BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1 Bahan Bakar Hidrokarbon Bahan bakar adalah suatu materi yang bisa terbakar dan bisa diubah menjadi energi. Bahan bakar hidrokarbon adalah bahan bakar yang didominasi oleh susunan unsur Hidrogen dan Karbon. Pada proses pembakaran terbuka, umumnya bahan bakar yang digunakan tersususun dari bahan hidrokarbon seperti solar dan kerosin yang di peroleh dari hasil proses penyulingan minyak bumi atau minyak mentah ( Gambar 2.1 ). Gambar 2.1 Penyulingan Minyak Bahan Bakar Diesel Bahan bakar diesel yang sering disebut solar (light oil) merupakan suatu campuran hidrokarbon yang diperoleh dari penyulingan minyak mentah pada temperatur 200 o C 340 o C.Minyak solar ini biasa disebut juga Gas Oil, Automotive Diesel Oil, High Speed Diesel (Pertamina: 2005). Minyak solar ini digunkan untuk bahan bakar mesin Compression Ignition (udara yang dikompresi menimbulkan tekanan dan panas yang tinggi sehingga

2 membakar solar yang disemprotkan oleh injektor ). Indonesia menetapkan solar dalam peraturan Ditjen Migas No. 3675K/24/DJM/2006. Minyak solar yang sering digunakan adalah hidrokarbon rantai lurus hetadecene (C16H34) dan alphamethilnapthalene (Darmanto, 2006) Karakteristik Bahan Bakar Diesel (Solar) Dapat menyala dan terbakar sesuai dengan kondisi ruang bakar adalah syarat umum yang harus dipenuhi oleh suatu bahan bakar. Minyak solar sebagai bahan bakar memiliki karakteristik yang dipengaruhi oleh banyak sifat-sifat seperti Cetane Number (CN), penguapan (volality), residu karbon, viskositas, belerang, abu dan endapan, titik nyala, titik tuang, sifat korosi, mutu nyala dan (Mathur, Sharma, 1980). a. Cetane Number (CN) Mutu penyalaan yang diukur dengan indeks yang disebut Cetana. Mesin diesel memerlukan bilangan cetana sekitar 50. Bilangan cetana bahan bakar adalah persen volume dari cetana dalam campuran cetana dan alpha-metyl naphthalene. Cetana mempunyai mutu penyalaaan yang sangat baik dan alpha-metyl naphthalene mempunyai mutu penyalaaan yang buruk. Bilangan cetana 48 berarti bahan bakar cetana dengan campuran yang terdiri atas 48% cetana dan 52% alpha- metyl naphthalene. Angka CN yang tinggi menunjukkan bahwa minyak soloar dapat menyala pada temperatur yang relatif rendah dan sebaliknya angka CN yang rendah menunjukkan minyak solar baru dapat menyala pada temperatur yang relatif tinggi. b. Penguapan (Volality) Penguapan dari bahan bakar diesel diukur dengan 90% suhu penyulingan. Ini adalah suhu dengan 90 % dari contoh minyak yang telah disuling, semakin rendah suhu ini maka semakin tinggi penguapannya. c. Residu karbon. Residu karbon adalah karbon yang tertinggal setelah penguapan dan pembakaran habis Bahan yang diuapkan dari minyak, diperbolehkan residu karbon maksimum 0,10 %

3 d. Viskositas. Viskositas minyak dinyatakan oleh jumlah detik yang digunakan oleh volume tertentu dari minyak untuk mengalir melalui lubang dengan diameter kecil tertentu, semakin rendah jumlah detiknya berarti semakin rendah viskositasnya. e. Belerang atau Sulfur. Belerang dalam bahan bakar terbakar bersama minyak dan menghasilkan gas yang sangat korosif yang diembunkan oleh dinding-dinding silinder, terutama ketika mesin beroperasi dengan beban ringan dan suhu silinder menurun; kandungan belerang dalam bahan bakar tidak boleh melebihi 0,5 %-1,5 %. f. Kandungan abu dan endapan. Kandungan abu dan endapan dalam bahan bakar adalah sumber dari bahan mengeras yang mengakibatkan keausan mesin. Kandungan abu maksimal yang diijinkan adalah 0,01% dan endapan 0,05%. g. Titik nyala. Titik nyala merupakan suhu yang paling rendah yang harus dicapai dalam pemanasan minyak untuk menimbulkan uap terbakar sesaat ketika disinggungkan dengan suatu nyala api. Titik nyala minimum untuk bahan bakar diesel adalah 60 o C. h. Titik Tuang. Titik tuang adalah suhu minyak mulai membeku/berhenti mengalir. Titik tuang minimum untuk bahan bakar diesel adalah -15 o C. i. Sifat korosif. Bahan bakar minyak tidak boleh mengandung bahan yang bersifat korosif dan tidak boleh mengandung asam basa. j. Mutu penyalaan. Nama ini menyatakan kemampuan bahan bakar untuk menyala ketika diinjeksikan ke dalam pengisian udara tekan dalam silinder mesin diesel. Suatu bahan bakar dengan mutu penyalaan yang baik akan siap menyala, dengan sedikit keterlambatan penyalaan bahan bakar dengan mutu penyalaan yang buruk akan menyala dengan sangat terlambat. Mutu penyalaan adalah salah satu sifat yang paling

4 penting dari bahan bakar diesel untuk dipergunakan dalam mesin kecepatan tinggi. Mutu penyalaan bahan bakar tidak hanya menentukan mudahnya penyalaan dan penstarteran ketika mesin dalam keadaan dingin tetapi juga jenis pembakaran yang diperoleh dari bahan bakar. Bahan bakar dengan mutu penyalaan yang baik akan memberikan mutu operasi mesin yang lebih halus, tidak bising, terutama akan menonjol pada beban ringan. Minyak solar yang dihasilkan harus memiliki standar dan mutu (spesifikasi) yang memenuhi persyaratan yang bisa dilihat dalam tabel 2.1 di bawah ini : Tabel 2.1 Spesifukasi minyak solar sesuai Surat Keputusan Dirjen Migas 3675K/DJM/ Bahan Bakar Gas (BBG) Bahan Bakar Gas merupakan gas alam yang telah dimampatkan. Secara umum lebih dari 80% komponen gas bumi yang dipakai sebagai BBG merupakan gas metana, 10%-15% gas etana, dan sisanya adalah gas karbon dioksida, dan gas-gas lain. Bahan bakar gas dapat dikelompokkan ke dalam dua bagian utama yaitu gas

5 alam (natural gas) dan gas buatan (manufactured gas). Gas alam umumnya berada di tempat yang sama dengan endapan minyak dan batubara. Sedangkan gas buatan diproduksi dari kayu, tanah gambut, batubara, minyak, dan sebagainya. Komponen mampu bakar dari gas adalah metana, karbondioksida, dan hidrogen dalam jumlah yang bervariasi. Karakteristik dari gas sangat tergantung pada komponen yang ada dalam gas tersebut. Berdasarkan sumbernya bahan bakar gas dapat dibagi 2 yaitu : Bahan bakar yang secara alami didapat kandari alam: - Gas alam - Metan dari penambangan batubara Bahan bakar gas yang terbuat dari bahan bakar padat - Gas yang terbentuk dari batubara - Gas yang terbentuk dari limbah dan biomasa - Dari proses industri lainnya (gasblastfurnace) Biogas merupakan gas yang dihasilkan oleh aktivitas anaerobik atau fermentasi dengan kandungan methana % Sejarah Biogas Sejarah penemuan proses anaerobik digestion untuk menghasilkan biogas tersebar dibenua Eropa. Penemuan ilmuan Alessandro Volta terhadap gas yang dikeluarkan dirawa-rawa terjadi pada tahun 1770, beberapa decade kemudian Avogadro mengidentifikasikan tentang gas Methana. Setelah tahun 1875 dipastikan bahwa biogas merupakan produk dari proses anaerobik digestion. Tahun 1884 Pateour melakukan penelitian tantang biogas menggunakan kotoran hewan. Era penelitian Pasteour menjadi landasan untuk penelitian biogas hingga saat ini. Pada akhir abad ke-19 ada beberapa riset dalam bidang ini dilakukan. Di Jerman dan Perancis melakukan riset pada masa antara dua perang dunia dan beberapa unit pembangkit biogas dengan memanfaatkan limbah pertanian. Selama perang dunia II banyak petani di Inggris dan benua Eropa yang membuat digester kecil untuk menghasilkan biogas yang digunakan untuk menggerakkan traktor. Karena harga BBM semakin murah dan mudah memperolehnya pada tahun 1950-an pemakaian biogas di Eropa ditinggalkan. Namun, di Negara-negara berkembang kebutuhan akan sumber energi

6 yang murah dan selalu tersedia ada. Kegiatan produksi biogas di India telah dilakukan semenjak abad ke-19. Alat pencerna anaerobik pertama dibangun pada tahun 1900 (Burhani Rahman, Definisi Biogas Biogas merupakan gas yang dihasilkan oleh aktivitas anaerobik atau fermentasi dari bahan-bahan organik termasuk diantaranya; kotoran manusia dan hewan, limbah domestik (rumah tangga), sampah biodegradable atau setiap limbah organik yang biodegradable dalam kondisi anaerobik. Kandungan utama dalam biogas adalah metana (CH 4 ) dan karbon dioksida (CO 2 ). Biogas dapat dimanfaatkan sebagai bahan bakar alternatif yang berasal dari sumber energi terbarukan. Saat ini pemanfaatan Biogas yaitu digunakan sebagai bahan bakar altrenatif pengganti bahan bakar fosil, salah satunya Biogas digunakan sebagai pengganti LPG untuk kompor gas rumah tangga, selain itu Biogas juga digunakan sebagai bahan bakar untuk mengoperasikan generator listrik Karakteristik Bahan Bakar Biogas Kandungan komposisi biogas dapat berbeda-beda tergantung dari bahan pembuatnya. Kandungan utama dari biogas adalah gas metana (CH 4 ) dan karbon dioksida (CO 2 ) kandungan gas lainnya ialah karbon monoksida (CO), nitrogen (N), hidrogen sulfide (H 2 S), oksigen (O 2 ), hidrogen (H 2 ), dan ammonia (NH 3 ). Sifat fisik dan kimiawi biogas dipengaruhi oleh bahan baku pembuat biogas tersebut dan nilainya berbeda-beda akan tetapi tidak terlalu jauh. Secara umum komposisi kandungan biogas ditunjukan pada tabel dibawah ini (Karki et al, 2005) : Tabel 2.2 Komposisi kandungan biogas Komponen Persentase (%) Methane (CH 4 ) Carbon Dioxide (CO 2 ) 30 40

7 Hydrogen (H 2 ) 5 10 Nitrogen (N 2 ) 1 2 Water Vapour (H 2 O) 0.3 Hydrogen Sulphide (H 2 S) Sedikit Biogas memiliki beberapa sifat fisik secara umum yaitu : Tabel 2.3 Sifat fisik biogas Sifat Fisik Keterangan Titik Bakar C Specific Gravity 0,55 Desnsitas 0, 717 kg/m 3 RON 130 Nilai Kalor 17 MJ/kg Laju Nyala 0,25 m/s Adapun sifat kimiawi dari biogas secara umum adalah : 1. Biogas mudah terbakar bila bercampur dengan oksigen flash point C. 2. Biogas sulit untuk disimpan dalam tabung praktis karena biogas dapat berubah fase menjadi cair pada suhu C. 3. Biogas tidak menghasilkan karbon monoksida bila dibakar sehingga aman untuk penggunakan rumah tangga. 4. Biogas tidak memiliki warna dan tidak berbau Proses Purifikasi (Pemurnian) Biogas Pemurnian (purifikasi) biogas adalah cara untuk meningkatkan nilai kalor dari biogas. Pemurnian bio gas dilakukan untuk menghilangkan gas CO2, H2O dan H2S yang terkandung dalam bio gas,seiring dengan hilangnya gas gas tersebut maka kandungan gas methana dalam bio gas akan meningkat yaitu sekitar 70-95%. Dengan pemurnian biogas, maka biogas akan semakin baik digunakan untuk pembakaran.

8 Menurut Ryckebosch (2011) pemurnian biogas dapat dilakukan melalui dua langkah utama yaitu menghilangkan trace components seperti hidrogen sulfida dan uap air yang menyebabkan korosi dan menghilangkan gas karbon dioksida untuk meningkatkan nilai kalor. Proses pemurnian biogas dapat dilakukan dengan berbagai metode pemurnian diantaranya menggunakan water scrubbing, penyerapan kimia menggunakan MEA dan DEA pressure swing adsorption dan cryogenic separation. Gambar 2.2 Proses pemurnian biogas Proses Pembuatan Biogas Pada dasarnya pembuatan biogas sangat sederhana, yaitu hanya dengan memasukkan substrat seperti kotoran ternak, limbah pertanian, limbah rumah tangga ke dalam digester yang anaerob yang kemudian akan menghasilkan biogas dan dapat disimpan di dalam tangki penyimpanan kemudian dapat digunakan. Prinsip pembuatan biogas adalah adanya dekomposisi bahan organik secara anaerobik (tertutup dari udara bebas) untuk menghasilkan gas yang sebagian besar adalah berupa gas metan (yang memiliki sifat mudah terbakar) dan karbon dioksida,

