Design and Implementation of Image Processing System for Lumen Social Robot-Humanoid as an Exhibition Guide for Electrical Engineering Days 2015
|
|
|
- Benny Makmur
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Design and Implementation of Image Processing System for Lumen Social Robot-Humanoid as an Exhibition Guide for Electrical Engineering Days 2015 Setyaki Sholata Sya 1, Ary Setijadi Prihatmanto 2 # School of Electrical Engineering and informatics, Institut Teknologi Bandung Jalan Ganesha 10, Bandung 40132, Indonesia 1 [email protected] 3 [email protected] Abstract Lumen Social Robot is a humanoid robot development with the purpose that it could be a good friend to all people. In this year, the Lumen Social Robot is being developed into a guide in the exhibition and in the seminar of the Final Exam of undergraduate and graduate students in Electrical Engineering ITB, named Electrical Engineering Days In order to be the guide in that occasion, Lumen is supported by several things. They are Nao robot components, servers, and multiple processor systems. The image processing system is a processing application system that allows Lumen to recognize and determine an object from the image taken from the camera eye. The image processing system is provided with four modules. They are face detection module to detect a person's face, face recognition module to recognize a person's face, face tracking module to follow a person's face, and human detection module to detect humans based on the upper parts of person's body. Face detection module and human detection module are implemented by using the library harcascade.xml on EMGU CV. Face recognition module is implemented by adding the database for the face that has been detected and store it in that database. Face tracking module is implemented by using the Smooth Gaussian filter to the image. image processing system, Lumen will be able to detect people, know the people and recognize them. II. ANALYSIS AND DESIGN SYSTEM A. Robot Nao Lumen robot is a humanoid Nao robot manufactured by the French company named Aldebaran Robotics. Nao has the look of a child with the height of 573 mm and weight of kg. Nao has two autofocus camera located on the forehead and mouth and the camera has the ability of 30 fps, 640 * 480 pixels and has a maximum focus of 6 m. Nao also has an API that can process image processing, especially for the detection of a person's face. The API module named ALFaceDetection. The module can also store data of the detected faces to Nao s memory in order to Nao can recognize the faces and perform the repeating detection. Keywords Lumen, image processing system, face detection, face recognition, face tracking, human detection. I. INTRODUCTION Robot has grown significantly both in function and form. Not only in the world of industry, robots are also developed to be the human s friend as a social robot. According to Hegel et al, a robot can be called a social robot if it has an appearance and social function [1]. To be able to have an appearance and social function, social robot needs to have a shape resembling a human body structure commonly which is commonly called a humanoid robot. So the Lumen robot which is one example of a social-humanoid robot can be used as a guide in both indoors and outdoors condition. This paper will explain the implementation and design of an image processing system in the development of a Lumen robot as a guide at an exhibition and seminar of Final undergraduate and graduate students of Electrical Engineering ITB, namely Electrical Engineering Days Through this Figure 1. Spesification of Nao s Camera Image processing system in Lumen does not use API Nao because of the limited ability in image processing in API and the limited internal memory in saving the face database through this API command. B. Emgu CV Emgu CV is a cross-platform image processing library. Emgu CV is closely related to OpenCV because Emgu CV is a.net wrapper for OpenCV or it can be said that Emgu CV is OpenCV in.net. The language of the program in Emgu CV is C #, VB, IronPython and VC ++. Emgu CV can also be used in Linux, Windows, Mac OS X, and various types of mobile as Android, iphone, ipod Touch, and ipad.
2 Haar cascade has 4 main concepts in conducting the detection, namely Haar Training, Haar Feature, Integral Image, and Cascade Clasifier. Based on Figure 3, the image that we want to detect will be tested using the haar training. The purpose from haar training is to separate the object that we wish to detect with the object that we do not want to detect by making the positive and negative samples. After that, the next process will be the haar feature process, which will decide whether there is an object in the image or not by calculating the difference from the total of black pixels with the total of white pixels. There are four types of features based on the number of rectangles (Krishna & Srinivasulu, 2012). Figure 2 Platform Emgu CV One advantage of using Emgu CV in performing image processing is that there are lots of library xml that are much related to image processing. The Xml library used in this detection is haar_cascade_face.xml for detecting people's faces and haar_cascade_upperbody.xml to detect the people. C. Haar Cascade Face detection is based on the identifying and finding the location of the human face image in a picture regardless of the size, position, and condition (Padmaja & Prabakar, 2012). This also applies in the detection of a person based on the detection of the upper body. Figure 4 Haar Feature Haar feature will search for the position of the object by looking for features that have a high degree of differentiation. This is obtained from the threshold value which is the result of the difference of the black and white pixels. Figure 5 Search by Haar Feature Once the face is detected, Integral Image will be conducted. Integral image is the detection with a more efficient and more number of haar feature. Figure 6 Integral Image Method Figure 3 Flow Chart Method Haar Cascade Haar cascade is a learner and has a weak classifier, so the work of haar cascade should be done massively. The more the haar cascade process, the more accurate the result is. This
3 many Haar cascade features is organized by the cascade classifier. Figure 7 Cascade Classifier When there is only one frame being detected, the error was obtained by 50%. But when the detection is using many frames (minimumly 24 frames), the error was only 2%. D. EigenFace Eigenface is a set of face standardize ingredient derived from statistical analysis of many faces (Layman in Al Fatta, Hanif, 2009). Eigenface is one method in recognizing faces using the calculation from Principal Component Analysis (PCA). PCA itself is a technique to reduce the dimensions of a space presented by statistical variable xn where the variable is correlated with each other. The intention of using PCA in face recognition is to form a face room by finding the eigenvector and eigenvalue that corresponds to the largest eigen values from the face image. µ = mean S = covarian v i = eigenvector λ = eigenvalue When it detects a new face, eigenvalue will get a new value. Then the new value is compared with eigenvalue in the database. If the value of the new eigenvalue is higher than the old eigenvalue, then the face of the person is detected. Whereas if not, then that person is not detected. E. Gaussian Smoothing Filtering The method used in following the detected face is Smooting Gaussian filter. This method performs a filter on an image and focus it on the desired object. Initially, the image will be normalized in the RGB color. The purpose of the normalization is to make the range of the image value between Once normalized, RGB is converted to HSV. The aim from the conversion is to get the threshold value in detecting a face that will be tracked. By giving maximum and minimum limit value, value of hue, saturation and value at one point pixel of the object s surface can be obtained. Pixels colour that have the value in the threshold will be changed to white, while outside of the threshold will be changed to black. However, at this stage, the results still have a lot of noise there. To get a smoother detection and to eliminate the noise, the Gaussian Smoothing Filter process needs to be done. III. IMPLEMENTATION FIgure 8 Flow Chart EigenFace Method Each face image that is stored on the database has values that will be used in the calculation of eigenvalue and eigenvector PCA in order to recognize that face image. PCA calculation is derived from the eigenvalue and eigenvector. Eigenvalue is the transformation of each pixel in the image into a column vector that will produce a matrix. While eigenvector is the covariance of that matrix. Then, each value that has been recorded will be summed and divided by the number of face experiments conducted. This value is used as a reference values. µ = S = -µ)( -µ) T A. Face Detection The experiment of the face detection application was conducted 60 times in the morning, afternoon, evening, and night with three different lighting conditions (dark, adequate light, and excessive light). Each lighting was also done in five different positions of the object. In dark condition, the detection is not working. As for the adequate and excessive light, the detection can work but the performance of the detection decreases when in excessive light. This is shown by the shrinking of the displacement position angle when it gets more light. Figure 9 The results of the face detection
4 B. Face Recognizion The experiments of the face recognition application is done by taking three different faces with each is stored as many as 60 pieces of the faces. At trial, face recognition error was occurred in detecting the people's face. This is because the value of the eigenvalue from the face that we want to recognize is greater than the value of the eigenvalue of the face that is stored in the database. When it happens, the application will recognize that person s face as the face that has been stored in the database. Besides that, the lighting, the distance and angle of the camera view can affect the person's face recognition. is Figure 12 The result of the detection of people based on his upper body IV. CONCLUSION The conclusion from the implementation that has been done 1. By using the applications in image processing system modules (human detection, face detection, face recognition, and face tracking), Lumen has been able to act as a guide of the exhibition in Electrical Engineering Days 2015 quite satisfactory. 2. In image processing, lighting, perspective, and visibility is the factors that influence the treatment process. 3. In recognizing a person s face, the more samples that is being stored, the more accurate the detection of person s identity will be but it can reduce the performance in recognizing him. Figure 10 Results of face recognition C. Face Tracking Face tracking is the first step in doing face tracking in the module motion. Face tracking has managed to lock the face that will be tracked with a green dot in the center of the red square. Figure 11 Results of the face tracking D. Human Detection The application of the human detection is almost the same as the face detection. The experiments were carried out 60 times in the morning, afternoon, evening, and night with three different lighting conditions (dark, adequate light, and excessive light). Each lighting was also done in five different positions of the object. The performance of human detection also decreases as the face detection experiments. ACKNOWLEDGMENT Lumen development project is funded by the Ministry of Education and Culture of Indonesia with the support from the Laboratory of Computer Control and System Institut Teknologi Bandung (ITB) REFERENCES [1] Hegel, F. et. Al., Understanding Social Robots, [13 Mei 2015, WIB]. [2] Aldebaran Documentation [Online]. Available: [13 Mei 2015, WIB]. [3] A. Syarif, P. Nhirun, and S. Sholata, Pengembangan Lumen Sebagai 2015, B100 Engineering Documents, Institut Teknologi Bandung, [4] A. Syarif, P. Nhirun, and S. Sholata, Pengembangan Lumen Sebagai 2015, B300 Engineering Documents, Institut Teknologi Bandung, [5] Shi, Shin, Emgu CV Essentials, [6] J. Jones and J. Viola. 2004, Robust Real-Time Face Detection, International Journal of Computer Vision. [7] A. HArjoko dan H. Santoso. 2013, Haar Cascade Classsifier dan Algoritma Adaboost untuk Mendeteksi Banyak Wajah dalam Ruang Kelas, Jurnal Teknologi. [8] J. Dubravka and S. Marijeta. 2012, Face Recognition Using Eigenface Approach, Serbian Journal of Electrical Engineering. [9] J. David, N. Peter, and P. Joao. 1997, Eigenfaces vs. Fisherface: Recognition Using Class Specific Linear Projection, IEEE Transactions on Pattern Analysis and Machine Intelligence. [10] A. Pentland and M. Turk, Eigenfaces for Recognition, Journal of Cognitive Neuroscience, Massachusetts Institute of Technology. [11] A. Mayakar and V. Hiremath, Face Recognition Using Eigenface Approach, Malardalen University, Sweden. [12] A. Hendriawan, R. Susetyoko, and S. Bayu, Penerapan Face Recogniton dengan Metode Eigenface dalam Intelligent Home Security, Institut Teknologi Sepuluh November (ITS). [13] R. Mardiyanto and R. Tri. Perancangan Kendali Lengan Robot untuk Mengambil Objek Menggunakan Kamera, Institut Teknologi Sepuluh November (ITS). [14] A. Badduring and M. Sholeh, Rancang Bangun Aplikasi Pengaburan Gambar, Institut Sains dan Teknologi AKPRIND Yogyakarta.
