BAB I PENDAHULUAN. 1.1 Analisa Situasi

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB I PENDAHULUAN. 1.1 Analisa Situasi"

Transkripsi

1 BAB I PENDAHULUAN 1.1 Analisa Situasi Seiring dengan perkembangan peradaban manusia, tingkat kebutuhan energi manusia juga semakin meningkat. Kebutuhan energi dunia selama ini sebagian besar bertumpu pada jenis bahan bakar fosil, dengan minyak sebagai prioritas utama. Pemanfaatan dan penggunaan sumber energi dari bahan bakar fosil, seperti minyak bumi, gas dan batubara, yang berasal dan diambil dari perut bumi secara terus-menerus, yang jumlahnya semakin sedikit dan terbatas. Karena permintaan kebutuhan yang terus meningkat, sedangkan jumlah produksi semakin menurun, sehingga secara tidak langsung pengaruh harga menjadi semakin mahal dan tidak ekonomis. Dampak dari penggunaan energi dari bahan fosil, yakni mulai dari proses penyediaan, pengolahan, transportasi dan hingga sampai pada penggunaan, terutama terkait dengan masalah penggunaan energi di sektor transportasi dan ketersedian energi listrik, sampai saat ini masih memanfaatkan sumber energi dari bahan fosil, sehingga menjadi beban bagi masalah konservasi dan kemampuan daya dukung lingkungan sekitar atau global. Dampak terhadap masalah lingkungan, yaitu terutama terkait dengan masalah perubahan iklim (climate change) dan efek gas rumah kaca (green house effect gasses) yang ditimbulkan akibat penggunaan energi fosil. Pergeseran dan perubahan cara pandang negara-negara di dunia mulai mengalihkan dan cenderung mengurangi penggunaan energi dari bahan bakar fosil dan mengalihkan perhatiannya pada pemanfaatan sumber energi terbarukan (renewable energy source) sebagai sumber energi pengganti masa depan ramah lingkungan. 1

2 Berikut tabel perkiraan yang menggambarkan peningkatan kebutuhan energi primer dunia hingga tahun (International Energy Agency-IEA, 2007) Million ton minyak ekivalen (Mtoe) Pertumbuhan ratarata/tahun Energi Coal 1,785 2,773 3,354 3,666 4,441 1,8% Oil 3,107 3,940 4,366 4,750 5,575 1,3% Gas 1,237 2,302 2,686 3,017 3,869 2,0% Nuclear ,7% Hydro ,0% Biomass 765 1,176 1,283 1,375 1,645 1,3% and Waste Other ,6% renewables Total 7,261 11,204 12,842 14,071 17,095 1,6% Tabel 1 Kebutuhan energi primer dunia sampai tahun 2030 Berdasarkan data yang dari badan energi dunia (International Energy Agency- IEA), bahwa permintaan kebutuhan energi dunia menunjukkan angka peningkatan yang sangat tajam. Hingga tahun 2030 permintaan energi dunia meningkat sebesar 45% atau rata-rata mengalami peningkatan sebesar 1,6% per tahun. Kebutuhan paling banyak permintaan kebutuhan energi dunia sekitar 80% masih didominasi dan dipasok dari bahan bakar fosil. 2

3 Gambar 1.1 Kebutuhan Global Energi Dunia sampai 2100 Sumber : Luwig-Bolkow-Systemtechnik GmbH, 2007 Peningkatan kebutuhan energi bahan bakar fosil ditandai dengan menempatkan posisi batubara pada urutan ke kedua tertinggi sebagai pemasok sumber energi setelah minyak. Pemakaian batubara diperkirakan mengalami peningkatan tiga kali lipat hingga Sebesar 97% pemakaian batubara adalah non OECD (Organisation for Economic Co-Operation and Development) dengan China mengkonsumsi dua pertiga terbesar di dunia. Posisi ketiga setelah batubara, pasokan energi dunia secara berurutan disumbang oleh gas, biomasa, nuklir, hydropower dan sumber energi terbarukan. Melihat lebih dari 70% bagian permukaan bumi adalah lautan. Hal ini dapat menjadi suatu upaya dengan penyediaan energi listrik berbahan bakar alternatif yang sifatnya non konvensional, yakni pembangkit listrik tenaga gelombang laut dengan. Pembangkit listrik tenaga gelombang laut ini memiliki berbagai macam metode, salah satunya menggunakan metode teknologi oscilatting water column (PLTGL-OWC). Energi gelombang merupakan energi yang sifatnya dapat diperbaharui dan ramah lingkungan, serta selalu tersedia sepanjang waktu. 3

4 1.2 Tujuan Tujuan dari penulisan ini adalah pengkajian sumber energi yang memanfaatkan salah satu energi terbarukan (renewable energy) yaitu Pembangkit Listrik Tenaga Gelombang Laut (PLTGL), khususnya dengan menggunakan metode teknologi Oscillating Water Column. 1.3 Manfaat Manfaat yang diharapkan pada penulisan makalah ini antara lain adalah: 1. Memberikan informasi kepada masyarakat tentang energi baru dan yang terbarukan, dalam hal ini adalah Pembangkit Listrik Tenaga Gelombang Laut yang merupakan potensi energi terbarukan sehingga tidak akan habis. Sehingga dapat membantu dunia teknologi, khusunya yang berhubungan dengan Pembangkit Listrik Tenaga Gelombang Laut (PLTGL) sehingga dapat berkembang pesat. 2. Menambah khazanah informasi dalam disiplin ilmu teknik elektro, khususnya mengenai sistem pembangkitan. 3. Menambah pengetahuan pada bidang elektro khususnya konsentrasi sistem tenaga listrik.. 4

5 BAB II ISI 2.1 Rumusan Masalah Sesuai dengan analisa situasi penulisan makalah ini maka permasalahannya adalah, sebagai berikut : 1. Apa yang dimaksud dengan energi terbarukan (renewable energy) 2. Bagaimana memanfaatkan salah sumber energi terbarukan (renewable energy) yaitu pembangkit listrik tenaga gelombang laut. 3. Apa saja komponen-komponen yang terdapat pada pembangkit listrik tenaga gelombang laut. 4. Metode apa saja yang dapat diterapkan untuk mengkonversi tenaga gelombang laut menjadi energi listrik. 5. Apa yang dimaksud dengan metode Oscillating Water Column (OWC) pada pembangkit listrik tenaga gelombang laut. 6. Bagaimana prinsip pembangkitan listrik tenaga gelombang laut dengan metode Oscillating Water Column (OWC). 7. Apa yang mempengaruhi dalam penentuan lokasi pembangunan pembangkit listrik tenaga gelombang laut dengan metode Oscillating Water Column (OWC). 8. Apa kelebihan dan kekurangan pembangkit listrik tenaga gelombang laut dengan metode Oscillating Water Column (OWC). 9. Bagaimana perkembangan pembangkit listrik gelombang laut di Indonesia dan dunia. 5

6 2.2 Pembahasan Energi Energi adalah daya kerja atau tenaga, energi berasal dari bahasa Yunani yaitu energia yang merupakan kemampuan untuk melakukan usaha. Energi merupakan besaran yang kekal, artinya enegi tidak dapat diciptakan dan dimusnahkan, tetapi dapat diubah dari bentuk satu ke bentuk yang lain. Ditinjau dari asalnya energi mempunyai bermacam-macam bentuk seperti berikut : energi potensial, energi kinetik, energi kimia, energi kalor, energi listrik, energi bunyi,energi nuklir,energi radiasi. Sumber daya energi primer pada dasarnya semua berasal dari proses alamiah. Sumber daya energi primer dapat diklasifikasikan menjadi 2 (dua) jenis energi, yaitu: [Wibawa, 2001] a. Energi Tak Terbarukan (unrenewable energy), yang dikenal pula dengan istilah energi fosil, adalah jenis sumber daya energi primer yang habis dipakai, dan tidak dapat diperbaharui lagi, baik secara alamiah maupun dengan bantuan teknologi. Termasuk disini antara lain: minyak bumi, batubara, dan gas alam. b. Energi Terbarukan (renewable energy), yang dikenal pula dengan istilah energi regeneratif, adalah jenis sumber daya energi primer yang tidak habis dipakai, dalam artian dapat diperbaharui lagi, baik secara alamiah maupun dengan bantuan teknologi (regenerasi). Termasuk disini antara lain: matahari, air, angin, geothermal, biomassa, dan biogas Konversi Energi Konversi energi dipahami sebagai proses perubahan energi dari bentuk yang satu ke bentuk lainnya, misalnya dari energi primer berubah menjadi energi sekunder. Bentuk energi primer seperti: batu bara, minyak bumi, gas alam, matahari, angin, air, biomassa, sampai dengan biogas akan diubah menjadi bentuk energi 6

7 sekunder, agar lebih dapat dimanfaatkan atau lebih mudah diangkut atau dibawa, misalnya: bensin dari minyak bumi, atau elektrik dari batubara. Bentuk energi sekunder yang paling sering ditemui dan dimanfaatkan oleh manusia adalah: energi panas, energi mekanik dan energi elektrik. Energi primer juga dapat langsung dimanfaatkan, sebagai energi guna, untuk memenuhi kebutuhan manusia, misalnya: energi gerak, panas dan cahaya Gelombang Laut Gelombang laut merupakan energi dalam transisi, merupakan energi yang terbawa oleh sifat aslinya. Prinsip dasar terjadinya gelombang laut adalah sebagai berikut (waldopo,2008): Jika ada dua massa benda yang berbeda kerapatannya ( densitasnya) bergesekan satu sama lain, maka pada bidang geraknya akan terbentuk gelombang. Gelombang merupakan gerakan naik turunnya air laut. Hal ini seperti ditunjukkan pada gambar 2.1. Gambar 2.1. Gambar pergerakan air laut. Sumber : Waldopo, 2008 Gelombang permukaan merupakan gambaran yang sederhana untuk menunjukkan bentuk dari suatu energi lautan. Gejala energi gelombang bersumber pada fenomena-fenomena sebagai berikut (Pudjanarsa, 2006): 7

