BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1 Bahan Bakar Diesel Bahan bakar diesel yang sering disebut solar (light oil) merupakan suatu campuran hidrokarbon yang diperoleh dari penyulingan minyak mentah pada temperatur 200 o C 340 o C. Minyak solar yang sering digunakan adalah hidrokarbon rantai lurus hetadecene (C16H34) dan alpha-methilnapthalene (Darmanto, 2006). Sifat-sifat bahan bakar diesel yang mempengaruhi prestasi dari motor diesel antara lain: Penguapan (volality), residu karbon, viskositas, belerang, abu dan endapan, titik nyala, titik tuang, sifat korosi, mutu nyala dan cetane number (Mathur, Sharma, 1980). a. Penguapan (Volality). Penguapan dari bahan bakar diesel diukur dengan 90% suhu penyulingan. Ini adalah suhu dengan 90 % dari contoh minyak yang telah disuling, semakin rendah suhu ini maka semakin tinggi penguapannya. b. Residu karbon. Residu karbon adalah karbon yang tertinggal setelah penguapan dan pembakaran habis Bahan yang diuapkan dari minyak, diperbolehkan residu karbon maksimum 0,10 %. c. Viskositas. Viskositas minyak dinyatakan oleh jumlah detik yang digunakan oleh volume tertentu dari minyak untuk mengalir melalui lubang dengan diameter kecil tertentu, semakin rendah jumlah detiknya berarti semakin rendah viskositasnya. d. Belerang. Belerang dalam bahan bakar terbakar bersama minyak dan menghasilkan gas yang sangat korosif yang diembunkan oleh dinding-dinding silinder, terutama ketika mesin beroperasi dengan beban ringan dan suhu silinder menurun; kandungan belerang dalam bahan bakar tidak boleh melebihi 0,5 %-1,5 %.

2 e. Abu dan endapan dalam bahan bakar adalah sumber dari bahan mengeras yang mengakibatkan keausan mesin. Kandungan abu maksimal yang diijinkan adalah 0,01% dan endapan 0,05%. f. Titik nyala. Titik nyala merupakan suhu yang paling rendah yang harus dicapai dalam pemanasan minyak untuk menimbulkan uap terbakar sesaat ketika disinggungkan dengan suatu nyala api. Titik nyala minimum untuk bahan bakar diesel adalah 60 o C. g. Titik Tuang Titik tuang adalah suhu minyak mulai membeku/berhenti mengalir. Titik tuang minimum untuk bahan bakar diesel adalah -15 o C. h. Sifat korosif. Bahan bakar minyak tidak boleh mengandung bahan yang bersifat korosif dan tidak boleh mengandung asam basa. i. Mutu penyalaan. Nama ini menyatakan kemampuan bahan bakar untuk menyala ketika diinjeksikan ke dalam pengisian udara tekan dalam silinder mesin diesel. Suatu bahan bakar dengan mutu penyalaan yang baik akan siap menyala, dengan sedikit keterlambatan penyalaan bahan bakar dengan mutu penyalaan yang buruk akan menyala dengan sangat terlambat. Mutu penyalaan adalah salah satu sifat yang paling penting dari bahan bakar diesel untuk dipergunakan dalam mesin kecepatan tinggi. Mutu penyalaan bahan bakar tidak hanya menentukan mudahnya penyalaan dan penstarteran ketika mesin dalam keadaan dingin tetapi juga jenis pembakaran yang diperoleh dari bahan bakar. Bahan bakar dengan mutu penyalaan yang baik akan memberikan mutu operasi mesin yang lebih halus, tidak bising, terutama akan menonjol pada beban ringan. j. Bilangan Cetana (Cetane Number). Mutu penyalaan yang diukur dengan indeks yang disebut Cetana. Mesin diesel memerlukan bilangan cetana sekitar 50. Bilangan cetana bahan bakar adalah persen volume dari cetana dalam campuran cetana dan alpha-metyl naphthalene. Cetana mempunyai mutu penyalaaan yang sangat baik dan alpha-

3 metyl naphthalene mempunyai mutu penyalaaan yang buruk. Bilangan cetana 48 berarti bahan bakar cetana dengan campuran yang terdiri atas 48% cetana dan 52% alpha- metyl naphthalene. Tabel 2.1 Spesifikasi Minyak Solar Batasan Metode Uji No Karakteristik Unit MI N MAX ASTM IP 1 Angka Setana 45 - D Indeks Setana 48 - D Berat Jenis Pada 15 o C Kg/m D Viskositas pada 40 o C mm 2 /s 2 5 D Kandungan Sulfur %m/m - 0,35 D Distilasi : T95 o C D-86 7 Titik Nyala o C 60 - D-93 8 Titik Tuang o C - 18 D-97 9 Karbon Residu Merit - Kelas I D Kandungan air Mg/kg D Biological Growth - 12 Kandungan FAME %v/v Kandungan Metanol dan Etanol %v/v - 10 D Korosi Bilah Tembaga Merit - Kelas I D Kandungan Abu %m/m - 0,01 D Kandungan Sedimen %m/m - 0,01 D Bilangan Asam Kuat mgkoh/gr - 0 D Bilangan Asam Total mgkoh/gr - 0,6 D Partikulat mg/l - - D Penampilan Visual - Jernih dan Terang 21 Warna No.ASTM - 3 D-1500

4 Sumber: Surat Keputusan Dirjen Migas 3675/K/24/DJM/ Bahan Bakar LPG Definisi LPG Kata LPG berasal dari singkatan dalam bahasa inggris yaitu Liquified Petroleum Gas, yang secara harfiah artinya adalah gas minyak bumi yang dicairkan. LPG atau kita sering menyebut gas elpiji berasal dari hasil pengolahan minyak bumi. Di alam ini, minyak bumi (petroleum) ditemukan bersama-sama dengan gas alam (natural gas). Kemudian minyak bumi dipisahkan dari gas alam. Minyak bumi yang telah dipisahkan dari gas alam disebut juga minyak mentah (crude oil). Minyak mentah merupakan campuran yang kompleks dengan komponen utama alkana dan sebagian kecil alkena, alkuna, siklo-alkana, aromatik, dan senyawa anorganik. Meskipun kompleks, untungnya terdapat cara mudah untuk memisahkan komponen-komponennya, yakni berdasarkan perbedaan nilai titik didihnya. Proses ini disebut destilasi bertingkat. Untuk mendapatkan produk akhir sesuai dengan yang diinginkan, maka sebagian hasil dari destilasi bertingkat perlu diolah lebih lanjut melalui proses konversi, pemisahan pengotor dalam fraksi, dan pencampuran fraksi. Dalam proses destilasi bertingkat, minyak mentah tidak dipisahkan menjadi komponen-komponen murni, melainkan ke dalam fraksi-fraksi, yakni kelompok-kelompok yang mempunyai kisaran titik didih tertentu. Hal ini dikarenakan jenis komponen hidrokarbon begitu banyak dan isomer-isomer hidrokarbon mempunyai titik didih yang berdekatan. Sehingga bisa dikatakan bahwa berdasarkan titik didih inilah minyak mentah mengalami pemisahan menjadi bahan-bahan lainnya. Berdasarkan suhunya, secara berturut-turut dimulai bagian paling bawah, minyak mentah akan terpisah menjadi residu (>300 0 C), minyak berat, yang digunakan sebagai bahan kimia ( C), solar ( C), kerosin ( C), bensin/gasolin ( C), dan gas ( C). Bagian terakhir yang berupa gas inilah asal usulnya LPG (tentunya setelah melalui pengolahan lanjutan) yang sehari-hari kita gunakan, salah satunya untuk bahan bakar kompor gas.

5 2.2.2 Jenis dan Komponen LPG Menurut Keputusan Direktur Jenderal Minyak dan Gas Bumi No. 25K/36/DDJM/1990 spesifikasi LPG dapat digolongkan menjadi tiga jenis, yaitu LPG campuran (mixed LPG), LPG Propana (Prophene LPG), dan LPG Butana (Buthene LPG). LPG yang dipakai untuk bahan bakar kompor gas adalah jenis LPG campuran. LPG ini merupakan salah satu produk yang dipasarkan oleh Pertamina Direktorat Pembekalan Dan Pemasaran Dalam Negeri (Dit. PPDN), dengan merk dagang LPG (Liquid Petroleum Gas). Komponen utama dari LPG adalah Propana (C3H8) dan Butana (C4H10). Disamping itu, LPG juga mengandung senyawa hidrokarbon ringan yang lain dalam jumlah kecil, yaitu Etana (C2H6) dan Pentana (C5H12) Sifat-Sifat LPG Berikut ini sifat-sifat LPG yang perlu diketahui agar kita bisa mengunakannya dengan aman. 1. Wujud Gas elpiji yang ada di dalam tabung, wujudnya cair dan sebagian berwujud uap. Namun apabila gas tersebut dikeluarkan dari tabung, wujudnya berubah menjadi gas. Wujud awal dari LPG adalah gas. Namun di pasaran dijual dalam bentuk cair. Mengapa bisa seperti itu? demikian penjelasannya. Pada dasarnya untuk bahan yang berwujud gas berlaku ketentuan seperti ini: Wujud gas akan berubah menjadi wujud cair apabila temperatur diperkecil atau tekanannya diperbesar. Dengan adanya perubahan wujud akibat temperatur dan tekanan, maka volume gas juga berubah. Volume gas yang berwujud cair akan menjadi lebih kecil apabila dibandingkan dengan volume gas ketika masih berwujud gas. Rasio antara volume gas bila menguap dengan gas dalam keadaan cair bervariasi tergantung komposisi, tekanan dan temperatur, tetapi biasanya sekitar 250:1. Kemampuan gas bisa berubah wujud menjadi cair merupakan kelebihan dari bahan-bahan gas yaitu volumenya bisa menjadi mengecil. Kelebihan ini