9 gas inilah yang disebut biogas. Proses dekomposisi anaerobik dibantu oleh sejumlah mikroorganisme, terutamabakteri metan. Suhu yang baik untuk proses fermentasi adalah o C, dimana pada suhu tersebut mikro organisme mampu merombak bahan bahan organik secara optimal. Proses pembuatan gas metan secara anaerob melibatkan interaksi kompleks dari sejumlah bakteri yang berbeda, protozoa maupun jamur. Beberapa bakteri yang terlibat adalah Bacteroides, Clostridium butyrinum, Escericia coli dan beberapa bakteri usus lainnya, Methanobacterium, dan Methanobacillus. Dua bakteri terakhir merupakan bakteri utama penghasil metan dan hidup secara anaerob. Proses pembuatan metan ini terbagi ke dalam tiga tahap, yaitu : 1. Hidrolisis secara enzimatik, bahan-bahan organik tak larut menjadi bahanbahan organik dapat larut. Enzim utama yang terlibat adalah selulase yang menguraikan selulosa. 2. Perubahan bahan-bahan organik dapat larut menjadi asam organik. Pembentukan asam organik ini terjadi dengan bantuan bakteri non methanogenik, protozoa dan jamur. 3. Perubahan asam organik menjadi gas metan dan karbondioksida. Proses perubahan ini dapat terjadi karena adanya bantuan bakteri Metanogenik (Methanobacterium dan Methanobacillus). Keseluruhan reaksi perubahan bahan organik menjadi gas metan dan karbondioksida dapat dituliskan dengan persamaan reaksi sebagai berikut : (C 6 H 10 O 5 )n + n H 2 O n CO 2 + 3n CH 4 Persamaan di atas berlaku bila yang menjadi substrat adalah selulosa. Untuk substrat yang berupa senyawa organik kompleks, seperti Lignin dan tanin dan senyawa Polimer Aromatik lainnya, pembentukan gas metan tidak melalui reaksi seperti di atas. Substrat yang berupa senyawa aromatik yang lebih sederhana melalui aktifitas aerobik beberapa enzim ekstraselular yang dihasilkan oleh sejumlah mikroorganisme. Senyawa-senyawa aromatik sederhana ini umumnya Benzenoid. Selanjutnya, senyawa benzenoid ini melalui aktifitas bakteri metaorganik, seperti Methanobacterium formicum dan Methanospirilum hungati, seca anaerob diubah

10 menjadi gas metan dan karbondioksida. Proses perubahan ini terjadi melalui tahapan reaksi seperti berikut : 4 C 6 H 5 COOH + 24 H 2 O CH 3 COOH + 4HCOOH + 8H 2 12 CH 3 COOH CH CO 2 4 COOH CO 2 + H 2 3 CO H CH H 2 O Secara singkat reaksi keseluruhan di atas dapat disederhanakan menjadi: 4 C 6 H 5 COOH + 18 H 2 O CH 4 + CO 2 Berikut ini skema proses pembuatan biogas : Gambar 2.3 Proses pembuatan biogas sederhana Proses pembuatan biogas dalam perkembangan saat ini dibagi menjadi 3 jenis yaitu : 1. Fixed Dome Plant Pada fixed dome plant, digesternya tetap. Penampung gas ada pada bagian atas digester. Ketika gas mulai timbul, gas tersebut menekan slurry ke bak slurry. Jika pasokan kotoran ternak terus menerus, gas yang timbul akan

11 terus menekan slurry hingga meluap keluar dari bak slurry. Gas yang timbul digunakan/dikeluarkan lewat pipa gas yang diberi katup/kran. 2. Floating Drum Plant Floating drum plant terdiri dari satu digester dan penampung gas yang bisa bergerak. Penampung gas ini akan bergerak keatas ketika gas bertambah dan turun lagi ketika gas berkurang, seiring dengan penggunaan dan produksi gasnya. 3. Jenis Balon Reaktor balon merupakan jenis reaktor yang banyak digunakan pada skala rumah tangga yang menggunakan bahan plastik sehingga lebih efisien dalam penanganan dan perubahan tempat biogas. reaktor ini terdiri dari satu bagian yang berfungsi sebagai digester dan penyimpan gas masing masing bercampur dalam satu ruangan tanpa sekat. Material organik terletak dibagian bawah karena memiliki berat yang lebih besar dibandingkan gas yang akan mengisi pada rongga atas Kelebihan dan Kekurangan Biogas Biogas memiliki beberapa kelebihan dan keuntungan disbandingkan dengan bahan bakar gas lainnya seperti LPG dan CNG. Berikut ini adalah beberapa kelebihan dan kekurangan biogas : Kelebihan : 1. Energi yang terbaharukan dan tidak membutuhkan material yang masih di gunakan sehingga tidak mengganggu keseimbangan karbon dioksida. 2. Energi yang dihasilkan biogas dapat menggantikan bahan bakar fosi (nilai kalor tinggi). 3. Ramah lingkungan. 4. Harga biogas murah. 5. Emisi gas buang yang rendah. 6. Menghasilkan pupuk organic yang berkulitas tinggi. Kekurangan :

12 1. Memerlukan biaya instalasi yang cukup besar. 2. Belum dapat dikemas dalam bentuk cair dalam tabung. 3. Belum dikenal masyarakat luas. 2.3 Dual Fuel System Dual fuel system solar-biogas adalah sistem bahan bakar yang menggunakan dua jenis bahan bakar sekaligus di dalam bekerjanya motor bakar sebagai motor penggerak yaitu bahan liquid (solar) dan bahan bakar gas (biogas) melalui sedikit modofikasi mixer mesin pada bagian intake manifold mesin diesel dan menggunakan gas injector untuk menyuplai biogas. Biogas yang masuk bercampur dengan udara di mixer kemudian masuk ke dalam ruang bakar, kemudian dari sisi lain bahan bakar liquid (solar) akan masuk sekaligus. Bahan bakar yang terdiri dari solar,biogas, dan udara akan dikompresi di ruang bakar untuk selanjutnya terbakar dan menghasilkan energi. Gambar 2.4 Mesin dengan sistem dua bahan bakar 2.4 Mesin Diesel Mesin diesel juga disebut Motor Penyalaan Kompresi (Compresion Ignition) oleh karena penyalaannya dilakukan dengan menyemprotkan bahan bakar ke dalam udara yang telah bertekanan dan bertemperatur ringgi sebagai akibat dari proses kompresi di dalam ruang bakar. Mesin diesel pertama kali ditemukan oleh Rudolf Diesel pada tahun Prinsip kerja pembakaran motor diesel yaitu udara

13 segar dihisap masuk kedalam silinder atau ruang bakar kemudian udara tersebut dikompressi oleh torak sehingga udara memiliki temperatur dan tekanan yang tinggi, dan sebelum torak mencapai titik mati atas, bahan bakar disemprotkan ke ruang bakar dan terjadilah pembakaran. Agar bahan bakar diesel dapat terbakar dengan sendirinya, maka perbandingan kompresi mesin diesel harus berkisar antara 15 22, sedangkan tekanan kompresinya mencapai bar dengan suhu C. Aplikasi dari motor diesel banyak pada industri-industri sebagai motor stasioner ataupun untuk kendaraan-kendaraan dan kapal laut dengan ukuran yang besar. Hal ini dikarenakan motor diesel mengkonsumsi bahan bakar ± 25% lebih rendah dari motor bensin, lebih murah dan perawatannya lebih sederhana (Kubota, S., dkk, 2001). Mesin diesel menghasilkan tekanan kerja yang tinggi, itu sebabnya konstruksi motor diesel lebih kokoh dan lebih besar. Disamping itu, mesin diesel menghasilkan bunyi yang lebih keras, warna dan bau gas yang kurang menyenangkan. Namun dipandang dari segi ekonomi, bahan bakar serta polusi udara, motor diesel masih lebih disukai (Mathur, 1980). Menurut Willard W.P (1996) efisiensi termis motor diesel berada di bawah 50% sedangkan menurut Khovakh (1979), efisiensi termis berkisar pada 29% - 42% dan sisanya adalah kerugian-kerugian energi. Energi kalor yang dimanfaatkan oleh mesin tidaklah terlalu besar,sisanya merupakan kerugian - kerugian energi, diantaranya energi kalor yang hilang akibat pendinginan mesin, energi kalor yang hilang bersama gas buang, energi kalor yang hilang akibat pembakaran tidak sempurna, energi kalor yang hilang karena kebocoran gas, dan kehilangan lainnya akibat radiasi dan konveksi. Siklus diesel (ideal) pembakaran tersebut dimisalkan dengan pemasukan panas pada volume konstan (Y. A. Çengel and M. A. Boles, Thermodynamics: An Engineering Approach, 5th ed, McGraw-Hill, 2006.).

14 Gambar 2.5 P-v diagram Keterangan Gambar: P V q in q out = Tekanan (atm) = Volume Spesifik (m 3 /kg) = Kalor yang masuk (kj) = Kalor yang dibuang (kj) Keterangan Gambar : Gambar 2.6 Diagram T-S mesin diesel T = Temperatur (K) S = Entropi (kj/kg.k)

15 q in = Kalor yang masuk (kj) q out = Kalor yang dibuang (kj) Keterangan Grafik: 1-2 Kompresi Isentropik 2-3 Pemasukan Kalor pada Tekanan Konstan 3-4 Ekspansi Isentropik 4-1 Pengeluaran Kalor pada Tekanan Konstan Prinsip Kerja Mesin Diesel Prinsip kerja mesin diesel 4 tak sebenarnya sama dengan prinsip kerja mesin otto, yang membedakan adalah cara memasukkan bahan bakarnya. Pada mesin diesel bahan bakar di semprotkan langsung ke ruang bakar dengan menggunakan injector. Dibawah ini adalah langkah dalam proses mesin diesel 4 langkah : Gambar 2.7 Prinsip kerja mesin diesel ( Sumber : www. Scribd.Com )

16 Keterangan : 1. Langkah Isap Pada langkah ini piston bergerak dari TMA (Titik Mati Atas) ke TMB (Titik Mati Bawah). Saat piston bergerak ke bawah katup isap terbuka yang menyebabkan ruang didalam silinder menjadi vakum,sehingga udara murni langsung masuk ke ruang silinder melalui filter udara. 2. Langkah kompresi Poros engkol terus berputar, piston bergerak dari TMB ke TMA, kedua katup tertutup. Udara murni yang terhisap tadi terkompresi dalam ruang bakar. Karena terkompresi suhu dan tekanan udara tersebut naik hingga mencapai 35 atm dengan temperatur 500⁰ - 800⁰ (pada perbandingan kompresi 20 : 1). 3. Langkah Usaha Poros engkol masih terus berputar, beberapa derajat sebelum torak mencapai TMA di akhir langkah kompresi, bahan bahar diinjeksikan ke dalam ruang bakar. Karena suhu udara kompresi yang tinggi terjadilah pembakaran yang menghasilkan tekanan eksplosif yang mendorong piston bergerak dari TMA ke TMB. Kedua katup masih dalam keadaan tertutup. Gaya dorong ke bawah diteruskan oleh batang piston ke poros engkol untuk dirubah menjadi gerak rotasi. Langkah usaha ini berhenti ketika katup buang mulai membuka beberapa derajat sebelum torak mencapai TMB. 4. Langkah Buang Pada langkah ini, gaya yang masih terjadi di flywhell akan menaikkan kembali piston dari TMB ke TMA, bersamaan itu juga katup buang terbuka sehingga udara sisa pembakaran akan di dorong keluar dari ruang silinder menuju exhaust manifold dan langsung menuju knalpot Performansi Mesin Diesel a. Nilai Kalor Bahan Bakar

17 Reaksi kimia antara bahan bakar dengan oksigen dari udara menghasilkan panas. Besarnya panas yang ditimbulkan jika satu satuan bahan bakar dibakar sempurna disebut nilai kalor bahan bakar (Calorific Value, CV). Bedasarkan asumsi ikut tidaknya panas laten pengembunan uap air dihitung sebagai bagian dari nilai kalor suatu bahan bakar, maka nilai kalor bahan bakar dapat dibedakan menjadi nilai kalor atas dan nili kalor bawah. Nilai kalor atas (High Heating Value,HHV), merupakan nilai kalor yang diperoleh secara eksperimen dengan menggunakan kalorimeter dimana hasil pembakaran bahan bakar didinginkan sampai suhu kamar sehingga sebagian besar uap air yang terbentuk dari pembakaran hidrogen mengembun dan melepaskan panas latennya. Secara teoritis, besarnya nilai kalor atas (HHV) dapat dihitung bila diketahui komposisi bahan bakarnya dengan menggunakan persamaan Dulong yang ditunjukkan pada persamaan dibawah 2.1 ini : HHV = (H 2 - OO 2 ) S...(2.1) 8 Dimana: HHV = Nilai kalor atas (kj/kg) C = Persentase karbon dalam bahan bakar H 2 O 2 S = Persentase hidrogen dalam bahan bakar = Persentase oksigen dalam bahan bakar = Persentase sulfur dalam bahan bakar Nilai kalor bawah (low Heating Value, LHV), merupakan nilai kalor bahan bakar tanpa panas laten yang berasal dari pengembunan uap air. Umumnya kandungan hidrogen dalam bahan bakar cair berkisar 15 % yang berarti setiap satu satuan bahan bakar, 0,15 bagian merupakan hidrogen. Pada proses pembakaran sempurna, air yang dihasilkan dari pembakaran bahan bakar adalah setengah dari jumlah mol hidrogennya. Selain berasal dari pembakaran hidrogen, uap air yang terbentuk pada proses pembakaran dapat pula berasal dari kandungan air yang memang sudah ada

18 didalam bahan bakar (moisture). Panas laten pengkondensasian uap air pada tekanan parsial 20 kn/m 2 (tekanan yang umum timbul pada gas buang) adalah sebesar 2400 kj/kg, sehingga besarnya nilai kalor bawah (LHV) dapat dihitung berdasarkan persamaan berikut : LHV = HHV 2400 (M + 9 H 2 )... (2.2) Dimana: LHV = Nilai Kalor Bawah (kj/kg) M = Persentase kandungan air dalam bahan bakar (moisture) Dalam perhitungan efisiensi panas dari motor bakar, dapat menggunakan nilai kalor bawah (LHV) dengan asumsi pada suhu tinggi saat gas buang meninggalkan mesin tidak terjadi pengembunan uap air. Namun dapat juga menggunakan nilai kalor atas (HHV) karena nilai tersebut umumnya lebih cepat tersedia. Peraturan pengujian berdasarkan ASME (American of Mechanical Enggineers) menentukan penggunaan nilai kalor atas (HHV), sedangkan peraturan SAE (Society of Automotive Engineers) menentukan penggunaan nilai kalor bawah (LHV). b. Daya Poros Daya mesin adalah besarnya kerja mesin selama waktu tertentu. Pada motor bakar daya yang berguna adalah daya poros, dikarenakan poros tersebut menggerakan beban. Daya poros dibangkitkan oleh daya indikator, yang merupakan daya gas pembakaran yang menggerakan torak selanjutnya menggerakan semua mekanisme, sebagian daya indikator dibutuhkan untuk mengatasi gesekan mekanik, seperti pada torak dan dinding silinder dan gesekan antara poros dan bantalan. Prestasi motor bakar pertama-tama tergantung dari daya yang dapat ditimbulkannya. Semakin tinggi frekuensi putar motor makin tinggi daya yang diberikan hal ini disebabkan oleh semakin besarnya frekuensi semakin banyak langkah kerja yang dialami pada waktu yang sama. Dengan demikian besar daya poros itu adalah : PP BB = 2ππ.(nn.TT) 60 Dimana :... (2.3)