8 Benda (body) yang bergerak pada atau dekat permukaan yang menyebabkan terjadinya gelombang dengan periode kecil, energi kecil pula. Angin merupakan sumber penyebab utama gelombang lautan. Gangguan seismik yang menyebabkan terjadinya gelombang pasang atau tsunami. Contoh gangguan seismik adalah: gempa bumi, dll. Medan gravitasi bumi dan bulan penyebab gelombang-gelombang besar, terutama menyebabkan gelombang pasang yang tinggi. Selanjutnya gelombang laut ditinjau dari sifat pengukurannya dibedakan menurut ketinggian serta periode alunannya. Dari kebanyakan data yang ada, tinggi gelombang lautan dapat diukur melalui alat ukur gelombang ataupun dengan cara visual dengan melakukan pengamatan langsung di lapangan. Karena gelombang laut sukar untuk dijabarkan secara pasti, sehingga muncullah berbagai macam teori pendekatan yang digunakan untuk memberikan informasi ilmiah tentang sifat gelombang lautan pada suatu tingkat fenomena yang aktual. Suatu teori sederhana tentang gelombang lautan dikenal sebagai teori dari Airy atau teori gelombang linier. Selanjutnya para ahli membedakan sifat gelombang laut sebagai gelombang linier dan gelombang non-linier Pengaruh Angin terhadap Gelombang Laut Angin adalah sumber utama terjadinya gelombang lautan. Dengan demikian tinggi gelombang, periode, dan arah gelombang selalu berhubungan dengan kecepatan dan arah angin. Angin dengan kecepatan rendah akan menyebabkan kecilnya tinggi gelombang dan rendahnya periode gelombang yang terjadi, sedangkan angin yang kuat dan angin ribut akan menyebabkan variasi tinggi serta periode gelombang serta mengarah ke berbagai penjuru. Pada kondisi angin yang baik, gelombang laut dapat diobservasi secara random, baik untuk tinggi, periode, maupun arahnya. Angin memberikan pengaruh yang besar terhadap terjadinya gelombang laut sehingga efisiensi hampir semua pesawat konversi energi gelombang laut dipengaruhi oleh frekuensi angin yang terjadi sepanjang tahun pada suatu zone lautan tertentu. Gambar 8

9 2.2 menunjukkan suatu spektrum periode gelombang untuk berbagai variasi kecepatan angin. Gambar 2.2 Spektrum periode gelombang untuk berbagai kecepatan angin Sumber : Pudjanarsa, Komponen dasar Pembangkit Listrik Tenaga Gelombang Laut (PLTGL) Konstruksi pembangkit listrik tenaga gelombang (PLTGL) terdiri dari mesin konversi energy gelombang, turbin, generator. A. Mesin konversi energi gelombang laut Energi gelombang laut dapat dimanfaatkan untuk menggerakkan pesawatpesawat yang nantinya bermanfaat demi kesejahteraan manusia. Upaya untuk memanfaatkan energi gelombang laut telah banyak dilaksanakan baik dengan konsep yang sederhana maupun yang canggih. Sejumlah percobaan telah dilaksanakan oleh para ahli di bidang gelombang laut dan telah ditemukan beberapa konsep pemanfaatannya, diantaranya (Pudjanarsa, 2006): a. Konsepsi yang sederhana: 9

10 Heaving and pitching bodies Pressure device Particel motion convertors The dolphin type wave power generators Cavity resonators Surging wave energy conventors Float wave-power machine b. Konsepsi yang lebih tinggi: Salter s nodding duck Russel rectifier Cockerell s rafts Wave focusing techniques B. Turbin Turbin merupakan bagian penting dalam suatu pembangkit listrik. Pada pembangkit listrik tenaga gelombang laut ini jenis turbin yang digunakan ada dua jenis turbin yang banyak digunakan yaitu turbin air dan turbin udara. Dimana turbin air menggunakan media air sebagai fluida kerjanya. Sedangkan turbin udara mengunakan udara sebagai fluida kerjanya. Jenis turbin air biasanya digunakan pada pembangkit listrik tenaga gelombang laut yang menggunakan teknologi buoy tipe dan teknologi overtopping devices. Sedangkan jenis turbin udara dipakai pada pembangkit listrik tenaga gelombang laut yang menggunakan teknologi oscilatting water column. C. Generator Generator juga merupakan bagian penting dalam pembangkit listrik. Generator memilliki prinsip mengubah energi mekanik menjadi energi listrik. Dimana energi mekanik pada pembangkit listrik tenaga gelombang laut berasal dari gerakan turbin. Kemudian dari perputaran turbin inilah nantinya akan dikopel dengan generator sehingga dapat menghasilkan daya listrik Konversi Energi Gelombang Laut Menjadi Listrik Pada pengkonversian energi gelombang laut menjadi energi listrik terdapat tiga metode yang dapat diterapkan, sebagai berikut : Energi gelombang Energi kinetik yang ada pada gelombang laut digunakan untuk menggerakkan turbin. Ombak naik ke dalam ruang generator, lalu air yang naik menekan udara 10

11 keluar dari ruang generator dan menyebabkan turbin berputar. Ketika air turun, udara bertiup dari luar ke dalam ruang generator dan memutar turbin kembali. Pasang surut air laut Bentuk lain dari pemanfaatan energi laut dinamakan energi pasang surut. Ketika pasang datang ke pantai, air pasang ditampung di dalam reservoir. Kemudian ketika air surut, air di belakang reservoir dapat dialirkan seperti pada PLTA biasa. Agar bekerja optimal, kita membutuhkan gelombang pasang yang besar dibutuhkan perbedaan kira-kira 16 kaki antara gelombang pasang dan gelombang surut. Memanfaatkan perbedaan temperatur air laut (Ocean Thermal Energy) Cara lain untuk membangkitkan listrik dengan ombak adalah dengan memanfaatkan perbedaan suhu di laut. Pembangkit listrik bisa dibangun dengan memanfaatkan perbedaan suhu sekurang-kurangnya 38 0 fahrenheit antara suhu permukaan dan suhu bawah laut untuk membangkitkan energi. Cara ini dinamakan Ocean Thermal Energy Conversion atau OTEC Prinsip kerja Pembangkit Listrik Tenaga Gelombang Laut Dalam sistem pembangkitan tenaga gelombang laut, ada beberapa peralatan penting yang sangat berperan mulai dari awal proses pembangkitan hingga tenaga listrik dihasilkan yang nantinya tenaga listrik tersebut akan disalurkan kepada para konsumen. Peralatan-peralatan tersebut adalah: a. Mesin konversi energi gelombang laut Berfungsi untuk menyalurkan energi kinetik yang dihasilkan oleh gelombang laut yang kemudian dialirkan ke turbin. b. Turbin Berfungsi untuk mengubah energi kinetic gelombang menjadi energi mekanik yang dihasilkan oleh perputaran rotor pada turbin. 11

12 c. Generator Di dalam generator ini energi mekanik dari turbin dirubah kembali menjadi energi listrik atau boleh dikatakan generator ini sebagai pembangkit tenaga listrik. Sistem pembangkitan pada pembangkit listrik tenaga gelombang ini dapat dijelaskan melalui skema di bawah ini. Gambar 2.3. Skema sistem Pembangkit Listrik Tenaga Gelombang Pertama aliran gelombang laut yang mempunyai energi kinetik masuk ke dalam mesin konversi energi gelombang. Kemudian dari mesin konversi aliran gelombang yang mempunyai energy kinetik ini dialirkan menuju turbin. Di dalam turbin ini, energi kinetik yang dihasilkan gelombang digunakan untuk memutar rotor. Kemudian dari perputaran rotor inilah energi mekanik yang kemudian disalurkan menuju generator. Di dalam generator, energi mekanik ini dirubah menjadi energi listrik. Dari generator ini, daya listrik yang dihasilkan dialirkan lagi menuju sistem tranmisi (beban) melalui kabel laut. Daya listrik yang disalurkan melalui kabel laut ini adalah daya listrik arus searah (DC) Pembangkit Listrik Tenaga Gelombang Laut dengan Oscillating Water Column (OWC) Oscillating Water Column (OWC) adalah teknologi pembangkit listrik yang menggunakan tenaga gelombang laut sebagai penggerak turbinnya mengubah energi 12

13 gelombang laut menjadi energi listrik dengan menggunakan kolom osilasi. Alat OWC ini akan menangkap energi gelombang yang mengenai lubang pintu OWC, sehingga terjadi fluktuasi atau osilasi gerakan air dalam ruang OWC, kemudian tekanan udara ini akan menggerakkan baling-baling turbin yang dihubungkan dengan generator listrik sehingga menghasilkan listrik. Hal yang harus diperhatikan pada pembuatan ruang udara oscillating water column adalah karakteristik pada periode gelombang, tinggi gelombang, dan panjang gelombang pade iklim daerah terkait. Oscillating Water Column (OWC) terdiri dari dua jenis, yaitu OWC tidak terapung dan OWC terapung. A. OWC tidak terapung Instalasi OWC tidak terapung terdiri dari tiga bangunan utama, yakni saluran masukan air, reservoir (penampungan), dan pembangkit. Dari ketiga bangunan tersebut, unsur yang terpenting adalah pada tahap pemodifikasian bangunan saluran masukan air yang tampak berbentuk U, sebab ia bertujuan untuk menaikkan air laut ke reservoir. Berikut gambar OWC tidak terapung, Gambar 2.4 Oscillating Water Column (OWC) tidak terapung 13

14 B. OWC terapung Sama halnya dengan OWC tidak terapung, OWC terapung memiliki juga memiliki tiga bangunan utama, yaitu saluran masukan air, reservoir (penampungan), dan pembangkit. OWC terapung juga memiliki prinsip yang sama pada OWC tidak terapung, hanya saja peletakkannya yang berbeda. Gambar 2.5 Oscillating Water Column (OWC) terapung Prinsip kerja Teknologi Oscilatting Water Column (OWC) Prinsip kerja alat OWC ini adalah mengubah energi gelombang laut menjadi energi listrik berdasarkan prinsip kerja kolom isolasi. Pada teknologi OWC ini, digunakan tekanan udara dari ruangan kedap air untuk menggerakkan turbin. Kemudian pergerakan turbin ini digunakan untuk menghasilkan energi listrik. Ruangan kedap air ini dipasang tetap dengan struktur bawah terbuka ke laut. Gelombang yang datang dari arah laut akan menabrak bangunan OWC, karena tumbukan gelombang air laut ini kemudian air laut yg terdapat pada bagian dalam 14

15 chamber OWC akan berisolasi naik dan turun sehingga menimbulkan peristiwa sedot dan hisap pada ruang kedap air atau kolom udara di atasnya (prinsip kerja pompa). Gambar 2.6 Gerakan Naik Turun Gelombang Laut Sumber: Al Hicks, NREL Gerakan gelombang di dalam ruangan ini merupakan gerakan compresses dan gerakan decompresses yang ada di atas tingkat air di dalam ruangan. Gerakan ini mengakibatkan timbulnya sebuah alternating streaming kecepatan tinggi dari udara. Aliran udara ini didorong melalui pipa ke turbin generator yang digunakan untuk menghasilkan listrik. Sistem OWC ini dapat ditempatkan permanen di pinggir pantai atau bisa juga ditempatkan di tengah laut. Pada sistem yang ditempatkan di tengah laut, tenaga listrik yang dihasilkan dialirkan menuju transmisi yang ada di daratan 15

16 menggunakan kabel laut. Berikut gambar sketsa pembangkit listrik tenaga gelombang laut dengan teknologi OWC yang diletakkan di tengah laut dan di pinggir pantai, Gambar 2.7 Sketsa OWC di tengah laut Sumber : Gambar 2.8 Sketsa OWC di pinggir pantai 16