6 diaplikasikan terutama untuk menyimpan dan mengirim gas dalam tangki, dimana dengan cara tersebut secara ekonomi sangat menguntungkan. yaitu: Berdasarkan cara pencairannya, LPG dapat dibedakan menjadi dua, a. LPG Refrigerated LPG Refrigerated adalah LPG yang dicairkan dengan cara didinginkan (titik cair Propan adalah sekitar -42 C, dan titik cair Butan sekitar -0.5 C). Cara pencairan LPG jenis ini umum digunakan untuk mengapalkan LPG dalam jumlah besar. Misalnya, mengirim LPG dari negara Arab ke Indonesia. Dibutuhkan tanki penyimpanan khusus yang harus didinginkan agar LPG tetap dapat berbentuk cair serta dibutuhkan proses khusus untuk mengubah LPG Refrigerated menjadi LPG Pressurized. b. LPG Pressurized LPG Pressurized adalah LPG yang dicairkan dengan cara ditekan dengan tekanan (pressure) sekitar 4-5 kg/cm 2. LPG jenis ini disimpan dalam tabung atau tanki khusus bertekanan tinggi. LPG jenis inilah yang banyak digunakan dalam berbagai aplikasi di rumah tangga dan industri, karena penyimpanan dan penggunaannya tidak memerlukan penanganan khusus seperti LPG Refrigerated. Tekanan uap ELPIJI cair dalam tabung yang diproduksi oleh Pertamina sekitar Kg/cm 2. Jumlah gas diukur berdasarkan volumenya (V) dengan satuan m 3. Tetapi apabila gas tersebut berwujud cair, maka jumlah gas diukur berdasarkan massanya (m) dengan satuan kilogram (kg), sebagai contoh seperti kalau kita membeli LPG ukuran 3 kg. LPG dipasarkan dalam bentuk cair dalam tabung-tabung logam bertekanan. Untuk memungkinkan terjadinya ekspansi panas (thermal expansion) dari cairan yang dikandungnya, tabung LPG tidak diisi secara penuh, hanya sekitar 80-85% dari kapasitasnya. 2. Massa Jenis (density)

7 Kepadatan massa atau kepadatan material atau massa jenis adalah massa per satuan volume. Simbol yang paling sering digunakan untuk kerapatan ρ (disebut rho). Massa jenis gas yaitu banyaknya massa (kg) dari gas yang mempunyai volume sebesar 1,0 m 3 pada kondisi tertentu (diukur pada suhu 0 0 C, dan tekanan 1013 mbar / 1,013 kg/cm 2 ). Massa jenis gas propan adalah 2,004 kg/m 3, gas butan adalah 2,703 kg/m 3, dan udara sebesar 1,293 kg/m 3. Dari sini kita bisa tahu bahwa dengan volume yang sama yaitu 1,0 m 3, massa propan, butan dan udara berbeda-beda. Massa butan lebih besar bila dibandingkan dengan massa propan, massa propan lebih besar daripada massa udara, dan massa kedua gas tersebut (butan dan propan) lebih besar daripada massa udara. Pengetahuan tentang massa jenis ini penting untuk memahami perilaku gas bila gas tersebut terlepas di udara bebas, apakah gas tersebut naik ke atas atau turun ke bawah (dan akan berada di atas permukaan tanah). 3. Specific Gravity Specific gravity adalah perbandingan antara massa jenis fluida (fluid density) dengan massa jenis fluida tertentu (specified reference density). Yang digunakan sebagai fluida pembanding bisa berbeda-beda. Misalnya untuk cairan, maka sebagai fluida pembandingnya (reference density) adalah air pada suhu 4 o C. Sedangkan untuk gas, sebagai fluida pembandingnya adalah udara (biasanya pada suhu 20 0 C). Specific gravity merupakan sebuah perbandingan, sehingga specific gravity tidak mempunyai satuan. Meskipun pengertiannya tidak sama persis (tetapi pada dasarnya adalah sama), ada yang menterjemahkan specific gravity dengan massa jenis relatif (relative density). Selanjutnya dalam tulisan ini untuk menyebut istilah specific gravity kita gunakan istilah massa jenis relatif. Massa jenis relatif gas adalah perbandingan antara massa jenis gas dengan massa jenis udara (udara luar atau udara bebas). Massa jenis relatif udara adalah 1. Angka ini didapat dari massa jenis udara dibandingkan dengan massa jenis udara itu sendiri, yaitu 1,293 kg/m 3 : 1,293 kg/m 3 sama dengan 1. Dengan cara yang sama kita bisa menghitung massa jenis relatif dari propan yaitu 2,004 kg/m 3 : 1,293 kg/m 3 sama dengan 1,55 dan massa jenis relatif dari butan adalah

8 sebesar 2,09. Apabila massa jenis relatif dari suatu gas lebih kecil daripada 1, maka gas tersebut akan naik ke udara. Namun apabila massa jenis relatifnya lebih kecil dari 1, maka gas tersebut akan turun ke tanah (mencari/mengalir ke tempat yang lebih rendah). Dengan mengetahui bahwa massa jenis relatif gas propan dan butan lebih besar dari udara, maka apabila kita menyimpan LPG harus memberi ventilasi yang diletakkan rata dengan tanah/lantai (bila memungkinkan) atau dinaikkan sedikit. Hal ini dimaksudkan apabila ada kebocoran LPG, gas tersebut bisa cepat keluar dan bercampur dengan udara bebas. Di samping itu, dengan alasan yang sama seperti dia atas, kita jangan menyimpan tabung LPG di ruangan bawah tanah. 4. Temperatur Nyala (Ignition Temperature) Temperatur nyala dari bahan bakar gas pada umumnya antara C sampai dengan C. Dengan temperatur seperti itu, gas yang diletakkan di udara bebas akan menjadi panas dan akan terjadi pembakaran. Temperatur nyala untuk propan adalah C, sedangkan butan adalah C. Dari data ini kita bisa tahu bahwa apabila ada LPG yang terlepas atau bocor dari tabung gas ke udara bebas, gas tersebut tidak akan terbakar dengan sendirinya. Karena temperatur udara bebas biasanya sekitar 27 0 C. Untuk menimbulkan nyala pada peralatan yang menggunakan bahan bakar gas, misalnya kompor gas, kita menggunakan alat penyala atau api penyala. 5. Batas Nyala (Flammable Range) Batas nyala (Flammable Range) atau disebut jugabatas meledak (Explosive Range) adalah perbandingan campuran (dalam bentuk prosentase) antara gas dengan udara, dimana pada batas tersebut dapat terjadi nyala api atau ledakan. Untuk bisa terjadi nyala api atau ledakan, besarnya perbandingan antara uap gas dan udara tidak memiliki nilai (angka) yang tunggal, tetapi merupakan nilai-nilai yang mempunyai batas bawah dan batas atas. Jadi apabila terjadi campuran antara gas dan udara dalam rentang nilai bawah dan nilai atas, maka akan terjadi nyala api atau ledakan. Nilai batas nyala bawah disebut juga Lower Explosive Limit (LEL) yaitu batas minimal konsentrasi uap bahan bakar di udara

9 dimana bila ada sumber api, gas tersebut akan terbakar. Sedangkan nilai batas atas atau Upper Explosive Limit (UEL) yaitu batas konsentrasi maksimal uap bahan bakar di udara dimana bila ada sumber api, gas tersebut akan terbakar. Batas nyala (Flammable Range) untuk propan adalah antara 2,4% sampai dengan 9,6% dan butan antara 1,9% sampai dengan 8,6%. Ini artinya bahwa misalnya terjadi campuran 2,4% propan dengan 97,6% udara, maka campuran tersebut akan dapat menyala, tetapi jumlah gas propan ini merupakan jumlah yang minimal. Apabila jumlah propan kurang dari 2,4%, maka tidak akan terjadi nyala. Demikian sebaliknya, apabila jumlah propan lebih dari 9,6% juga tidak akan terjadi nyala. Sebagai contoh terjadi campuran 15% propan dan 85% udara, maka tidak akan terjadi nyala. Jadi kesimpulannya bahwa meskipun ada sumber api tetapi karena perbandingan campuran antara propan dengan udara di bawah atau di atas batas nyala (Flammable Range), maka tidak akan terjadi pembakaran. Dengan mengetahui batas nyala (flammable range) dari gas, kita bisa mencegah dan mengantsipasi bahaya dari LPG (elpiji) tersebut. Dengan mengetahui bahwa gas akan terbakar apabila mempunyai campuran dengan udara dengan perbandingan tertentu, maka apabila ada gas yang bocor, salah satu tindakan sederhana yang bisa lakukan adalah dengan membuka pintu atau jendela atau berusaha mengipas-ngipas gas tersebut agar keluar ruangan. Hal ini dimaksudkan gas tersebut komposisi campurannya kurang dari 1,9% (untuk gas propan). Dengan demikian gas tersebut tidak bisa terbakar, meskipun ada sumber api. 2.3 Mesin Diesel Mesin Diesel disebut juga Motor Penyalaan Kompresi oleh karena penyalaannya dilakukan dengan menyemprotkan bahan bakar ke dalam udara yang telah bertekanan dan bertemperatur tinggi sebagai akibat dari proses kompresi di dalam ruang bakar. Mesin diesel pertama kali ditemukan oleh Rudolf Diesel pada tahun Prinsip kerja pembakaran motor diesel yaitu udara segar dihisap masuk ke dalam silinder atau ruang bakar kemudian udara tersebut dikompresi oleh torang sehingga udara memiliki tekanan dan temperatur yang tinggi, dan sebelum torak mencapai titik mati atas, bahan bakar disemprotkan ke ruang bakar dan terjadilah pembakaran.