5 [15] A. Syarif, P. Nhirun, and S. Sholata, Pengembangan Lumen Sebagai 2015, B400 Engineering Documents, Institut Teknologi Bandung, 2015
6 Desain dan Implementasi Sistem Pengolahan Citra untuk Lumen Robot Sosial Humanoid sebagai Pemandu Pameran pada Electrical Engineering Days 2015 Setyaki Sholata Sya 1, Ary Setijadi Prihatmanto 2 # Sekolah Teknik Elektro dan Informatika, Institut Teknologi Bandung Jalan Ganesha 10, Bandung 40132, Indonesia 1 [email protected] 3 [email protected] Abstract Lumen Sosial Robot merupakan sebuah pengembangan robot humanoid agar dapat menjadi teman bagi banyak orang. Pada tahun ini, Lumen Sosial Robot dikembangkan menjadi pemandu pameran pada suatu pameran dan seminar Tugas Akhir mahasiswa sarjana dan pascasarjana Tenik Elektro ITB, yaitu Electrical Engineering Days Agar dapat menjadi pemandu pameran, Lumen didukung beberapa hal, yaitu komponen robot Nao, server, dan beberapa sistem pengolah. Sistem pengolahan citra merupakan sistem aplikasi pengolah yang bertujuan Lumen dapat mengenali dan mengetahui suatu objek pada citra yang diambil dari camera mata Lumen. System pengolahan citra dilengkapi dengan empat buah modul, yaitu modul face detection untuk mendeteksi wajah seseorang, modul face recognition untuk mengenali wajah orang tersebut, modul face tracking untuk mengikuti wajah seseorang, dan modul human detection untuk mendeteksi manusia berdasarkan bagian tubuh atas orang tersebut. Modul face detection dan modul human detection diimplementasikan dengan menggunakan library harcascade.xml pada EMGU CV. Modul face recognition diimplementasikan dengan menambahkan database untuk wajah yang telah terdeteksi dan menyimpannya pada database. Module face tracking diimplementasikan dengan menggunakan filter Smooth Gaussian. dan seminar Tugas Akhir mahasiswa sarjana dan pascasarjana Teknik Elektro ITB, yaitu Electrical Engineering Days Melalui sistem pengolahan citra ini, Lumen mendeteksi orang, mengetahui orang dan mengenali orang tersebut. II. ANALISIS DAN SISTEM DESAIN A. Robot Nao Robot Lumen merupakan robot Nao berjenis humanoid robot yang diproduksi oleh perusahan di Prancis yang bernama Aldebaran Robotics. Nao memiliki tampilan seperti anak kecil yang memiliki tinggi 573 mm dan berat 4,996 kg. Nao memiliki dua buah kamera autofocus yang terletak pada dahi dan mulutnya dan kamera memiliki kemampuan 30 fps, 640*480 pixel dan memiliki titik focus maksimal 6 m. Nao juga memiliki API yang dapat memproses pengolah citra terutama untuk pendeteksian wajah seseorang. Modul API tersebut bernama ALFaceDetection. Pada modul tersebut juga dapat menyimpan data wajah yang telah terdeteksi ke memory Nao guna Nao dapat mengenali wajah tersebut dan melakukan pengulangan pendeteksian itu. Keywords Lumen, system pengolahan citra, face detection, face recognition, face tracking, human detection. I. PENDAHULUAN Robot telah berkembang secara pesat baik secara fungsi maupun bentuk. Tidak hanya di dunia industri, robot juga dikembangkan untuk menjadi teman dan sahabat manusia, seperti robot sosial. Menurut Hegel et al, suatu robot dapat disebut sebagai robot sosial jika memiliki fungsi dan tampilan sosial [1]. Agar dapat memiliki fungsi dan tampilan sosial itu, robot sosial memiliki bentuk menyerupai struktur tubuh manusia yang biasa disebut robot humanoid. Sehingga robot Lumen yang merupakan salah satu contoh robot sosialhumanoid dapat dimanfaatkan sebagai robot pemandu baik dalam keadaan indoor ataupun outdoor. Pada makalah ini akan dijelaskan tentang implementasi dan desain suatu sistem pengolahan citra pada pengembangan robot Lumen menjadi pemandu pameran pada suatu pameran Gambar 1 Spesifikasi Kamera Nao Sistem pengolahan citra pada Lumen tidak menggunakan API Nao karena adanya keterbatasan kemampuan dalam pengolahan citra API dan keterbatasan memory internal saat menyimpan database wajah melalui perintah API ini. B. Emgu CV Emgu CV merupakan suatu lintas platform library pengolahan citra. Emgu CV berkaitan erat dengan OpenCV
7 karena Emgu CV merupakan pembungkus NET untuk OpenCV atau bisa dibilang Emgu CV adalah OpenCV di NET. Bahasa program yang terdapat pada Emgu CV ialah C#, VB, IronPython dan VC++. Emgu CV juga dapat digunakan di Linux, Windows, Mac OS X, dan berbagai jenis mobile seperti Android, iphone, ipod Touch, dan ipad. Gambar 3 Flow Chart Metode Haar Cascade Gambar 2 Platform Emgu CV Salah satu keuntungan menggunakan Emgu CV untuk melakukan pengolahan citra adalah banyak library xml yang berkaitan dengan pengolahan citra. Library xml yang dipakai dalam pendeteksian ini adalah haar_cascade_face.xml untuk pendeteksian wajah orang dan haar_cascade_upperbody.xml untuk mendeteksi orang. C. Haar Cascade Deteksi wajah didasarkan pada identifikasi dan menemukan lokasi citra wajah manusia dalam gambar terlepas dari ukuran, posisi, dan kondisi (Padmaja & Prabakar, 2012). Hal ini juga berlaku dalam pendeteksian seseorang berdasarkan pendeteksian tubuh bagian atas. Haar Cascade memiliki 4 konsep utama dalam melakukan pendeteksian, yaitu Haar Training, Haar Feature, Integral Image dan Cascade Clasifier. Berdasarkan Gambar 3, citra yang akan dideteksi akan diuji menggunakan haar training. Tujuan melakukan haar training adalah memisahkan objek yang ingin dideteksi dengan objek yang tidak ingin dideteksi dengan cara membuat sample positive dan negative. Setelah itu akan dilakukan proses haar feature, yaitu memutuskan apakah di citra tersebut terdapat objek atau tidak dengan cara melakukan pengurangan terhadap akumulasi piksel hitam dengan akumulasi piksel putih. Terdapat empat jenis fitur berdasarkan jumlah persegi panjang (Krishna & Srinivasulu, 2012). Gambar 4 Haar Feature Haar feature akan melakukan pencarian posisi objek dengan cara mencari fitur-fitur yang memiliki tingkat pembeda yang tinggi. Tingkat pembeda ini diperoleh dari nilai ambang (threshold) yang merupakan hasil selisih dari piksel hitam dan putih tersebut.