17 Sumber : Kerapatan energi yang dihasilkan PLTGL OWC Daya total dari gelombang pecah di garis pantai dunia diperkirakan mencapai 2 hingga 3 juta megawatt. Pada tempat-tempat tertentu dengan kondisi yang sesuai, kerapatan energi gelombang dapat mencapai harga rata-rata 65 megawatt per mil garis pantai. Dalam menghitung besarnya energi gelombang laut dengan metode oscilatting water column (OWC), hal yang pertama yang harus diketahui adalah ketersediaan akan energi gelombang laut. Total energi gelombang laut dapat diketahui dengan menjumlahkan besarnya energi kinetik dan energi potensial yang dihasilkan oleh gelombang laut tersebut. Energi potensial adalah energi yang ditimbulkan oleh posisi relatif atau konfigurasi gelombang laut pada suatu sistem fisik. Bentuk energi ini memiliki potensi untuk mengubah keadaan objek-objek lain di sekitarnya, contohnya, konfigurasi atau gerakannya. Besarnya energy potensial dari gelombang laut dapat dihitung dengan persamaan sebagai berikut (University of Michigan,2008): Dimana: m = wρg m : massa gelombang (kg) y(x, t) PE = m. g 2 (J) ρ : massa jenis air laut (kg/m3) w : lebar gelombang (m) (diasumsikan sama dengan luas chamber pada OWC) Y = y(x, t) = asin (kx ωt) Y : persamaan gelombang (diasumsikan gelombang sinusoidal). a = h 2 : amplitudo gelombang. h : ketinggian gelombang (m) k = 2π λ : konstanta gelombang 17

18 λ : panjang gelombang (m) ω = 2π T (rad/sec) : frekuensi gelombang. T : periode gelombang (sec) Maka persamaan energi potensial ini dapat ditulis sebagai berikut: PE = wρg y2 2 = wρg a2 2 sin2 (kx ωt) Selanjutnya dihitung besarnya energi potensial gelombang lebih dari 1 periode, diasumsikan bahwa gelombang hanya merupakan fungsi dari x terhadap waktu, sehingga didapatkan persamaan y(x,t) = y(x). Jadi didapatkan: dpe = 0, 5ωρga 2 sin 2 (kx ωt)dx Berdasarkan persamaan K = 2π λ dan = 2π T, maka didapatkan persamaan : PE = 1 4 ωρga2 λ Besarnya energi kinetik lebih dari 1 periode adalah sebanding dengan besarnya energi potensial yang dihasilkan. PE = 1 4 ωρga2 λ (J) Dimana energi kinetik adalah bagian energi yang berhubungan dengan gerakan dari gelombang laut. Setelah besarnya energi potensial dan energi kinetik diketahui, maka dapat dihitung total energi yang dihasilkan selama lebih dari 1 periode dapat dicari dengan menggunakan persamaan: Ew = PE + KE = 1 2 ωρga2 λ Total energi yang dimaksud disini adalah jumlah besarnya energi yang dihasilkan gelombang laut yang didapatkan melalui penjumlahan energi potensial dan energi kinetik yang dimilikinya. Melalui persamaan di atas, maka dapat dihitung besarnya energy density (EWD), daya listrik (PW), dan power density (PWD) yang dihasilkan gelombang laut. Untuk menetukan besarnya energy density (EWD) yang dihasilkan gelombang laut digunakan persamaan berikut ini. 18

19 E WD = Ew λω = 1 2 ρga2 ( J m 2) Energy density adalah besarnya kerapatan energy yang dihasilkan gelombang laut tiap 1 satuan luas permukaan. Untuk menentukan besarnya daya listrik (PW) yang dihasilkan gelombang laut digunakan persamaan berikut ini. P W = Ew T (W) Dimana wave power adalah besarnya daya listrik yang mampu dihasilkan oleh gelombang laut. Untuk menetukan besarnya power density (PWD) yang dihasilkan gelombang laut digunakan persamaan berikut ini. P WD = P W λω = 1 2T ρga2 (W/m 2 ) Penentuan Lokasi PLTGL_OWC Untuk menentukan lokasi PLTGL system OWC adda beberapa hal yang perlu dipertimbangkan, antara lain : a. Tinggi Gelombang Laut Tinggi gelombang yang dimanfaatkan untuk PLTGL sistem ini adalah gelombang yang selalu terbentuk sepanjang tahun dengan tinggi minimal satu sampai dua meter. Gelombang yang sesuai dengan kriteria ini adalah gelombang Swell yang cenderung mengandung energi yang besar. b. Arah Datang Gelombang Mulut konektor harus sesuai dengan arah datang gelombang, jika tidak searah maka energi gelombang yang masuk akan berkurang. Hal ini disebabkan banyaknya energi yang hilang akibat sifat refleksi, difraksi maupun refraksi pada gelombang. c. Keadaan Topografi Lautan 19

20 Optimalisasi dari suatu desain PLGL system OWC tergantung pada topografi kelautan atau barimetri di sekitar lokasi. Apabila kondisi dasar lautan atau permukaannya kurang memenuhi persyaratan maka akan dilakukan pengerukan atau penambahan Skema PLTGL-OWC Contoh skema pembangkit listrik tenaga gelombang laut dengan teknologi oscilatting water column ini ditempatkan di tengah laut dan dibuat di atas sebuah ponton yang dipancangkan di dasar laut menggunakan kawat baja. Listrik yang dihasilkan dialirkan melalui kabel transmisi menuju ke daratan. Gambar 2.9 Skema oscilatting water column Sumber : Graw, 1996 Sistem pembangkit listrik ini terdiri dari chamber berisi udara yang berfungsi untuk menggerakkan turbin, kolom tempat air bergerak naik dan turun melalui saluran yang berada di bawah ponton dan turbin yang terhubung dengan generator. Gerakan air naik dan turun yang seiring dengan gelombang laut menyebabkan udara mengalir melalui saluran menuju turbin. 20

21 Sistem yang berfungsi mengkonversi energi mekanik menjadi listrik ( turbin, generator) diletakkan di atas permukaan laut dan terisolasi dari air laut dengan meletakkannya di dalam ruang khusus kedap air, sehingga bisa dipastikan tidak bersentuhan dengan air laut. Dengan sistem seperti ini, pembangkit listrik bisa memanfaatkan efisiensi optimal dari energi gelombang dengan meminimalisir gelombang-gelombang yang ekstrim. Efisiensi optimal bisa didapat ketika gelombang dalam kondisi normal. Skema pergerakan gelombang laut dengan oscilating water column (OWC) terdiri dari 2 jenis aliran, yaitu aliran udara masuk dan aliran udara keluar. Katub C Ruang X Katub A Katub D Turbin Ruang Y Katub B Gambar 2.10 Skema pergerakan gelombang laut pada oscilatting water column 21

22 Dari gambar 2.10 terlihat bahwa skema pergerakan gelombang laut dalam OWC terdiri dari 2 jenis aliran udara, yaitu: Aliran udara keluar Pada aliran udara keluar ini, skema pergerakan gelombang laut dapat dijelaskan sebagai berikut: pertama diawali dari naiknya permukaan gelombang laut sehingga menyebabkan udara di dalam chamber bergerak naik karena ada tekanan dari gelombang laut. Kemudian udara tersebut masuk melewati katub A menuju ke ruangan X. Setelah itu udara ini mengalir menuju ruangan Y, dimana aliran udara ini menyebabkan turbin berputar. Pada proses ini, energi kinetik yang dihasilkan oleh perputaran turbin dikopel dengan generator sehingga menghasilkan energi listrik. Kemudian setelah melewati turbin, udara bertekanan ini mengalir melewati katub D dan selanjutnya mengalir keluar dari OWC. Aliran udara masuk Pada aliran udara masuk ini, skema pergerakan gelombang laut dapat dijelaskan sebagai berikut: pertama diawali dari turunnya permukaan gelombang laut sehingga menyebabkan udara dari luar masuk melewati katub C. Kemudian udara tersebut masuk melewati katub C menuju ke ruangan X. Setelah itu udara bertekanan ini mengalir menuju ruangan Y, dimana aliran udara bertekanan ini menyebabkan turbin berputar. Pada proses ini, energi kinetik yang dihasilkan oleh perputaran turbin dikopel dengan generator sehingga menghasilkan energi listrik. Kemudian setelah melewati turbin, udara bertekanan ini mengalir melewati katub B dan selanjutnya mengalir menuju kedalam chamber diikuti dengan turunnya permukaan air laut. 22

23 2.2.9 Potensi dan Perkembangan PLTGL-OWC di dunia dan Indonesia Sedangkan potensial gelombang untuk membuat OWC ini harus merupakan daerah yang memiliki potensial gelombang cukup tinggi. Perhatikan gambar pemetaan gelombang untuk beberapa daerah pesisir berikut:. Gambar 2.11 Daerah Potensi Gelombang untuk OWC Sumber : BPPT Pemerintah Jerman merancang pilot project pembangkit listrik tenaga gelombang. Pembangkit listrik tenaga gelombang laut (PLTGL) yang telah berjalan adalah PLTGL Limpet dikelola oleh Wavegen, anak perusahaan Vorth Siemen yang berbasis di Inggris. PLTGL Limpet mampu memproduksi listrik 500 kwh. Pembangkit tersebut menggunakan teknologi Oscillating Water Column (OWC) yang mengubah 23

24 energi gelombang menjadi udara pendorong untuk menggerakan turbin. Sementara itu, PLTGL yang di Jerman akan memiliki kapasitas 250 kwh. Dengan kapasitas tersebut, PLTGL tersebut dapat mengaliri listrik ke 120 rumah. Pemerintah Jerman berharap pembangunan PLTGL tersebut tidak mengganggu lingkungan sekitar pantai. Oleh karena itu, EnBW menjalin kerja sama dengan proyek konservasi pantai agar pembanguan PLTGL tidak merusak keindahan alam daerah sepanjang pantai. Pembangkit listrik gelombang laut komersial juga dikembangkan di Negeri Kanguru. Pusat PLTGL itu terletak di lepas pantai Australia. Pembangkit dengan terobosan teknologi yang masih langka itu telah memasok kebutuhan listrik sekitar 500 rumah yang berada di daerah Selatan Sydney, Australia. Listrik baru bisa dihasilkan PLTGL jika gelombang laut datang menerpa corong yang menghadap ke lautan. Gerakan tersebut mengalirkan udara melalui dan masuk menggerakan turbin. Dari putaran turbin tersebut, sebanyak 500 kwh daya listrik dihasilkan setiap hari dan langsung disalurkan ke rumah-rumah. Pusat PLTGL yang di Australia merupakan proyek percontohan. Pemerintah Australia berencana membangun PLTGL yang lebih besar dan menghasilkan listrik lebih kuat di pantai selatan Australia. Dengan pembangunan PLTGL, para ahli teknologi PLGL Australia pun mendapat kebanjiran order untuk membangunan PLTGL di beberapa negara. Hawai, Spanyol, Afrika Selatan, Cile, Meksiko, dan Amerika Serikat juga tertarik. Gambar 2.12 Pembangkit Listrik Tenaga Gelombang-OWC di Australia 24