19 P B = daya ( W ) T = torsi ( Nm ) n = putaran mesin ( Rpm ) c. Torsi Torsi adalah perkalian antara gaya dengan jarak. Selama proses usaha maka tekanan-tekanan yang terjadi di dalam silinder motor menimbulkan suatu gaya yang luar biasa kuatnya pada torak. Gaya tersebut dipindahkan kepada pena engkol melalui batang torak, dan mengakibatkan adanya momen putar atau torsi pada poros engkol. Untuk mengetahui besarnya torsi digunakan alat dynamometer. Gambar 2. 8 Skema operasi dynamometer Biasanya motor pembakaran ini dihubungkan dengan dynamometer dengan maksud mendapatkan keluaran dari motor pembakaran dengan cara menghubungkan poros motor pembakaran dengan poros dynamometer dengan menggunakan kopling elastik. P B = 2ππ.( nn.tt ) (2.4) T = PP BB (2.5) 2ππ.nn Dimana : P B = Daya Listrik ( W ) T = Torsi ( Nm ) N = Putaran mesin ( rpm )

20 d. Konsumsi Bahan Bakar Spesifik (SFC) Konsumsi bahan bakar spesifik merupakan salah satu parameter prestasi yang penting di dalam suatu motor bakar. Parameter ini biasa dipakai sebagai ukuran ekonomi pemakaian bahan bakar yang terpakai per jam untuk setiap daya kuda yang dihasilkan. SFC = mm ffxx (2.6) PP BB ṁ f = Dengan : ssssss xx 8 xx 10 3 tt xx (2.7) SFC = konsumsi bahan bakar spesifik (kg/kw.h) P B = daya (W) ṁ f = konsumsi bahan bakar sgf = spesifik grafity t = waktu (jam) e. Efisiensi Thermal Kerja berguna yang dihasilkan selalu lebih kecil dari pada energi yang dibangkitkan piston karena sejumlah enegi hilang akibat adanya rugi-rugi mekanis (mechanical losses). Dengan alasan ekonomis perlu dicari kerja maksimium yang dapat dihasilkan dari pembakaran sejumlah bahan bakar. Efisiensi ini disebut juga sebagai efisiensi termal brake (thermal efficiency, η b ). Jika daya keluaran P B dalam satuan KW, laju aliran bahan bakar m f dalam satuan kg/jam, maka: PP BB η b = xx (2.8) mm ff. CCCC f. Rasio Udara - Bahan Bakar (AFR) Energi yang masuk kedalam sebuah mesin QQ iiii berasal dari pembakaran bahan bakar hidrokarbon. Udara digunakan untuk menyuplai oksigen yang

21 dibutuhkan untuk mendapatkan reaksi kimia didalam ruang bakar. Agar terjadinya reaksi pembakaran, jumlah oksigen dan bahan bakar harus tepat. Yang dirumuskan sebagai berikut: AAAAAA = mm aa mm ff = ṁ aa ṁ ff....(2.9) mm aa = PP ii(vv dd +VV cc ) RR.TT ii Dimana:.(2.10) mm aa = massa udara di dalam silinder per siklus mm ff = massa bahan bakar di dalam silinder per siklus ṁ aa = laju aliran udara didalam mesin ṁ ff = laju aliran bahan bakar di dalam mesin PP ii = tekanan udara masuk silinder TT ii = temperatur udara masuk silinder RR = konstanta udara VV dd = volume langkah (displacement) VV cc = volume sisa g. Efisiensi Volumetris Salah satu proses yang paling penting untuk menentukan berapa besar daya dan performansi yang dihasilkan dari sebuah mesin yaitu dengan mendapatkan kwantitas udara yang paling maksimal yang digunakan pada setiap siklus yang masuk ke ruang bakar. Semakin banyak udara sama dengan menambah konsumsi bahan bakar dan akan menghasilkan semakin banyak daya yang bisa dikonversi dari hasil pembakaran. Efisiensi volumetris dapat dicari dengan menggunakan rumus: ηη vv = n. ṁ aa / ϼ a. Vd. N..(2.11) Dimana: mm aa = massa udara di dalam silinder per siklus (kg) ṁ aa = laju aliran udara didalam mesin (kg/s) VV dd = volume langkah ( m 3 )

22 n = jumlah putaran per siklus N = putaran mesin (rpm) ϼ a = densitas udara (kg/m 3 ) ηη vv = efisiensi volumetris Parameter Prestasi Mesin Diesel Empat Langkah Pada umumnya performance atau prestasi mesin bisa diketahui membaca dan menganalisis parameter yang ditulis dalam sebuah laporan atau media lain. Biasanya kita akan mengetahui daya, torsi, dan bahan bakar spesifik dari mesin tersebut. Parameter itulah yang menjadi pedoman praktis prestasi sebuah mesin. Parameter prestasi mesin dapat dilihat dari berbagai hal diantara yang terdapat dalam diagram sebagai berikut : Parameter Prestasi Mesin Daya Torsi Laju Konsumsi Konsumsi Bahan Bakar Spesifik Efisiensi Bahan Bakar Gambar 2.9 Diagram Alir Prestasi Mesin Secara umum daya berbanding lurus dengan luas piston sedang torsi berbanding lurus dengan volume langkah. Parameter tersebut relatif penting

23 digunakan pada mesin yang berkemampuan kerja dengan variasi kecepatan operasi dan tingkat pembebanan. Daya maksimum didefinisikan sebagai kemampuan maksimum yang bisa dihasilkan oleh suatu mesin. Adapun torsi poros pada kecepatan tertentu mengindikasikan kemampuan untuk memperoleh aliran udara (dan juga bahan bakar) yang tinggi kedalam mesin pada kecepatan tersebut. Sementara suatu mesin dioperasikan pada waktu yang cukup lama, maka konsumsi bahan bakar suatu efisiensi mesinnya menjadi suatu hal yang dirasa sangat penting. (Heywood, 1988 : 823). Gambar 2.10 Pengetesan Prestasi Mesin Tabel 2.4 Perbedaan motor diesel dan motor bensin Motor diesel Motor bensin Bahan bakar Solar Bensin Getaran mesin Besar Kecil Metode pemberian Pompa bahan bakar dan pengabut Karburator bahan bakar Metode pengapian Pengapian sendiri Loncatan bunga api listrik Pembentukan Setelah kompresi Sebelum kompresi campuran Perbandingan kg/cm kg/cm 2 kompresi Proses pembakaran Siklus diesel Siklus otto

24 Sumber: Arismunandar, Wiranto. Penggerak Mula Motor Bakar Torak. Edisi kelima. Penerbit : ITB Bandung, Unjuk Kerja Mesin Diesel Empat Langkah Konsep awal Rudolf Diesel pada mesin ciptaannya adalah dengan mengansumsikan adanya penambahan kalor pada temperatur konstan sehingga mesin yang dibuatnya dapat berjalan dengan siklus Carnot. Namun, akhirnya disadari bahwa untuk mewujudkan mesin tersebut secara praktikal adalah sangat sulit karena pemasukan panas yang dapat dilakukan persiklus sangat kecil. Konsep selanjutnya Rudolf Diesel menggunakan penambahan kalor pada saat tekanan konstan. Konsep siklus tersebut secara teoritis dapat berjalan dan oleh karena itu, siklus toritis ini dinamakan atas namanya yaitu Siklus Diesel. Gambar 2.11 Diagram p-v siklus diesel Sumber : Proses pada siklus Diesel : 1-2 : Kompresi isentropis (reversibel adiabatis) Gas ideal (udara) dengan kalor spesifik konstan dikompresi secara reversibel dan adiabatis ke temperatur dan tekanan tinggi. 2-3 : Pembakaran isobaris

25 Temperatur setelah kompresi akan melebihi tempertur penyulutan bahan bakar sehingga bahan bakar tersulut secara spontan pada saat diinjeksikan kedalam ruang bakar. 3-4 : Ekspansi isentropis ( revesibel adiabatis ) Temperatur dan tekanan turun. 4-1 : Pembuangan isokhoris Pembuangan kalor pada volume konstan, diikuti oleh penurunan temperatur dan tekanan. 2.5 Emisi Gas Buang Emisi gas buang adalah sisa hasil pembakaran bahan bakar di dalam mesin pembakaran dalam, mesin pembakaran luar, mesin jet yang dikeluarkan melalui sistem pembuangan mesin. Untuk mesin diesel emisi gas buang yang dilihat adalah opasitas (ketebalan asap). Uji emisi gas buang dari hasil pengujian ini mengacu pada uji emisi standar nasional indonesia, yaitusebagaiberikut :

26 Gambar 2.12 Standar Uji Emisi Nasional Indonesia Adapun Standart nilai opasitas berdasarkan peraturan menteri negara lingkungan hidup nomor 05 tahun 2006 tentang ambang batas emisi gas buang ditunjukkan pada table berikut ini:

27 Tabel 2.5 Standard Emisi Gas Buang Parameter Kategori Tahun Pembuatan CO (%) HC (ppm) Opacity (% HSU) Berpenggerak Motor Bakar cetus api (bensin) < , , Berpenggerak Motor Bakar Penyalaan Kompresi (Diesel) GVW 3,5 Ton GvVW 3,5 Ton < < Sumber : Peraturan Menteri Negara Lingkungan Hidup Nomor 05 Tahun 2006 Tentang Ambang Batas Emisi Gas Buang Sumber Polutan dibedakan menjadi polutan primer atau sekunder.polutan primer seperti nitrogen oksida (NOx) dan hidrokarbon (HC) langsung dibuangkan ke udara bebas dan mempertahankan bentuknya seperti pada saat pembuangan. Polutan sekunder seperti ozon (O 3 ) dan peroksiasetil nitrat (PAN) adalah polutan yang terbentuk di atmosfer melalui reaksi fotokimia, hidrolisis atau oksidasi.

28 2.5.2 Komposisi Kimia Polutan dibedakan menjadi organik dan inorganik. Polutan organik mengandung karbon dan hidrogen, juga beberapa elemen seperti oksigen, nitrogen, sulfur atau fosfor, contohnya : hidrokarbon, keton, alkohol, ester dan lain-lain. Polutan inorganik seperti : karbon monoksida (CO), karbonat, nitrogen oksida, ozon dan lainnya Bahan Penyusun Polutan dibedakan menjadi partikulat atau gas. Partikulat dibagi menjadi padatan dan cairan seperti : debu, asap, abu, kabut dan spray, partikulat dapat bertahan di atmosfer. Sedangkan polutan berupa gas tidak bertahan di atmosfer dan bercampur dengan udara bebas. a.) Partikulat Polutan partikulat yang berasal dari kendaraan bermotor umumnya merupakan fasa padat yang terdispersi dalam udara dan membentuk asap. Fasa padatan tersebut berasal dari pembakaran tak sempurna bahan bakar dengan udara, sehingga terjadi tingkat ketebalan asap yang tinggi. Selain itu partikulat juga mengandung timbal yang merupakan bahan aditif untuk meningkatkan kinerja pembakaran bahan bakar pada mesin kendaraan. Apabila butir-butir bahan bakar yang terjadi pada penyemprotan kedalam silinder motor terlalu besar atau apabila butir butir berkumpul menjadi satu, maka akan terjadi dekomposisi yang menyebabkan terbentuknya karbon karbon padat atau angus. Hal ini disebabkan karena pemanasan udara yang bertemperatur tinggi, tetapi penguapan dan pencampuran bahan bakar dengan udara yang ada di dalam silinder tidak dapat berlangsung sempurna, terutama pada saat saat dimana terlalu banyak bahan bakar disemprotkan yaitu pada waktu daya motor akan diperbesar, misalnya untuk akselerasi, maka terjadinya angus itu tidak dapat dihindarkan. Jika angus yang terjadi itu terlalu banyak, maka gas buang yang keluar dari gas buang motor akan bewarna hitam.

29 b.) Unburned Hidrocarbon (UHC) Hidrokarbon yang tidak terbakar dapat terbentuk tidak hanya karena campuran udara bahan bakar yang gemuk, tetapi bisa saja pada campuran kurus bila suhu pembakarannya rendah dan lambat serta bagian dari dinding ruang pembakarannya yang dingin dan agak besar. Motor memancarkan banyak hidrokarbon kalau baru saja dihidupkan atau berputar bebas (idle) atau waktu pemanasan. Pemanasan dari udara yang masuk dengan menggunakan gas buang meningkatkan penguapan dari bahan bakar dan mencegah pemancaran hidrokarbon. Jumlah hidrokarbon tertentu selalu ada dalam penguapan bahan bakar, di tangki bahan bakar dan dari kebocoran gas yang melalui celah antara silinder dari torak masuk kedalam poros engkol, yang disebut dengan blow by gasses (gas lalu).pembakaran tak sempurna pada kendaraan juga menghasilkan gas buang yang mengandung hidrokarbon. Hal ini pada motor diesel terutama disebabkan oleh campuran lokal udara bahan bakar tidak dapat mencapai batas mampu bakar. c.) Karbon Monoksida (CO) Karbon dan Oksigen dapat bergabung membentuk senyawa karbon monoksida (CO) sebagai hasil pembakaran yang tidak sempurna dan karbon dioksida (CO 2 ) sebagai hasil pembakaran sempurna. Karbon monoksida merupakan senyawa yang tidak berbau, tidak berasa dan pada suhu udara normal berbentuk gas yang tidak berwarna. Gas ini akan dihasilkan bila karbon yang terdapat dalam bahan bakar (kira kira 85 % dari berat dan sisanya hidrogen) terbakar tidak sempurna karena kekurangan oksigen. Hal ini terjadi bila campuran udara bahan bakar lebih gemuk dari pada campuran stoikiometris, dan terjadi selama idling pada beban rendah atau pada output maksimum. Karbon monoksida tidak dapat dihilangkan jika campuran udara bahan bakar gemuk. Bila campuran kurus karbon monoksida tidak terbentuk.