8 Gambar 5 Pencarian oleh Haar Feature Setelah terdeteksi wajah, maka akan dilakukan Integral Image. Integral Image adalah pendeteksian dengan jumlah haar feature yang lebih banyak dan efisien. Gambar 8 Flow Chart metode EigenFace Gambar 6 Metode Integral Image Haar cascade memiliki sifat learner dan classifier yang lemah, sehingga pengerjaan haar cascade harus dilakukan secara masal. Semakin banyak proses haar cascade, maka hasil yang diinginkan akan semakin akurat. Proses haar feature yang banyak ini diorganisir oleh cascade classifier. Setiap citra wajah yang disimpan pada database memiliki nilai yang dipakai dalam penghitungan eiugenvalue dan eigenvector PCA guna mengenali citra wajah tersebut. Perhitungan PCA berasal dari eigenvalue dan eigenvector. Eigenvalue adalah tranformasi setiap piksel pada gambar menjadi vector kolom sehingga menghasilkan satu matriks. Sedangkan eigenvektor merupakan merupakan covarian matriks tersebut. Kemudian, setiap nilai yang dicatat, dijumlahkan dan dibagi dengan banyaknya percobaan wajah yang dilakukan. Nilai ini dijadikan sebagai nilai acuan. µ = S = -µ)( -µ) T Gambar 7 Cascade Classifier Ketika hanya satu frame yang dideteksi, error yang diperoleh sebesar 50%. Namun dengan melakukan pendeteksian dengan banyak frame (minimum 25 frames), error yang dihasilkan hanya 2%. D. EigenFace EigenFace adalah sekumpulan standardize face ingredient yang diambil dari analisis statistik dari banyak wajah (Layman dalam Al Fatta, Hanif, 2009). EigenFace merupakan salah satu metode dalam melakukan pengenalan terhadap suatu wajah dengan penghitungan Principal Component Analysis (PCA). PCA sendiri merupakan teknik untuk mengurangi dimensi sebuah ruang yang dipresentasikan oleh variable statistic x n di mana variable tersebut saling korelasi dengan lainnya. Tujuan penggunaan PCA pada pengenalan wajah adalah membentuk ruang wajah dengan cara mencari eigenvector dan eigenvalue yang berkoresponden dengan nilai eigen terbesar dari citra wajah. µ = mean S = Kovarian v i = eigenvector λ = eigenvalue Ketika mendeteksi wajah baru, eigenvalue akan mendapat nilai baru. Kemudian nilai baru tersebut dibandingkan dengan eigenvalue pada database. Apabila nilai eigenvalue yang baru lebih besar dari eigenvalue yang lama, maka muka orang tersebut terdeteksi. Sedangkan jika tidak, maka orang tersebut tidak terdeteksi. E. Gaussian Smoothing Filtering Metode yang dipakai dalam mengikuti wajah yang terdeteksi ialah Gaussian Smooting Filter. Metode ini melakukan filter pada suatu citra dan memfokuskannya pasa objek yang diinginkan. Awalnya, citra akan dinormalisasi pada warna RGB. Tujuan dari normalisasi agar range nilai citra berada diantara Setelah dinormalisasi, RGB dikonversi menjadi HSV. Konversi ini dilakukan dengan tujuan untuk mendapatkan nilai threshold dalam mendeteksi wajah yang mau di-tracking. Dengan memberikan nilai batas maksimum dan minimum, maka akan mendapatkan nilai hue, saturation dan value pada
9 satu titik piksel permukaan objek. Piksel warna yang memiliki nilai di dalam batas ambang akan diubah menjadi putih, sedangkan di luar akan menjadi hitam. Namun pada tahap ini, hasil yang didapat masih banyak terdapat noise. Untuk mendapatkan pendeteksian yang lebih halus dan menghilangkan noise tersebut, maka dilakukan proses Gaussian Smoothing Filter. III. IMPLEMENTASI A. Face Detection Aplikasi face detection dilakukan percobaan sebanyak 60 kali pada pagi, siang, sore dan malam dengan 3 kondisi pencahayaan yang berbeda (gelap, cukup cahaya, dan cahaya berlebihan). Setiap pencahayaan juga dilakukan pada 5 posisi objek yang berbeda. Pada kondisi gelap, pendeteksian tidak bekerja. Sedangkan untuk cukup dan berlebihan cahaya, pendeteksian bisa berjalan namun performansi deteksi menurun saat cahaya berlebih. Hal ini ditunjukkan dengan perubahan perpindahan posisi sudut yang mengecil ketika mendapat cahaya yang lebih banyak. Gambar 10 Hasil pengenalan wajah C. Face Tracking Face tracking merupakan langkah awal dalam melakukan face tracking pada modul motion. Face tracking telah berhasil mengunci muka yang akan diikutinya dengan tanda titik warna hijau pada pusat persegi berwarna merah. Gambar 11 Hasil tracking wajah Gambar 9 Hasil pendeteksian wajah B. Face Recognizion Percobaan aplikasi face recognition dilakukan dengan pengambilan 3 wajah orang berbeda yang masing- masing disimpan sebanyak 60 buah sampel wajahnya. Pada percobaan, face recognition terjadi error seperti salah mendeteksi wajah orang. Hal ini disebabkan karena nilai eigenvalue wajah yang mau dikenali lebih besar dari pada nilai eigenvalue wajah yang terdapat di database. Bila terjadi hal itu, aplikasi akan mengenali wajah tersebut sebagai orang yang wajahnya telah terdapat pada database. Selain itu juga, pencahayaan, jarak dan sudut tampilan terhadap kamera bisa mempengaruhi pengenalan wajah orang tersebut. D. Human Detection Aplikasi human detection hampir sama dengan face detection. Percobaan dilakukan sebanyak 60 kali pada pagi, siang, sore dan malam dengan 3 kondisi pencahayaan yang berbeda (gelap, cukup cahaya, dan cahaya berlebihan). Setiap pencahayaan juga dilakukan pada 5 posisi objek yang berbeda. Performasi pendeteksian manusia juga menurun seperti percobaan face detection. Gambar 12 Hasil pendeteksian orang berdasarkan tubuh bagian atasnya IV. KESIMPULAN Kesimpulan dari implemtasi yang telah dilakukan adalah 1. Dengan menggunakan aplikasi-aplikasi pada modul sistem pengolahan citra (human detection, face detection, face recognition, dan face tracking), Lumen sudah dapat berperan menjadi pemandu pameran dalam Electrical Engineering Days 2015 dengan cukup baik.
10 2. Dalam pengolahan citra, pencahayaan, sudut pandang, dan jarak pandang memiliki faktor yang sangat mempengaruhi proses pengolahan tersebut. 3. Dalam pengenalan wajah seseorang, semakin banyak sampel yang disimpan maka semakin akurat pendeteksian akan identitas orang tersebut namun dapat menurunkan performasi dalam mengenalinya. ACKNOWLEDGMENT Pengembangan proyek Lumen ini didanai oleh Menteri Pendidikan dan Kebudayaan Indonesia dengan dukungan oleh Laboratorium Sistem Kendali dan Komputer Institut Teknologi Bandung (LSKK ITB) REFERENSI [1] Hegel, F. et. Al., Understanding Social Robots, [13 Mei 2015, WIB]. [2] Aldebaran Documentation [Online]. Available: [13 Mei 2015, WIB]. [3] A. Syarif, P. Nhirun, and S. Sholata, Pengembangan Lumen Sebagai 2015, B100 Engineering Documents, Institut Teknologi Bandung, [4] A. Syarif, P. Nhirun, and S. Sholata, Pengembangan Lumen Sebagai 2015, B300 Engineering Documents, Institut Teknologi Bandung, [5] Shi, Shin, Emgu CV Essentials, [6] J. Jones and J. Viola. 2004, Robust Real-Time Face Detection, International Journal of Computer Vision. [7] A. HArjoko dan H. Santoso. 2013, Haar Cascade Classsifier dan Algoritma Adaboost untuk Mendeteksi Banyak Wajah dalam Ruang Kelas, Jurnal Teknologi. [8] J. Dubravka and S. Marijeta. 2012, Face Recognition Using Eigenface Approach, Serbian Journal of Electrical Engineering. [9] J. David, N. Peter, and P. Joao. 1997, Eigenfaces vs. Fisherface: Recognition Using Class Specific Linear Projection, IEEE Transactions on Pattern Analysis and Machine Intelligence. [10] A. Pentland and M. Turk, Eigenfaces for Recognition, Journal of Cognitive Neuroscience, Massachusetts Institute of Technology. [11] A. Mayakar and V. Hiremath, Face Recognition Using Eigenface Approach, Malardalen University, Sweden. [12] A. Hendriawan, R. Susetyoko, and S. Bayu, Penerapan Face Recogniton dengan Metode Eigenface dalam Intelligent Home Security, Institut Teknologi Sepuluh November (ITS). [13] R. Mardiyanto and R. Tri. Perancangan Kendali Lengan Robot untuk Mengambil Objek Menggunakan Kamera, Institut Teknologi Sepuluh November (ITS). [14] A. Badduring and M. Sholeh, Rancang Bangun Aplikasi Pengaburan Gambar, Institut Sains dan Teknologi AKPRIND Yogyakarta. [15] A. Syarif, P. Nhirun, and S. Sholata, Pengembangan Lumen Sebagai 2015, B400 Engineering Documents, Institut Teknologi Bandung, 2015.