25 Indonesia memiliki garis pantai terpanjang kedua setelah Norwegia. Sehingga Energi gelombang laut di pantai tersebut digunakan sebagai pembangkit tenaga listrik, seperti saat ini telah didirikan sebuah Pembangkit Listrik Tenaga Gelombang Laut (PLTGL) di Yogyakarta, yaitu model Oscillating Water Column. Tujuan didirikannya PLTGL ini adalah untuk memberikan model sumber energi alternatif yang ketersediaan sumbernya cukup melimpah di wilayah perairan pantai Indonesia. Yogyakarta merupakan daerah di Indonesia yang memiliki potensi gelombang laut terbesar dibanding daerah lainnya. Pantai Selatan di daerah Yogyakarta memiliki potensi gelombang 19 kw/panjang gelombang. Pembangkit Listrik Tenaga Gelombang Laut di daerah Yogyakarta dikembangkan oleh BPPT khususnya BPDP (Balai Pengkajian Dinamika Pantai). Pembangkit Listrik Tenaga Gelombang Laut ini menggunakan metode OWC (Ocillating Water Column). BPDP BPPT pada tahun 2004 telah berhasil membangun prototype OWC pertama di Indonesia. Prototype itu dibangun di pantai Parang Racuk, Baron, Gunung Kidul. Prototype OWC yang dibangun adalah OWC dengan dinding tegak. Luas bersih chamber 3m x 3m. Tinggi sampai pangkal dinding miring 4 meter, tinggi dinding miring 2 meter sampai ke ducting, tinggi ducting 2 meter. Prototype OWC 2004 ini setelah di uji coba operasional memiliki efisiensi 11%. Pada tahun 2006 ini pihak BPDP BPPT kembali membangun OWC dengan sistem Limpet di pantai Parang Racuk, Baron, Gunung Kidul. OWC Limpet dibangun berdampingan dengan OWC 2004 tetapi dengan model yang berbeda. 25

26 Gambar 2.13 Pembangkit Listrik Tenaga Gelombang-OWC di Pantai Parang Racuk, Gunung Kidul-Yogyakarta Gambar 2.14 Potensi Gelombang di Indonesia Sumber : Pusat Penelitian dan Pengembangan Geologi Kelautan Jika kita perhatikan pada peta potensial gelombang tersebut, Indonesia memiliki potensial yang cukup besar terutama di daerah selatan pulau Jawa. Perkiraan rata-rata mingguan tinggi gelombang wilayah Indonesia lihat table, sebagai berikut : 26

27 Tabel 2 Perkiraan rata-rata mingguan tinggi gelombang wilayah Indonesia Sumber : BMKG Keuntungan dan Kerugian Pembangkit Listrik Tenaga Gelombang Laut Adapun keuntungan dan kerugian dalam penggunaan Pembangkit Listrik Tenaga Gelombang Laut dengan Teknologi Oscillating Water Column (OWC) adalah sebagai berikut : A. Keuntungan Sumber energi yang dapat diperbaharui Sebagai mitigasi bencana tsunami (gelombang pasang ) Meminimalisir abrasi air laut Pengembangan iptek (mampu bersaing dengan era globalisasi ) Meningkatkan kesejahtraan rakyat banyak (konsumen ) Energi ini bebas, tidak perlu bahan bakar, tidak ada limbah/polusi Efisiensi cukup tinggi Biaya tidak mahal B. Kerugian 27

28 Sangat tergantung dengan karakteristik gelombang Perlu satu lokasi yang tepat dimana gelombangnya konsisten besar. Alatnya harus kokoh sehingga tahan terhadap kondisi cuaca yang buruk Membutuhkan alat konversi yang handal yang mampu bertahan tingginya tingkat korosi dan kuatnya gelombang laut. BAB III PENUTUP 3.1 Kesimpulan Dari pembahasan di atas, dapat disimpulkan bahwa : 1. Pembangkit Listrik Tenaga Gelombang Laut adalah pembangkit yang memanfaatkan energi mekanik dari gelombang laut menjadi energi listrik. 2. Komponen dasar pada Pembangkit Listrik Tenaga Gelombang Laut adalah mesin konversi energi gelombang laut, turbin, generator. 3. Pembangkit Listrik Tenaga Gelombang Laut dengan Teknologi Oscillating Water Column (OWC) adalah teknologi pembangkit listrik yang menggunakan tenaga gelombang laut sebagai penggerak turbinnya mengubah energi gelombang laut menjadi energi listrik dengan menggunakan kolom osilasi. 4. Teknologi Oscillating Water Column (OWC) terdiri dari 2 jenis, yaitu OWC tidak terapung dan OWC terapung, dengan perbedaan pada peletakkannya. 28

29 5. Penentuan Lokasi PLTGL-OWC perlu mempertimbangkan mengenai tinggi gelombang laut, arah datang gelombang, keadaan topografi lautan. 6. Keuntungan Pembangkit Listrik Tenaga Gelombang Laut, antara lain sumber energi yang dapat diperbaharui, sebagai mitigasi bencana tsunami (gelombang pasang), meminimalisir abrasi air laut, pengembangan iptek (mampu bersaing dengan era globalisasi), meningkatkan kesejahtraan rakyat banyak (konsumen), energi ini bebas, tidak perlu bahan bakar, tidak ada limbah/polusi, efisiensi cukup tinggi, biaya tidak mahal. 7. Kerugian Pembangkit Listrik Tenaga Gelombang Laut, antara lain sangat tergantung dengan karakteristik gelombang, perlu satu lokasi yang tepat dimana gelombangnya konsisten besar, alatnya harus kokoh sehingga tahan terhadap kondisi cuaca yang buruk, membutuhkan alat konversi yang handal yang mampu bertahan tingginya tingkat korosi dan kuatnya gelombang laut. 8. Perkembangan dan potensi Pembangkit Listrik Tenaga Gelombang Laut di dunia maupun di Inddonesia sangat besar, sebab lebih dari 70% bagian permukaan bumi adalah lautan. Selain itu, Indonesia sendiri adalah Negara kepulauan terbesar di dunia. 3.2 Saran Diharapkan dengan potensi gelombang laut yang sangat besar, Indonesia dapat memanfaatkan secara optimal dengan penelitian lebih lanjut mengenai pemanfaatan yang energi gelombang air laut. Sehingga mengurangi pemakaian bahan bakar fosil yang semakin hari semakin habis dan harga yang terus melambung tinggi. Selain itu, ini merupakan salah satu upaya dalam mengurangi efek rumah kaca akibat emisi gas dari bahan bakar fosil (global warming). 29

30 DAFTAR PUSTAKA o o o o Pudjanarsa, A Mesin Konversi Energi. Yogyakarta : ANDI. Waldopo, dkk Perairan Darat dan Laut. Semarang Navarro, D, dkk California Ocean Wave Assessment. California : Electric Power Research Institute. Kadir, A Pembangkit Tenaga Listrik. Jakarta : Universitas Indonesia. o Wijaya, I.W Teknologi Oscillating Water Column di Perairan Bali. Bali : Universitas Udayana. o Nawawi,R.A Pembangkit Tenaga Listrik Tenaga Gelombang Laut (online). ( tenaga-gelombang-laut/, diakses 06 Juni 2013). o Niken Pembangkit Listrik Tenaga Ombak (online). ( diakses 06 Juni 2013). 30

APLIKASI GENERATOR INDUKSI PADA PEMBANGKIT LISTRIK TENAGA GELOMBANG LAUT. Pembangkit Listrik Tenaga Gelombang Laut (Generator Induksi)

APLIKASI GENERATOR INDUKSI PADA PEMBANGKIT LISTRIK TENAGA GELOMBANG LAUT. Pembangkit Listrik Tenaga Gelombang Laut (Generator Induksi) APLIKASI GENERATOR INDUKSI PADA PEMBANGKIT LISTRIK TENAGA GELOMBANG LAUT Pembangkit Listrik Tenaga Gelombang Laut (Generator Induksi) Mesin induksi dapat dioperasikan sebagai motor maupun sebagai generator.

Lebih terperinci

MAKALAH SISTEM PEMBANGKIT LISTRIK TENAGA GELOMBANG LAUT. Disusun guna memenuhi tugas mata kuliah Termodinamika. Dosen Pengampu :

MAKALAH SISTEM PEMBANGKIT LISTRIK TENAGA GELOMBANG LAUT. Disusun guna memenuhi tugas mata kuliah Termodinamika. Dosen Pengampu : MAKALAH SISTEM PEMBANGKIT LISTRIK TENAGA GELOMBANG LAUT Disusun guna memenuhi tugas mata kuliah Termodinamika Dosen Pengampu : Ir. Ainie Khuriati R.S, DEA Disusun oleh : Arifin Budi Putro 24040111130025

Lebih terperinci

Pembangkit listrik tenaga ombak

Pembangkit listrik tenaga ombak Pembangkit listrik tenaga ombak ANGGI RIYAN RAHMAD 2014110037 ISMAIL RAHMAN 2014110032 VIKKY ILHAM 2014110020 IKHSAN ARIF 2014110034 RAVI HUTRI RABAKH 2014110028 JURUSAN TEKNIK MESIN FAKULTAS TEKNOLOGI

Lebih terperinci

KAJIAN POTENSI TENAGA GELOMBANG LAUT SEBAGAI PEMBANGKIT TENAGA LISTRIK DI PERAIRAN MALANG SELATAN

KAJIAN POTENSI TENAGA GELOMBANG LAUT SEBAGAI PEMBANGKIT TENAGA LISTRIK DI PERAIRAN MALANG SELATAN ABSTRAK KAJIAN POTENSI TENAGA GELOMBANG LAUT SEBAGAI PEMBANGKIT TENAGA LISTRIK DI PERAIRAN MALANG SELATAN Tri Alfansuri [1], Efrita Arfa Zuliari [2] Jurusan Teknik Elektro, [1,2] Email : tri.alfansuri@gmail.com

Lebih terperinci

PEMBANGKIT LISTRIK TENAGA GELOMBANG LAUT MENGGUNAKAN TEKNOLOGI OSCILATING WATER COLUMN DI PERAIRAN BALI

PEMBANGKIT LISTRIK TENAGA GELOMBANG LAUT MENGGUNAKAN TEKNOLOGI OSCILATING WATER COLUMN DI PERAIRAN BALI I ayan Arta ijaya PMBANGKIT LISTRIK TNAGA GLOMBANG LAUT MNGGUNAKAN TKNOLOGI OSCILATING ATR COLUMN DI PRAIRAN BALI I ayan Arta ijaya Jurusan Teknik lektro, Fakultas Teknik, Universitas Udayana Kampus Bukit

Lebih terperinci

Lampiran 1. Draft Jurnal MODEL OWC SEBAGAI SEAWALL VERTIKAL UNTUK BANGUNAN PENAHAN EROSI PANTAI

Lampiran 1. Draft Jurnal MODEL OWC SEBAGAI SEAWALL VERTIKAL UNTUK BANGUNAN PENAHAN EROSI PANTAI Lampiran 1. Draft Jurnal MODEL OWC SEBAGAI SEAWALL VERTIKAL UNTUK BANGUNAN PENAHAN EROSI PANTAI Abstrak Energi ombak sebagai salah satu sumber daya bahari merupakan sumber energi alternatif yang berkelanjutan,