30 d.) Oksigen (O 2 ) Oksigen (O 2 ) sangat berperan dalam proses pembakaran, dimana oksigen tersebut akan diinjeksikan ke ruang bakar. Dengan tekanan yang sesuai akan mengakibatkan terjadinya pembakaran bahan bakar. Nitrogen monoksida (NO) merupakan gas yang tidak berwarna dan tidak berbau sebaliknya nitrogen dioksida (NO 2 ) berwarna coklat kemerahan dan berbau tajam. NO merupakan gas yang berbahaya karena mengganggu saraf pusat. NO terjadi karena adanya reaksi antara N 2 dan O 2 pada temperature tinggi di atas 1210 o C. Persamaan reaksinya adalah sebagai berikut: O 2 N 2 +O N+O 2 2O NO+N NO+O 2.6 Proses Pembakaran dan Bahan Bakar Proses pembakaran adalah suatu reaksi kimia cepat antara bahan bakar (hidrokarbon) dengan oksigen dari udara. Proses pembakaran ini tidak terjadi sekaligus tetapi memerlukan waktu dan terjadi dalam beberapa tahap. Gambar Grafik tekanan vs sudut engkol

31 Pada gambar dapat dilihat tekanan udara akan naik selama langkah kompresi berlangsung. Beberapa derajat sebelum torak mencapai TMA bahan bakar mulai disemprotkan. Bahan bakar akan segera menguap dan bercampur dengan udara yang sudah bertemperatur tinggi. Oleh karena temperaturnya sudah melebihi temperatur penyalaan bahan bakar, bahan bakar akan terbakar sendiri dengan cepat. Waktu yang diperlukan antara saat bahan bakar mulai disemprotkan dengan saat mulai terjadinya pembakaran dinamai periode persiapan pembakaran(1). Sesudah melampaui periode persiapan pembakaran, bahan bakar akan terbakar dengan cepat, hal tersebut dapat dilihat pada grafik sebagai garis lurus yang menanjak, karena proses pembakaran tersebut terjadi dalam suatu proses pengecilan volume (selama itu torak masih bergerak menuju TMA). Sampai torak bergerak kembali beberapa derajat sudut engkol sesudah TMA, tekanannya masih bertambah besar tetapi laju kenaikan tekanannya berkurang. Hal ini disebabkan karena kenaikan tekanan yang seharusnya terjadi dikompensasi oleh bertambah besarnya volume ruang bakar sebagai akibat bergeraknya torak dari TMA ke TMB. Periode pembakaran. Ketika terjadi kenaikan tekanan yang berlangsung dengan cepat (garis tekanan yang curam dan lurus, garis BC pada grafik) dinamai periode pembakaran cepat (2). Periode pembakaran ketika masih terjadi kenaikan tekanan sampai melewati tekanan yang maksimum dalam tahap berikutnya (garis CD), dinamai periode pembakaran terkendali (3). Dalam hal terakhir ini jumlah bahan bakar yang masuk ke dalam silinder sudah mulai berkurang, bahkan mungkin sudah dihentikan. Selanjutnya dalam periode pembakaran lanjutan (4) terjadi proses penyempurnaan pembakaran dan pembakaran dari bahan bakar yang belum sempat terbakar. Laju kenaikan tekanan yang terlalu tinggi tidaklah dikehendaki karena dapat menyebabkan beberapa kerusakan. Maka haruslah diusahakan agar periode persiapan pembakaran terjadi sesingkat-singkatnya sehingga belum terlalu banyak bahan bakar yang siap untuk terbakar selama waktu persiapan pembakaran. Karena itu segenap usaha haruslah ditujukan untuk mempersingkat periode persiapan pembakaran, antara lain dengan cara sebagai berikut :

32 1. Menggunakan perbandingan kompresi yang tinggi 2. Memperbesar tekanan dan temperatur udara masuk 3. Memperbesar volume silinder sedemikian rupa sehingga dapat diperoleh perbandingan luas dinding terhadap volume yang sekecil-kecilnya untuk mengurangi kerugian panas 4. Menyemprotkan bahan bakar pada saat yang tepat dan mengatur pemasukan jumlah bahan bakar yang sesuai dengan kondisi pembakaran 5. Menggunakan jenis bahan bakar yang sebaik-baiknya 6. Mengusahakan adanya gerakan udara yang turbulen untuk menyempurnakan proses pencampuran bahan bakar udara 7. Menggunakan jumlah udara untuk memperbesar kemungkinan bertemunya bahan bakar dengan oksigen dari udara. Hal tersebut terakhir merupakan persyaratan mutlak bagi motor Diesel karena proses pencampuran bahan bakar-udara hanya terjadi dalam waktu yang singkat. Jadi, bahan bakar yang sebaiknya digunakan pada motor Diesel adalah jenis bahan bakar yang dapat segera terbakar (sendiri), yaitu yang dapat memberikan periode persiapan pembakaran yang pendek. Sebagai bahan bakar standar dipergunakan bahan bakar hidrokarbon rantai lurus, yaitu hexadecane atau cetane (C 16 H 34 ) dan alphamethylnaphtalene. Gambar 2.14 C 16 H 34 (hidrokarbon rantai lurus)

33 Gambar 2.15 alpha-methylnaphtalene C 16 H 34 adalah bahan bakar dengan periode persiapan pembakaran yang pendek, kepadanya diberikan angka 100 (bilangan setana = 100). Sedangkan alphamethylnaphtalene mempunyai periode pembakaran yang panjang, jadi tidak baik dipergunakan sebagai bahan bakar motor Diesel, kepadanya diberikan angka 0 (bilangan setana = 0). Bahan bakar dengan bilangan setana yang lebih tinggi menunjukkan kualitas bahan bakar yang lebih baik untuk motor diesel. Bahan bakar motor Diesel komersial yang diperdagangkan mempunyai bilangan setana antara Pada umumnya boleh dikatakan bahan bakar hidrokarbon dengan struktur atom rantai lurus mempunyai bilangan setana lebih tinggi daripada bahan bakar dengan struktur atom yang rumit. Motor Diesel kecepatan tinggi sebaiknya menggunakan bahan bakar dengan bilangan setana yang tinggi. Demikianlah secara umum boleh dikatakan bahwa bahan bakar yang baik untuk motor Diesel adalah bahan bakar yang memiliki bilangan setana tinggi; viskositas yang rendah untuk mengurangi tekanan penyemprotan; sifat melumas yang baik supaya tidak merusak pompa tekanan tinggi; bulk modulus yang tinggi untuk memudahkan penyemprotan, dan titik didih yang tinggi supaya tidak mudah menguap. Selain itu diusahakan agar kadar belerang dan aromatiknya rendah serta adanya aditif untuk meningkatkan mutu bahan bakar.

34 2.7 Generator Set Generator set atau sering disebut genset adalah sebuah perangkat yang berfungsi menghasilkan daya listrik. Disebut sebagai generator set dengan pengertian adalah satu set peralatan gabungan dari dua perangkat berbeda yaitu mesin dan generator atau alternator. Mesin sebagai perangkat pemutar sedangkan generator atau alternator sebagai perangkat pembangkit listrik. Mesin dapat berupa perangkat mesin diesel berbahan bakar solar atau mesin berbahan bakar bensin, sedangkan generator atau alternator merupakan kumparan atau gulungan tembaga yang terdiri dari stator (kumparan statis ) dan rotor (kumparan berputar). Gambar 2.16 Generator Set Dalam ilmu fisika yang sederhana dapat dijelaskan bahwa mesin memutar rotor pada generator sehingga timbul medan magnet pada kumparan stator generator, medan magnit yang timbul pada stator dan berinteraksi dengan rotor yang berputar akan menghasilkan arus listrik sesuai hukum Lorentz. Arus listrik yang dihasilkan oleh generator akan memiliki perbedaan tegangan di antara kedua kutub generatornya sehingga apabila dihubungkan dengan

35 beban akan menghasilkan daya listrik, atau dalam rumusan fisika sebagai P dapat diperoleh dengan: P = V x I....(2.11) Dimana: P = daya (Watt) V= Tegangan (Volt) I = Arus ( Ampere) Tipe Generator Set Genset dapat dibedakan dari jenis mesin penggeraknya, dimana dikenal tipetipe mesin yaitu mesin diesel dan mesin non diesel /bensin. Mesin diesel dikenali dari bahan bakarnya berupa solar, sedangkan mesin non diesel berbahan bakar bensin premium. Di pasaran, genset dengan mesin non diesel atau berbahan bakar premium biasa diaplikasikan pada genset berkapasitas kecil atau dalam kapasitas maksimum VA atau 10 kva, sedangkan genset diesel berbahan bakar solar diaplikasikan pada genset berkapasitas > 10 kva. Hal terkait dengan tenaga yang dihasilkan oleh diesel lebih besar daripada mesin non diesel, dimana cara kerja pembakaran diesel yang lebih sederhana yaitu tanpa busi, lebih hemat dalam pemeliharaan, lebih responsif dan bertenaga. Selain itu untuk aplikasi industri dimana bahan bakar diesel (solar) lebih murah daripada bensin (gasoline). Dalam aplikasi dijumpai bahwa genset terdiri dari genset 1 phasa atau 3 phasa. Pengertian 1 phasa atau 3 phasa adalah merujuk pada kapasitas tegangan yang dihasilkan oleh genset tersebut. Tegangan 1 phasa artinya tegangan yang dibentuk dari kutub L yang mengandung arus dengan kutub N yang tidak berarus, atau berarus No.l atau sering dikenal sebagai Arde atau Ground. Sedangkan tegangan 3 phase dibentuk dari dua kutub yang bertegangan. Genset tiga phase menghasilkan tiga kali

36 kapasitas genset 1 phase. Pada sistem kelistrikan PLN, kapasitas 3 phase yang dihasilkan untuk aplikasi rumah tangga adalah 380 Volt, sedangkan kapasitas 1 phase adalah 220 Volt. Daya listrik dalam ilmu fisika merupakan besaran vektor, artinya besaran yang memiliki besar dan arah, tegangan dan arus yang dihasilkan merupakan gelombang sinusoidal dengan frekuensi tertentu. Di Indonesia, frekuensi tegangan dan arus ditetapkan sebesar 50 Hz, dimana hal ini mengikuti standar frekuensi di Belanda atau negara-negara Eropa, sedangkan di negara Amerika Serikat dan Kanada menggunakan frekuensi 60 Hz. 2.8 Katalitik Konverter Meningkatnya jumlah kendaraan bermotor saat ini berdampak pada kualitas udara yang buruk di daerah perkotaan menuntut pabrikan motor berinovasi, salah satunya adalah katalitik konverter yang terdapat pada mobil maupun motor saat ini. Alat ini diperkenalkan pada publik pada tahun 1975 di Amerika Serikat, kebijakan itu sejalan dengan niat EPA dalam mengurangi intensitas pencemaran udara gas buang dikarenakan proses pembakaran kendaraan bermotor. Ada dua jenis katalitik converter, yakni Tipe Universal Fit dapat dipilih berdasarkan ukuran yang sesuai kemudian dilas di bagian saluran gas buang dan Tipe Direct Fit merupakan tipe yang hanya menggunakan baut untuk memasangnya di area saluran gas buangnya. Tipe universal merupakan jenis termurah daripada tipe direct fit, akan tetapi masalah pemasangannya tipe direct fit lebih mudah dipasang daripada tipe universal Penggunaan katalitik konverter bukan semata pada kendaraan bermotor saja, alat tersebut digunakan juga untuk truk, bis, kereta api, generator, dan masih banyak lagi. Pengguna katalitik converter dianjurkan melakukan pemeriksaan dan perawatan berkala untuk mengoptimalkan kinerja mesin dan efisiensi bahan bakar. Pemeriksaan emisi gas buang sangat perlu dilakukan untuk mengetahui apakah katalitik converter harus diganti dengan yang baru.

37 2.8.1 Konstruksi Katalitik Konverter Katalitik converter terdiri dari : 1. Inti katalis (substrate) Pengguna CC pada bidang otomotif biasanya menggunakan inti dari keramik monolit dengan struktur sarang lebah (honeycomb). Monolit tersebut dilapisi oleh FeCrAl pada beberapa aplikasi. 2. Washcoat Washcoat adalah pembawa material katalis digunakan untuk menyebarkan katalis tersebut pada area yang luas sehingga katalis mudah bereaksi dengan gas buang. Washcoat biasanya terbuat dari aluminium oksida, titanium oksida, silikon oksida dan campuran silika dan alumina. Washcoat dibuat dengan permukaan agak kasar dan bentuk yang tidak biasa untuk memaksimalkan luas permukaan yang kontak dengan gas buang sehingga katalis dapat bekerja secara efektif dan efisien. 3. Katalis Biasanya terbuat dari logam mulia, platina adalah katalis yang paling aktif diantara logam mulia lainnya dan secara luas digunakan namun tidak cocok dengan segala aplikasi karena adanya reaksi tambahan yang tidak diinginkan serta harganya yang mahal. Palladium dan rhodium adalah jenis logam mulia lainnya yang biasa digunakan secara bersamaan. Palladium berfungsi sebagai katalis reaksi oksida, rhodium digunakan sebagai katalis reaksi reduksi dan platina dapat melakukan kedua reaksi tersebut (oksida dan reduksi). Logam lain yang terkadang digunakan walaupun secara terbatas adalah cerium, besi, mangan, tembaga, dan nikel. Digunakan secara terbatas karena memiliki produk sampingan yang juga cukup berbahaya. Nikel dilarang di uni eropa karena reaksinya dengan CO menghasilkan nikel tetrakarbonil. Tembaga dilarang di Amerika Utara karena mengahasilkan senyawa dioksin.