Desain dan Implementasi Sistem Pengolahan Citra untuk Lumen Robot Sosial Humanoid sebagai Pemandu Pameran pada Electrical Engineering Days 2015
Desain dan Implementasi Sistem Pengolahan Citra untuk Lumen Robot Sosial Humanoid sebagai Pemandu Pameran pada Electrical Engineering Days 2015 Setyaki Sholata Sya 1, Ary Setijadi Prihatmanto 2 # Sekolah
FACE RECOGNITION MENGGUNAKAN METODE TWO- DIMENSIONAL PRINCIPAL COMPONENTS ANALYSIS (2DPCA) ABSTRAK
FACE RECOGNITION MENGGUNAKAN METODE TWO- DIMENSIONAL PRINCIPAL COMPONENTS ANALYSIS (2DPCA) Kurnia Novita Mutu (0722029) Jurusan Teknik Elektro email: [email protected] ABSTRAK Perkembangan biometrik pada
REALISASI SISTEM DETEKSI RASA KANTUK BERDASARKAN DURASI KEDIPAN MATA SECARA REAL TIME MENGGUNAKAN METODE VIOLA-JONES
REALISASI SISTEM DETEKSI RASA KANTUK BERDASARKAN DURASI KEDIPAN MATA SECARA REAL TIME MENGGUNAKAN METODE VIOLA-JONES Avrian Andreas Marjono NRP : 1222006 e-mail : [email protected] ABSTRAK Rasa
PERANCANGAN dan REALISASI FACETRACKER WEBCAM MENGGUNAKAN METODE HAAR-LIKE FEATURE BERBASIS RASPBERRY PI 2
PERANCANGAN dan REALISASI FACETRACKER WEBCAM MENGGUNAKAN METODE HAAR-LIKE FEATURE BERBASIS RASPBERRY PI 2 Disusun oleh : Steven Christian Santosa (1222038) Program Studi Teknik Elektro, Fakultas Teknik,
PERANCANGAN PENDETEKSI WAJAH DENGAN ALGORITMA LBP (LOCAL BINARY PATTERN) BERBASIS RASPBERRY PI
PERANCANGAN PENDETEKSI WAJAH DENGAN ALGORITMA LBP (LOCAL BINARY PATTERN) BERBASIS RASPBERRY PI Nadia R.W (0822084) Email: [email protected] Jurusan Teknik Elektro, Fakultas Teknik,, Jl. Prof. Drg.
DETEKSI DAN REPRESENTASI FITUR MATA PADA SEBUAH CITRA WAJAH MENGGUNAKAN HAAR CASCADE DAN CHAIN CODE
DETEKSI DAN REPRESENTASI FITUR MATA PADA SEBUAH CITRA WAJAH MENGGUNAKAN HAAR CASCADE DAN CHAIN CODE Riandika Lumaris dan Endang Setyati Teknologi Informasi Sekolah Tinggi Teknik Surabaya [email protected]
PENGENALAN WAJAH DENGAN CITRA MASUKAN BERUPA CITRA SKETSA WAJAH SEBAGAI HASIL SINTESIS DENGAN TEKNIK MULTISCALE MARKOV RANDOM FIELD (MRF)
PENGENALAN WAJAH DENGAN CITRA MASUKAN BERUPA CITRA SKETSA WAJAH SEBAGAI HASIL SINTESIS DENGAN TEKNIK MULTISCALE MARKOV RANDOM FIELD (MRF) Disusun oleh : Alvin Silajaya (0922018) Jurusan Teknik Elektro,
PENGENALAN WAJAH MENGGUNAKAN ALGORITMA EIGENFACE DAN EUCLIDEAN DISTANCE
PENGENALAN WAJAH MENGGUNAKAN ALGORITMA EIGENFACE DAN EUCLIDEAN DISTANCE Widodo Muda Saputra, Helmie Arif Wibawa, S.Si, M.Cs, dan Nurdin Bahtiar, S.Si, M.T Fakultas Sains dan Matematika, Jurusan Ilmu Komputer
PERANCANGAN PERGERAKAN WEBCAM BERDASARKAN PERUBAHAN POSISI WAJAH MENGGUNAKAN METODE EIGENFACE BERBASIS RASPBERRY PI
PERANCANGAN PERGERAKAN WEBCAM BERDASARKAN PERUBAHAN POSISI WAJAH MENGGUNAKAN METODE EIGENFACE BERBASIS RASPBERRY PI Disusun oleh : Regina Vania Cahyadi (1122003) Jurusan Teknik Elektro, Fakultas Teknik,
DAFTAR ISI v. ABSTRACT ii KATA PENGANTAR iii. DAFTAR GAMBAR.vii DAFTAR TABEL...ix
ABSTRAK Dalam laporan tugas akhir ini dijelaskan mengenai suatu sistem pengenal identitas manusia dengan menggunakan wajah sebagai pengenalnya, atau yang lebih dikenal dengan Face Recognition. Tujuan dari
PERANCANGAN DAN REALISASI SISTEM PENDETEKSI GERAKAN SEBAGAI NATURAL USER INTERFACE ( NUI ) MENGGUNAKAN BAHASA C# ABSTRAK
PERANCANGAN DAN REALISASI SISTEM PENDETEKSI GERAKAN SEBAGAI NATURAL USER INTERFACE ( NUI ) MENGGUNAKAN BAHASA C# Disusun oleh : Jeffry 0822023 Jurusan Teknik Elektro, Fakultas Teknik,, Jl.Prof.Drg.Suria
SISTEM PENGENALAN PENGUCAPAN HURUF VOKAL DENGAN METODA PENGUKURAN SUDUT BIBIR PADA CITRA 2 DIMENSI ABSTRAK
SISTEM PENGENALAN PENGUCAPAN HURUF VOKAL DENGAN METODA PENGUKURAN SUDUT BIBIR PADA CITRA 2 DIMENSI Adhi Fajar Sakti Wahyudi (0722062) Jurusan Teknik Elektro Email: [email protected] ABSTRAK Teknologi pengenalan
REALISASI SISTEM PENJEJAKAN WAJAH DENGAN ALGORITMA FISHERFACE BERBASIS RASPBERRY PI ABSTRAK
REALISASI SISTEM PENJEJAKAN WAJAH DENGAN ALGORITMA FISHERFACE BERBASIS RASPBERRY PI Disusun oleh : Natalio Andor Pangihutan Sihite (1022052) Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen
Implementasi OpenCV pada Robot Humanoid Pemain Bola Berbasis Single Board Computer
Implementasi OpenCV pada Robot Humanoid Pemain Bola Berbasis Single Board Computer Disusun Oleh: Nama : Edwin Nicholas Budiono NRP : 0922004 Jurusan Teknik Elektro, Fakultas Teknik,, Jl. Prof.Drg.Suria
Perbandingan Dua Citra Bibir Manusia Menggunakan Metode Pengukuran Lebar, Tebal dan Sudut Bibir ABSTRAK
Perbandingan Dua Citra Bibir Manusia Menggunakan Metode Pengukuran Lebar, Tebal dan Sudut Bibir Rizki Hamdani / 0322 Jurusan Teknik Elektro, Fakultas Teknik Universitas Kristen Maranatha Jl. Prof. Drg.
PENGENALAN WAJAH DENGAN MENGGUNAKAN NLDA (NULL-SPACE LINEAR DISCRIMINANT ANALYSIS)
PENGENALAN WAJAH DENGAN MENGGUNAKAN NLDA (NULL-SPACE LINEAR DISCRIMINANT ANALYSIS) Disusun oleh : Yudi Setiawan (0722095) Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof. Drg. Suria Sumantri, MPH, No.