Lebih terperinci

OCEAN ENERGY (ENERGI SAMUDERA)

OCEAN ENERGY (ENERGI SAMUDERA) OCEAN ENERGY (ENERGI SAMUDERA) HASBULLAH, S.Pd.MT Electrical Engineering Dept. TEKNIK ELEKTRO FPTK UPI 2008 FPTK UPI 2009 ENERGI GELOMBANG SAMUDERA Energi gelombang laut adalah satu potensi laut dan samudra

Lebih terperinci

Pengaruh Perbandingan Rasio Inlet Dan Oulet Pada Tabung Reservoir Oscillating Water Column (Owc) Menggunakan Fluida Cair

Pengaruh Perbandingan Rasio Inlet Dan Oulet Pada Tabung Reservoir Oscillating Water Column (Owc) Menggunakan Fluida Cair JURNAL TEKNIK ITS Vol. 4, No. 2, (2015) ISSN: 2337-3539 (2301-9271 Print) B-145 Pengaruh Perbandingan Rasio Inlet Dan Oulet Pada Tabung Reservoir Oscillating Water Column (Owc) Menggunakan Fluida Cair

Lebih terperinci

Salah satu potensi laut yang belum banyak diketahui oleh masyarakat adalah energi laut itu sendiri yaitu pada gelombang laut (ombak). Saat ini telah b

Salah satu potensi laut yang belum banyak diketahui oleh masyarakat adalah energi laut itu sendiri yaitu pada gelombang laut (ombak). Saat ini telah b BAB I PENDAHULUAN 1.11 Latar Belakang Masalah Seiring dengan berkembangnya peradaban manusia, kebutuhan manusia akan energi juga semakin meningkat. Selain itu, laju pertumbuhan ekonomi dan pertambahan

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tinjauan Pustaka Berdasarkan topik skripsi yang diambil, terdapat beberapa referensi dari penelitian-penelitian yang telah dilakukan sebelumnya guna menentukan

Lebih terperinci

BAB I PENDAHULUAN. menjadi dua, yaitu energi terbarukan (renewable energy) dan energi tidak

BAB I PENDAHULUAN. menjadi dua, yaitu energi terbarukan (renewable energy) dan energi tidak 1 BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia terkenal sebagai negara yang kaya dengan potensi sumber daya alamnya terutama energi, baik yang berasal dari hasil tambang, air dan udara. Berdasarkan jenisnya

Lebih terperinci

DAFTAR ISI... SAMPUL DALAM... LEMBAR PENGESAHAN... PENETAPAN PANITIA PENGUJI... SURAT KETERANGAN BEBAS PLAGIAT... UCAPAN TERIMAKASIH... ABSTRACT...

DAFTAR ISI... SAMPUL DALAM... LEMBAR PENGESAHAN... PENETAPAN PANITIA PENGUJI... SURAT KETERANGAN BEBAS PLAGIAT... UCAPAN TERIMAKASIH... ABSTRACT... viii DAFTAR ISI SAMPUL DALAM... LEMBAR PENGESAHAN... PENETAPAN PANITIA PENGUJI... SURAT KETERANGAN BEBAS PLAGIAT... UCAPAN TERIMAKASIH... ABSTRAK... ABSTRACT... DAFTAR ISI... DAFTAR GAMBAR... DAFTAR TABEL...

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Gelombang Laut Gelombang yang terjadi di lautan dapat diklasifikasikan menjadi beberapa jenis tergantung dari daya yang menyebabkannya. Gelombang laut dapat disebabkan oleh

Lebih terperinci

Pembaharuan energi, memanfaatkan energi alam yang melimpah luas menjadi sebuah energi alternatif yang akan dipakai di masa mendatang.

Pembaharuan energi, memanfaatkan energi alam yang melimpah luas menjadi sebuah energi alternatif yang akan dipakai di masa mendatang. Riki Sanjaya 4210105022 Latar Belakang Laut mempunyai potensi sumber energi yang besar, sehingga layak untuk dikembangkan. Selain itu, energinya tersedia secara terus menerus (kontinue) dan ramah lingkungan

Lebih terperinci

Sumber-Sumber Energi yang Ramah Lingkungan dan Terbarukan

Sumber-Sumber Energi yang Ramah Lingkungan dan Terbarukan Sumber-Sumber Energi yang Ramah Lingkungan dan Terbarukan Energi ramah lingkungan atau energi hijau (Inggris: green energy) adalah suatu istilah yang menjelaskan apa yang dianggap sebagai sumber energi

Lebih terperinci

PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MERCU BUANA JAKARTA

PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MERCU BUANA JAKARTA TUGAS AKHIR ANALISA DAN PERANCANGAN PEMBANGKIT LISTRIK TENAGA GELOMBANG LAUT (PLTGL) MENGGUNAKAN TEKNOLOGI OSCILLATTING WATER COLUMN (OWC) Diajukan sebagai syarat dalam mencapai gelar Sarjana Strata Satu

Lebih terperinci

Analisis Efisiensi Sistem Osilator Kolom Air sebagai Pembangkit Daya Tenaga Gelombang Laut

Analisis Efisiensi Sistem Osilator Kolom Air sebagai Pembangkit Daya Tenaga Gelombang Laut Analisis Efisiensi Sistem Osilator Kolom Air sebagai Pembangkit Daya Tenaga Gelombang Laut 1) Joy Ferdinand Ludji, 2) Verdy A. Koehuan, 3) Nurhayati, 1,2,3) Jurusan Teknik Mesin, Fakultas Sains dan Teknik,

Lebih terperinci

STUDI POTENSI PEMANFAATAN ENERGI GELOMBANG LAUT SEBAGAI PEMBANGKIT LISTRIK DI PERAIRAN PANTAI PULAU SUMATERA BAGIAN UTARA AHMAD HIMAWAN UMNA

STUDI POTENSI PEMANFAATAN ENERGI GELOMBANG LAUT SEBAGAI PEMBANGKIT LISTRIK DI PERAIRAN PANTAI PULAU SUMATERA BAGIAN UTARA AHMAD HIMAWAN UMNA STUDI POTENSI PEMANFAATAN ENERGI GELOMBANG LAUT SEBAGAI PEMBANGKIT LISTRIK DI PERAIRAN PANTAI PULAU SUMATERA BAGIAN UTARA Diajukan untuk memenuhi persyaratan dalam menyelesaikan Pendidikan Sarjana (S-1)

Lebih terperinci

POSITRON, Vol. VI, No. 1 (2016), Hal ISSN :

POSITRON, Vol. VI, No. 1 (2016), Hal ISSN : Studi Potensi Energi Listrik Tenaga Gelombang Laut Sistem Oscillating Water Column (OWC) di Perairan Pesisir Kalimantan Barat Lelly Erlita Safitri a, Muh. Ishak Jumarang a *, Apriansyah b a Program Studi

Lebih terperinci

PEMBANGKIT LISTRIK TENAGA PANAS LAUT BAB I PENDAHULUAN

PEMBANGKIT LISTRIK TENAGA PANAS LAUT BAB I PENDAHULUAN A. Latar Belakang PEMBANGKIT LISTRIK TENAGA PANAS LAUT BAB I PENDAHULUAN Pembangkit listrik yang terdapat di Indonesia sebagian besar menggunakan sumber daya tidak terbarukan untuk memenuhi kebutuhan listrik

Lebih terperinci

Generation Of Electricity

Generation Of Electricity Generation Of Electricity Kelompok 10 : Arif Budiman (0906 602 433) Junedi Ramdoner (0806 365 980) Muh. Luqman Adha (0806 366 144) Saut Parulian (0806 366 352) UNIVERSITAS INDONESIA FAKULTAS TEKNIK ELEKTRO

Lebih terperinci

MAKALAH. Teknik Tenaga Listrik. Pembangkit Listrik Tenaga Pasang Surut Laut

MAKALAH. Teknik Tenaga Listrik. Pembangkit Listrik Tenaga Pasang Surut Laut MAKALAH Teknik Tenaga Listrik Pembangkit Listrik Tenaga Pasang Surut Laut Dosen: Alfith. S.Pd. M.Pd Kelompok: Hanafi Harahap (2014110046) Yudha Andika Putra (2014110039) Sandre Ulfayanda (2014110029) S1

Lebih terperinci

JURUSAN TEKNIK SISTEM PERKAPALAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER

JURUSAN TEKNIK SISTEM PERKAPALAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER (ME 091329) Presentasi Skripsi Bidang Studi : Marine Electrical And Automation System JURUSAN TEKNIK SISTEM PERKAPALAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2013 ANALISA

Lebih terperinci

Your logo. Bidang Studi : Marine Electrical And Automation System

Your logo. Bidang Studi : Marine Electrical And Automation System Your logo Bidang Studi : Marine Electrical And Automation System Here comes your footer Page 2 1. Latar Belakang 2. Perumusan Masalah 3. Batasan Masalah Outline 4. Tujuan dan Manfaat 5. Metodologi Penelitian

Lebih terperinci

Seminar Nasional Cendekiawan 2015 ISSN:

Seminar Nasional Cendekiawan 2015 ISSN: STUDI POTENSI PEMBANGKIT LISTRIK TENAGA GELOMBANG LAUT DENGAN METODA OSCILATING WATER COLUMN DI PERAIRAN KENDARI INDONESIA Faulincia Jurusan Teknik Elektro Fakultas Teknik Sekolah Tinggi Teknik PLN Jakarta

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Tahun 2006 lalu, Pemerintah menerbitkan Peraturan Presiden Nomor 5 mengenai Kebijakan Energi Nasional yang bertujuan mengurangi penggunaan bahan bakar fosil dalam

Lebih terperinci

I. PENDAHULUAN. dalam melakukan penggilingan padi, keperluan irigasi, dan kegiatan yang lainnya.

I. PENDAHULUAN. dalam melakukan penggilingan padi, keperluan irigasi, dan kegiatan yang lainnya. I. PENDAHULUAN A. Latar Belakang Turbin angin pada awalnya dibuat untuk mengakomodasi kebutuhan para petani dalam melakukan penggilingan padi, keperluan irigasi, dan kegiatan yang lainnya. Turbin angin

Lebih terperinci

Kata Kunci : PLTMH, Sudut Nozzle, Debit Air, Torsi, Efisiensi

Kata Kunci : PLTMH, Sudut Nozzle, Debit Air, Torsi, Efisiensi ABSTRAK Ketergantungan pembangkit listrik terhadap sumber energi seperti solar, gas alam dan batubara yang hampir mencapai 75%, mendorong dikembangkannya energi terbarukan sebagai upaya untuk memenuhi

Lebih terperinci

BAB I PENDAHULUAN. Pentingnya peran energi dalam kebutuhan sehari-hari mulai dari zaman dahulu

BAB I PENDAHULUAN. Pentingnya peran energi dalam kebutuhan sehari-hari mulai dari zaman dahulu BAB I PENDAHULUAN 1.1 Latar Belakang Topik tentang energi saat ini menjadi perhatian besar bagi seluruh dunia. Pentingnya peran energi dalam kebutuhan sehari-hari mulai dari zaman dahulu hingga sekarang