10 Agar bahan bakar diesel dapat terbakar dengan sendirinya, maka perbandingan kompresi mesin diesel harus berkisar antara 15-22, sedangkan tekanan kompresinya mencapai bar dengan suhu C. Aplikasi dari motor diesel banyak pada industri-industri sebagai sebagai motor stasioner ataupun untuk kendaraan-kendaraan dan kapal laut dengan ukuran yang besar. Hal ini dikarenakan motor diesel mengkonsumsi bahan bakar ± 25% lebih rendah dari motor bensin, lebih murah, dan perawatannya lebih sederhana (Kubota, S., dkk, 2001). Mesin diesel menghasilkan tekanan kerja yang tinggi, itu sebabnya konstruksi motor diesel lebih kokoh dan lebih besar. Disamping itu, mesin diesel menghasilkan bunyi yang lebih keras, warna dan bau gas yang kurang menyenangkan. Namun dipandang dari segi ekonomi, bahan bakar serta polusi udara, motor diesel masih lebih disukai (Mathur, 1980). Konsep awal Rudolf Diesel pada mesin ciptaannya adalah dengan mengansumsikan adanya penambahan kalor pada temperatur konstan sehingga mesin yang dibuatnya dapat berjalan dengan siklus Carnot. Namun, akhirnya disadari bahwa untuk mewujudkan mesin tersebut secara praktikal adalah sangat sulit karena pemasukan panas yang dapat dilakukan persiklus sangat kecil. Konsep selanjutnya Rudolf Diesel menggunakan penambahan kalor pada saat tekanan konstan. Konsep siklus tersebut secara teoritis dapat berjalan dan oleh karena itu, siklus toritis ini dinamakan atas namanya yaitu Siklus Diesel. Gambar 2.1 Diagram p-v Mesin Diesel

11 Keterangan Gambar : P = Tekanan (atm) V = Volume Spesifik (m³/kg) q in q out = Kalor yang masuk (kj) = Kalor yang keluar (kj) Keterangan Grafik : 1-2 Kompresi Isentropis (reversibel adiabatis) 2-3 Pemasukan Kalor pada Tekanan Konstan 3-4 Ekspansi Isentropis (reversibel adiabatis) 4-1 Pengeluaran Kalor pada Volume Konstan Gambar 2.2 Diagram T-S Mesin Diesel Keterangan Gambar : T = Temperatur (K) S = Entropi (kj/kg.k) q in = Kalor yang masuk (kj)

12 q out = Kalor yang dibuang (kj) Proses 1-2 Langkah kompresi isentropis Semua katup tertutup : TT 2 = TT 1 (vv 1 /vv 2 ) kk 1 = TT 1 (VV 1 /VV 2 ) kk 1 = TT 1 (rr cc ) kk 1 PP 2 = PP 1 (vv 1 /vv 2 ) kk = TT 1 (VV 1 /VV 2 ) kk = PP 1 (rr cc ) kk VV 2 = VV TTTTTT qq 1 2 = 0 ww 1 2 = (PP 2 vv 2 PP 1 vv 1 ) (1 kk) = RR (TT 2 TT 1 ) (1 kk) ww 1 2 = (uu 1 uu 2 ) = cc vv (TT 1 TT 2 ) Proses 2-3 Proses kerja atau pemasukan kalor dalam tekanan konstan. Semua katup tertutup : QQ 2 3 = QQ iiii = mm ff QQ HHHH ηη cc = mm mm cc pp (TT 3 TT 2 ) = mm aa + mm ff cc pp (TT 3 TT 2 ) QQ HHHH. ηη cc = (AAAA + 1)cc pp (TT 3 TT 2 ) qq 2 3 = qq iiii = cc pp (TT 3 TT 2 ) = (h 3 h 2 ) ww 2 3 = qq 2 3 (uu 3 uu 2 ) = PP 2 (vv 3 vv 2 ) TT 3 = TT mmmmmm TT 3 = TT 2 (VV 3 VV 2 ) Proses 3-4 Langkah ekspansi isentropis Semua katup tertutup : qq 3 4 = 0 TT 4 = TT 3 (vv 3 vv 4 ) kk 1 = TT 3 (VV 3 VV 4 ) kk 1 PP 4 = PP 3 (vv 3 vv 4 ) kk 1 = PP 3 (VV 3 VV 4 ) kk 1

13 ww 3 4 = (uu 3 uu 4 ) = cc vv (TT 3 TT 4 ) Proses 4-1 Langkah buang atau pengeluaran kalor dengan volume konstan Katup intake tertutup dan katup exhaust terbuka : vv 4 = vv 1 = vv TTTTTT ww 4 1 = 0 QQ 4 1 = QQ oooooo = mm mm cc vv (TT 1 TT 4 ) qq 4 1 = qq oooooo = cc vv (TT 1 TT 4 ) Prinsip Kerja Mesin Diesel Prinsip kerja mesin diesel mirip dengan prinsip kerja mesin bensin. Perbedaannya hanya terletak pada proses langkah awal kompresi atau proses adiabatik. Yang dimaksud dengan motor bakar 4 (empat) langkah adalah bila 1 (satu) kali proses pembakaran terjadi pada setiap 4 (empat) langkah gerakan piston atau 2 (dua) kali putaran poros engkol. Dengan anggapan bahwa katup masuk dan katup buang terbuka tepat pada waktu piston berada pada TMA dan TMB. Dibawah ini adalah langkah dalam siklus mesin diesel 4 langkah :

14 Gambar 2.3 Prinsip Kerja Mesin Diesel 1. Langkah Isap Piston bergerak dari TMA (Titik Mati Atas) ke TMB (Titik Mati Bawah), kemudian katup isap terbuka dan katup buang tertutup. Karena piston bergerak ke bawah, maka di dalam silinder terjadi ke vakuman sehingga udara bersih akan terhisap dan mengalir masuk ke dalam ruang silinder melalui katup isap. 2. Langkah Kompresi Poros engkol terus berputar, piston bergerak dari TMB ke TMA. Karena piston bergerak ke atas dan kedua katup tertutup, maka udara bersih di dalam silinder akan terdorong di mampatkan di ruang bakar, akibatnya silinder tertekan sehingga tekanan dan temperature naik hingga mencapai 35 atm dan temperatur C 3. Langkah Injeksi Pada akhir langkah kompresi sebelum piston mencapai TMA, injector akan mengabutkan bahan bakar dan akan bercampur dengan udara yang bertekanan dan bertemperatur tinggi sehingga bahan bakar akan terbakar dengan sendirinya di dalam ruang bakar. Hal ini akan menimbulkan daya dorong sehingga piston akan bergerak dari TMA ke TMB. Kedua katup masih dalam keadaan tertutup. Gaya

15 dorong kebawah diteruskan oleh batang piston ke poros engkol untuk dirubah menjadi gerak rotasi. 4. Langkah Buang Pada langkah ini, piston bergerak dari TMB ke TMA. Bersamaan itu juga katup buang membuka dan katup masuk tertutup, sehingga udara sisa pembakaran akan didorong keluar dari ruang silinder menuju exhaust manifold Performansi Mesin Diesel Daya Poros Daya mesin adalah besarnya kerja mesin selama waktu tertentu. Pada motor bakar daya yang berguna adalah daya poros, dikarenakan poros tersebut menggerakkan beban. Daya poros dibangkitkan oleh daya indikator, yang merupakan daya gas pembakaran yang menggerakkan torak dan selanjutnya menggerakkan semua mekanisme. Sebagian daya indicator dibutuhkan untuk mengatasi gesekan mekanik, seperti pada torak dan dinding silinder dan gesekan antara poros dan bantalan. Prestasi motor bakar pertama-tama tergantung dari daya yang dapat ditimbulkannya. Semakin tinggi frekuensi putar motor semakin tinggi daya yang diberikan. Hal ini disebabkan oleh semakin besarnya frekuensi semakin banyak langkah kerja yang dialami pada waktu yang sama. Dengan demikian daya poros terebut adalah : Dimana : Torsi PP BB = 2ππ(nn.TT) 60 PP BB = Daya keluaran (Watt) N = putaran mesin (rpm) T = Torsi (N.m)... (2.1) Torsi adalah perkalian antara gaya dengan jarak. Gaya yang ditimbulkan oleh tekanan-tekanan yang terjadi di dalam silinder motor menggerakkan torak

16 dan kemudian gaya tersebut diteruskan kepada pena engkol yang dihubungkan ke torak sehingga mengakibatkan adanya momen putar atau torsi pada poros engkol. Alat yang digunakan untuk mengukur torsi dinamakan dynamometer, alat ini di kopel dengan poros output motor pembakaran. Cara kerja dynamometer mirip dengan kerja sebuah rem yang dilekatkan ke poros mesin, maka daya yang diukur dinamakan dengan daya rem (brake power). TT = PP BB.60 2ππ.nn... (2.2) Tekanan Efektif Rata-rata Tekanan efektif rata-rata adalah tekanan konstan teoritis yang apabila diberikan ke mesin selama langkah kerja, akan menghasilkan kerja netto yang sama dengan yang pada kenyataannya dihasilkan dalam satu siklus. mmmmmm = 4.ππ.TT VV dd... (2.3) Konsumsi Bahan Bakar Spesifik (SFC) Konsumsi bahan bakar spesifik merupakan salah satu parameter prestasi yang penting di dalam suatu motor bakar. Nilai ekonomis sebuah mesin ditunjukkan dengan seberapa besar jumlah bahan bakar yang dipakai untuk menghasilkan sejumlah daya selang waktu tertentu. SSSSSS = mm ff 10 3 PP BB... (2.4) Besarnya laju aliran massa bahan bakar (mm f) dihitung dengan persamaan berikut : mm ff = ρ xx VVVVVV 10 3 tttt (2.5) Dimana : SSSSSS = konsumsi bahan bakar spesifik (g/kw.h)

17 mm f = laju aliran bahan bakar (kg/jam) PP BB = daya (W) ρ = massa jenis (gr/cm 3 ) VV ff = volume bahan bakar yang diuji tt ff = waktu yang dibutuhkan untuk menghabiskan bahan bakar (jam) Efisiensi Thermal Dikarenakan adanya rugi-rugi mekanis yang terjadi pada mesin itu sendiri, mengakibatkan kerja yang terpakai lebih kecil dari energi yang dibangkitkan oleh piston. Untuk itu maka perlu dicari kerja maksimum yang dapat dihasilkan dari pembakaran sejumlah bahan bakar. Kerja maksimum atau efisiensi ini biasa disebut efisiensi termal brake. ηη bb = DDDDDDDD kkkkkkkkkkkkkkkk aaaaaaaaaaaa LLLLLLLL pppppppppp yyyyyyyy mmmmmmmmmm... (2.6) Laju panas yang masuk Q, dapat dihitung dengan rumus : QQ = mm ff LLLLLL... (2.7) Dimana, LHV = low heating value, nilai kalor bawah bahan bakar (kj/kg) Jika daya keluaran (PP BB ) dalam satuan kw, laju aliran bahan bakar mm ff dalam satuan kg/jam dan ηc = efisiensi pembakaran, maka: ηη bb = PP BB mm ff.llllll.ηη cc (2.8) Rasio Udara Bahan Bakar (AFR)