Kata kunci : citra, pendeteksian warna kulit, YCbCr, look up table
Pendeteksian Warna Kulit berdasarkan Distribusi Warna YCbCr Elrica Pranata / 0422002 Email : [email protected] Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen Marantha Jalan Prof. Suria Sumantri
ABSTRAK. v Universitas Kristen Maranatha
ABSTRAK Tanda tangan merupakan sesuatu yang unik yang dimiliki setiap orang sehingga seringkali dipakai untuk menentukan keabsahan dokumen ataupun transaksi. Akan tetapi tanda tangan menjadi rentan terhadap
APLIKASI PENGENALAN WAJAH MENGGUNAKAN METODE EIGENFACE DENGAN BAHASA PEMROGRAMAN JAVA
APLIKASI PENGENALAN WAJAH MENGGUNAKAN METODE EIGENFACE DENGAN BAHASA PEMROGRAMAN JAVA Anita T. Kurniawati dan Afrilyan Ruli Dwi Rama Teknik Informatika-ITATS, Jl. Arief Rahman Hakim 100 Surabaya Email:
PENGELOMPOKAN CITRA WAJAH DENGAN TEKNIK SUBSPACE CLUSTERING MENGGUNAKAN ALGORITMA LSA SC (LOCAL SUBSPACE AFFINITY SPECTRAL CLUSTERING)
PENGELOMPOKAN CITRA WAJAH DENGAN TEKNIK SUBSPACE CLUSTERING MENGGUNAKAN ALGORITMA LSA SC (LOCAL SUBSPACE AFFINITY SPECTRAL CLUSTERING) Disusun oleh : Febryan Setiawan (0922081) Jurusan Teknik Elektro,
ABSTRAK. Aplikasi Metode Viola Jones dan Eigenface Untuk Pengenalan Ekspresi Wajah Manusia
ABSTRAK Aplikasi Metode Viola Jones dan Eigenface Untuk Pengenalan Ekspresi Wajah Manusia Disusun Oleh : Ayu Maulidya (1122065) Program Studi Teknik Elektro, Fakultas Teknik,, Jl. Prof.Drg.Suria Sumantri,
BAB 4 HASIL DAN PEMBAHASAN
68 BAB 4 HASIL DAN PEMBAHASAN 4.1. Uji Algoritma Pengujian dilakukan untuk mendapatkan algoritma yang paling optimal dari segi kecepatan dan tingkat akurasi yang dapat berjalan secara real time pada smartphone
DAFTAR ISI ABSTRAK... KATA PENGANTAR... DAFTAR ISI... DAFTAR GAMBAR... DAFTAR TABEL... DAFTAR LAMPIRAN Latar Belakang... 1
ABSTRAK Saat ini komputer dan piranti pendukungnya telah masuk dalam setiap aspek kehidupan dan pekerjaan. Komputer yang ada sekarang memiliki kemampuan yang lebih dari sekedar perhitungan matematik biasa.
SISTEM PENGENALAN WAJAH BERBASIS METODA FISHERFACE TUGAS AKHIR. Febrian Ardiyanto NIM :
SISTEM PENGENALAN WAJAH BERBASIS METODA FISHERFACE TUGAS AKHIR Oleh Febrian Ardiyanto NIM : 13203137 PROGRAM STUDI TEKNIK ELEKTRO SEKOLAH TEKNIK ELEKTRO DAN INFORMATIKA INSTITUT TEKNOLOGI BANDUNG 2007
BAB II LANDASAN TEORI. Kamera web (singkatan dari web dan camera) merupakan sebuah media
BAB II LANDASAN TEORI 2.1 Webcam Kamera web (singkatan dari web dan camera) merupakan sebuah media yang berorientasi pada image dan video dengan resolusi tertentu. Umumnya webcam adalah sebuah perngkat
PERANCANGAN DAN PENGEMBANGAN SISTEM DETEKSI RINTANGAN MENGGUNAKAN METODE HAAR-LIKE FEATURE PADA BRAIN-CONTROLLED WHEELCHAIR
PERANCANGAN DAN PENGEMBANGAN SISTEM DETEKSI RINTANGAN MENGGUNAKAN METODE HAAR-LIKE FEATURE PADA BRAIN-CONTROLLED WHEELCHAIR Aristian Jovianto Yunus NRP : 1322022 e-mail : [email protected] ABSTRAK
Perancangan Prototipe Sistem Pencarian Tempat Parkir Kosong dengan Kamera Web Sebagai Pemantau
Perancangan Prototipe Sistem Pencarian Tempat Parkir Kosong dengan Kamera Web Sebagai Pemantau Bobby Wirawan / 0522010 E-mail : [email protected] Jurusan Teknik Elektro, Fakultas Teknik, Jalan Prof.
REALISASI PERANGKAT LUNAK UNTUK MEMVERIFIKASI SESEORANG BERDASARKAN CITRA PEMBULUH DARAH MENGGUNAKAN EKSTRAKSI FITUR LOCALITY PRESERVING PROJECTION
REALISASI PERANGKAT LUNAK UNTUK MEMVERIFIKASI SESEORANG BERDASARKAN CITRA PEMBULUH DARAH MENGGUNAKAN EKSTRAKSI FITUR LOCALITY PRESERVING PROJECTION FadliWitular (0822043) Jurusan Teknik Elektro Universitas
Penerapan Face Recognition dengan Metode Eigenface pada Intelligent Car Security
Penerapan Face Recognition dengan Metode Eigenface pada Intelligent Car Security Sehman Teknologi Informasi Sekolah Tinggi Teknologi Surabaya [email protected] ABSTRAK Kemajuan teknologi informasi
DAFTAR ISI. BAB 3 PERANCANGAN PERANGKAT LUNAK 3.1 Diagram Alir Utama Kamera Web iii
Aplikasi Kamera Web Untuk Mengidentifikasi Plat Nomor Mobil Jemmy / 0322042 E-mail : [email protected] Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha Jalan Prof. Drg. Suria
PENGENALAN WAJAH DENGAN MENERAPKAN ALGORITMA ADAPTIF K MEANS
PENGENALAN WAJAH DENGAN MENERAPKAN ALGORITMA ADAPTIF K MEANS Disusun oleh: Juan Elisha Widyaya (0822014) Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof. Drg. Suria Sumantri, MPH, no. 65, Bandung, Indonesia
MENENTUKAN KEPADATAN LALU LINTAS DENGAN PENGHITUNGAN JUMLAH KENDARAAN BERBASIS VIDEO PROCESSING
Powered by TCPDF (www.tcpdf.org) Tugas Akhir - 2009 MENENTUKAN KEPADATAN LALU LINTAS DENGAN PENGHITUNGAN JUMLAH KENDARAAN BERBASIS VIDEO PROCESSING Muahamd Syukur¹, Iwan Iwut Tritoasmoro², Koredianto Usman³
Prototype Pendeteksi Jumlah Orang Dalam Ruangan
e-issn: 2528-4053 36 Prototype Pendeteksi Jumlah Orang Dalam Ruangan Nesi Syafitri 1, Adri 2 1,2 Jurusan Teknik Informatika, Fakultas Teknik, Universitas Islam Riau E-mail: [email protected], [email protected]
PERANCANGAN DAN REALISASI WITNESS CAMERA DENGAN MEDIA PENYIMPANAN SDCARD ABSTRAK
PERANCANGAN DAN REALISASI WITNESS CAMERA DENGAN MEDIA PENYIMPANAN SDCARD Andhy Joggy Parulian / 0422079 Jurusan Teknik Elektro, Fakultas Teknik,, Jl. Prof.Drg.Suria Sumantri, MPH no.65, Bandung, Indonesia,
PENGENALAN DAN PEWARNAAN PADA CITRA GRAY-SCALE ABSTRAK
PENGENALAN DAN PEWARNAAN PADA CITRA GRAY-SCALE NOVIANI KRISNADI/0322064 Email Address: [email protected] Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof. Drg. Suria Sumantri 65, Bandung 40165, Indonesia
IDENTIFIKASI WAJAH MANUSIA BERDASARKAN PERBANDINGAN PARAMETER TINGGI HIDUNG, LEBAR HIDUNG DAN JARAK MATA. Yusriani Laa Baan
IDENTIFIKASI WAJAH MANUSIA BERDASARKAN PERBANDINGAN PARAMETER TINGGI HIDUNG, LEBAR HIDUNG DAN JARAK MATA Yusriani Laa Baan 0522132 Jurusan Teknik Elektro, Fakultas Teknik, Jalan Prof. Drg. Suria Sumantri
Pengenalan Wajah Menggunakan Metode Support Vector Machine (SVM)
Pengenalan Wajah Menggunakan Metode Support Vector Machine (SVM) Yudhie Suherdani / 9922109 Jurusan Teknik Elektro, Fakultas Teknik, Univeristas Kristen Maranatha Jln. Prof. Drg. Suria Sumantri 65, Bandung