Lebih terperinci

BAB II KAJIAN TEORI ENERGI GELOMBANG LAUT

BAB II KAJIAN TEORI ENERGI GELOMBANG LAUT BAB II KAJIAN TEORI ENERGI GELOMBANG LAUT 2.1. Gelombang Laut Gelombang/ombak yang terjadi di lautan dapat diklasifikasikan menjadi beberapa jenis tergantung dari daya yang menyebabkannya. Gelombang laut

Lebih terperinci

Bab 1 Pendahuluan 1.1 Latar Belakang

Bab 1 Pendahuluan 1.1 Latar Belakang Bab 1 Pendahuluan 1.1 Latar Belakang Pada saat ini, penggunaan sumber energi fosil tak pelak lagi merupakan sumber energi utama yang digunakan oleh umat manusia. Dalam penggunaan energi nasional di tahun

Lebih terperinci

ANALISIS POTENSI KINCIR ANGIN SAVONIUS SEBAGAI PENGGERAK POMPA SUBMERSIBLE

ANALISIS POTENSI KINCIR ANGIN SAVONIUS SEBAGAI PENGGERAK POMPA SUBMERSIBLE ANALISIS POTENSI KINCIR ANGIN SAVONIUS SEBAGAI PENGGERAK POMPA SUBMERSIBLE OLEH : PHOBI KEVIN 06 118 045 Skripsi Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Teknologi Pertanian FAKULTAS TEKNOLOGI

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. Angga Febrika M.P (2017) penelitiannnya yang berjudul Studi potensi

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. Angga Febrika M.P (2017) penelitiannnya yang berjudul Studi potensi BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tinjauan Pustaka Angga Febrika M.P (2017) penelitiannnya yang berjudul Studi potensi energi gelombang laut sebagai pembangkit tenaga listrik di wilayah perairan

Lebih terperinci

Pembangkit Non Konvensional OTEC

Pembangkit Non Konvensional OTEC Pembangkit Non Konvensional OTEC OTEC Ada yang tahu apa itu OTEC? OTEC OTEC (Ocean Thermal Energy Conversion) atau Konversi Energi Termal Lautan atau dapat juga disebut : Pembangkit listrik tenaga panas

Lebih terperinci

BAB I PENDAHULUAN. Suatu masalah terbesar yang dihadapi oleh negara-negara di dunia

BAB I PENDAHULUAN. Suatu masalah terbesar yang dihadapi oleh negara-negara di dunia BAB I PENDAHULUAN 1.1 LATAR BELAKANG MASALAH Suatu masalah terbesar yang dihadapi oleh negara-negara di dunia termasuk Indonesia adalah masalah energi. Saat ini Indonesia telah mengalami krisis energi

Lebih terperinci

ALTERNATIF PEMANFAATAN ENENRGI GELOMBANG SEBAGAI PEMBANGKIT LISTRIK UNTUK MEMENUHI KEBUTUHAN MASYARAKAT PESISIR

ALTERNATIF PEMANFAATAN ENENRGI GELOMBANG SEBAGAI PEMBANGKIT LISTRIK UNTUK MEMENUHI KEBUTUHAN MASYARAKAT PESISIR ALTERNATIF PEMANFAATAN ENENRGI GELOMBANG SEBAGAI PEMBANGKIT LISTRIK UNTUK MEMENUHI KEBUTUHAN MASYARAKAT PESISIR Oleh Tamrin Dosen Teknik Sipil Universitas Mulawarman Abstrak Saat ini masyarakat daerah

Lebih terperinci

EFEK REDAMAN PADA SIMULASI KONVERVI ENERGI GELOMBANG LAUT MENJADI ENERGI LISTRIK DENGAN PRINSIP RESONANASI. Oleh

EFEK REDAMAN PADA SIMULASI KONVERVI ENERGI GELOMBANG LAUT MENJADI ENERGI LISTRIK DENGAN PRINSIP RESONANASI. Oleh EFEK REDAMAN PADA SIMULASI KONVERVI ENERGI GELOMBANG LAUT MENJADI ENERGI LISTRIK DENGAN PRINSIP RESONANASI Oleh Drs. Defrianto, DEA Jurusan Fisika Fmipa UNRI Abstrak Sistem mekanik yang terdiri dari tabung,

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Sepanjang sejarah manusia kemajuan-kemajuan besar dalam kebudayaan selalu diikuti oleh meningkatnya konsumsi energi. Salah satu sumber energi yang banyak digunakan

Lebih terperinci

BAB IV ANALISIS PERHITUNGAN DAYA PEMBANGKIT LISTRIK TENAGA GELOMBANG LAUT SISTEM OSCILLATING WATER COLUMN (OWC)

BAB IV ANALISIS PERHITUNGAN DAYA PEMBANGKIT LISTRIK TENAGA GELOMBANG LAUT SISTEM OSCILLATING WATER COLUMN (OWC) BAB IV ANALISIS PERHITUNGAN DAYA PEMBANGKIT LISTRIK TENAGA GELOMBANG LAUT SISTEM OSCILLATING WATER COLUMN (OWC) 4.1 Penentuan Lokasi Pembangkit Listrik Tenaga Gelombang Laut Sistem Oscillating Water Column

Lebih terperinci

BAB I PENDAHULUAN. konsumsi energi itu sendiri yang senantiasa meningkat. Sementara tingginya kebutuhan

BAB I PENDAHULUAN. konsumsi energi itu sendiri yang senantiasa meningkat. Sementara tingginya kebutuhan BAB I PENDAHULUAN 1.1 Latar Belakang Kebutuhan akan energi baik di Indonesia khususnya, dan dunia pada umumnya terus meningkat karena pertambahan penduduk, pertumbuhan ekonomi, dan pola konsumsi energi

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Meningkatnya konsumsi bahan bakar khususnya bahan bakar fosil sangat mempengaruhi peningkatan harga jual bahan bakar tersebut. Sehingga pemerintah berupaya mencari

Lebih terperinci

BAB I PENDAHULUAN. kehidupan manusia saat ini, dimana hampir semua aktivitas manusia berhubungan

BAB I PENDAHULUAN. kehidupan manusia saat ini, dimana hampir semua aktivitas manusia berhubungan BAB I PENDAHULUAN Latar Belakang Listrik merupakan salah satu kebutuhan pokok yang sangat penting dalam kehidupan manusia saat ini, dimana hampir semua aktivitas manusia berhubungan dengan listrik. Tenaga

Lebih terperinci

ARTIKEL TUGAS INDUSTRI KIMIA ENERGI TERBARUKAN. Disusun Oleh: GRACE ELIZABETH ID 02

ARTIKEL TUGAS INDUSTRI KIMIA ENERGI TERBARUKAN. Disusun Oleh: GRACE ELIZABETH ID 02 ARTIKEL TUGAS INDUSTRI KIMIA ENERGI TERBARUKAN Disusun Oleh: GRACE ELIZABETH 30408397 3 ID 02 JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS GUNADARMA 2011 ENERGI TERBARUKAN Konsep energi

Lebih terperinci

BAB I PENDAHULUAN. Peningkatan kebutuhan energi listrik oleh masyarakat dan. dunia industri tidak sebanding dengan peningkatan produksi listrik

BAB I PENDAHULUAN. Peningkatan kebutuhan energi listrik oleh masyarakat dan. dunia industri tidak sebanding dengan peningkatan produksi listrik BAB I PENDAHULUAN 1.1. Latar Belakang Peningkatan kebutuhan energi listrik oleh masyarakat dan dunia industri tidak sebanding dengan peningkatan produksi listrik oleh PLN. Data kementrian ESDM tahun 2009

Lebih terperinci

Energi angin (Wind Energy) Hasbullah, S.Pd., MT

Energi angin (Wind Energy) Hasbullah, S.Pd., MT Energi angin (Wind Energy) Hasbullah, S.Pd., MT Dasar Energi Angin Semua energi yang dapat diperbaharui dan berasal dari Matahari. (kecuali.panas bumi) Matahari meradiasi 1,74 x 1.014 kilowatt jam energi

Lebih terperinci

1 BAB I PENDAHULUAN 1.1 Latar Belakang

1 BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Jumlah penduduk Indonesia yang semakin meningkat dari tahun ke tahun menyebabkan kebutuhan energi listrik semakin meningkat. Badan Pusat Statistik (BPS) memprediksi

Lebih terperinci

BAB I PENDAHULUAN. l.1 LATAR BELAKANG

BAB I PENDAHULUAN. l.1 LATAR BELAKANG 1 BAB I PENDAHULUAN l.1 LATAR BELAKANG Konsumsi per kapita sumber energi non terbarukan di bumi yang meliputi gas, minyak bumi, batu bara, merupakan salah satu kekayaan ekonomi yang dimiliki suatu Negara

Lebih terperinci

Analisa Kinerja Bandul Vertikal dengan Model Plat pada PLTGL

Analisa Kinerja Bandul Vertikal dengan Model Plat pada PLTGL JURNAL TEKNIK ITS Vol. 4, No. 2, (2015) ISSN: 2337-3539 (2301-9271 Print) B-119 Analisa Kinerja Bandul Vertikal dengan Model Plat pada PLTGL Honey Rambu Anarki, Irfan Syarif Arief Jurusan Teknik Sistem

Lebih terperinci

PEMBANGKIT LISTRIK ENERGI PASANG SURUT

PEMBANGKIT LISTRIK ENERGI PASANG SURUT MAKALAH SUMBER ENERGI NON KONVENSIONAL PEMBANGKIT LISTRIK ENERGI PASANG SURUT OLEH: PUTU NOPA GUNAWAN NIM : D411 10 009 JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS HASANUDDIN 2013 BAB I PENDAHULUAN

Lebih terperinci

Soal SBMPTN Fisika - Kode Soal 121

Soal SBMPTN Fisika - Kode Soal 121 SBMPTN 017 Fisika Soal SBMPTN 017 - Fisika - Kode Soal 11 Halaman 1 01. 5 Ketinggian (m) 0 15 10 5 0 0 1 3 5 6 Waktu (s) Sebuah batu dilempar ke atas dengan kecepatan awal tertentu. Posisi batu setiap

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Konsumsi akan energi listrik dari tahun ke tahun di indonesia selalu mengalami peningkatan seiring pertambahan penduduk dan pertambahan ekonomi. Oleh karena itu, untuk

Lebih terperinci

OCEAN ENERGY ENERGI LAUT/SAMUDRA. Dr. Donny Achiruddin M.Eng. Universitas Darma Persada (UNSADA) Masyarakat Energi Terbarukan Indonesia (METI)

OCEAN ENERGY ENERGI LAUT/SAMUDRA. Dr. Donny Achiruddin M.Eng. Universitas Darma Persada (UNSADA) Masyarakat Energi Terbarukan Indonesia (METI) OCEAN ENERGY ENERGI LAUT/SAMUDRA Dr. Donny Achiruddin M.Eng Universitas Darma Persada (UNSADA) Masyarakat Energi Terbarukan Indonesia (METI) ENERGI KELAUTAN/SAMUDRA Energi laut/samudra adalah energi yang