38 2.8.2 Tipe-Tipe Katalitik Konverter Katalitik Konverter dibagi menjadi 2 berdasarkan jumlah polutan yang dapat direaksikan : 1. Two way converter, digunakan pada mesin diesel. Di dalam converter ini terdapat 2 reaksi simultan, yakni : a. Oksidasi karbon monoksida menjadi karbondioksida b. Oksidasi senyawa hidrokarbon (yang tidak terbakar / terbakar parsial) menjadi karbondioksida dan air converter jenis ini secara luas dipakai pada mesin diesel untuk mengurangi senyawa hidrokarbon dan karbonmonoksida. 2. Three way Converter, digunakan pada mesin otto. Di dalam converter jenis ini terdapat 3 reaksi simultan, yakni : a. Reaksi reduksi nitrogen oksida menjadi nitrogen dan oksigen b. Reaksi oksidasi karbon monoksida menjadi karbon dioksida c. Reaksi oksidasi senyawa hidrokarbon yang tidak terbakar menjadi karbon dioksida dan air Ketiga reaksi ini berlangsung paling efisien ketika campuran udara bahan bakar (air to fuel ratio) mendekati (stoikiometri) yaitu antara 14,6 14,8 berbanding 1. Oleh karena itu, CC sulit diaplikasikan pada mesin yang masih menggunakan karburator untuk pemasukan bahan bakar. CC paling ideal digunakan dengan mesin yang telah menggunakan closed loop feedback fuel injection Mekanisme kerja Katalitik Konverter Catalytic converter pada knalpot kendaraan bermotor ditempatkan dibelakang exhaust manifold atau antara muffler dengan header, dengan pertimbangan agar catalytic converter cepat panas ketika mesin dinyalakan. Kendaraan yang menggunakan katalitik konverter harus menggunakan bensin tanpa timbal, karena timbal pada bensin akan menempel pada katalis yang mengakibatkan katalisator tersebut tidak efektif. Agar katalitik konverter tersebut lebih efektif, campuran udara-bahan bakar harus dalam perbandingan stokiometri. Perubahan yang paling

39 kecil pada perbandingan udara-bahan bakar mengakibatkan kenaikan yang besar pada emisi gas buangnya. Untuk menjadikan lebih akurat jumlah perbandingan udara-bahan bakarnya, sistem bahan bakar pada motor tersebut dikontrol secara elektronik. Pada saat motor dilakukan pemanasan, udara sekunder dari pompa didorong menuju ruang udara pembatas. Udara tersebut membantu untuk mengoksidasi katalis mengubah HC dan CO menjadi karbon dioksida dan air. Berikut penjelasan tahapan kerja dari Catalytic Converter 1. Tahap awal dari proses yang dilakukan pada katalitik konverter adalah reduction catalyst. Tahap ini menggunakan platinum dan rhodium untuk membantu mengurangi emisi NOx. Ketika molekul NO atau NO2 bersinggungan dengan katalis, sirip katalis mengeluarkan atom nitrogen dari molekul dan menahannya. Sementara oksigen yang ada diubah ke bentuk O2. Atom nitrogen yang terperangkap dalam katalis tersebut diikat dengan atom nitrogen lainnya sehingga terbentuk format N2. Rumus kimianya sebagai berikut: 2NO => N2 + O2 atau 2NO2 => N2 + 2O2. 2. Tahap kedua dari proses di dalam katalitik konverter adalah oxidization catalyst. Proses ini mengurangi hidrokarbon yang tidak terbakar di ruang bakar dan CO dengan membakarnya (oxidizing) melalui katalis platinum dan palladium. Katalis ini membantu reaksi CO dan HC dengan oksigen yang ada di dalam gas buang. Reaksinya sebagai berikut; 2CO + O2 => 2CO2. 3. Tahap ketiga adalah pengendalian sistem yang memonitor arus gas buang. Informasi yang diperoleh dipakai lagi sebagai kendali sistem injeksi bahan bakar. Ada sensor oksigen yang diletakkan sebelum katalitik konverter dan cenderung lebih dekat ke mesin ketimbang konverter itu sendiri. Sensor ini memberi informasi ke Electronic Control System (ECS) seberapa banyak oksigen yang ada di saluran gas buang. ECS akan mengurangi atau menambah jumlah oksigen sesuai rasio udara-bahan bakar. Skema pengendalian membuat ECS memastikan kondisi mesin mendekati rasio stoikiometri dan memastikan

40 ketersediaan oksigen di dalam saluran buang untuk proses oxidization HC dan CO yang belum terbakar Efek Pada Lingkungan Katalitik Konverter telah terbukti memiliki manfaat untuk mengurangi emisi kendaraan bermotor. Namun, katalitik konverter tetap memiliki beberapa efek pada lingkungan, yakni : a. Katalitik konverter tidak mereduksi jumlah CO 2 yang dihasilkan bahan bakar bahkan mengubah CO menjadi CO 2. Padahal telah kita ketahui bersama bahwa CO 2 ditenggarai menjadi penyebab utama green house effect yang menyebabkan pemanasan global di seluruh dunia. Bahkan CC juga melepas N 2 O yang ternyata telah diteliti 3 kali lebih besar efeknya dibandingkan dengan CO 2. EPA (Enviromental Protection Agency), badan lingkungan hidup Amerika Serikat mencatat bahwa 3% emisi nitrogen oksida yang dihasilkan oleh kendaraan bermotor. b. Air to fuel ratio kendaraan harus senantiasa pada kondisi stoikiometri saat penggunaan CC. Akibatnya kadar CO 2 yang dihasilkan lebih banyak dibandingkan mesin dengan campuran yang rendah (lean burn engine). c. Katalitik konverter membutuhkan logam mulia palladium dan rhodium. Salah satu penyuplai logam mulia ini adalah daerah industry Norilsk, Rusia. Ternyata industri untuk mengekstrak palladium dan rhodium tersebut menghasilkan polusi yang paling besar disbanding dengan industri lainnya. Katalitik konverter pada knalpot kendaraan bermotor ditempatkan di belakang exhaust manifold atau antara muffler dengan header, seperti ditunjukkan pada gambar 2.17 dengan pertimbangan agar CC cepat panas ketika mesin dinyalakan.

41 Gambar 2.17 Katalitik Konverter Kendaraan yang menggunakan katalitik converter harus menggunakan bensin tanpa timbal, karena timbal pada bensin akan menempel pada katalis yang mengakibatkan katalisator tersebut tidak efektif. Agar katalitik converter tersebut lebih efektif, campuran udara bahan bakar harus dalam perbandingan stoikiometri. Pada saat motor dilakukan pemanasan, udara sekunder dari pompa didorong menuju ruang udara pembatas. Udara tersebut membantu untuk mengoksidasi katalis mengubah HC dan CO menjadi karbondioksida dan air. Berikut penjelasan tahapan kerja dari katalitik konverter. 1. Tahap awal dari proses yang dilakukan pada katalitik konverter adalah reduction catalyst. Tahap ini menggunakan platinum dan rhodium untuk membantu mengurangi emisi NO x. Ketika molekul NO atau NO 2 bersinggungan dengan katalis, sirip katalis mengeluarkan atom nitrogen dari molekul dan menahannya. Sementera oksigen yang ada diubah ke bentuk O 2. Atom nitrogen yang terperangkap dalam katalis tersebut diikat

42 dengan atom nitrogen lainnya shingga terbentuk format N 2. Rumus kimianya sebagai berikut : 2NO N 2 + O 2 atau 2NO 2 N 2 + 2O 2 2. Tahap kedua dari proses di dalam CC adalah oxidization catalyst. Proses ini mengurangi hidrokarbon yang tidak terbakar di ruang bakar dan CO dengan membakarnya (oxidizing) melalui katalis platinum dan palladium. Katalis ini membantu reaksi CO dan HC dengan oksigen yang ada di dalam gas buang. Reaksinya sebagai berikut : 2CO + O 2 2CO 2 3. Tahap ketiga adalah pengendalian sistem yang memonitor arus gas buang. Informasi yang diperoleh dipakai lagi sebagai kendali sistem injeksi bahan bakar. Ada sensor oksigen yang diletakkan sebelum katalitik converter dan cenderung lebih dekat ke mesin ketimbang ke converter itu sendiri. Sensor ini memberi informasi ke Electronic Control System(ECS) seberapa banyak oksigen yang ada di saluran gas buang. ECS akan mengurangi atau menambah jumlah oksigen sesuai rasio udara bahan bakar. Skema pengendalian membuat ECS memastikan kondisi mesin mendekati rasio stoikiometri dan memastikan ketersediaan oksigen di dalam saluran buang untuk proses oxidization HC dan CO yang belum terbakar. Setiap kendaraan memiliki jumlah sensor yang berbeda, tergantung kebutuhan dan teknologi mesinnya. Umumnya kendaraan yang menggunakan sistem injeksi menggunakan dua sensor oksigen yang berbeda tempat. Sensor tersebut berfungsi memberikan informasi ke ECS agar mengatur kembali pasokan udara ke dalam ruang bakar Fungsi Lain Dari Katalitik Konverter

43 Katalitik konverter yang merupakan bagian yang kompak dengan knalpot kendaraan bermotor memiliki fungsi lain sebagai pengurang kebisingan (noise silencer) dimana dilakukan modifikasi pada daerah sekitar exhaust muffler. Salah satu karakteristik sebuah muffler adalah seberapa besar backpressure/bp (tendangan balik) yang dihasilkannya. Pada muffler knalpot bawaan pabrik motor yg beredar di Tanah Air umumnya terbentuk dari lubang, pemantul dan putaran pipa(turn) yang harus dilewati gas buang. Disain seperti ini adalah untuk menghasilkan suara knalpot yang bersahabat dengan lingkungan, akan tetapi menghasilkan BP yang besar, yang mengurangi power dari engine. Untuk mengatasi ini, dirancanglah tipe muffler yang menghasilkan BP yang jauh lebih kecil, yang disebut glass pack atau cherry bobm. Tipe muffler ini hanya mengandalkan penyerapan untuk mengurangi level suara, dengan tanpa memberikan halangan bagi aliran gas buang. Gas buang menglir lurus melalui pipa yang berlubang yang terbungkus lapisan glass wool, sehingga BP-nya kecil dan sebagian kecil suara di redam oleh glass wool tsb. Jadi muffler jenis ini BP-nya kecil tapi suaranya masih cukup nyaring. memang cocok buat balapan. Dari ilustrasi di atas, maka tipe muffler secara umum dibagi menjadi 2, yaitu muffler/silencer yg bersifat 1. Sound Absorption 2. Sound Cancelation Sound Absorption Muffler/Silencer Pada silencer terdapat material peredam suara (accoustical material) untuk menurunkan level gelombang suara. Ketebalan dari peredam tidak sembarangan, akan tetapi harus disesuaikan, dengan pada frekuensi berapa (penyebab berisik) yang harus diredam (perhitungan menyusul di artikel berikutnya). Bentuk yang umum dari silencer jenis ini seperti gambar 2.6 di bawah ini.

44 Gambar 2.18 Sound Absorptio Sound Cancelation Muffler/Silencer Dalam silencer ini terdapat beberapa elemen yang tersusun secara paralen dan serial yang bertujuan, untuk menghasilkan gelombang pantulan dengan fasa terbalik yang diarahkan kembali ke sumbernya, sehingga penjumlahan dari dua gelombang tersebut akan saling menghilangkan (cancelation). Biasanya diterapkan pada motor standar, yang bentuk silencernya seperti gambar 2.7 di bawah ini. Gambar 2.19 Sound cancelation Muffler Saat ini telah umum dikembangkan muffler yang merupakan kombinasi dari tipe absorption dan cancelation, yang tujuannya tiada lain adalah menghasilkan muffler dengan BP sekecil mungkin dan suara sesuai dengan standar perundangan yg berlaku. Bentuknya ditunjukkan pada gambar 2.8 di bawah ini.

45 Gambar 2.20 Kombinasi Absorption dan Cancelation Terlihat pada pinggirnya terdapat glass wool yang berfungsi sebagai penyerap energi suara yang masuk melalui dinding yng berlubang. Dan pada bagian tengah terdapat plat-plat yang berfungsi sebagai penghilang suara knalpot. Gambar 2.21 Skema Pereduksian Kebisingan Sehingga suara (panah biru) yang keluar kecil, sementara aliran gas buang tidak terganggu.

Jika diperhatikan lebih jauh terdapat banyak perbedaan antara motor bensin dan motor diesel antara lain:

Jika diperhatikan lebih jauh terdapat banyak perbedaan antara motor bensin dan motor diesel antara lain: BAB 2 TINJAUAN PUSTAKA 2.1 Motor diesel Motor diesel adalah jenis khusus dari mesin pembakaran dalam karakteristik utama pada mesin diesel yang membedakannya dari motor bakar yang lain, terletak pada metode

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Motor Bensin Motor bensin yang mengerakkan mobil penumpang, truk, sepeda motor, skuter, dan jenis kendaraan lain saat ini merupakan perkembangan dan perbaikan mesin yang sejak

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Landasan Teori Apabila meninjau mesin apa saja, pada umumnya adalah suatu pesawat yang dapat mengubah bentuk energi tertentu menjadi kerja mekanik. Misalnya mesin listrik,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Bahan Bakar Hidrokarbon Bahan bakar adalah suatu materi yang bisa terbakar dan bisa diubah menjadi energi. Bahan bakar hidrokarbon adalah bahan bakar yang didominasi oleh susunan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. sebagai pengganti bahan bakar solar, yang terbuat dari minyak bumi. Biodiesel

BAB II TINJAUAN PUSTAKA. sebagai pengganti bahan bakar solar, yang terbuat dari minyak bumi. Biodiesel BAB II TINJAUAN PUSTAKA 2.1 Biodiesel Biodiesel merupakan bahan bakar terbarukan yang dapat digunakan sebagai pengganti bahan bakar solar, yang terbuat dari minyak bumi. Biodiesel terdiri dari campuran

Lebih terperinci

Gambar 2.1. Fraksi-fraksi pengolahan pada minyak bumi mentah. Sumber : id.wikipedia.org/wiki/ Crude_Oil_Distillation

Gambar 2.1. Fraksi-fraksi pengolahan pada minyak bumi mentah. Sumber : id.wikipedia.org/wiki/ Crude_Oil_Distillation BAB II TINJAUAN PUSTAKA 2.1 Bahan Bakar Hidrokarbon Bahan bakar adalah suatu materi yang bisa terbakar dan bisa diubah menjadi energi. Bahan bakar hidrokarbon adalah bahan bakar yang didominasi oleh susunan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Bahan Bakar Hidrokarbon Bahan bakar adalah suatu materi yang bisa terbakar dan bisa diubah menjadi energi. Bahan bakar hidrokarbon adalah bahan bakar yang didominasi oleh susunan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Motor Bakar. Motor bakar torak merupakan internal combustion engine, yaitu mesin yang fluida kerjanya dipanaskan dengan pembakaran bahan bakar di ruang mesin tersebut. Fluida