PERANCANGAN DAN IMPLEMENTASI KEAMANAN PINTU BERBASIS PENGENALAN WAJAH DENGAN METODE EIGENFACE
110 PERANCANGAN DAN IMPLEMENTASI KEAMANAN PINTU BERBASIS PENGENALAN WAJAH DENGAN METODE EIGENFACE Derian Indra Bramantio 1, Erwin Susanto 2, Ramdhan Nugraha 3 1, 2, 3 Fakultas Teknik Elektro, Universitas
ABSTRAK. Kata kunci : CBIR, GLCM, Histogram, Kuantisasi, Euclidean distance, Normalisasi. v Universitas Kristen Maranatha
ABSTRAK Content-Based Image Retrieval (CBIR) adalah proses untuk mendapatkan suatu citra berdasarkan konten-konten tertentu, konten yang dimaksud dapat berupa tekstur, warna, bentuk. CBIR pada dasarnya
LAPORAN PENELITIAN DOSEN MUDA. Sistem Identifikasi Teroris Dengan Pelacakan Dan Pengenalan Wajah
LAPORAN PENELITIAN DOSEN MUDA Sistem Identifikasi Teroris Dengan Pelacakan Dan Pengenalan Wajah Oleh : Endah Sudarmilah, S.T, M.Eng Umi Fadlillah, S.T Dibiayai oleh Koordinasi Perguruan Tinggi Swasta Wilayah
PERANCANGAN PENDETEKSI KEDIPAN MATA UNTUK FUNGSI KLIK PADA MOUSE MELALUI KAMERA WEB ABSTRAK
PERANCANGAN PENDETEKSI KEDIPAN MATA UNTUK FUNGSI KLIK PADA MOUSE MELALUI KAMERA WEB Daniel / 0722020 Email : [email protected] Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha
IDENTIFIKASI NOMOR POLISI KENDARAAN BERMOTOR MENGGUNAKAN JARINGAN SYARAF TIRUAN SELF ORGANIZING MAPS (SOMS)
Powered by TCPDF (www.tcpdf.org) IDENTIFIKASI NOMOR POLISI KENDARAAN BERMOTOR MENGGUNAKAN JARINGAN SYARAF TIRUAN SELF ORGANIZING MAPS (SOMS) Inung Wijayanto¹, Iwan Iwut Tritoasmoro², Koredianto Usman³
BAB 3 PERANCANGAN SISTEM
BAB 3 PERANCANGAN SISTEM 3.1 Rancangan Perangkat Keras 3.1.1 Diagram Blok Sistem Rancangan perangkat keras dari aplikasi pengenalan wajah ini dapat dilihat pada diagram blok Gambar 3.1 sebagai berikut
Rancang Bangun Prototipe Aplikasi Pengenalan Wajah untuk Sistem Absensi Alternatif dengan Metode Haar Like Feature dan Eigenface
Rancang Bangun Prototipe Aplikasi Pengenalan Wajah untuk Sistem Absensi Alternatif dengan Metode Haar Like Feature dan Eigenface Wahyu Sulistiyo, Budi Suyanto, Idhawati Hestiningsih, Mardiyono, Sukamto
Pengenalan Warna Kulit Untuk Klasifikasi Ras Manusia Andy Putra P. Zebua /
Pengenalan Warna Kulit Untuk Klasifikasi Ras Manusia Andy Putra P. Zebua / 0522099 Email : [email protected] Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha Jalan Prof. drg.
Realisasi Perangkat Color Object Tracking Menggunakan Raspberry Pi
Realisasi Perangkat Color Object Tracking Menggunakan Raspberry Pi Disusun Oleh: Iona Aulia Risnadi (0922049) Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof.Drg.Suria Sumantri, MPH no. 65, Bandung,
Pengenalan Wajah dengan Metode Subspace LDA (Linear Discriminant Analysis)
Pengenalan Wajah dengan Metode Subspace LDA (Linear Discriminant Analysis) Ratna Nur Azizah Jurusan Teknik Elektro FTI, Institut Teknologi Sepuluh Nopember Kampus ITS, Keputih-Sukolilo, Surabaya-60111
BAB I PENDAHULUAN. 1.1 Latar Belakang
1 BAB I PENDAHULUAN 1.1 Latar Belakang Home security saat ini sudah menjadi kebutuhan setiap pemilik rumah yang menginginkan tingkat keamanan yang baik. Salah satu sistem keamanan konvensional yang masih
UJI KINERJA FACE RECOGNITION MENGGUNAKAN EIGENFACES
1 Uji Kinerja Face Recognition Menggunakan Eigenfaces UJI KINERJA FACE RECOGNITION MENGGUNAKAN EIGENFACES ABDUL AZIS ABDILLAH 1 1STKIP Surya, Tangerang, Banten, [email protected] Abstrak. Pada paper
BAB II TINJAUAN PUSTAKA. menggunakan PCA, kemudian penelitian yang menggunakan algoritma Fuzzy C-
8 BAB II TINJAUAN PUSTAKA 2.1 Studi Pendahuluan Sebelumnya telah ada penelitian tentang sistem pengenalan wajah 2D menggunakan PCA, kemudian penelitian yang menggunakan algoritma Fuzzy C- Means dan jaringan
PENGENALAN HURUF TULISAN TANGAN BERBASIS CIRI SKELETON DAN STATISTIK MENGGUNAKAN JARINGAN SARAF TIRUAN. Disusun oleh : Mario Herryn Tambunan ( )
PENGENALAN HURUF TULISAN TANGAN BERBASIS CIRI SKELETON DAN STATISTIK MENGGUNAKAN JARINGAN SARAF TIRUAN Disusun oleh : Mario Herryn Tambunan (1022056) Jurusan Teknik Elektro, Fakultas Teknik, Universitas
PENCOCOKAN OBYEK WAJAH MENGGUNAKAN METODE SIFT (SCALE INVARIANT FEATURE TRANSFORM)
Jurnal Ilmiah NERO Vol. 1 No. 1 2014 PENCOCOKAN OBYEK WAJAH MENGGUNAKAN METODE SIFT (SCALE INVARIANT FEATURE TRANSFORM) Meidya Koeshardianto, S. Si., M. T. Program Studi D3Manajemen Informatika, Universitas
SISTEM PENGENALAN WAJAH DENGAN METODE EIGENFACE DAN JARINGAN SYARAF TIRUAN (JST)
Berkala Fisika ISSN : 1410-9662 Vol. 15, No. 1, Januari 2012, hal 15-20 SISTEM PENGENALAN WAJAH DENGAN METODE EIGENFACE DAN JARINGAN SYARAF TIRUAN (JST) Tri Mulyono, Kusworo Adi dan Rahmat Gernowo Jurusan
ANALISIS DAN SIMULASI SISTEM PENGENALAN WAJAH DENGAN METODE FISHERFACE BERBASIS OUTDOORVIDEO.
ANALISIS DAN SIMULASI SISTEM PENGENALAN WAJAH DENGAN METODE FISHERFACE BERBASIS OUTDOORVIDEO Nurani Fitriyah 1),Dr. Ir. BambangHidayat 2),SuciAulia, ST,MT 3) 1 FakultasTeknikElektro, Telkom University
ANALISA DETEKSI KELOMPOK USIA DAN GENDER BERDASARKAN KONTUR WAJAH DENGAN PENGOLAHAN CITRA DIGITAL
Powered by TCPDF (www.tcpdf.org) WAJAH DENGAN PENGOLAHAN CITRA DIGITAL Marlina Novalinda Br Purba¹, Achmad Rizal², Suryo Adhi Wibowo³ ¹Teknik Telekomunikasi,, Universitas Telkom Abstrak Teknologi pengolahan
PENGEMBANGAN SISTEM PENCATAT PEMAKAIAN KOMPUTER LAB DENGAN BIOMETRIKA PENGENAL WAJAH EIGENFACE. Oleh
PENGEMBANGAN SISTEM PENCATAT PEMAKAIAN KOMPUTER LAB DENGAN BIOMETRIKA PENGENAL WAJAH EIGENFACE Oleh Kadek Ananta Satriadi 1, Made Windu Antara Kesiman,S.T.,M.Sc., I Gede Mahendra Darmawiguna,S.Kom.,M.Sc.
PENERAPAN GRABBER PADA OPTICAL FLOW UNTUK MENGGERAKKAN CURSOR MOUSE MENGGUNAKAN BOLPOIN
PENERAPAN GRABBERPADA OPTICAL FLOWUNTUK MENGGERAKKAN CURSORMOUSEMENGGUNAKAN BOLPOIN PENERAPAN GRABBER PADA OPTICAL FLOW UNTUK MENGGERAKKAN CURSOR MOUSE MENGGUNAKAN BOLPOIN Anton Setiawan Honggowibowo,
Perancangan dan Realisasi Robot Berbasis ROS (Robot Operating System) yang Dapat Mendekati Posisi Manusia dengan Sensor Visi 3D ABSTRAK
Perancangan dan Realisasi Robot Berbasis ROS (Robot Operating System) yang Dapat Mendekati Posisi Manusia dengan Sensor Visi 3D Osgar Karsena (1122069) Jurusan Teknik Elektro, Fakultas Teknik Jl. Prof.