Lebih terperinci

BAB I PENDAHULUAN. permasalahan emisi dari bahan bakar fosil memberikan tekanan kepada setiap

BAB I PENDAHULUAN. permasalahan emisi dari bahan bakar fosil memberikan tekanan kepada setiap BAB I PENDAHULUAN 1.1. Latar Belakang Beberapa tahun terakhir ini energi merupakan persoalan yang krusial didunia. Peningkatan permintaan energi yang disebabkan oleh pertumbuhan populasi penduduk dan menipisnya

Lebih terperinci

BAB I PENDAHULUAN. I.1 Latar Belakang

BAB I PENDAHULUAN. I.1 Latar Belakang BAB I PENDAHULUAN I.1 Latar Belakang Gas alam adalah bahan bakar fosil bentuk gas yang sebagian besar terdiri dari metana (CH4). Pada umumnya tempat penghasil gas alam berlokasi jauh dari daerah dimana

Lebih terperinci

BAB I PENDAHULUAN. diperbaharui (non renewable ). Jumlah konsumsi bahan bakar fosil baik

BAB I PENDAHULUAN. diperbaharui (non renewable ). Jumlah konsumsi bahan bakar fosil baik BAB I PENDAHULUAN 1.1. Latar belakang Bahan bakar fosil adalah termasuk bahan bakar yang tidak dapat diperbaharui (non renewable ). Jumlah konsumsi bahan bakar fosil baik minyak bumi, gas alam, ataupun

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Krisis energi dan lingkungan akhir-akhir ini menjadi isu global. Pembakaran BBM dan batubara menghasilkan pencemaran lingkungan dan CO 2 yang mengakibatkan pemanasan

Lebih terperinci

BAB I PENDAHULUAN. energi listrik juga semakin meningkat. Hal ini menciptakan peluang dalam

BAB I PENDAHULUAN. energi listrik juga semakin meningkat. Hal ini menciptakan peluang dalam BAB I PENDAHULUAN 1.1 Latar Belakang Pada era modern ini kebutuhan energi, terutama energi listrik meningkat dengan lonjakan yang sangat besar. Tingkat ketergantungan manusia terhadap energi listrik juga

Lebih terperinci

Ringkasan Bahan Kuliah Mesin Konversi Energi * Ridwan ; Gunadarma Univiversity 1

Ringkasan Bahan Kuliah Mesin Konversi Energi * Ridwan ; Gunadarma Univiversity 1 Ringkasan Bahan Kuliah Mesin Konversi Energi * Ridwan ; Gunadarma Univiversity 1 Pengertian Energi Energi : Kemampuan untuk melakukan Kerja (Enegy is the capasity for doing work) Hukum Termodinamika pertama:

Lebih terperinci

JURNAL OSEANOGRAFI. Volume 3, Nomor 3, Tahun 2014, Halaman Online di :

JURNAL OSEANOGRAFI. Volume 3, Nomor 3, Tahun 2014, Halaman Online di : JURNAL OSEANOGRAFI. Volume 3, Nomor 3, Tahun 2014, Halaman 328-337 Online di : http://ejournal-s1.undip.ac.id/index.php/jose Kajian Potensi Gelombang Laut Sebagai Sumber Energi Alternatif Pembangkit Listrik

Lebih terperinci

BAB I PENDAHULUAN. kebutuhan energi listrik tersebut terus dikembangkan. Kepala Satuan

BAB I PENDAHULUAN. kebutuhan energi listrik tersebut terus dikembangkan. Kepala Satuan BAB I PENDAHULUAN 1. 1. Latar Belakang Masalah Energi merupakan kebutuhan penting bagi manusia, khususnya energi listrik, energi listrik terus meningkat seiring dengan bertambahnya jumlah populasi manusia

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 16 BAB 1 PENDAHULUAN 1.1 Latar Belakang Listrik pada saat ini merupakan sumber energi yang sangat dibutuhkan dalam kelangsungan hidup. Dengan berkembangnya teknologi yang ada di dunia berbanding lurus

Lebih terperinci

Pendahuluan ENERGI DAN LISTRIK PERTANIAN. Jika Σ E meningkat kegiatan : - ekonomi - ilmu pengetahuan - apresiasi manusia Akan berkembang dengan subur

Pendahuluan ENERGI DAN LISTRIK PERTANIAN. Jika Σ E meningkat kegiatan : - ekonomi - ilmu pengetahuan - apresiasi manusia Akan berkembang dengan subur ENERGI DAN LISTRIK PERTANIAN Pendahuluan Segala sesuatu di dunia sangat bergantung kepada. Misalnya: - Air untuk mandi hasil pemompaan dengan - sikat gigi sesuatu yang dihasilkan dengan. (proses produk

Lebih terperinci

PEMBANGKIT LISTRIK TENAGA AIR (PLTA)

PEMBANGKIT LISTRIK TENAGA AIR (PLTA) PEMBANGKIT LISTRIK TENAGA AIR (PLTA) Pembangkit Listrik Tenaga Air (PLTA) adalah pembangkit listrik yang mengandalkan energi potensial dan kinetik dari air untuk menghasilkan energi listrik. Energi listrik

Lebih terperinci

Pengertian Energi, Potensial, Kinetik dan Hukum Kekekalan Energi - Fisika

Pengertian Energi, Potensial, Kinetik dan Hukum Kekekalan Energi - Fisika Pengertian Energi, Potensial, Kinetik dan Hukum Kekekalan Energi - Fisika Sat, 13/05/2006-7:44pm godam64 Energi dari suatu benda adalah ukuran dari kesanggupan benda tersebut untuk melakukan suatu usaha.

Lebih terperinci

Kata kunci: pembangkit listrik tenaga Energi Gelombang Laut, potensi Energi Gelombang Laut, karakteristik Energi Gelombang Laut

Kata kunci: pembangkit listrik tenaga Energi Gelombang Laut, potensi Energi Gelombang Laut, karakteristik Energi Gelombang Laut Studi dan Analisa Potensi Energi Gelombang Laut di Kepulauan Seribu Reina Novazania [1], Agus R Utomo [2] Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia ABSTRAK Indonesia sebagai negara

Lebih terperinci

Bab I. Pendahuluan. Energi listrik adalah energi yang tersimpan dalam arus listrik, dimana

Bab I. Pendahuluan. Energi listrik adalah energi yang tersimpan dalam arus listrik, dimana Bab I Pendahuluan 1.1 Latar Belakang Energi listrik adalah energi yang tersimpan dalam arus listrik, dimana energi listrik ini di butuhkan peralatan elektronik agak mampu bekerja seperti kegunaannya. Sehingga

Lebih terperinci

Ringkasan Eksekutif INDONESIA ENERGY OUTLOOK 2009

Ringkasan Eksekutif INDONESIA ENERGY OUTLOOK 2009 INDONESIA ENERGY OUTLOOK 2009 Pusat Data dan Informasi Energi dan Sumber Daya Mineral KEMENTERIAN ENERGI DAN SUMBER DAYA MINERAL 2009 Indonesia Energy Outlook (IEO) 2009 adalah salah satu publikasi tahunan

Lebih terperinci

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB I PENDAHULUAN 1.1 LATAR BELAKANG BAB I PENDAHULUAN 1.1 LATAR BELAKANG Dalam kehidupan sehari-hari, kita sangat membutuhkan energi listrik, seperti saat kita berangkat dari rumah untuk bekerja, kuliah, rekreasi, acara keluarga ataupun

Lebih terperinci

Abstrak. 2. Tinjauan Pustaka

Abstrak. 2. Tinjauan Pustaka 65 STUDI PERANCANGAN PROTOTYPE PEMBANGKIT LISTRIK TENAGA GELOMBANG LAUT TIPE SALTER DUCK Luthfi Prasetya Kurniawan 1) Ir. Sardono Sarwito M.Sc 2) Indra Ranu Kusuma ST. M.Sc 3) 1) Mahasiswa : Jurusan Teknik

Lebih terperinci

TUGAS METODELOGI PENELITIAN Oktober 2012 Chintya Bunga Yudhitiara Pendidikan Teknik Elektronika NR 10 JURNAL SKRIPSI

TUGAS METODELOGI PENELITIAN Oktober 2012 Chintya Bunga Yudhitiara Pendidikan Teknik Elektronika NR 10 JURNAL SKRIPSI TUGAS METODELOGI PENELITIAN Oktober 2012 Chintya Bunga Yudhitiara 5215107336 Pendidikan Teknik Elektronika NR 10 JURNAL SKRIPSI Awan Kuspriadi 5115060198 akukezam@gmail.com Massus Subekti, MT. Muhammad

Lebih terperinci

Kajian Teknis Sistem Konversi Pneumatis Energi Gelombang Laut Menggunakan Tanki Bertekanan Dan OWC (Oscillating Water Column)

Kajian Teknis Sistem Konversi Pneumatis Energi Gelombang Laut Menggunakan Tanki Bertekanan Dan OWC (Oscillating Water Column) JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: 2337-3539 (2301-9271 Print) F-8 Kajian Teknis Sistem Konversi Pneumatis Energi Gelombang Laut Menggunakan Tanki Bertekanan Dan OWC (Oscillating Water Column)

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Turbin Angin Bila terdapat suatu mesin dengan sudu berputar yang dapat mengonversikan energi kinetik angin menjadi energi mekanik maka disebut juga turbin angin. Jika energi

Lebih terperinci

BAB I PENDAHULUAN. Energi merupakan kebutuhan pokok bagi kegiatan sehari-hari,

BAB I PENDAHULUAN. Energi merupakan kebutuhan pokok bagi kegiatan sehari-hari, BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Energi merupakan kebutuhan pokok bagi kegiatan sehari-hari, misalnya dalam bidang industri, dan rumah tangga. Saat ini di Indonesia pada umumnya masih menggunakan

Lebih terperinci

BAB I. bergantung pada energi listrik. Sebagaimana telah diketahui untuk memperoleh energi listrik

BAB I. bergantung pada energi listrik. Sebagaimana telah diketahui untuk memperoleh energi listrik BAB I 1. PENDAHULUAN 1.1 Latar Belakang Salah satu kebutuhan energi yang hampir tidak dapat dipisahkan lagi dalam kehidupan manusia pada saat ini adalah kebutuhan energi listrik. Banyak masyarakat aktifitasnya

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Listrik merupakan sumber energi yang sangat dibutuhkan dalam kelangsungan hidup pada saat ini. Dengan berkembangnya teknologi yang ada di dunia berbanding lurus dengan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Energi fosil masih menjadi sumber energi utama yang paling banyak digunakan oleh manusia terutama di Indonesia. Indonesia merupakan salah satu negara yang menggunakan

Lebih terperinci

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB I PENDAHULUAN 1.1 LATAR BELAKANG BAB I PENDAHULUAN 1.1 LATAR BELAKANG Alam menyediakan begitu banyak energi. Potensi sumber daya alam dapat digunakan untuk kebutuhan dan kepentingan manusia. Menurut proses pembentukannya, sumber daya