Lebih terperinci

BAB II DASAR TEORI 2.1 Motor Bakar 3.2 Hukum Utama Termodinamika Penjelasan Umum

BAB II DASAR TEORI 2.1 Motor Bakar 3.2 Hukum Utama Termodinamika Penjelasan Umum 4 BAB II DASAR TEORI 2.1 Motor Bakar Motor bakar adalah sebuah mekanisme yang menstransformasikan energi panas menjadi energi mekanik melalui sebuah konstruksi mesin. Perubahan, energi panas menjadi energi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 PERFORMANSI MOTOR DIESEL Motor diesel adalah jenis khusus dari mesin pembakaran dalam. Karakteristik utama dari mesin diesel yang membedakannya dari motor bakar lain terletak

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Hidrogen Hidrogen adalah unsur kimia terkecil karena hanya terdiri dari satu proton dalam intinya. Simbol hidrogen adalah H, dan nomor atom hidrogen adalah 1. Memiliki berat

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 4 BAB 2 TINJAUAN PUSTAKA 2.1 Motor Bakar Salah satu jenis penggerak mula yang banyak dipakai adalah mesin kalor, yaitu mesin yang menggunakan energi thermal untuk melakukan kerja mekanik atau yang mengubah

Lebih terperinci

PENGARUH PENGGUNAAN BAHAN BAKAR SOLAR, BIOSOLAR DAN PERTAMINA DEX TERHADAP PRESTASI MOTOR DIESEL SILINDER TUNGGAL

PENGARUH PENGGUNAAN BAHAN BAKAR SOLAR, BIOSOLAR DAN PERTAMINA DEX TERHADAP PRESTASI MOTOR DIESEL SILINDER TUNGGAL Jurnal Konversi Energi dan Manufaktur UNJ, Edisi terbit II Oktober 217 Terbit 64 halaman PENGARUH PENGGUNAAN BAHAN BAKAR SOLAR, BIOSOLAR DAN PERTAMINA DEX TERHADAP PRESTASI MOTOR DIESEL SILINDER TUNGGAL

Lebih terperinci

2.1.1 Prinsip Kerja Motor Bakar 4 Langkah

2.1.1 Prinsip Kerja Motor Bakar 4 Langkah TINJAUAN PUSTAKA 2.1 Motor Bakar Motor bakar adalah mesin kalor atau mesin konversi energi yang mengubah energi kimia bahan bakar menjadi energi mekanik berupa kerja.ditinjau dari cara memperoleh energi

Lebih terperinci

KINERJA GENSET TYPE EC 1500a MENGGUNAKAN BAHAN PREMIUM DAN LPG PENGARUHNYA TERHADAP TEGANGAN YANG DIHASILKAN

KINERJA GENSET TYPE EC 1500a MENGGUNAKAN BAHAN PREMIUM DAN LPG PENGARUHNYA TERHADAP TEGANGAN YANG DIHASILKAN KINERJA GENSET TYPE EC 1500a MENGGUNAKAN BAHAN PREMIUM DAN LPG PENGARUHNYA TERHADAP TEGANGAN YANG DIHASILKAN BAKAR Warsono Rohmat Subodro (UNU Surakarta, rohmadsubodro@yahoo.com) ABSTRAK Tujuan penelitian

Lebih terperinci

PENGARUH PEMAKAIAN ALAT PEMANAS BAHAN BAKAR TERHADAP PEMAKAIAN BAHAN BAKAR DAN EMISI GAS BUANG MOTOR DIESEL MITSUBISHI MODEL 4D34-2A17 Indartono 1 dan Murni 2 ABSTRAK Efisiensi motor diesel dipengaruhi

Lebih terperinci

UJI PERFORMANSI MESIN OTTO SATU SILINDER DENGAN BAHAN BAKAR PREMIUM DAN PERTAMAX PLUS

UJI PERFORMANSI MESIN OTTO SATU SILINDER DENGAN BAHAN BAKAR PREMIUM DAN PERTAMAX PLUS UJI PERFORMANSI MESIN OTTO SATU SILINDER DENGAN BAHAN BAKAR PREMIUM DAN PERTAMAX PLUS Rio Arinedo Sembiring 1, Himsar Ambarita 2. Email: rio_gurky@yahoo.com 1,2 Jurusan Teknik Mesin, Universitas Sumatera

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Kebutuhan energi semakin bertambah seiring dengan meningkatnya produktivitas manusia. Energi yang digunakan sebagai bahan bakar mesin umumnya adalah bahan bakar fosil.

Lebih terperinci

BAB III METODE PENGUJIAN DAN PEMBAHASAN PERHITUNGAN SERTA ANALISA

BAB III METODE PENGUJIAN DAN PEMBAHASAN PERHITUNGAN SERTA ANALISA BAB III METODE PENGUJIAN DAN PEMBAHASAN PERHITUNGAN SERTA ANALISA 3.1 Metode Pengujian 3.1.1 Pengujian Dual Fuel Proses pembakaran di dalam ruang silinder pada motor diesel menggunakan sistem injeksi langsung.

Lebih terperinci

PENGARUH PENAMBAHAN ADITIF PADA PREMIUM DENGAN VARIASI KONSENTRASI TERHADAP UNJUK KERJA ENGINE PUTARAN VARIABEL KARISMA 125 CC

PENGARUH PENAMBAHAN ADITIF PADA PREMIUM DENGAN VARIASI KONSENTRASI TERHADAP UNJUK KERJA ENGINE PUTARAN VARIABEL KARISMA 125 CC PENGARUH PENAMBAHAN ADITIF PADA PREMIUM DENGAN VARIASI KONSENTRASI TERHADAP UNJUK KERJA ENGINE PUTARAN VARIABEL KARISMA 125 CC Riza Bayu K. 2106.100.036 Dosen Pembimbing : Prof. Dr. Ir. H.D. Sungkono K,M.Eng.Sc

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Gambar 2.1 Penyulingan Minyak Sumber : id.wikipedia.org/wiki/ Crude_Oil_Distillation

BAB II TINJAUAN PUSTAKA. Gambar 2.1 Penyulingan Minyak Sumber : id.wikipedia.org/wiki/ Crude_Oil_Distillation BAB II TINJAUAN PUSTAKA 2.1 Bahan Bakar Hidrokarbon Bahan bakar adalah suatu materi yang bisa terbakar dan bisa diubah menjadi energi. Bahan bakar hidrokarbon adalah bahan bakar yang didominasi oleh susunan

Lebih terperinci

II. TEORI DASAR. kelompokaan menjadi dua jenis pembakaran yaitu pembakaran dalam (Internal

II. TEORI DASAR. kelompokaan menjadi dua jenis pembakaran yaitu pembakaran dalam (Internal II. TEORI DASAR A. Motor Bakar Motor bakar adalah suatu pesawat kalor yang mengubah energi panas menjadi energi mekanis untuk melakukan kerja. Mesin kalor secara garis besar di kelompokaan menjadi dua

Lebih terperinci

ANALISIS MESIN PENGGERAK PEMBANGKIT LISTRIK DENGAN BAHAN BAKAR BIOGAS. Tulus Subagyo 1

ANALISIS MESIN PENGGERAK PEMBANGKIT LISTRIK DENGAN BAHAN BAKAR BIOGAS. Tulus Subagyo 1 ANALISIS MESIN PENGGERAK PEMBANGKIT LISTRIK DENGAN BAHAN BAKAR BIOGAS Tulus Subagyo 1 Abstrak: Pembangkit listrik tenaga biogas Bahan bakar utama dari motor penggerak untuk menggerakkan generator adalah

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Rumusan Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Rumusan Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Dalam perkembangan teknologi yang terjadi saat ini banyak sekali inovasi baru yang tercipta khususnya di dalam dunia otomotif. Dalam perkembanganya banyak orang yang

Lebih terperinci

LAMPIRAN A PERHITUNGAN DENGAN MANUAL. data data dari tabel hasil pengujian performansi motor diesel. sgf = 0,845 V s =

LAMPIRAN A PERHITUNGAN DENGAN MANUAL. data data dari tabel hasil pengujian performansi motor diesel. sgf = 0,845 V s = LAMPIRAN A PERHITUNGAN DENGAN MANUAL Perhitungan performansi motor diesel berbahan bakar biofuel vitamin engine + solar berikut diselesaikan berdasarkan literatur 15, dengan mengambil variable data data

Lebih terperinci

BIOGAS DARI KOTORAN SAPI

BIOGAS DARI KOTORAN SAPI ENERGI ALTERNATIF TERBARUKAN BIOGAS DARI KOTORAN SAPI Bambang Susilo Retno Damayanti PENDAHULUAN PERMASALAHAN Energi Lingkungan Hidup Pembangunan Pertanian Berkelanjutan PENGEMBANGAN TEKNOLOGI BIOGAS Dapat

Lebih terperinci

PENGARUH PORTING SALURAN INTAKE DAN EXHAUST TERHADAP KINERJA MOTOR 4 LANGKAH 200 cc BERBAHAN BAKAR PREMIUM DAN PERTAMAX

PENGARUH PORTING SALURAN INTAKE DAN EXHAUST TERHADAP KINERJA MOTOR 4 LANGKAH 200 cc BERBAHAN BAKAR PREMIUM DAN PERTAMAX PENGARUH PORTING SALURAN INTAKE DAN EXHAUST TERHADAP KINERJA MOTOR 4 LANGKAH 200 cc BERBAHAN BAKAR PREMIUM DAN PERTAMAX THE INFLUENCE OF INDUCT PORTING INTAKE AND EXHAUST FOR THE 4 STROKES 200 cc PERFORMANCE

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Bahan Bakar Diesel Bahan bakar diesel yang sering disebut solar (light oil) merupakan suatu campuran hidrokarbon yang diperoleh dari penyulingan minyak mentah pada temperatur

Lebih terperinci

PENGARUH PENGGUNAAN ALAT PENGHEMAT BAHAN BAKAR BERBASIS ELEKTROMAGNETIK TERHADAP UNJUK KERJA MESIN DIESEL ABSTRAK

PENGARUH PENGGUNAAN ALAT PENGHEMAT BAHAN BAKAR BERBASIS ELEKTROMAGNETIK TERHADAP UNJUK KERJA MESIN DIESEL ABSTRAK PENGARUH PENGGUNAAN ALAT PENGHEMAT BAHAN BAKAR BERBASIS ELEKTROMAGNETIK TERHADAP UNJUK KERJA MESIN DIESEL Didi Eryadi 1), Toni Dwi Putra 2), Indah Dwi Endayani 3) ABSTRAK Seiring dengan pertumbuhan dunia

Lebih terperinci

Uji Eksperimental Pertamina DEX dan Pertamina DEX + Zat Aditif pada Engine Diesel Putaran Konstan KAMA KM178FS

Uji Eksperimental Pertamina DEX dan Pertamina DEX + Zat Aditif pada Engine Diesel Putaran Konstan KAMA KM178FS Uji Eksperimental Pertamina DEX dan Pertamina DEX + Zat Aditif pada Engine Diesel Putaran Konstan KAMA KM178FS ANDITYA YUDISTIRA 2107100124 Dosen Pembimbing : Prof. Dr. Ir. H D Sungkono K, M.Eng.Sc Kemajuan

Lebih terperinci

Denny Haryadhi N Motor Bakar / Tugas 2. Karakteristik Motor 2 Langkah dan 4 Langkah, Motor Wankle, serta Siklus Otto dan Diesel

Denny Haryadhi N Motor Bakar / Tugas 2. Karakteristik Motor 2 Langkah dan 4 Langkah, Motor Wankle, serta Siklus Otto dan Diesel Karakteristik Motor 2 Langkah dan 4 Langkah, Motor Wankle, serta Siklus Otto dan Diesel A. Karakteristik Motor 2 Langkah dan 4 Langkah 1. Prinsip Kerja Motor 2 Langkah dan 4 Langkah a. Prinsip Kerja Motor

Lebih terperinci

BAB II LANDASAN TEORI. didalam udara yang menyebabkan perubahan susunan (komposisi) udara dari

BAB II LANDASAN TEORI. didalam udara yang menyebabkan perubahan susunan (komposisi) udara dari BAB II LANDASAN TEORI 2.1. Polusi udara Polusi udara diartikan sebagai adanya bahan-bahan atau zat-zat asing didalam udara yang menyebabkan perubahan susunan (komposisi) udara dari keadaan normalnya. Udara

Lebih terperinci

ANALISIS PENCAMPURAN BAHAN BAKAR PREMIUM - PERTAMAX TERHADAP KINERJA MESIN KONVENSIONAL

ANALISIS PENCAMPURAN BAHAN BAKAR PREMIUM - PERTAMAX TERHADAP KINERJA MESIN KONVENSIONAL FLYWHEEL: JURNAL TEKNIK MESIN UNTIRTA Homepage jurnal: http://jurnal.untirta.ac.id/index.php/jwl ANALISIS PENCAMPURAN BAHAN BAKAR PREMIUM - PERTAMAX TERHADAP KINERJA MESIN KONVENSIONAL Sadar Wahjudi 1

Lebih terperinci

BAB II TINJAUAN LITERATUR

BAB II TINJAUAN LITERATUR BAB II TINJAUAN LITERATUR Motor bakar merupakan motor penggerak yang banyak digunakan untuk menggerakan kendaraan-kendaraan bermotor di jalan raya. Motor bakar adalah suatu mesin yang mengubah energi panas

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 5 BAB II LANDASAN TEORI 2.1 Pengertian Biogas Biogas adalah gas yang terbentuk melalui proses fermentasi bahan-bahan limbah organik, seperti kotoran ternak dan sampah organik oleh bakteri anaerob ( bakteri

Lebih terperinci

BAB III TINJAUAN PUSTAKA

BAB III TINJAUAN PUSTAKA 9 BAB III TINJAUAN PUSTAKA 3.1 PENDAHULUAN Genset atau kepanjangan dari generator set adalah sebuah perangkat yang berfungsi menghasilkan daya listrik. Disebut sebagai generator set dengan pengertian adalah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Bahan Bakar Diesel Bahan bakar diesel yang sering disebut solar (light oil) merupakan suatu campuran hidrokarbon yang diperoleh dari penyulingan minyak mentah pada temperatur