18 Energi yang masuk kedalam sebuah mesin QQ iiii berasal dari pembakaran bahan bakar hidrokarbon. Udara luar digunakan untuk menyuplai oksigen yang dibutuhkan untuk mendapatkan reaksi kimia untuk pembakaran didalam ruang bakar. Untuk itu dibutuhkan jumlah oksigen dan bahan bakar yang tepat dan dapat dirumuskan sebagai berikut: Dimana: AAAAAA = mm aa mm ff mm aa = PP ii(vv dd +VV cc ) RR.TT ii = mm aa mm ff... (2.9).(2.10) mm aa = massa udara di dalam silinder per siklus ṁ aa = laju aliran udara didalam mesin mm ff = massa bahan bakar di dalam silinder per siklus mm ff = laju aliran bahan bakar di dalam mesin PP ii = tekanan udara masuk silinder VV dd = volume langkah (displacement) VV cc = volume sisa RR = konstanta udara TT ii = temperatur udara masuk silinder 2.4 Nilai Kalor Bahan Bakar Reaksi kimia antara bahan bakar dengan oksigen dari udara menghasilkan panas. Besarnya panas yang ditimbulkan jika satu satuan bahan bakar dibakar sempurna disebut nilai kalor bahan bakar (Calorific Value, CV). Bedasarkan asumsi ikut tidaknya panas laten pengembunan uap air dihitung sebagai bagian dari nilai kalor suatu bahan bakar, maka nilai kalor bahan bakar dapat dibedakan menjadi nilai kalor atas dan nilai kalor bawah. Nilai kalor atas (High Heating Value, HHV), merupakan nilai kalor yang diperoleh secara eksperimen dengan menggunakan kalorimeter dimana hasil

19 pembakaran bahan bakar didinginkan sampai suhu kamar sehingga sebagian besar uap air yang terbentuk dari pembakaran hidrogen mengembun dan melepaskan panas latennya. Secara teoritis, besarnya nilai kalor atas (HHV) dapat dihitung bila diketahui komposisi bahan bakarnya dengan menggunakan persamaan Dulong : HHV = (H2- OO 2 ) S (2.12) 8 Dimana: HHV = Nilai kalor atas (kj/kg) C H2 O2 S = Persentase karbon dalam bahan bakar = Persentase hidrogen dalam bahan bakar = Persentase oksigen dalam bahan bakar = Persentase sulfur dalam bahan bakar Nilai kalor bawah ( low Heating Value, LHV ), merupakan nilai kalor bahan bakar tanpa panas laten yang berasal dari pengembunan uap air. Umumnya kandungan hidrogen dalam bahan bakar cair berkisar 15 % yang berarti setiap satu satuan bahan bakar, 0,15 bagian merupakan hidrogen. Pada proses pembakaran sempurna, air yang dihasilkan dari pembakaran bahan bakar adalah setengah dari jumlah mol hidrogennya. Selain berasal dari pembakaran hidrogen, uap air yang terbentuk pada proses pembakaran dapat pula berasal dari kandungan air yang memang sudah ada didalam bahan bakar (moisture). Panas laten pengkondensasian uap air pada tekanan parsial 20 kn/m 2 (tekanan yang umum timbul pada gas buang) adalah sebesar 2400 kj/kg, sehingga besarnya nilai kalor bawah (LHV) dapat dihitung berdasarkan persamaan berikut : LHV = HHV 2400 (M + 9 H2)... (2.13) Dimana:

20 LHV = Nilai Kalor Bawah (kj/kg) M = Persentase kandungan air dalam bahan bakar (moisture) Dalam perhitungan efisiensi panas dari motor bakar, dapat menggunakan nilai kalor bawah (LHV) dengan asumsi pada suhu tinggi saat gas buang meninggalkan mesin tidak terjadi pengembunan uap air. Namun dapat juga menggunakan nilai kalor atas (HHV) karena nilai tersebut umumnya lebih cepat tersedia. Peraturan pengujian berdasarkan ASME (American Society of Mechanical Engineers) menentukan penggunaan nilai kalor atas (HHV), sedangkan peraturan SAE (Society of Automotive Engineers) menentukan penggunaan nilai kalor bawah (LHV). Nilai Kalor (heating value) suatu bahan bakar dapat juga diperoleh dengan menggunakan peralatan di laboratorium, yaitu bom calorimeter oksigen. Nilai kalor yang diperoleh melalui peralatan ini adalah nilai kalor atas atau highest heating value (HHV) dan dapat dihitung dengan rumus, yaitu : HHV = (T2 T1 Tkp) cv (2.14) Dimana : T1 = Suhu air pendingin sebelum dinyalakan ( o C) T2 = Suhu air pendingin sesudah dinyalakan ( o C) Tkp = Kenaikan suhu kawat penyala = 0,05 ( o C) cv = Panas jenis alat = 73529,6 (kj/kg o C) Sedangkan nilai kalor bawah atau lowest heating value (LHV) dihitung dengan persamaan :

21 LHV = HHV (2.15) Bila dilakukan pengujian 5 kali, maka : dan HHVrata-rata = ii=5 jj =1 HHHHHH (2.16) 15 LHVrata-rata = HHVrata-rata 3240 (2.17) 2.5 Pembakaran Pada Mesin Otto Motor otto dengan sistem spark-ignition menggunakan bantuan bunga api dari busi untuk menyalakan atau membakar campuran bahan bakar udara. Bunga api yang digunakan berasal dari busi. Busi akan menyala saat campuran bahan bakar udara mencapai rasio kompresi,temperatur dan tekanan tertentu. Pembakaran adalah reaksi kimia dimana oksidan (oksigen) bereaksi secara cepat terhadap bahan bakar dan melepaskan energy panas. Ada tiga unsur kimia utama dalam elemen mampu bakar (combustible) yakni karbon (C) dan hidrogen (H), elemen lainnya adalah sulfur (S). Proses pembakaran dikatakan sempurna jika semua karbon bereaksi dengan oksigen dan menghasilkan karbon monoksida, atau jika sulfur bereaksi dengan sulfur menghasilkan sulfur dioksida. Jika kondisi ini tidak terpenuhi, mak dikatakna proses pembakaran tidak sempurna. Nitrogen tidak berpartisipasi pada proses pembakaran dan disebut sebagai gas lembam. Selama proses pembakaran, butiran minyak bahan bakar dipisahkan menjadi elemen komponennya yaitu hidrogen dan karbon dan masingmasing bergabung dengan oksigen dari udara secarah terpisah. Hydrogen akan bergabung dengan oksigen dan menghasilkan air. Karbon akan bergabung dengan oksigen menjadi karbon dioksida. Jika jumlah oksigen tidak cukup maka sebagian karbon akan bereaksi dengan carbon dan menghasilkan karbon

22 monoksida. Pembentukan karbon monoksida hanya menghasilkan 30% panas yang dihasilkan oleh pembentukan karbon dioksida Penyalaan dengan Bunga Api Busi dipasang pada suatu tempat dalam ruang bakar untuk memberikan bunga api. Bunga api diberikan dalam waktu yang sangat singkat dan menyalakan campuran udara bahan bakar dalam ruang bakar. Berbeda dengan mesin diesel yang penyalaannya terjadi sendiri akibat udara panas yang dikompresikan dalam ruang bakar. Sekalipun loncatan bunga api listrik sangat singkat dan total energinya kecil, tapi dengan tegangan Volt antara elektroda busi yang mempunyai suhu ribuan derajat Celcius, akan mampu menimbulkan aliran arus listrik pada molekul-molekul dari campuran udara bahan bakar yang kerapatannya cukup tinggi. Karena pembakaran dari campuran udara bahan bakar adalah berupa reaksi ion, maka sistem penyalaan listrik sangat sesuai untuk mendapatkan suhu yang tinggi, dan dapat berlangsungnya proses ionisasi. 1) Busi Sebuah kabel yang berhubungan dengan sumber daya tegangan tinggi dihubungkan ke bagian terminal pada sisi atas busi. Saat arus listrik berkekuatan volt menghasilkan percikan bunga api diantara elektroda busi. Bunga api menyalakan campuran yang berada disekitarnya kemudian menyebar ke seluruh arah dalam ruang bakar. Pembakaran tidak terjadi serentak, tapi bergerak secara progresif melintasi campuran yang belum terbakar, dan dimulai di tempat yang paling panas yaitu di dekat busi. Busi tidak boleh terlalu panas, karena akan memudahkan terbentuknya endapan karbon pada permukaan isolatornya dan dapat menimbulkan hubungan singkat. Untuk menghindari kejadian ini suhu isolatornya harus mencapai o C agar karbon dapat terbakar. Tapi bila suhu tinggi isolatornya dapat rusak atau preignition akan

23 terjadi yaitu penyalaan sebelum terjadi loncatan bunga api pada busi. Jika hal ini terjadi akan memperpendek umur motor. Pada motor yang cenderung untuk mudah terjadinya overheating (panas yang berlebihan) karena pengaruh sistem pendingin, kita harus menggunakan busi panas, sedangkan pada motor yang cenderung akan terjadi endapan karbon digunakan busi dingin. 2) Alat pembangkit tegangan tinggi Untuk menghasilkan pembakaran yang baik maka dibutuhkan percikan api yang baik juga. Maka dibutuhkan energy tegangan potensial yang besar juga. Tegangan antara 5000 sampai lebih dari volt harus diberikan pada elektroda tengah agar dapat terjadi loncatan bunga api antara celah atau elektroda busi. Baterai terlalu berat dan harus diisi bila lama tidak dipakai, maka umumnya pada motor-motor kecil dipakai magnet. Magnet permanen dipasang pada poros engkol dan inti besi ditempatkan sebagai stator. Magnet berputar bersama-sama dengan roda penerus, dan antara inti besi dengan magnet terdapat suatu celah kecil. Medan magnet berubah-ubah karena perputaran magnet sehingga menimbulkan listrik dalam lilitan primer pada inti besi. Akibat gerakan cam titik kontak terbuka maka akan terjadi arus tegangan tinggi yang memungkinkan terjadinya loncatan bunga api pada busi. Kenaikan tegangan pada transformator yang terdiri dari lilitan primer dan lilitan sekunder, dan tegangan tinggi yang terjadi pada lilitan sekunder inilah yang dibutuhkan oleh busi. Kapasitor yang disisipkan dalam sirkuit akan menghindari terjadinya loncatan bunga api pada titik kontrol akibat tegangan tinggi yang timbul dalam lilitan sekunder. Saat penggunaan magnet tidak dipergunakan secara luas, dengan penggunaan solid state sebagai transistor sebagai alat penahan arus secara mekanik. Sistem penyalaan solid state mempunyai keuntungan bila dibandingkan dengan sistem mekanik. Salah satu sistem penyalaan yang tidak mekanik adalah sistem CDI (Capasitor Discharge Ignition). Magnet CDI prinsip kerjanya sama dengan magnet roda penerus. Bila magnet berputar bersama-sama dengan roda penerus yang merupakan satu kesatuan, aus diinduksikan dalam coil yang stasioner dan