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Energi merupakan isu yang sangat krusial bagi masyarakat dunia, terutama semenjak terjadinya krisis minyak dunia pada awal dan akhir dekade 1970-an dan pada akhirnya

Lebih terperinci

RANCANGAN EVAPORATOR DAN KONDENSOR PADA PROTIPE PEMBANGKIT LISTRIK TENAGA PANAS AIR LAUT (OCEAN THERMAL ENERGY CONVERSION/ OTEC)

RANCANGAN EVAPORATOR DAN KONDENSOR PADA PROTIPE PEMBANGKIT LISTRIK TENAGA PANAS AIR LAUT (OCEAN THERMAL ENERGY CONVERSION/ OTEC) RANCANGAN EVAPORATOR DAN KONDENSOR PADA PROTIPE PEMBANGKIT LISTRIK TENAGA PANAS AIR LAUT (OCEAN THERMAL ENERGY CONVERSION/ OTEC) Aep Saepul Uyun 1, Dhimas Satria, Ashari Darius 2 1 Sekolah Pasca Sarjana

Lebih terperinci

Pembangkit Listrik Tenaga Air. BY : Sulistiyono

Pembangkit Listrik Tenaga Air. BY : Sulistiyono Pembangkit Listrik Tenaga Air BY : Sulistiyono Pembangkit listrik tenaga air Tenaga air bahasa Inggris: 'hydropower' adalah energi yang diperoleh dari air yang mengalir. Air merupakan sumber energi yang

Lebih terperinci

SISTEM TENAGA LISTRIK

SISTEM TENAGA LISTRIK SISTEM TENAGA LISTRIK SISTEM TENAGA LISTRIK Sistem Tenaga Listrik : Sekumpulan Pusat Listrik dan Gardu Induk (Pusat Beban) yang satu sama lain dihubungkan oleh Jaringan Transmisi sehingga merupakan sebuah

Lebih terperinci

BAB I PENDAHULUAN [1] Gambar 1.1 Jumlah Konsumsi BBM Dunia per Hari Sumber :

BAB I PENDAHULUAN [1] Gambar 1.1 Jumlah Konsumsi BBM Dunia per Hari Sumber : BAB I PENDAHULUAN 1.1. Latar Belakang 1.1.1. Latar Belakang Pemilihan Tipologi Indonesia sebagai negara kepulauan dengan cadangan energi baik migas maupun-non migas yang berlimpah masih terhitung boros

Lebih terperinci

TEKNIK SIPIL TEKNIK ELEKTRO TEKNIK INFORMATIKA. Volume 11, Nomor 2, Juli 2015 ISSN : JUDUL PENELITIAN

TEKNIK SIPIL TEKNIK ELEKTRO TEKNIK INFORMATIKA. Volume 11, Nomor 2, Juli 2015 ISSN : JUDUL PENELITIAN JURNAL PENELITIAN SITROTIKA TEKNIK SIPIL TEKNIK ELEKTRO TEKNIK INFORMATIKA Volume 11, Nomor 2, Juli 2015 ISSN : 1693-9670 JUDUL PENELITIAN 1. Analisa Efektifitas Jalur Pejalan Kaki Pada Rencana Pengembangan

Lebih terperinci

ANALISIS THERMAL KOLEKTOR SURYA PEMANAS AIR JENIS PLAT DATAR DENGAN PIPA SEJAJAR

ANALISIS THERMAL KOLEKTOR SURYA PEMANAS AIR JENIS PLAT DATAR DENGAN PIPA SEJAJAR TUGAS AKHIR ANALISIS THERMAL KOLEKTOR SURYA PEMANAS AIR JENIS PLAT DATAR DENGAN PIPA SEJAJAR Disusun Untuk Memenuhi Tugas Dan Syarat-Syarat Guna Memperoleh Gelar Sarjana Teknik (S-1) Jurusan Teknik Mesin

Lebih terperinci

1 BAB I PENDAHULUAN. semakin berkurang. Kebutuhan energi yang meningkat turut mempengaruhi

1 BAB I PENDAHULUAN. semakin berkurang. Kebutuhan energi yang meningkat turut mempengaruhi 1 BAB I PENDAHULUAN 1.1 Latar Belakang Seiring berjalannya waktu, kebutuhan energi dunia semakin meningkat. Sedangkan sumber energi utama yang digunakan saat ini, yaitu fosil, jumlahnya semakin berkurang.

Lebih terperinci

1 BAB I PENDAHULUAN. listrik. Di Indonesia sejauh ini, sebagian besar kebutuhan energi listrik masih disuplai

1 BAB I PENDAHULUAN. listrik. Di Indonesia sejauh ini, sebagian besar kebutuhan energi listrik masih disuplai 1 BAB I PENDAHULUAN 1.1 Latar Belakang Pada tahun-tahun terakhir, teknologi dan jumlah pertumbuhan penduduk meningkat pesat. Hal ini juga diiringi meningkatnya permintaan akan suplai energi listrik. Permintaan

Lebih terperinci

SURVEY POTENSI PLTM KANANGGAR DAN PLTM NGGONGI

SURVEY POTENSI PLTM KANANGGAR DAN PLTM NGGONGI 2016 SURVEY POTENSI PLTM KANANGGAR DAN PLTM NGGONGI PT PLN (PERSERO) PUSAT PEMELIHARAAN KETENAGALISTRIKAN 2016 Halaman : 2 dari 16 Kegiatan : Pelaksanaan Pekerjaan Survey Potensi PLTM Kananggar & Nggongi

Lebih terperinci

1. BAB I PENDAHULUAN 1.1. Latar Belakang

1. BAB I PENDAHULUAN 1.1. Latar Belakang 1. BAB I PENDAHULUAN 1.1. Latar Belakang Ketidakseimbangan akan jumlah kebutuhan dan produksi energi, yang semakin didesak oleh cepatnya pertambahan penduduk dan berkembangnya dunia industri dapat mengakibatkan

Lebih terperinci

PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo

PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo PENGARUH VARIASI JUMLAH STAGE TERHADAP KINERJA TURBIN ANGIN SUMBU VERTIKAL SAVONIUS TIPE- L Krisna Slamet Rasyid, Sudarno, Wawan Trisnadi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sebagai Sumber angin telah dimanfaatkan oleh manusaia sejak dahulu, yaitu untuk transportasi, misalnya perahu layar, untuk industri dan pertanian, misalnya kincir angin untuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Turbin gas adalah suatu unit turbin dengan menggunakan gas sebagai fluida kerjanya. Sebenarnya turbin gas merupakan komponen dari suatu sistem pembangkit. Sistem turbin gas paling

Lebih terperinci

VIII. EFISIENSI DAN STRATEGI ENERGI DALAM PEREKONOMIAN INDONESIA

VIII. EFISIENSI DAN STRATEGI ENERGI DALAM PEREKONOMIAN INDONESIA VIII. EFISIENSI DAN STRATEGI ENERGI DALAM PEREKONOMIAN INDONESIA Pada bagian ini dibahas efisiensi energi dalam perekonomian Indonesia, yang rinci menjadi efisiensi energi menurut sektor. Disamping itu,

Lebih terperinci

HYDRO POWER PLANT. Prepared by: anonymous

HYDRO POWER PLANT. Prepared by: anonymous HYDRO POWER PLANT Prepared by: anonymous PRINSIP DASAR Cara kerja pembangkit listrik tenaga air adalah dengan mengambil air dalam jumlah debit tertentu dari sumber air (sungai, danau, atau waduk) melalui

Lebih terperinci

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui

Lebih terperinci

BAB I PENDAHULUAN. Sumber dari masalah yang dihadapi di dunia sekarang ini adalah mengenai

BAB I PENDAHULUAN. Sumber dari masalah yang dihadapi di dunia sekarang ini adalah mengenai BAB I PENDAHULUAN 1.1. Latar Belakang Sumber dari masalah yang dihadapi di dunia sekarang ini adalah mengenai energi. Dapat dikatakan demikian karena hampir semua negara di dunia memerlukan energi untuk

Lebih terperinci

Kajian Pemanfaatan Potensi Suhu Air Laut Sebagai Sumber Energi Terbarukan Menghasilkan Energi Listrik

Kajian Pemanfaatan Potensi Suhu Air Laut Sebagai Sumber Energi Terbarukan Menghasilkan Energi Listrik JURNAL INOVTEK POLBENG, VOL. 07, NO., JUNI 07 ISSN: 088-65 E-ISSN: 580-798 Kajian Pemanfaatan Potensi Suhu Air Laut Sebagai Sumber Energi Terbarukan Menghasilkan Energi Listrik Sugeng Riyanto Program Studi

Lebih terperinci

BAB I PENDAHULUAN. untuk mencukupi kebutuhan hidup. Aktivitas-aktivitas manusia telah mengubah

BAB I PENDAHULUAN. untuk mencukupi kebutuhan hidup. Aktivitas-aktivitas manusia telah mengubah BAB I PENDAHULUAN 1.1 Latar Belakang Pertumbuhan manusia yang cepat mendorong manusia memanfaatkan alam secara berlebihan. Pemanfaatan tersebut baik sebagai pemukiman maupun usaha untuk mencukupi kebutuhan

Lebih terperinci

NASKAH PUBLIKASI DESAIN SISTEM PARALEL ENERGI LISTRIK ANTARA SEL SURYA DAN PLN UNTUK KEBUTUHAN PENERANGAN RUMAH TANGGA

NASKAH PUBLIKASI DESAIN SISTEM PARALEL ENERGI LISTRIK ANTARA SEL SURYA DAN PLN UNTUK KEBUTUHAN PENERANGAN RUMAH TANGGA NASKAH PUBLIKASI DESAIN SISTEM PARALEL ENERGI LISTRIK ANTARA SEL SURYA DAN PLN UNTUK KEBUTUHAN PENERANGAN RUMAH TANGGA Diajukan oleh: FERI SETIA PUTRA D 400 100 058 JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK

Lebih terperinci

BAB I PENDAHULUAN. hidup. Menurut kamus besar bahasa Indonesia, definisi biomassa adalah jumlah

BAB I PENDAHULUAN. hidup. Menurut kamus besar bahasa Indonesia, definisi biomassa adalah jumlah BAB I PENDAHULUAN A. Latar Belakang Biomassa adalah bahan biologis yang berasal dari organisme atau makhluk hidup. Menurut kamus besar bahasa Indonesia, definisi biomassa adalah jumlah keseluruhan organisme

Lebih terperinci

Analisa Peletakan Multi Horisontal Turbin Secara Bertingkat

Analisa Peletakan Multi Horisontal Turbin Secara Bertingkat JURNAL TEKNIK ITS Vol. 4, No., (05) ISSN: 337-3539 (30-97 Print) G-0 Analisa Peletakan Multi Horisontal Turbin Secara Bertingkat Agus Suhartoko, Tony Bambang Musriyadi, Irfan Syarif Arief Jurusan Teknik

Lebih terperinci