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Krisis energi yang terjadi secara global sekarang disebabkan oleh ketimpangan antara konsumsi dan sumber energi yang tersedia. Sumber energi fosil yang semakin langka

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Biogas Biogas adalah gas yang dihasilkan dari proses penguraian bahan-bahan organik oleh mikroorganisme pada kondisi langka oksigen (anaerob). Komponen biogas terdiri dari

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengantar Biogas Biogas adalah gas yang dihasilkan oleh aktifitas anaerobik sangat populer digunakan untuk mengolah limbah biodegradable karena bahan bakar dapat dihasilkan sambil

Lebih terperinci

BIOGAS. Sejarah Biogas. Apa itu Biogas? Bagaimana Biogas Dihasilkan? 5/22/2013

BIOGAS. Sejarah Biogas. Apa itu Biogas? Bagaimana Biogas Dihasilkan? 5/22/2013 Sejarah Biogas BIOGAS (1770) Ilmuwan di eropa menemukan gas di rawa-rawa. (1875) Avogadro biogas merupakan produk proses anaerobik atau proses fermentasi. (1884) Pasteur penelitian biogas menggunakan kotoran

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Berkurangnya cadangan sumber energi dan kelangkaan bahan bakar minyak yang terjadi di Indonesia dewasa ini membutuhkan solusi yang tepat, terbukti dengan dikeluarkannya

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Tinjauan Pustaka Heru Setiyanto (2007), meneliti tentang pengaruh modifikasi katup buluh dan variasi bahan bakar terhadap unjuk kerja mesin pada motor bensin dua langkah 110

Lebih terperinci

BAB II DASAR TEORI 2.1 Motor Bensin Prinsip Dasar Motor Bensin

BAB II DASAR TEORI 2.1 Motor Bensin Prinsip Dasar Motor Bensin 3 BAB II DASAR TEORI 2.1 Motor Bensin Motor bensin dapat juga disebut sebagai motor otto. Motor tersebut dilengkapi dengan busi dan karburator. Busi menghasilkan loncatan bunga api listrik yang membakar

Lebih terperinci

TUGAS AKHIR TM Ari Budi Santoso NRP : Dosen Pembimbing Dr. Bambang Sudarmanta, ST. MT.

TUGAS AKHIR TM Ari Budi Santoso NRP : Dosen Pembimbing Dr. Bambang Sudarmanta, ST. MT. TUGAS AKHIR TM091486 Ari Budi Santoso NRP : 2106100132 Dosen Pembimbing Dr. Bambang Sudarmanta, ST. MT. JURUSAN TEKNIK MESIN Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2012

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Motor Bakar Menurut hakikatnya, mesin pada umumnya adalah suatu pesawat yang dapat merubah bentuk energi tertentu menjadi kerja mekanik. Misalnya, mesin listrik merupakan sebuah

Lebih terperinci

I. PENDAHULUAN. Motor bensin dan diesel merupakan sumber utama polusi udara di perkotaan. Gas

I. PENDAHULUAN. Motor bensin dan diesel merupakan sumber utama polusi udara di perkotaan. Gas 1 I. PENDAHULUAN A. Latar Belakang Motor bensin dan diesel merupakan sumber utama polusi udara di perkotaan. Gas buang motor bensin mengandung nitrogen oksida (NO), nitrogen dioksida (NO 2 ) (NO 2 dalam

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II PENDAHULUAN BAB II LANDASAN TEORI 2.1 Motor Bakar Bensin Motor bakar bensin adalah mesin untuk membangkitkan tenaga. Motor bakar bensin berfungsi untuk mengubah energi kimia yang diperoleh dari

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1. Tinjauan Pustaka Nurdianto dan Ansori, (2015), meneliti pengaruh variasi tingkat panas busi terhadap performa mesin dan emisi gas buang sepeda motor 4 tak.

Lebih terperinci

PENGARUH PENAMBAHAN ADITIF ABD 01 SOLAR KE DALAM MINYAK SOLAR TERHADAP KINERJA MESIN DIESEL

PENGARUH PENAMBAHAN ADITIF ABD 01 SOLAR KE DALAM MINYAK SOLAR TERHADAP KINERJA MESIN DIESEL PENGARUH PENAMBAHAN ADITIF ABD 01 SOLAR KE DALAM MINYAK SOLAR TERHADAP KINERJA MESIN DIESEL H. Sulaeman, Fardiansyah Jurusan Mesin, Universitas Muhammadiyah Jakarta Abstrak. Semenjak tahun 1990 penggunaan

Lebih terperinci

PERFORMANSI MESIN SEPEDA MOTOR SATU SILINDER BERBAHAN BAKAR PREMIUM DAN PERTAMAX PLUS DENGAN MODIFIKASI RASIO KOMPRESI

PERFORMANSI MESIN SEPEDA MOTOR SATU SILINDER BERBAHAN BAKAR PREMIUM DAN PERTAMAX PLUS DENGAN MODIFIKASI RASIO KOMPRESI PERFORMANSI MESIN SEPEDA MOTOR SATU SILINDER BERBAHAN BAKAR PREMIUM DAN PERTAMAX PLUS DENGAN MODIFIKASI RASIO KOMPRESI Robertus Simanungkalit 1,Tulus B. Sitorus 2 1,2, Departemen Teknik Mesin, Fakultas

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI A. SEJARAH MOTOR DIESEL Pada tahun 1893 Dr. Rudolf Diesel memulai karier mengadakan eksperimen sebuah motor percobaan. Setelah banyak mengalami kegagalan dan kesukaran, mak akhirnya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Bahan Bakar Bahan bakar yang dipergunakan motor bakar dapat diklasifikasikan dalam tiga kelompok yakni : berwujud gas, cair dan padat (Surbhakty 1978 : 33) Bahan bakar (fuel)

Lebih terperinci

MOTOR BAKAR TORAK. 3. Langkah Usaha/kerja (power stroke)

MOTOR BAKAR TORAK. 3. Langkah Usaha/kerja (power stroke) MOTOR BAKAR TORAK Motor bakar torak (piston) terdiri dari silinder yang dilengkapi dengan piston. Piston bergerak secara translasi (bolak-balik) kemudian oleh poros engkol dirubah menjadi gerakan berputar.

Lebih terperinci

PERENCANAAN MOTOR BAKAR DIESEL PENGGERAK POMPA

PERENCANAAN MOTOR BAKAR DIESEL PENGGERAK POMPA TUGAS AKHIR PERENCANAAN MOTOR BAKAR DIESEL PENGGERAK POMPA Disusun : JOKO BROTO WALUYO NIM : D.200.92.0069 NIRM : 04.6.106.03030.50130 JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SURAKARTA

Lebih terperinci

BAB I PENDAHULUAN. energi yang salah satunya bersumber dari biomassa. Salah satu contoh dari. energi terbarukan adalah biogas dari kotoran ternak.

BAB I PENDAHULUAN. energi yang salah satunya bersumber dari biomassa. Salah satu contoh dari. energi terbarukan adalah biogas dari kotoran ternak. BAB I PENDAHULUAN 1.1 Latar Belakang Kebutuhan energi dewasa ini semakin meningkat. Segala aspek kehidupan dengan berkembangnya teknologi membutuhkan energi yang terus-menerus. Energi yang saat ini sering

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pengertian Motor Bakar Motor bakar adalah motor penggerak mula yang pada prinsipnya adalah sebuah alat yang mengubah energi kimia menjadi energi panas dan diubah ke energi

Lebih terperinci

Gambar 1. Motor Bensin 4 langkah

Gambar 1. Motor Bensin 4 langkah PENGERTIAN SIKLUS OTTO Siklus Otto adalah siklus ideal untuk mesin torak dengan pengapian-nyala bunga api pada mesin pembakaran dengan sistem pengapian-nyala ini, campuran bahan bakar dan udara dibakar

Lebih terperinci

Rencana Pembelajaran Kegiatan Mingguan (RPKPM).

Rencana Pembelajaran Kegiatan Mingguan (RPKPM). Rencana Pembelajaran Kegiatan Mingguan (RPKPM). Pertemuan ke Capaian Pembelajaran Topik (pokok, subpokok bahasan, alokasi waktu) Teks Presentasi Media Ajar Gambar Audio/Video Soal-tugas Web Metode Evaluasi

Lebih terperinci

Spark Ignition Engine

Spark Ignition Engine Spark Ignition Engine Fiqi Adhyaksa 0400020245 Gatot E. Pramono 0400020261 Gerry Ardian 040002027X Handoko Arimurti 0400020288 S. Ghani R. 0400020539 Transformasi Energi Pembakaran Siklus Termodinamik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 MOTOR BAKAR Jika meninjau jenis-jenis mesin, pada umumnya adalah suatu pesawat yang dapat merubah bentuk energi tertentu menjadi kerja mekanik. Misalnya, mesin listrik merupakan

Lebih terperinci

PENGARUH PEMASANGAN SUPERCHARGER TERHADAP UNJUK KERJA PADA MOTOR BENSIN SATU SILINDER

PENGARUH PEMASANGAN SUPERCHARGER TERHADAP UNJUK KERJA PADA MOTOR BENSIN SATU SILINDER PENGARUH PEMASANGAN SUPERCHARGER TERHADAP UNJUK KERJA PADA MOTOR BENSIN SATU SILINDER Sutarno 1, Nugrah Rekto P 2, Juni Sukoyo 3 Program Studi Teknik Mesin STT Wiworotomo Purwokerto Jl. Sumingkir No. 01

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Bahan Bakar Diesel Bahan bakar diesel yang sering disebut solar (light oil) merupakan suatu campuran hidrokarbon yang diperoleh dari penyulingan minyak mentah pada temperatur

Lebih terperinci

BAB III PROSES PEMBAKARAN

BAB III PROSES PEMBAKARAN 37 BAB III PROSES PEMBAKARAN Dalam pengoperasian boiler, prestasi yang diharapkan adalah efesiensi boiler tersebut yang dinyatakan dengan perbandingan antara kalor yang diterima air / uap air terhadap

Lebih terperinci

BAB II TINJAUAN PUSTAKA. seperti mesin uap, turbin uap disebut motor bakar pembakaran luar (External

BAB II TINJAUAN PUSTAKA. seperti mesin uap, turbin uap disebut motor bakar pembakaran luar (External BAB II TINJAUAN PUSTAKA 2.1 Motor Bakar Torak Motor bakar torak merupakan salah satu jenis penggerak mula yang mengubah energy thermal menjadi energy mekanik. Energy thermal tersebut diperoleh dari proses

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Bahan Bakar Hidrokarbon Bahan bakar adalah suatu materi yang bisa terbakar dan bisa diubah menjadi energi. Bahan bakar hidrokarbon adalah bahan bakar yang didominasi oleh susunan

Lebih terperinci

ANALISA EMISI GAS BUANG MESIN EFI DAN MESIN KONVENSIONAL PADA KENDARAAN RODA EMPAT

ANALISA EMISI GAS BUANG MESIN EFI DAN MESIN KONVENSIONAL PADA KENDARAAN RODA EMPAT NO. 2, TAHUN 9, OKTOBER 2011 130 ANALISA EMISI GAS BUANG MESIN EFI DAN MESIN KONVENSIONAL PADA KENDARAAN RODA EMPAT Muhammad Arsyad Habe, A.M. Anzarih, Yosrihard B 1) Abstrak: Tujuan penelitian ini ialah

Lebih terperinci

BAB IV ANALISA DATA DAN PERHITUNGAN

BAB IV ANALISA DATA DAN PERHITUNGAN BAB IV ANALISA DATA DAN PERHITUNGAN 4..1. Analisis Reaksi Proses Proses Pembakaran 4.1.1 Perhitungan stoikiometry udara yang dibutuhkan untuk pembakaran Untuk pembakaran diperlukan udara. Jumlah udara

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA

BAB IV PENGUJIAN DAN ANALISA BAB IV PENGUJIAN DAN ANALISA 4.1 Identifikasi Kendaraan Gambar 4.1 Yamaha RX Z Spesifikasi Yamaha RX Z Mesin : - Tipe : 2 Langkah, satu silinder - Jenis karburator : karburator jenis piston - Sistem Pelumasan

Lebih terperinci

PENGARUH PENGGUNAAN CETANE PLUS DIESEL DENGAN BAHAN BAKAR SOLAR TERHADAP PERFORMANSI MOTOR DIESEL

PENGARUH PENGGUNAAN CETANE PLUS DIESEL DENGAN BAHAN BAKAR SOLAR TERHADAP PERFORMANSI MOTOR DIESEL PENGARUH PENGGUNAAN CETANE PLUS DIESEL DENGAN BAHAN BAKAR SOLAR TERHADAP PERFORMANSI MOTOR DIESEL SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik SABAM NUGRAHA TOBING

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Motor Bakar Motor bakar adalah suatu tenaga atau bagian kendaran yang mengubah energi termal menjadi energi mekanis. Energi itu sendiri diperoleh dari proses pembakaran. Pada

Lebih terperinci

Pengaruh Kerenggangan Celah Busi terhadap Konsumsi Bahan Bakar pada Motor Bensin

Pengaruh Kerenggangan Celah Busi terhadap Konsumsi Bahan Bakar pada Motor Bensin Jurnal Kompetensi Teknik Vol. 4, No. 1, November 212 1 Pengaruh Celah Busi terhadap Konsumsi Bahan Bakar pada Motor Bensin Syahril Machmud 1, Untoro Budi Surono 2, Yokie Gendro Irawan 3 1, 2 Jurusan Teknik

Lebih terperinci

Bakteri Untuk Biogas ( Bag.2 ) Proses Biogas

Bakteri Untuk Biogas ( Bag.2 ) Proses Biogas Biogas adalah gas mudah terbakar yang dihasilkan dari proses fermentasi bahan-bahan organik oleh bakteri-bakteri anaerob (bakteri yang hidup dalam kondisi kedap udara). Pada umumnya semua jenis bahan organik

Lebih terperinci

BAB I PENDAHULUAN. merupakan suatu campuran komplek antara hidrokarbon-hidrokarbon sederhana