KEMAMPUAN MENDENGARKAN LAGU BERBAHASA INGGRIS PADA SISWA KELAS X SMA ISLAMIC CENTRE DEMAK PADA TAHUN AJARAN 2006/2007
KEMAMPUAN MENDENGARKAN LAGU BERBAHASA INGGRIS PADA SISWA KELAS X SMA ISLAMIC CENTRE DEMAK PADA TAHUN AJARAN 2006/2007 Oleh SRI SUMARMI NIM: 2000-32-104 FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN JURUSAN PENDIDIKAN
IMPLEMENTASI PENGUKURAN JARAK DENGAN METODA DISPARITY MENGGUNAKAN STEREO VISION PADA ROBOT OTONOMUS PENGHINDAR RINTANGAN
IMPLEMENTASI PENGUKURAN JARAK DENGAN METODA DISPARITY MENGGUNAKAN STEREO VISION PADA ROBOT OTONOMUS PENGHINDAR RINTANGAN Disusun oleh : Hendra (1022021) Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof.
Pengenalan Bahasa Isyarat Tangan Menggunakan Metode PCA dan Haar-Like Feature
Pengenalan Bahasa Isyarat Tangan Menggunakan Metode PCA dan Haar-Like Feature Dosen Pembimbing : 1) Prof.Dr.Ir. Mauridhi Hery Purnomo M.Eng. 2) Dr. I Ketut Eddy Purnama ST., MT. Oleh : ATIK MARDIYANI (2207100529)
DAFTAR ISI.. LEMBAR PENGESAHAN SURAT PERNYATAAN ABSTRAK.. ABSTRACT... DAFTAR TABEL.. DAFTAR PERSAMAAN..
ABSTRAK Perkembangan teknologi yang semakin pesat, membuat semakin sedikitnya suatu industri yang memakai operator dalam menjalankan suatu proses produksi. Pada saat ini, kontrol otomatis lebih banyak
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi komputer sekarang sangat pesat, ini ditandai dengan hampir semua pengolahan data dan informasi telah dilakukan dengan komputer. Hal ini diakibatkan
DETEKSI KEBAKARAN BERBASIS WEBCAM SECARA REALTIME DENGAN PENGOLAHAN CITRA DIGITAL
DETEKSI KEBAKARAN BERBASIS WEBCAM SECARA REALTIME DENGAN PENGOLAHAN CITRA DIGITAL Ari Sutrisna Permana 1, Koredianto Usman 2, M. Ary Murti 3 Jurusan Teknik Elektro - Institut Teknologi Telkom - Bandung
ANALISA HAZARD GEMPA DENGAN GEOMETRI SUMBER GEMPA TIGA DIMENSI UNTUK PULAU IRIAN TESIS MAGISTER. Oleh : Arvila Delitriana
ANALISA HAZARD GEMPA DENGAN GEOMETRI SUMBER GEMPA TIGA DIMENSI UNTUK PULAU IRIAN TESIS MAGISTER Oleh : Arvila Delitriana DEPARTEMEN TEKNIK SIPIL PROGRAM PASCASARJANA INSTITUT TEKNOLOGI BANDUNG 2003 ABSTRAK
PEMANFAATAN TRANSFORMASI WAVELET SEBAGAI EKSTRAKSI CIRI PADA KLASIFIKASI BERTINGKAT SINYAL EKG
PEMANFAATAN TRANSFORMASI WAVELET SEBAGAI EKSTRAKSI CIRI PADA KLASIFIKASI BERTINGKAT SINYAL EKG T 610.28 PUT Abstrak Penelitian ini bertujuan untuk memperlihatkan suatu metoda pengenalan multi pola dari
PERBANDINGAN PCA (PRINCIPAL COMPONENT ANALYSIS) DAN KERNEL PCA DALAM PENGENALAN WAJAH AKIBAT VARIASI POSE ABSTRAK
PERBANDINGAN PCA (PRINCIPAL COMPONENT ANALYSIS) DAN KERNEL PCA DALAM PENGENALAN WAJAH AKIBAT VARIASI POSE Fredo Adrian Arliawan Email: [email protected] Jurusan Teknik Elektro, Fakultas Teknik Jl.
IMPLEMENTASI PENGENALAN WAJAH MENGGUNAKAN ALGORITMA PRINCIPAL COMPONENT ANALYSIS(PCA) DAN IMPROVED BACKPROPAGATION
J~ICON, Vol. 3 No. 2, Oktober 2015, pp. 89 ~ 95 89 IMPLEMENTASI PENGENALAN WAJAH MENGGUNAKAN ALGORITMA PRINCIPAL COMPONENT ANALYSIS(PCA) DAN IMPROVED BACKPROPAGATION Rini Miyanti Maubara 1, Adriana Fanggidae
APLIKASI BRICK BREAKER MOTION DETECTION. Laporan Tugas Akhir. Diajukan Untuk Melengkapi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer
APLIKASI BRICK BREAKER MOTION DETECTION Laporan Tugas Akhir Diajukan Untuk Melengkapi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer Oleh : MUHAMMAD IMAM MUKHSIN 41508110013 PROGRAM STUDI TEKNIK INFORMATIKA
PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK MENDETEKSI UANG LOGAM DENGAN METODE EUCLIDEAN
Jurnal Teknik Informatika Vol. 1 September 2012 1 PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK MENDETEKSI UANG LOGAM DENGAN METODE EUCLIDEAN Wahyu Saputra Wibawa 1, Juni Nurma Sari 2, Ananda 3 Program Studi
ABSTRAK REALISASI PENJEJAKAN WAJAH DAN OBJEK BUKAN WAJAH MENGGUNAKAN HAAR-LIKE FEATURES BERBASIS RASPBERRY PI 2
ABSTRAK REALISASI PENJEJAKAN WAJAH DAN OBJEK BUKAN WAJAH MENGGUNAKAN HAAR-LIKE FEATURES BERBASIS RASPBERRY PI 2 Disusun oleh : Dwi Dharma Senatriya (1022031) Program Studi Teknik Elektro, Fakultas Teknik,
Model Sistem Akses Tempat Parkir Berdasarkan Pengenalan Plat Nomor Kendaraan. Andry Jonathan ( )
Model Sistem Akses Tempat Parkir Berdasarkan Pengenalan Plat Nomor Kendaraan Andry Jonathan (1122041) Email: [email protected] Jurusan Teknik Elektro, Fakultas Teknik Jl. Prof. Drg. Suria Sumantri
PELACAKAN DAN DETEKSI WAJAH MENGGUNAKAN VIDEO LANGSUNG PADA WEBCAM ABSTRAK ABSTRACT
PELACAKAN DAN DETEKSI WAJAH MENGGUNAKAN VIDEO LANGSUNG PADA WEBCAM Dhanar Intan Surya Saputra 1, Wahyu Septi Anjar 2, Kurnia Aswin Nuzul Ramadhan 3, Riki Aji Pamungkas 4 1234 Program Studi Teknik Informatika
PERBANDINGAN METODE KDDA MENGGUNAKAN KERNEL RBF, KERNEL POLINOMIAL DAN METODE PCA UNTUK PENGENALAN WAJAH AKIBAT VARIASI PENCAHAYAAN ABSTRAK
PERBANDINGAN METODE KDDA MENGGUNAKAN KERNEL RBF, KERNEL POLINOMIAL DAN METODE PCA UNTUK PENGENALAN WAJAH AKIBAT VARIASI PENCAHAYAAN Jurusan Teknik Elektro, Fakultas Teknik Jl. Prof. Drg. Suria Sumantri
PENGENALAN WAJAH DENGAN METODE ORTHOGONAL LAPLACIANFACES. Luhur Pribudhi ( )
PENGENALAN WAJAH DENGAN METODE ORTHOGONAL LAPLACIANFACES Luhur Pribudhi ( 0522068 ) Jurusan Teknik Elektro, Fakultas Teknik, Jln. Prof. Drg. Suria Sumantri 65, Bandung 40164, Indonesia Email : [email protected]
Verifikasi Sidik Jari Menggunakan Pencocokan Citra Berbasis Fasa Dengan Fungsi Band-Limited Phase Only Correlation (BLPOC)
Verifikasi Sidik Jari Menggunakan Pencocokan Citra Berbasis Fasa Dengan Fungsi Band-Limited Phase Only Correlation (BLPOC) Adryan Chrysti Sendjaja (1022005) Jurusan Teknik Elektro Universitas Kristen Maranatha
ABSTRAK. Kata Kunci : Infrared Camera, thresholding, deteksi tepi.