24 kemudian mengisi kapasitor. Bila kapasitor telah diisi, sebuah isyarat tegangan untuk mengontrol timbulnya penyalaan dalam coil sensor dengan menggunakan pintu G dari SCR (Silicon Controlled Rectifier) untuk mengalirkan arus dari A ke K. Kemudian listrik yang dikumpulkan dalam kapasitor disalurkan pada suatu saat melalui SCR dalam lilitan primer dari coil. Arus ini membangkitkan tegangan yang lebih tinggi dalam lilitan sekunder, yang menyebabkan terjadinya loncatan bunga api pada busi Saat Penyalaan dan Pembakaran Pembakaran normal (sempurna), dimana bahan bakar dapat terbakar seluruhnya pada saat dan keadaan yang dikehendaki. Mekanisme pembakaran normal pada motor bensin dimulai pada saat terjadinya loncatan bunga api pada busi. Selanjutnya api membakar gas yang berada di sekelilingnya dan terus menjalar ke seluruh bagian sampai semua partikel gas terbakar habis. Pada saat gas bakar dikompresikan, tekanan dan suhunya naik, sehingga terjadi reaksi kimia dimana molekulmolekul hidrokarbon terurai dan tergabung dengan oksigen dan udara. Sebelum langkah kompresi berakhir terjadilah percikan api pada busi yang kemudian membakar gas tersebut. Dengan timbulnya energi panas, tekanan dan suhunya naik secara mendadak, maka torak terdorong menuju titik mati bawah Pembakaran tidak sempurna (tidak normal), adalah pembakaran dimana nyala api dari pembakaran ini tidak menyebar secara teratur dan merata sehingga menimbulkan masalah atau bahkan kerusakan pada bagian-bagian motor (Suyanto 1989 : 257). Pembakaran yang tidak sesuai dengan yang dikehendaki sehingga tekanan di dalam silinder tidak bisa dikontrol, sering disebut dengan autoignition. Autoignition adalah proses pembakaran dimana campuran bahan bakar tidak terbakar karena nyala api yang dihasilkan oleh busi melainkan oleh panas yang lain, misalnya panas akibat kompresi atau panas akibat arang yang membara dan sebagainya. Pembakaran tidak sempurna dapat mengakibatkan seperti knocking

25 dan pre-ignition yang memungkinkan timbulnya gangguan dan kesukarankesukaran dalam motor bensin (Suyanto 1989 : 259). Loncatan bunga api terjadi sesaat torak mencapai titik mati atas (TMA) sewaktu langkah kompresi. Saat loncatan bunga api biasanya dinyatakan dalam derajat sudut engkol sebelum torak mencapai titik mati atas. Pada pembakaran sempurna setelah penyalaan dimulai, api menjalar dari busi dan menyebar ke seluruh arah dalam waktu yang sebanding, dengan 20 derajat sudut engkol atau lebih untuk membakar campuran sampai mencapai tekanan maximum. Kecepatan api umumnya kurang dari m/detik. Panas pembakaran pada TMA diubah dalam bentuk kerja dengan efisiensi yang tinggi. Kelambatan waktu akan meurunkan efisiensi. Ini disebabkan rendahnya tekanan akibat pertambahan volume dan waktu penyebaran api yang terlalu lambat. Penyalaan yang terlalu cepat juga dapat menurunkan efisiensi sekalipun tekanannya tinggi akibat langkah kompresi. Jadi harus mempunyai waktu penyalaan yang pasti. Gambar 2.4 p-v diagram waktu pengapian Gambar 2.4 memperlihatkan waktu pengapian secara visual. Grafik 1-2- A-B-C adalah penyalaan yang terlambat dan grafik 1-A-B-B -B-C adalah penyalaan yang terlalu cepat. Dalam hal terakhir tekanan dan suhu menjadi tinggi antara B dan B, jadi kehilangan panas dan gesekan menjadi lebih besar dari biasanya.

26 2.6 Generator Set Genset atau kepanjangan dari generator set adalah sebuah perangkat yang berfungsi menghasilkan daya listrik. Disebut sebagai generator set dengan pengertian adalah satu set peralatan gabungan dari dua perangkat berbeda yaitu engine dan generator atau alternator. Engine sebagai perangkat pemutar sedangkan generator atau alternator sebagai perangkat pembangkit listrik. Engine dapat berupa perangkat mesin diesel berbahan bakar solar atau mesin berbahan bakar bensin, sedangkan generator atau alternator merupakan kumparan atau gulungan tembaga yang terdiri dari stator ( kumparan statis ) dan rotor (kumparan berputar). Dalam ilmu fisikia yang sederhana dapat dijelaskan bahwa engine memutar rotor pada generator sehingga timbul medan magnet pada kumparan stator generator, medan magnit yang timbul pada stator dan berinteraksi dengan rotor yang berputar akan menghasilkan arus listrik sesuai hukum Lorentz. Gambar 2.5 Generator Set Arus listrik yang dihasilkan oleh generator akan memiliki perbedaan tegangan di antara kedua kutub generatornya sehingga apabila dihubungkan dengan beban akan menghasilkan daya listrik atau dalam rumusan fisika dapat ditulis : Dimana : P = V x I....(2.14)

27 P = daya (Watt) V= Tegangan (Volt) I = Arus ( Ampere) Generator set dapat dibedakan dari jenis mesin penggeraknya, dimana dikenal tipe-tipe mesin yaitu mesin diesel dan mesin non diesel /bensin. Mesin diesel dikenali dari bahan bakarnya berupa solar, sedangkan mesin non diesel berbahan bakar bensin premium. Di pasaran, generatorset set dengan mesin non diesel atau berbahan bakar premium biasa diaplikasikan pada genset berkapasitas kecil atau dalam kapasitas maksimum VA atau 10 kva, sedangkan genset diesel berbahan bakar solar diaplikasikan pada genset berkapasitas > 10 kva. Hal ini terkait dengan tenaga yang dihasilkan oleh mesin diesel lebih besar daripada mesin non diesel, dimana cara kerja pembakaran mesin diesel yang lebih sederhana yaitu tanpa busi, lebih hemat dalam pemeliharaan, lebih responsif dan bertenaga. Selain itu untuk aplikasi industri dimana bahan bakar diesel (solar) lebih murah daripada bensin (gasoline). Dalam aplikasi dijumpai bahwa generator set terdiri dari generator set 1 phasa atau 3 phasa. Pengertian 1 phasa atau 3 phasa adalah merujuk pada kapasitas tegangan yang dihasilkan oleh generator set tersebut. Tegangan 1 phasa artinya tegangan yang dibentuk dari kutub L yang mengandung arus dengan kutub N yang tidak berarus, atau berarus No.l atau sering dikenal sebagai Arde atau Ground. Sedangkan tegangan 3 phase dibentuk dari dua kutub yang bertegangan. Genset tiga phase menghasilkan tiga kali kapasitas genset 1 phase. Pada sistem kelistrikan PLN, kapasitas 3 phase yang dihasilkan untuk aplikasi rumah tangga adalah 380 Volt, sedangkan kapasitas 1 phase adalah 220 Volt.

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Motor Bensin Motor bensin yang mengerakkan mobil penumpang, truk, sepeda motor, skuter, dan jenis kendaraan lain saat ini merupakan perkembangan dan perbaikan mesin yang sejak

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Bahan Bakar Diesel Bahan bakar diesel yang sering disebut solar (light oil) merupakan suatu campuran hidrokarbon yang diperoleh dari penyulingan minyak mentah pada temperatur

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Landasan Teori Apabila meninjau mesin apa saja, pada umumnya adalah suatu pesawat yang dapat mengubah bentuk energi tertentu menjadi kerja mekanik. Misalnya mesin listrik,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Motor Bakar. Motor bakar torak merupakan internal combustion engine, yaitu mesin yang fluida kerjanya dipanaskan dengan pembakaran bahan bakar di ruang mesin tersebut. Fluida

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 PERFORMANSI MOTOR DIESEL Motor diesel adalah jenis khusus dari mesin pembakaran dalam. Karakteristik utama dari mesin diesel yang membedakannya dari motor bakar lain terletak

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Hidrogen Hidrogen adalah unsur kimia terkecil karena hanya terdiri dari satu proton dalam intinya. Simbol hidrogen adalah H, dan nomor atom hidrogen adalah 1. Memiliki berat

Lebih terperinci

Jika diperhatikan lebih jauh terdapat banyak perbedaan antara motor bensin dan motor diesel antara lain:

Jika diperhatikan lebih jauh terdapat banyak perbedaan antara motor bensin dan motor diesel antara lain: BAB 2 TINJAUAN PUSTAKA 2.1 Motor diesel Motor diesel adalah jenis khusus dari mesin pembakaran dalam karakteristik utama pada mesin diesel yang membedakannya dari motor bakar yang lain, terletak pada metode

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Bahan Bakar Diesel Bahan bakar diesel yang sering disebut solar (light oil) merupakan suatu campuran hidrokarbon yang diperoleh dari penyulingan minyak mentah pada temperatur

Lebih terperinci

LAMPIRAN A PERHITUNGAN DENGAN MANUAL. data data dari tabel hasil pengujian performansi motor diesel. sgf = 0,845 V s =

LAMPIRAN A PERHITUNGAN DENGAN MANUAL. data data dari tabel hasil pengujian performansi motor diesel. sgf = 0,845 V s = LAMPIRAN A PERHITUNGAN DENGAN MANUAL Perhitungan performansi motor diesel berbahan bakar biofuel vitamin engine + solar berikut diselesaikan berdasarkan literatur 15, dengan mengambil variable data data

Lebih terperinci

BAB II TINJAUAN PUSTAKA. seperti mesin uap, turbin uap disebut motor bakar pembakaran luar (External