BAB I PENDAHULUAN. merupakan suatu campuran komplek antara hidrokarbon-hidrokarbon sederhana BAB I PENDAHULUAN 1.1 Latar Belakang Pencemaran udara yang diakibatkan oleh gas buang kendaraan bermotor pada akhir-akhir ini sudah berada pada kondisi yang sangat memprihatinkan dan memberikan andil yang

Lebih terperinci

PENGARUH VARIASI SUDUT BUTTERFLY VALVE PADA PIPA GAS BUANG TERHADAP UNJUK KERJA MOTOR BENSIN 4 LANGKAH

PENGARUH VARIASI SUDUT BUTTERFLY VALVE PADA PIPA GAS BUANG TERHADAP UNJUK KERJA MOTOR BENSIN 4 LANGKAH 10 Avita Ayu Permanasari, Pengaruh Variasi Sudut Butterfly Valve pada Pipa Gas Buang... PENGARUH VARIASI SUDUT BUTTERFLY VALVE PADA PIPA GAS BUANG TERHADAP UNJUK KERJA MOTOR BENSIN 4 LANGKAH Oleh: Avita

Lebih terperinci

PENGARUH PERUBAHAN SAAT PENYALAAN (IGNITION TIMING) TERHADAP PRESTASI MESIN PADA SEPEDA MOTOR 4 LANGKAH DENGAN BAHAN BAKAR LPG

PENGARUH PERUBAHAN SAAT PENYALAAN (IGNITION TIMING) TERHADAP PRESTASI MESIN PADA SEPEDA MOTOR 4 LANGKAH DENGAN BAHAN BAKAR LPG PENGARUH PERUBAHAN SAAT PENYALAAN (IGNITION TIMING) TERHADAP PRESTASI MESIN PADA SEPEDA MOTOR 4 LANGKAH DENGAN BAHAN BAKAR LPG Bambang Yunianto Jurusan Teknik Mesin Fakultas Teknik Universitas Diponegoro

Lebih terperinci

BAB II TEORI DASAR. Mesin diesel pertama kali ditemukan pada tahun 1893 oleh seorang berkebangsaan

BAB II TEORI DASAR. Mesin diesel pertama kali ditemukan pada tahun 1893 oleh seorang berkebangsaan BAB II TEORI DASAR 2.1. Sejarah Mesin Diesel Mesin diesel pertama kali ditemukan pada tahun 1893 oleh seorang berkebangsaan Jerman bernama Rudolf Diesel. Mesin diesel sering juga disebut sebagai motor

Lebih terperinci

MODIFIKASI MESIN DIESEL SATU SILINDER BERBAHAN BAKAR SOLAR MENJADI LPG DENGAN MENGGUNAKAN SISTEM GAS MIXER

MODIFIKASI MESIN DIESEL SATU SILINDER BERBAHAN BAKAR SOLAR MENJADI LPG DENGAN MENGGUNAKAN SISTEM GAS MIXER MODIFIKASI MESIN DIESEL SATU SILINDER BERBAHAN BAKAR SOLAR MENJADI LPG DENGAN MENGGUNAKAN SISTEM GAS MIXER Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik ROLAND SIHOMBING

Lebih terperinci

BAB I PENDAHULUAN. Krisis energi yang terjadi beberapa dekade akhir ini mengakibatkan bahan

BAB I PENDAHULUAN. Krisis energi yang terjadi beberapa dekade akhir ini mengakibatkan bahan 1 BAB I PENDAHULUAN 1.1 Latar Belakang Krisis energi yang terjadi beberapa dekade akhir ini mengakibatkan bahan bakar utama berbasis energi fosil menjadi semakin mahal dan langka. Mengacu pada kebijaksanaan

Lebih terperinci

BAB II KAJIAN PUSTAKA DAN LANDASAN TEORI. Observasi terhadap analisis pengaruh jenis bahan bakar terhadap unjuk kerja

BAB II KAJIAN PUSTAKA DAN LANDASAN TEORI. Observasi terhadap analisis pengaruh jenis bahan bakar terhadap unjuk kerja BAB II KAJIAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Pustaka Observasi terhadap analisis pengaruh jenis bahan bakar terhadap unjuk kerja mesin serta mencari refrensi yang memiliki relevansi terhadap judul

Lebih terperinci

Gerak translasi ini diteruskan ke batang penghubung ( connectiing road) dengan proses engkol ( crank shaft ) sehingga menghasilkan gerak berputar

Gerak translasi ini diteruskan ke batang penghubung ( connectiing road) dengan proses engkol ( crank shaft ) sehingga menghasilkan gerak berputar Mesin Diesel 1. Prinsip-prinsip Diesel Salah satu pengegrak mula pada generator set adala mesin diesel, ini dipergunakan untuk menggerakkan rotor generator sehingga pada out put statornya menghasilkan

Lebih terperinci

BAB II DASAR TEORI 2.1. Motor Bensin Penjelasan Umum

BAB II DASAR TEORI 2.1. Motor Bensin Penjelasan Umum 4 BAB II DASAR TEORI 2.1. Motor Bensin 2.1.1. Penjelasan Umum Motor bensin merupakan suatu motor yang menghasilkan tenaga dari proses pembakaran bahan bakar di dalam ruang bakar. Karena pembakaran ini

Lebih terperinci

SKRIPSI MOTOR BAKAR. Disusun Oleh: HERMANTO J. SIANTURI NIM:

SKRIPSI MOTOR BAKAR. Disusun Oleh: HERMANTO J. SIANTURI NIM: SKRIPSI MOTOR BAKAR UJI EKSPERIMENTAL PENGARUH PENGGUNAAN CAMPURAN BAHAN BAKAR DIMETIL ESTER [B 06] DENGAN BAHAN BAKAR SOLAR TERHADAP UNJUK KERJA MESIN DIESEL Disusun Oleh: HERMANTO J. SIANTURI NIM: 060421019

Lebih terperinci

FINONDANG JANUARIZKA L SIKLUS OTTO

FINONDANG JANUARIZKA L SIKLUS OTTO FINONDANG JANUARIZKA L 125060700111051 SIKLUS OTTO Siklus Otto adalah siklus thermodinamika yang paling banyak digunakan dalam kehidupan manusia. Mobil dan sepeda motor berbahan bakar bensin (Petrol Fuel)

Lebih terperinci

4 m 3 atau 4000 liter Masukan bahan kering perhari. 6Kg Volume digester yang terisi kotoran. 1,4 m 3 Volume Kebutuhan digester total

4 m 3 atau 4000 liter Masukan bahan kering perhari. 6Kg Volume digester yang terisi kotoran. 1,4 m 3 Volume Kebutuhan digester total BAB IV HASIL DAN PENGUJIAN 4.1 Data Lapangan Biogas memiliki nilai kalor 4800-6700 kkal/m 3 dan mendekatai gas metan murni yaitu 8900 kkal/m 3 atau 1 m 3 biogas setara sekitar 4,7 kwh/m 3 dan 20 40 kg

Lebih terperinci

BAB II TEORI DASAR Komponen sistem pengapian dan fungsinya

BAB II TEORI DASAR Komponen sistem pengapian dan fungsinya BAB II TEORI DASAR 2.1 Teori Dasar Pengapian Sistem pengapian pada kendaraan Honda Supra X 125 (NF-125 SD) menggunakan sistem pengapian CDI (Capasitor Discharge Ignition) yang merupakan penyempurnaan dari

Lebih terperinci

PENGARUH PENGGUNAAN FREKUENSI LISTRIK TERHADAP PERFORMA GENERATOR HHO DAN UNJUK KERJA ENGINE HONDA KHARISMA 125CC

PENGARUH PENGGUNAAN FREKUENSI LISTRIK TERHADAP PERFORMA GENERATOR HHO DAN UNJUK KERJA ENGINE HONDA KHARISMA 125CC TUGAS AKHIR RM 1541 (KE) PENGARUH PENGGUNAAN FREKUENSI LISTRIK TERHADAP PERFORMA GENERATOR HHO DAN UNJUK KERJA ENGINE HONDA KHARISMA 125CC RIZKY AKBAR PRATAMA 2106 100 119 Dosen Pembimbing : Prof. Dr.

Lebih terperinci

KAJI EKSPERIMENTAL PENGARUH PENGGUNAAN MEDAN MAGNET TERHADAP KINERJA MOTOR BENSIN

KAJI EKSPERIMENTAL PENGARUH PENGGUNAAN MEDAN MAGNET TERHADAP KINERJA MOTOR BENSIN KAJI EKSPERIMENTAL PENGARUH PENGGUNAAN MEDAN MAGNET TERHADAP KINERJA MOTOR BENSIN Riccy Kurniawan Jurusan Teknik Mesin Fakultas Teknik Unika Atma Jaya, Jakarta Jalan Jenderal Sudirman 51 Jakarta 12930

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Turbin gas adalah suatu unit turbin dengan menggunakan gas sebagai fluida kerjanya. Sebenarnya turbin gas merupakan komponen dari suatu sistem pembangkit. Sistem turbin gas paling

Lebih terperinci

BAB II TINJAUAN PUSTAKA. dengan oli bekas untuk mengetahui emisi gas buang pada mesin diesel, hasil

BAB II TINJAUAN PUSTAKA. dengan oli bekas untuk mengetahui emisi gas buang pada mesin diesel, hasil 6 BAB II TINJAUAN PUSTAKA 2.1. Penelitian Terdahulu. Ale,B.B, (2003), melakukan penelitian dengan mencampur kerosin dengan oli bekas untuk mengetahui emisi gas buang pada mesin diesel, hasil penelitian

Lebih terperinci

PENGARUH PERUBAHAN SUDUT PENYALAAN (IGNITION TIME) TERHADAP EMSISI GAS BUANG PADA MESIN SEPEDA MOTOR 4 (EMPAT) LANGKAH DENGAN BAHAN BAKAR LPG

PENGARUH PERUBAHAN SUDUT PENYALAAN (IGNITION TIME) TERHADAP EMSISI GAS BUANG PADA MESIN SEPEDA MOTOR 4 (EMPAT) LANGKAH DENGAN BAHAN BAKAR LPG PENGARUH PERUBAHAN SUDUT PENYALAAN (IGNITION TIME) TERHADAP EMSISI GAS BUANG PADA MESIN SEPEDA MOTOR 4 (EMPAT) LANGKAH DENGAN BAHAN BAKAR LPG Bambang Yunianto Magister Teknik, Fakultas Teknik Universitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Motor Bakar Motor bakar merupakan salah satu jenis mesin penggerak yang banyak dipakai dengan memanfaatkan energi kalor dari proses pembakaran menjadi energi mekanik. Sejarah

Lebih terperinci

Materi. Motor Bakar Turbin Uap Turbin Gas Generator Uap/Gas Siklus Termodinamika

Materi. Motor Bakar Turbin Uap Turbin Gas Generator Uap/Gas Siklus Termodinamika Penggerak Mula Materi Motor Bakar Turbin Uap Turbin Gas Generator Uap/Gas Siklus Termodinamika Motor Bakar (Combustion Engine) Alat yang mengubah energi kimia yang ada pada bahan bakar menjadi energi mekanis

Lebih terperinci

PENGUJIAN PENGGUNAAN KATALISATOR BROQUET TERHADAP EMISI GAS BUANG MESIN SEPEDA MOTOR 4 LANGKAH

PENGUJIAN PENGGUNAAN KATALISATOR BROQUET TERHADAP EMISI GAS BUANG MESIN SEPEDA MOTOR 4 LANGKAH PENGUJIAN PENGGUNAAN KATALISATOR BROQUET TERHADAP EMISI GAS BUANG MESIN SEPEDA MOTOR 4 LANGKAH Pradana Aditya *), Ir. Arijanto, MT *), Jurusan Teknik Mesin, Fakultas Teknik, Universitas Diponegoro Jl.

Lebih terperinci

PENGARUH PEMANASAN BAHAN BAKAR DENGAN RADIATOR SEBAGAI UPAYA MENINGKATKAN KINERJA MESIN BENSIN

PENGARUH PEMANASAN BAHAN BAKAR DENGAN RADIATOR SEBAGAI UPAYA MENINGKATKAN KINERJA MESIN BENSIN PENGARUH PEMANASAN BAHAN BAKAR DENGAN RADIATOR SEBAGAI UPAYA MENINGKATKAN KINERJA MESIN BENSIN Suriansyah Sabarudin 1) ABSTRAK Proses pembakaran bahan bakar di dalam silinder dipengaruhi oleh: temperatur,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Definisi Motor Bakar Motor bakar adalah mesin atau peswat tenaga yang merupakan mesin kalor dengan menggunakan energi thermal dan potensial untuk melakukan kerja mekanik dengan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Motor Bensin Motor bensin adalah suatu motor yang menggunakan bahan bakar bensin. Sebelum bahan bakar ini masuk ke dalam ruang silinder terlebih dahulu terjadi percampuran bahan

Lebih terperinci

PENGUJIAN PERFORMANSI GENERATOR PEMBANGKIT LISTRIK TENAGA BIOGAS DARI LIMBAH CAIR PABRIK KELAPA SAWIT

PENGUJIAN PERFORMANSI GENERATOR PEMBANGKIT LISTRIK TENAGA BIOGAS DARI LIMBAH CAIR PABRIK KELAPA SAWIT PENGUJIAN PERFORMANSI GENERATOR PEMBANGKIT LISTRIK TENAGA BIOGAS DARI LIMBAH CAIR PABRIK KELAPA SAWIT Pryandi Siahaan, M. Natsir Amin dan Surya Tarmizi Kasim Konsentrasi Teknik Energi Listrik, Departemen

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Biomassa Biomassa berasal dari kata bio dan massa. Biomassa adalah bahan organik yang dihasilkan melalui pross fotosintetik, baik berupa produk maupun buangan. dan istilah ini

Lebih terperinci

BAB II DASAR TEORI. dipakai saat ini. Sedangkan mesin kalor adalah mesin yang menggunakan

BAB II DASAR TEORI. dipakai saat ini. Sedangkan mesin kalor adalah mesin yang menggunakan BAB II DASAR TEORI 2.1 Pengertian Umum Motor Bakar Motor bakar merupakan salah satu jenis mesin kalor yang banyak dipakai saat ini. Sedangkan mesin kalor adalah mesin yang menggunakan energi panas untuk

Lebih terperinci