syarat untuk mengikuti sidang yudisium yaitu dengan pembuatan tugas

Lebih terperinci

Perancangan dan Analisis Back to Back Thyristor Untuk Regulasi Tegangan AC Satu Fasa

Perancangan dan Analisis Back to Back Thyristor Untuk Regulasi Tegangan AC Satu Fasa Perancangan dan Analisis Back to Back Thyristor Untuk Regulasi Tegangan AC Satu Fasa Indah Pratiwi Surya #1, Hafidh Hasan *2, Rakhmad Syafutra Lubis #3 # Teknik Elektro dan Komputer, Universitas Syiah

Lebih terperinci

BAB II DASAR TEORI 2.1. Teori Catu Daya Tak Terputus

BAB II DASAR TEORI 2.1. Teori Catu Daya Tak Terputus BAB II DASAR TEORI Pada bab ini akan dibahas beberapa teori pendukung yang digunakan sebagai acuan dalam merealisasikan sistem. Teori-teori yang digunakan dalam pembuatan skripsi ini adalah teori catu

Lebih terperinci

Rancang Bangun Pengatur Tegangan Otomatis pada Generator Ac 1 Fasa Menggunakan Kendali PID (Proportional Integral Derivative)

Rancang Bangun Pengatur Tegangan Otomatis pada Generator Ac 1 Fasa Menggunakan Kendali PID (Proportional Integral Derivative) Rancang Bangun Pengatur Tegangan Otomatis pada Generator Ac 1 Fasa Menggunakan Kendali PID (Proportional Integral Derivative) Koko Joni* 1, Achmad Fiqhi Ibadillah 2, Achmad Faidi 3 1,2,3 Teknik Elektro,

Lebih terperinci

III. METODOLOGI PENELITIAN. : Laboratorium Teknik Kendali Teknik Elektro Jurusan. Teknik Elektro Universitas Lampung

III. METODOLOGI PENELITIAN. : Laboratorium Teknik Kendali Teknik Elektro Jurusan. Teknik Elektro Universitas Lampung III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Waktu : November 2011 Maret 2013 Tempat : Laboratorium Teknik Kendali Teknik Elektro Jurusan Teknik Elektro Universitas Lampung B. Alat dan Bahan

Lebih terperinci

Alat Penstabil Tegangan Bolak-Balik satu fasa 220 V, 50 Hz Menggunakan Thrystor Dengan Daya 1,5 kva

Alat Penstabil Tegangan Bolak-Balik satu fasa 220 V, 50 Hz Menggunakan Thrystor Dengan Daya 1,5 kva Alat Penstabil Tegangan Bolak-Balik satu fasa 220 V, 50 Hz Menggunakan Thrystor Dengan Daya 1,5 kva Feranita, Ery Safrianti, Oky Alpayadia Jurusan Teknik Elektro Universitas Riau feranitadjalil@yahoo.co.id

Lebih terperinci

BAB III PERANCANGAN ALAT. Gambar 3.1 Diagram Blok Pengukur Kecepatan

BAB III PERANCANGAN ALAT. Gambar 3.1 Diagram Blok Pengukur Kecepatan BAB III PERANCANGAN ALAT 3.1 PERANCANGAN PERANGKAT KERAS Setelah mempelajari teori yang menunjang dalam pembuatan alat, maka langkah berikutnya adalah membuat suatu rancangan dengan tujuan untuk mempermudah

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Kegiatan penelitian ini dilakukan pada bulan Januari 2012 sampai bulan

BAB III METODOLOGI PENELITIAN. Kegiatan penelitian ini dilakukan pada bulan Januari 2012 sampai bulan BAB III METODOLOGI PENELITIAN 3.1. Tempat dan Waktu Penalitian Kegiatan penelitian ini dilakukan pada bulan Januari 2012 sampai bulan Juni 2012 yang dilaksanakan di Laboratorium Biofisika Departemen Fisika

Lebih terperinci

RANCANGAN BANGUN PENGUBAH SATU FASA KE TIGA FASA DENGAN MOTOR INDUKSI TIGA FASA

RANCANGAN BANGUN PENGUBAH SATU FASA KE TIGA FASA DENGAN MOTOR INDUKSI TIGA FASA Yogyakarta, 0 Nopember 2007 RANCANGAN BANGUN PENGUBAH SATU FASA KE TIGA FASA DENGAN MOTOR INDUKSI TIGA FASA Sofian Yahya, Toto Tohir Jurusan Teknik Elektro, Program Studi Teknik Listrik, Politeknik Negeri

Lebih terperinci

III. METODE PENELITIAN. Teknik Elektro Universitas Lampung dilaksanakan mulai bulan Desember 2011

III. METODE PENELITIAN. Teknik Elektro Universitas Lampung dilaksanakan mulai bulan Desember 2011 III. METODE PENELITIAN A. Waktu dan Tempat Penelitian dan perancangan tugas akhir dilakukan di Laboratorium Terpadu Teknik Elektro Universitas Lampung dilaksanakan mulai bulan Desember 2011 sampai dengan

Lebih terperinci

ALAT PEMBAGI TEGANGAN GENERATOR

ALAT PEMBAGI TEGANGAN GENERATOR ALAT PEMBAGI TEGANGAN GENERATOR 1. Pendahuluan Listrik seperti kita ketahui adalah bentuk energi sekunder yang paling praktis penggunaannya oleh manusia, di mana listrik dihasilkan dari proses konversi

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT Pada bab ini menjelaskan tentang perancangan sistem alarm kebakaran menggunakan Arduino Uno dengan mikrokontroller ATmega 328. yang meliputi perancangan perangkat keras (hardware)

Lebih terperinci

BAB III DASAR PEMILIHAN KOMPONEN. 3.1 Pemilihan Komponen Komparator (pembanding) Rangkaian komparator pada umumnya menggunakan sebuah komponen

BAB III DASAR PEMILIHAN KOMPONEN. 3.1 Pemilihan Komponen Komparator (pembanding) Rangkaian komparator pada umumnya menggunakan sebuah komponen BAB III DASAR PEMILIHAN KOMPONEN 3.1 Pemilihan Komponen Komparator (pembanding) Rangkaian komparator pada umumnya menggunakan sebuah komponen Operasional Amplifier (Op-Amp). Adapun komponen yang akan digunakan

Lebih terperinci

III. METODE PENELITIAN. Elektronika Dasar Jurusan Fisika Fakultas MIPA Universitas Lampung.

III. METODE PENELITIAN. Elektronika Dasar Jurusan Fisika Fakultas MIPA Universitas Lampung. 30 III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Juli 2014 sampai dengan Maret 2015. Perancangan, pembuatan dan pengambilan data dilaksanakan di Laboratorium

Lebih terperinci

TUGAS AKHIR PERANCANGAN DAN PEMBUATAN SIMULASI WATER LEVEL CONTROL SYSTEM BERBASIS PC OLEH: I MADE BUDHI DWIPAYANA NIM

TUGAS AKHIR PERANCANGAN DAN PEMBUATAN SIMULASI WATER LEVEL CONTROL SYSTEM BERBASIS PC OLEH: I MADE BUDHI DWIPAYANA NIM TUGAS AKHIR PERANCANGAN DAN PEMBUATAN SIMULASI WATER LEVEL CONTROL SYSTEM BERBASIS PC UNIVERSITAS PENDIDIKAN GANESHA DEPARTEMEN PENDIDIKAN NASIONAL UNDIKSHA OLEH: I MADE BUDHI DWIPAYANA NIM. 0605031010

Lebih terperinci