BAB II TINJAUAN PUSTAKA. seperti mesin uap, turbin uap disebut motor bakar pembakaran luar (External BAB II TINJAUAN PUSTAKA 2.1 Motor Bakar Torak Motor bakar torak merupakan salah satu jenis penggerak mula yang mengubah energy thermal menjadi energy mekanik. Energy thermal tersebut diperoleh dari proses

Lebih terperinci

Denny Haryadhi N Motor Bakar / Tugas 2. Karakteristik Motor 2 Langkah dan 4 Langkah, Motor Wankle, serta Siklus Otto dan Diesel

Denny Haryadhi N Motor Bakar / Tugas 2. Karakteristik Motor 2 Langkah dan 4 Langkah, Motor Wankle, serta Siklus Otto dan Diesel Karakteristik Motor 2 Langkah dan 4 Langkah, Motor Wankle, serta Siklus Otto dan Diesel A. Karakteristik Motor 2 Langkah dan 4 Langkah 1. Prinsip Kerja Motor 2 Langkah dan 4 Langkah a. Prinsip Kerja Motor

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pengertian Motor Bakar Motor bakar adalah motor penggerak mula yang pada prinsipnya adalah sebuah alat yang mengubah energi kimia menjadi energi panas dan diubah ke energi

Lebih terperinci

BAB II TINJAUAN LITERATUR

BAB II TINJAUAN LITERATUR BAB II TINJAUAN LITERATUR Motor bakar merupakan motor penggerak yang banyak digunakan untuk menggerakan kendaraan-kendaraan bermotor di jalan raya. Motor bakar adalah suatu mesin yang mengubah energi panas

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1. Tinjauan Pustaka Nurdianto dan Ansori, (2015), meneliti pengaruh variasi tingkat panas busi terhadap performa mesin dan emisi gas buang sepeda motor 4 tak.

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tinjauan Pustaka Marlindo (2012) melakukan penelitian bahwa CDI Racing dan koil racing menghasilkan torsi dan daya lebih besar dari CDI dan Koil standar pada

Lebih terperinci

Gambar 1. Motor Bensin 4 langkah

Gambar 1. Motor Bensin 4 langkah PENGERTIAN SIKLUS OTTO Siklus Otto adalah siklus ideal untuk mesin torak dengan pengapian-nyala bunga api pada mesin pembakaran dengan sistem pengapian-nyala ini, campuran bahan bakar dan udara dibakar

Lebih terperinci

BAB II DASAR TEORI 2.1 Motor Bakar 3.2 Hukum Utama Termodinamika Penjelasan Umum

BAB II DASAR TEORI 2.1 Motor Bakar 3.2 Hukum Utama Termodinamika Penjelasan Umum 4 BAB II DASAR TEORI 2.1 Motor Bakar Motor bakar adalah sebuah mekanisme yang menstransformasikan energi panas menjadi energi mekanik melalui sebuah konstruksi mesin. Perubahan, energi panas menjadi energi

Lebih terperinci

PERENCANAAN MOTOR BAKAR DIESEL PENGGERAK POMPA

PERENCANAAN MOTOR BAKAR DIESEL PENGGERAK POMPA TUGAS AKHIR PERENCANAAN MOTOR BAKAR DIESEL PENGGERAK POMPA Disusun : JOKO BROTO WALUYO NIM : D.200.92.0069 NIRM : 04.6.106.03030.50130 JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SURAKARTA

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II PENDAHULUAN BAB II LANDASAN TEORI 2.1 Motor Bakar Bensin Motor bakar bensin adalah mesin untuk membangkitkan tenaga. Motor bakar bensin berfungsi untuk mengubah energi kimia yang diperoleh dari

Lebih terperinci

KINERJA GENSET TYPE EC 1500a MENGGUNAKAN BAHAN PREMIUM DAN LPG PENGARUHNYA TERHADAP TEGANGAN YANG DIHASILKAN

KINERJA GENSET TYPE EC 1500a MENGGUNAKAN BAHAN PREMIUM DAN LPG PENGARUHNYA TERHADAP TEGANGAN YANG DIHASILKAN KINERJA GENSET TYPE EC 1500a MENGGUNAKAN BAHAN PREMIUM DAN LPG PENGARUHNYA TERHADAP TEGANGAN YANG DIHASILKAN BAKAR Warsono Rohmat Subodro (UNU Surakarta, rohmadsubodro@yahoo.com) ABSTRAK Tujuan penelitian

Lebih terperinci

PERFORMANSI MESIN SEPEDA MOTOR SATU SILINDER BERBAHAN BAKAR PREMIUM DAN PERTAMAX PLUS DENGAN MODIFIKASI RASIO KOMPRESI

PERFORMANSI MESIN SEPEDA MOTOR SATU SILINDER BERBAHAN BAKAR PREMIUM DAN PERTAMAX PLUS DENGAN MODIFIKASI RASIO KOMPRESI PERFORMANSI MESIN SEPEDA MOTOR SATU SILINDER BERBAHAN BAKAR PREMIUM DAN PERTAMAX PLUS DENGAN MODIFIKASI RASIO KOMPRESI Robertus Simanungkalit 1,Tulus B. Sitorus 2 1,2, Departemen Teknik Mesin, Fakultas

Lebih terperinci

Pengaruh Kerenggangan Celah Busi terhadap Konsumsi Bahan Bakar pada Motor Bensin

Pengaruh Kerenggangan Celah Busi terhadap Konsumsi Bahan Bakar pada Motor Bensin Jurnal Kompetensi Teknik Vol. 4, No. 1, November 212 1 Pengaruh Celah Busi terhadap Konsumsi Bahan Bakar pada Motor Bensin Syahril Machmud 1, Untoro Budi Surono 2, Yokie Gendro Irawan 3 1, 2 Jurusan Teknik

Lebih terperinci

BAB II TEORI DASAR. Mesin diesel pertama kali ditemukan pada tahun 1893 oleh seorang berkebangsaan

BAB II TEORI DASAR. Mesin diesel pertama kali ditemukan pada tahun 1893 oleh seorang berkebangsaan BAB II TEORI DASAR 2.1. Sejarah Mesin Diesel Mesin diesel pertama kali ditemukan pada tahun 1893 oleh seorang berkebangsaan Jerman bernama Rudolf Diesel. Mesin diesel sering juga disebut sebagai motor

Lebih terperinci

PENGARUH PEMAKAIAN ALAT PEMANAS BAHAN BAKAR TERHADAP PEMAKAIAN BAHAN BAKAR DAN EMISI GAS BUANG MOTOR DIESEL MITSUBISHI MODEL 4D34-2A17 Indartono 1 dan Murni 2 ABSTRAK Efisiensi motor diesel dipengaruhi

Lebih terperinci

Spark Ignition Engine

Spark Ignition Engine Spark Ignition Engine Fiqi Adhyaksa 0400020245 Gatot E. Pramono 0400020261 Gerry Ardian 040002027X Handoko Arimurti 0400020288 S. Ghani R. 0400020539 Transformasi Energi Pembakaran Siklus Termodinamik

Lebih terperinci

PENGARUH PERUBAHAN SAAT PENYALAAN (IGNITION TIMING) TERHADAP PRESTASI MESIN PADA SEPEDA MOTOR 4 LANGKAH DENGAN BAHAN BAKAR LPG

PENGARUH PERUBAHAN SAAT PENYALAAN (IGNITION TIMING) TERHADAP PRESTASI MESIN PADA SEPEDA MOTOR 4 LANGKAH DENGAN BAHAN BAKAR LPG PENGARUH PERUBAHAN SAAT PENYALAAN (IGNITION TIMING) TERHADAP PRESTASI MESIN PADA SEPEDA MOTOR 4 LANGKAH DENGAN BAHAN BAKAR LPG Bambang Yunianto Jurusan Teknik Mesin Fakultas Teknik Universitas Diponegoro

Lebih terperinci

BAB II DASAR TEORI. dipakai saat ini. Sedangkan mesin kalor adalah mesin yang menggunakan

BAB II DASAR TEORI. dipakai saat ini. Sedangkan mesin kalor adalah mesin yang menggunakan BAB II DASAR TEORI 2.1 Pengertian Umum Motor Bakar Motor bakar merupakan salah satu jenis mesin kalor yang banyak dipakai saat ini. Sedangkan mesin kalor adalah mesin yang menggunakan energi panas untuk

Lebih terperinci

II. TEORI DASAR. kelompokaan menjadi dua jenis pembakaran yaitu pembakaran dalam (Internal

II. TEORI DASAR. kelompokaan menjadi dua jenis pembakaran yaitu pembakaran dalam (Internal II. TEORI DASAR A. Motor Bakar Motor bakar adalah suatu pesawat kalor yang mengubah energi panas menjadi energi mekanis untuk melakukan kerja. Mesin kalor secara garis besar di kelompokaan menjadi dua

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Tinjauan Pustaka Heru Setiyanto (2007), meneliti tentang pengaruh modifikasi katup buluh dan variasi bahan bakar terhadap unjuk kerja mesin pada motor bensin dua langkah 110

Lebih terperinci

PENGARUH PENGGUNAAN ALAT PENGHEMAT BAHAN BAKAR BERBASIS ELEKTROMAGNETIK TERHADAP UNJUK KERJA MESIN DIESEL ABSTRAK

PENGARUH PENGGUNAAN ALAT PENGHEMAT BAHAN BAKAR BERBASIS ELEKTROMAGNETIK TERHADAP UNJUK KERJA MESIN DIESEL ABSTRAK PENGARUH PENGGUNAAN ALAT PENGHEMAT BAHAN BAKAR BERBASIS ELEKTROMAGNETIK TERHADAP UNJUK KERJA MESIN DIESEL Didi Eryadi 1), Toni Dwi Putra 2), Indah Dwi Endayani 3) ABSTRAK Seiring dengan pertumbuhan dunia

Lebih terperinci

MODIFIKASI MESIN DIESEL SATU SILINDER BERBAHAN BAKAR SOLAR MENJADI LPG DENGAN MENGGUNAKAN SISTEM GAS MIXER

MODIFIKASI MESIN DIESEL SATU SILINDER BERBAHAN BAKAR SOLAR MENJADI LPG DENGAN MENGGUNAKAN SISTEM GAS MIXER MODIFIKASI MESIN DIESEL SATU SILINDER BERBAHAN BAKAR SOLAR MENJADI LPG DENGAN MENGGUNAKAN SISTEM GAS MIXER Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik ROLAND SIHOMBING