Implementasi Metoda Thresholding untuk Mendeteksi Objek Manusia Menggunakan Infrared Camera Disusun Oleh: Nama : Hans Setiadi NRP : 1222012 Program Studi Teknik Elektro, Fakultas Teknik, Universitas Kristen
Sistem Informasi. Soal Dengan 2 Bahasa: Bahasa Indonesia Dan Bahasa Inggris
Sistem Informasi Soal Dengan 2 Bahasa: Bahasa Indonesia Dan Bahasa Inggris 1. Kita mengetahui bahwa perkembangan teknologi di zaman sekarang sangat pesat dan banyak hal yang berubah dalam kehidupan kita.
PENGENALAN WAJAH MENGGUNAKAN METODE INDEPENDENT COMPONENT ANALYSIS ABSTRAK
PENGENALAN WAJAH MENGGUNAKAN METODE INDEPENDENT COMPONENT ANALYSIS Rudy Hova / 0222165 Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof. Drg. Suria Sumantri 65, Bandung 40164, Indonesia Email : [email protected]
SIMULASI DAN ANALISIS SISTEM PENGENALAN WAJAH TAMPAK SAMPING MENGGUNAKAN METODE LOCAL BINARY PATTERN (LBP)
SIMULASI DAN ANALISIS SISTEM PENGENALAN WAJAH TAMPAK SAMPING MENGGUNAKAN METODE LOCAL BINARY PATTERN (LBP) Ardy Dwi Caesaryanto¹, Bambang Hidayat², Ratri Dwi Atmaja³ ¹Teknik Telekomunikasi,, Universitas
IDENTIFIKASI TANDA TANGAN MENGGUNAKAN ALGORITMA DOUBLE BACKPROPAGATION ABSTRAK
IDENTIFIKASI TANDA TANGAN MENGGUNAKAN ALGORITMA DOUBLE BACKPROPAGATION Disusun oleh: Togu Pangaribuan 0722087 Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof.Drg. Suria Sumantri, MPH No. 65, Bandung
BAB IV IMPLEMENTASI DAN EVALUASI. implementasi dan evaluasi yang dilakukan terhadap perangkat keras dan
BAB IV IMPLEMENTASI DAN EVALUASI Implementasi dan Evaluasi yang dilakukan penulis merupakan implementasi dan evaluasi yang dilakukan terhadap perangkat keras dan perangkat lunak dari sistem secara keseluruhan
ANALISA HASIL PERBANDINGAN IDENTIFIKASI CORE POINT PADA SIDIK JARI MENGGUNAKAN METODE DIRECTION OF CURVATURE DAN POINCARE INDEX
ANALISA HASIL PERBANDINGAN IDENTIFIKASI CORE POINT PADA SIDIK JARI MENGGUNAKAN METODE DIRECTION OF CURVATURE DAN POINCARE INDEX Mohammad imron (1), Yuliana Melita (2), Megister Teknologi Informasi Institusi
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Citra Berikut adalah beberapa definisi dari citra, antara lain: rupa; gambar; gambaran (Kamus Besar Bahasa Indonesia). Sebuah fungsi dua dimensi, f(x, y), di mana x dan y adalah
PENGENALAN GARIS TELAPAK TANGAN MENGGUNAKAN EKSTRAKSI JARAK EUCLIDEAN TERNORMALISASI SKRIPSI FUJI FRILLA KURNIA
PENGENALAN GARIS TELAPAK TANGAN MENGGUNAKAN EKSTRAKSI 09PENGENALAN GARIS TELAPAK TANGAN DENGAN MENGGUNAKAN FITUR EKSTRAKSI OPERASI BLOK FITUR OPERASI NON-OVERLAPPING BLOK NON-OVERLAPPING DAN PENCOCOKAN
BAB 3. ANALISIS dan RANCANGAN. eigenfaces dan deteksi muka dengan color thresholding akan mempunyai proses
BAB 3 ANALISIS dan RANCANGAN 3.1 Analisa metode Secara garis besar, tahap pada pengenalan wajah dengan metode eigenfaces dan deteksi muka dengan color thresholding akan mempunyai proses yang dilakukan
Pengujian Pengenalan Wajah Menggunakan Raspberry Pi
Pengujian Pengenalan Wajah Menggunakan Raspberry Pi 1 Irvan Budiawan, 2 Andriana Prodi Teknik Elektro, Universitas Langlangbuana Bandung JL. Karapitan No.116, Bandung 40261 E-mail: 1 [email protected]
IMPLEMENTASI FACE IDENTIFICATION DAN FACE RECOGNITION PADA KAMERA PENGAWAS SEBAGAI PENDETEKSI BAHAYA
IMPLEMENTASI FACE IDENTIFICATION DAN FACE RECOGNITION PADA KAMERA PENGAWAS SEBAGAI PENDETEKSI BAHAYA IMPLEMENTATION OF FACE IDENTIFICATION AND FACE RECOGNITION ON SECURITY CAMERA AS THREAT DETECTOR Panji
ANALISIS KOMPONEN UTAMA MENGGUNAKAN METODE EIGENFACE TERHADAP PENGENALAN CITRA WAJAH
Volume 9 No.1 Januari 2017 ISSN : 2085 1669 e-issn : 2460 0288 Website : jurnal.umj.ac.id/index.php/jurtek Email : [email protected] U N I V E R S I T A S M U H A M M A D I Y A H J A K A R T A
Implementasi Pengenalan Citra Wajah dengan Algoritma Eigenface pada Metode Principal Component Analysis (PCA)
46 Implementasi Pengenalan Citra Wajah dengan Algoritma Eigenface pada Metode Principal Component Analysis (PCA) Iwan Setiawan [email protected], Welly Iskand [email protected], Fauzi Nur Iman
IMPLEMENTASI DAN ANALISIS SISTEM PENGENALAN WAJAH DALAM RUANGAN PADA VIDEO MENGGUNAKAN METODE LNMF DAN NMFsc
ISSN : 2355-9365 e-proceeding of Engineering : Vol.2, No.1 April 2015 Page 389 IMPLEMENTASI DAN ANALISIS SISTEM PENGENALAN WAJAH DALAM RUANGAN PADA VIDEO MENGGUNAKAN METODE LNMF DAN NMFsc IMPLEMENTATION
VERIFIKASI TANDA TANGAN DENGAN METODE JARINGAN SYARAF TIRUAN HETEROASSOCIATIVE MEMORY ABSTRAK
VERIFIKASI TANDA TANGAN DENGAN METODE JARINGAN SYARAF TIRUAN HETEROASSOCIATIVE MEMORY Disusun oleh : Fabiola Zita Devy C. 0722085 Jurusan Teknik Elektro, Fakultas Teknik,, Jl.Prof.Drg.Suria Sumantri, MPH
ESKALASI HARGA KONTRAK KONSTRUKSI MENGGUNAKAN LEADING ECONOMIC INDICATORS STUDI KASUS PROYEK JALAN LAYANG DAN JEMBATAN PASTEUR-CIKAPAYANG-SURAPATI
ESKALASI HARGA KONTRAK KONSTRUKSI MENGGUNAKAN LEADING ECONOMIC INDICATORS STUDI KASUS PROYEK JALAN LAYANG DAN JEMBATAN PASTEUR-CIKAPAYANG-SURAPATI TUGAS AKHIR SEBAGAI SALAH SATU SYARAT UNTUK MENYELESAIKAN
Sistem Penghitung Jumlah Objek di Jalan Raya Menggunakan Background Subtraction dan Tracking
Sistem Penghitung Jumlah Objek di Jalan Raya Menggunakan Background Subtraction dan Tracking Devina Christabela S. 0722041 Email : [email protected] Jurusan Teknik Elektro Fakultas Teknik Jl. Prof.
BAB III PERANCANGAN DAN IMPLEMENTASI SISTEM
BAB III PERANCANGAN DAN IMPLEMENTASI SISTEM Pada bab ini akan dijelaskan mengenai tahapan dan algoritma yang akan digunakan pada sistem pengenalan wajah. Bagian yang menjadi titik berat dari tugas akhir
ABSTRAK Robovision merupakan robot yang memiliki sensor berupa indera penglihatan seperti manusia. Untuk dapat menghasilkan suatu robovision, maka
ABSTRACT Robovision is a robot that has a sensor in the form of the human senses such as vision. To be able to produce a robovision, it is necessary to merge the technologies of robotics and computer vision
IDENTIFIKASI INDIVIDU BERDASARKAN CITRA SILUET BERJALAN MENGGUNAKAN PENGUKURAN JARAK KONTUR TERHADAP CENTROID ABSTRAK
IDENTIFIKASI INDIVIDU BERDASARKAN CITRA SILUET BERJALAN MENGGUNAKAN PENGUKURAN JARAK KONTUR TERHADAP CENTROID Disusun Oleh : Robin Yosafat Saragih (1022076) Jurusan Teknik Elektro, Fakultas Teknik, Universitas