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Solar Menurut Syarifuddin (2012), solar sebagai bahan bakar yang berasal dari minyak bumi yang diproses di tempat pengilangan minyak dan dipisah-pisahkan hasilnya berdasarkan

Lebih terperinci

UJI PERFORMANSI MESIN OTTO SATU SILINDER DENGAN BAHAN BAKAR PREMIUM DAN PERTAMAX PLUS

UJI PERFORMANSI MESIN OTTO SATU SILINDER DENGAN BAHAN BAKAR PREMIUM DAN PERTAMAX PLUS UJI PERFORMANSI MESIN OTTO SATU SILINDER DENGAN BAHAN BAKAR PREMIUM DAN PERTAMAX PLUS Rio Arinedo Sembiring 1, Himsar Ambarita 2. Email: rio_gurky@yahoo.com 1,2 Jurusan Teknik Mesin, Universitas Sumatera

Lebih terperinci

PENGARUH PENAMBAHAN ADITIF PADA PREMIUM DENGAN VARIASI KONSENTRASI TERHADAP UNJUK KERJA ENGINE PUTARAN VARIABEL KARISMA 125 CC

PENGARUH PENAMBAHAN ADITIF PADA PREMIUM DENGAN VARIASI KONSENTRASI TERHADAP UNJUK KERJA ENGINE PUTARAN VARIABEL KARISMA 125 CC PENGARUH PENAMBAHAN ADITIF PADA PREMIUM DENGAN VARIASI KONSENTRASI TERHADAP UNJUK KERJA ENGINE PUTARAN VARIABEL KARISMA 125 CC Riza Bayu K. 2106.100.036 Dosen Pembimbing : Prof. Dr. Ir. H.D. Sungkono K,M.Eng.Sc

Lebih terperinci

PENGARUH PENGGUNAAN BAHAN BAKAR SOLAR, BIOSOLAR DAN PERTAMINA DEX TERHADAP PRESTASI MOTOR DIESEL SILINDER TUNGGAL

PENGARUH PENGGUNAAN BAHAN BAKAR SOLAR, BIOSOLAR DAN PERTAMINA DEX TERHADAP PRESTASI MOTOR DIESEL SILINDER TUNGGAL Jurnal Konversi Energi dan Manufaktur UNJ, Edisi terbit II Oktober 217 Terbit 64 halaman PENGARUH PENGGUNAAN BAHAN BAKAR SOLAR, BIOSOLAR DAN PERTAMINA DEX TERHADAP PRESTASI MOTOR DIESEL SILINDER TUNGGAL

Lebih terperinci

PENGARUH PENGGUNAAN CETANE PLUS DIESEL DENGAN BAHAN BAKAR SOLAR TERHADAP PERFORMANSI MOTOR DIESEL

PENGARUH PENGGUNAAN CETANE PLUS DIESEL DENGAN BAHAN BAKAR SOLAR TERHADAP PERFORMANSI MOTOR DIESEL PENGARUH PENGGUNAAN CETANE PLUS DIESEL DENGAN BAHAN BAKAR SOLAR TERHADAP PERFORMANSI MOTOR DIESEL SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik SABAM NUGRAHA TOBING

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 4 BAB 2 TINJAUAN PUSTAKA 2.1 Motor Bakar Salah satu jenis penggerak mula yang banyak dipakai adalah mesin kalor, yaitu mesin yang menggunakan energi thermal untuk melakukan kerja mekanik atau yang mengubah

Lebih terperinci

PRINSIP KERJA MOTOR DAN PENGAPIAN

PRINSIP KERJA MOTOR DAN PENGAPIAN PRINSIP KERJA MOTOR DAN PENGAPIAN KOMPETENSI 1. Menjelaskan prinsip kerja motor 2 tak dan motor 4 tak. 2. Menjelaskan proses pembakaran pada motor bensin 3. Menjelaskan dampak saat pengapian yang tidak

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI A. SEJARAH MOTOR DIESEL Pada tahun 1893 Dr. Rudolf Diesel memulai karier mengadakan eksperimen sebuah motor percobaan. Setelah banyak mengalami kegagalan dan kesukaran, mak akhirnya

Lebih terperinci

Pengaruh Suhu dan Tekanan Udara Masuk Terhadap Kinerja Motor Diesel Tipe 4 JA 1

Pengaruh Suhu dan Tekanan Udara Masuk Terhadap Kinerja Motor Diesel Tipe 4 JA 1 Pengaruh Suhu dan Tekanan Udara Masuk Terhadap Kinerja Motor Diesel Tipe 4 JA 1 (Philip Kristanto) Pengaruh Suhu dan Tekanan Udara Masuk Terhadap Kinerja Motor Diesel Tipe 4 JA 1 Philip Kristanto Dosen

Lebih terperinci

BAB III PERENCANAAN DAN PERHITUNGAN

BAB III PERENCANAAN DAN PERHITUNGAN BAB III PERENCANAAN DAN PERHITUNGAN 3.1. Pengertian Perencanaan dan perhitungan diperlukan untuk mengetahui kinerja dari suatu mesin (Toyota Corolla 3K). apakah kemapuan kerja dari mesin tersebut masih

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Bahan Bakar Bahan bakar yang dipergunakan motor bakar dapat diklasifikasikan dalam tiga kelompok yakni : berwujud gas, cair dan padat (Surbhakty 1978 : 33) Bahan bakar (fuel)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Motor Bakar Motor bakar adalah suatu tenaga atau bagian kendaran yang mengubah energi termal menjadi energi mekanis. Energi itu sendiri diperoleh dari proses pembakaran. Pada

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Definisi Motor Bakar Motor bakar adalah mesin atau peswat tenaga yang merupakan mesin kalor dengan menggunakan energi thermal dan potensial untuk melakukan kerja mekanik dengan

Lebih terperinci

Abstrak. TUJUAN PENELITIAN Tujuan penelitian adalah untuk mengetahui pengaruh keausan ring piston terhadap kinerja mesin diesel

Abstrak. TUJUAN PENELITIAN Tujuan penelitian adalah untuk mengetahui pengaruh keausan ring piston terhadap kinerja mesin diesel PENGARUH KEAUSAN RING PISTON TERHADAP KINERJA MESIN DiditSumardiyanto, Syahrial Anwar FakultasTeknikJurusanTeknikMesin Universitas 17 Agustus 1945 Jakarta Abstrak Penelitianinidilakukanuntukmengetahuipengaruhkeausan

Lebih terperinci

Upaya Peningkatan Unjuk Kerja Mesin dengan Menggunakan Sistem Pengapian Elektronis pada Kendaraan Bermotor

Upaya Peningkatan Unjuk Kerja Mesin dengan Menggunakan Sistem Pengapian Elektronis pada Kendaraan Bermotor Jurnal Ilmiah Teknik Mesin CakraM Vol. 3 No. 1, April 2009 (87-92) Upaya Peningkatan Unjuk Kerja Mesin dengan Menggunakan Pengapian Elektronis pada Kendaraan Bermotor I Wayan Bandem Adnyana Jurusan Teknik

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA

BAB IV PENGUJIAN DAN ANALISA BAB IV PENGUJIAN DAN ANALISA 4.1 Identifikasi Kendaraan Gambar 4.1 Yamaha RX Z Spesifikasi Yamaha RX Z Mesin : - Tipe : 2 Langkah, satu silinder - Jenis karburator : karburator jenis piston - Sistem Pelumasan

Lebih terperinci

BAB IV PENGUJIAN ALAT

BAB IV PENGUJIAN ALAT 25 BAB IV PENGUJIAN ALAT Pembuatan alat pengukur sudut derajat saat pengapian pada mobil bensin ini diharapkan nantinya bisa digunakan bagi para mekanik untuk mempermudah dalam pengecekan saat pengapian

Lebih terperinci

BAB II DASAR TEORI 2.1. Motor Bensin Penjelasan Umum

BAB II DASAR TEORI 2.1. Motor Bensin Penjelasan Umum 4 BAB II DASAR TEORI 2.1. Motor Bensin 2.1.1. Penjelasan Umum Motor bensin merupakan suatu motor yang menghasilkan tenaga dari proses pembakaran bahan bakar di dalam ruang bakar. Karena pembakaran ini

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pengertian Umum Motor Bensin Motor adalah gabungan dari alat-alat yang bergerak (dinamis) yang bila bekerja dapat menimbulkan tenaga/energi. Sedangkan pengertian motor bakar

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Motor Bensin Motor bensin adalah suatu motor yang menggunakan bahan bakar bensin. Sebelum bahan bakar ini masuk ke dalam ruang silinder terlebih dahulu terjadi percampuran bahan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Motor Bakar Menurut hakikatnya, mesin pada umumnya adalah suatu pesawat yang dapat merubah bentuk energi tertentu menjadi kerja mekanik. Misalnya, mesin listrik merupakan sebuah

Lebih terperinci

BAB III TINJAUAN PUSTAKA

BAB III TINJAUAN PUSTAKA 9 BAB III TINJAUAN PUSTAKA 3.1 PENDAHULUAN Genset atau kepanjangan dari generator set adalah sebuah perangkat yang berfungsi menghasilkan daya listrik. Disebut sebagai generator set dengan pengertian adalah

Lebih terperinci

PENGARUH VARIASI PERBANDINGAN BAHAN BAKAR SOLAR-BIODIESEL (MINYAK JELANTAH) TERHADAP UNJUK KERJA PADA MOTOR DIESEL

PENGARUH VARIASI PERBANDINGAN BAHAN BAKAR SOLAR-BIODIESEL (MINYAK JELANTAH) TERHADAP UNJUK KERJA PADA MOTOR DIESEL PENGARUH VARIASI PERBANDINGAN BAHAN BAKAR SOLAR-BIODIESEL (MINYAK JELANTAH) TERHADAP UNJUK KERJA PADA MOTOR DIESEL SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memproleh Gelar Sarjana Teknik IKHSAN

Lebih terperinci

BAB II DASAR TEORI. Motor adalah gabungan dari alat-alat yang bergerak yang bila bekerja dapat

BAB II DASAR TEORI. Motor adalah gabungan dari alat-alat yang bergerak yang bila bekerja dapat BAB II DASAR TEORI 2.1. Tinjauan Umum 2.1.1. Motor Bakar Motor adalah gabungan dari alat-alat yang bergerak yang bila bekerja dapat menimbulkan tenaga/ energi. Sedangkan pengertian motor bakar adalah suatu

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Rumusan Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Rumusan Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Dalam perkembangan teknologi yang terjadi saat ini banyak sekali inovasi baru yang tercipta khususnya di dalam dunia otomotif. Dalam perkembanganya banyak orang yang

Lebih terperinci

Imam Mahir. Jurusan Teknik Mesin, Fakultas Teknik, Universitas Negeri Jakarta Jalan Rawamangun Muka, Jakarta

Imam Mahir. Jurusan Teknik Mesin, Fakultas Teknik, Universitas Negeri Jakarta Jalan Rawamangun Muka, Jakarta Pengaruh Sistem Pengapian Capasitive Discharge Ignition(CDI) dengan Sumber Arus yang Berbeda Terhadap Kandungan Karbon Monoksida (CO) Gas Buang Sepeda Motor 110 cc Imam Mahir Jurusan Teknik Mesin, Fakultas

Lebih terperinci

BAB 3 PROSES-PROSES MESIN KONVERSI ENERGI

BAB 3 PROSES-PROSES MESIN KONVERSI ENERGI BAB 3 PROSES-PROSES MESIN KONVERSI ENERGI Motor penggerak mula adalah suatu alat yang merubah tenaga primer menjadi tenaga sekunder, yang tidak diwujudkan dalam bentuk aslinya, tetapi diwujudkan dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1.Tinjauan Pustaka Adita (2010) melakukan penelitian tentang pengaruh pemakaian CDI standar dan racing serta busi standard an busi racing terhadap kinerja motor

Lebih terperinci

Rencana Pembelajaran Kegiatan Mingguan (RPKPM).

Rencana Pembelajaran Kegiatan Mingguan (RPKPM). Rencana Pembelajaran Kegiatan Mingguan (RPKPM). Pertemuan ke Capaian Pembelajaran Topik (pokok, subpokok bahasan, alokasi waktu) Teks Presentasi Media Ajar Gambar Audio/Video Soal-tugas Web Metode Evaluasi

Lebih terperinci

FINONDANG JANUARIZKA L SIKLUS OTTO

FINONDANG JANUARIZKA L SIKLUS OTTO FINONDANG JANUARIZKA L 125060700111051 SIKLUS OTTO Siklus Otto adalah siklus thermodinamika yang paling banyak digunakan dalam kehidupan manusia. Mobil dan sepeda motor berbahan bakar bensin (Petrol Fuel)

Lebih terperinci

BAB I PENDAHULUAN. Motor bakar merupakan salah satu jenis penggerak mula. Prinsip kerja

BAB I PENDAHULUAN. Motor bakar merupakan salah satu jenis penggerak mula. Prinsip kerja 1 BAB I PENDAHULUAN 1.1 PENGERTIAN UMUM Motor bakar merupakan salah satu jenis penggerak mula. Prinsip kerja dari motor bakar bensin adalah perubahan dari energi thermal terjadi mekanis. Proses diawali

Lebih terperinci

MAKALAH THERMODINAMIKA DAN PENGGERAK AWAL PROSES SIKLUS DIESEL OLEH : NICOBEY SAHALA TUA NAIBAHO NPM : KK2 TEKNIK ELEKTRO

MAKALAH THERMODINAMIKA DAN PENGGERAK AWAL PROSES SIKLUS DIESEL OLEH : NICOBEY SAHALA TUA NAIBAHO NPM : KK2 TEKNIK ELEKTRO MAKALAH THERMODINAMIKA DAN PENGGERAK AWAL PROSES SIKLUS DIESEL OLEH : NICOBEY SAHALA TUA NAIBAHO NPM : 1424210152 KK2 TEKNIK ELEKTRO FAKULTAS TEKNIK ELEKTRO UNIVERSITAS PEMBANGUNAN PANCA BUDI MEDAN 2015

Lebih terperinci

MOTOR BAKAR TORAK. 3. Langkah Usaha/kerja (power stroke)

MOTOR BAKAR TORAK. 3. Langkah Usaha/kerja (power stroke) MOTOR BAKAR TORAK Motor bakar torak (piston) terdiri dari silinder yang dilengkapi dengan piston. Piston bergerak secara translasi (bolak-balik) kemudian oleh poros engkol dirubah menjadi gerakan berputar.

Lebih terperinci

PENGARUH FILTER UDARA PADA KARBURATOR TERHADAP UNJUK KERJA MESIN SEPEDA MOTOR

PENGARUH FILTER UDARA PADA KARBURATOR TERHADAP UNJUK KERJA MESIN SEPEDA MOTOR PENGARUH FILTER UDARA PADA KARBURATOR TERHADAP UNJUK KERJA MESIN SEPEDA MOTOR Naif Fuhaid 1) ABSTRAK Sepeda motor merupakan produk otomotif yang banyak diminati saat ini. Salah satu komponennya adalah

Lebih terperinci

SKRIPSI MOTOR BAKAR. Disusun Oleh: HERMANTO J. SIANTURI NIM:

SKRIPSI MOTOR BAKAR. Disusun Oleh: HERMANTO J. SIANTURI NIM: SKRIPSI MOTOR BAKAR UJI EKSPERIMENTAL PENGARUH PENGGUNAAN CAMPURAN BAHAN BAKAR DIMETIL ESTER [B 06] DENGAN BAHAN BAKAR SOLAR TERHADAP UNJUK KERJA MESIN DIESEL Disusun Oleh: HERMANTO J. SIANTURI NIM: 060421019

Lebih terperinci

BAB II LANDASAN TEORI. Sebelum bahan bakar ini terbakar didalam silinder terlebih dahulu dijadikan gas

BAB II LANDASAN TEORI. Sebelum bahan bakar ini terbakar didalam silinder terlebih dahulu dijadikan gas BAB II LANDASAN TEORI 2.1 Motor Bensin Motor bensin adalah suatu motor yang mengunakan bahan bakar bensin. Sebelum bahan bakar ini terbakar didalam silinder terlebih dahulu dijadikan gas yang kemudian

Lebih terperinci

Uji Eksperimental Pertamina DEX dan Pertamina DEX + Zat Aditif pada Engine Diesel Putaran Konstan KAMA KM178FS

Uji Eksperimental Pertamina DEX dan Pertamina DEX + Zat Aditif pada Engine Diesel Putaran Konstan KAMA KM178FS Uji Eksperimental Pertamina DEX dan Pertamina DEX + Zat Aditif pada Engine Diesel Putaran Konstan KAMA KM178FS ANDITYA YUDISTIRA 2107100124 Dosen Pembimbing : Prof. Dr. Ir. H D Sungkono K, M.Eng.Sc Kemajuan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI 2.1 PENDAHULUAN Sistem Pengisian Konvensional Pembangkit listrik pada alternator menggunakan prinsip induksi yaitu perpotongan antara penghantar dengan garis-garis gaya magnet.

Lebih terperinci

BAB II LANDASAN TEORI. Sebelum bahan bakar ini terbakar didalam silinder terlebih dahulu dijadikan gas

BAB II LANDASAN TEORI. Sebelum bahan bakar ini terbakar didalam silinder terlebih dahulu dijadikan gas BAB II LANDASAN TEORI 2.1 Motor Bensin Motor bensin adalah suatu motor yang mengunakan bahan bakar bensin. Sebelum bahan bakar ini terbakar didalam silinder terlebih dahulu dijadikan gas yang kemudian

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN PENINGKATAN PERFORMA MESIN YAMAHA CRYPTON. Panjang langkah (L) : 59 mm = 5,9 cm. Jumlah silinder (z) : 1 buah

BAB IV ANALISA DAN PERHITUNGAN PENINGKATAN PERFORMA MESIN YAMAHA CRYPTON. Panjang langkah (L) : 59 mm = 5,9 cm. Jumlah silinder (z) : 1 buah BAB IV ANALISA DAN PERHITUNGAN PENINGKATAN PERFORMA MESIN YAMAHA CRYPTON 4.1 Analisa Peningkatan Performa Dalam perhitungan perlu diperhatikan hal-hal yang berkaitan dengan kamampuan mesin, yang meliputi

Lebih terperinci

PENGARUH PORTING SALURAN INTAKE DAN EXHAUST TERHADAP KINERJA MOTOR 4 LANGKAH 200 cc BERBAHAN BAKAR PREMIUM DAN PERTAMAX

PENGARUH PORTING SALURAN INTAKE DAN EXHAUST TERHADAP KINERJA MOTOR 4 LANGKAH 200 cc BERBAHAN BAKAR PREMIUM DAN PERTAMAX PENGARUH PORTING SALURAN INTAKE DAN EXHAUST TERHADAP KINERJA MOTOR 4 LANGKAH 200 cc BERBAHAN BAKAR PREMIUM DAN PERTAMAX THE INFLUENCE OF INDUCT PORTING INTAKE AND EXHAUST FOR THE 4 STROKES 200 cc PERFORMANCE

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 MOTOR BAKAR Jika meninjau jenis-jenis mesin, pada umumnya adalah suatu pesawat yang dapat merubah bentuk energi tertentu menjadi kerja mekanik. Misalnya, mesin listrik merupakan

Lebih terperinci

UJI PERFORMANSI MESIN DIESEL BERBAHAN BAKAR LPG DENGAN MODIFIKASI SISTEM PEMBAKARAN DAN MENGGUNAKAN KONVERTER KIT SEDERHANA

UJI PERFORMANSI MESIN DIESEL BERBAHAN BAKAR LPG DENGAN MODIFIKASI SISTEM PEMBAKARAN DAN MENGGUNAKAN KONVERTER KIT SEDERHANA UJI PERFORMANSI MESIN DIESEL BERBAHAN BAKAR LPG DENGAN MODIFIKASI SISTEM PEMBAKARAN DAN MENGGUNAKAN KONVERTER KIT SEDERHANA Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik

Lebih terperinci

Oleh: Nuryanto K BAB I PENDAHULUAN

Oleh: Nuryanto K BAB I PENDAHULUAN Pengaruh penggantian koil pengapian sepeda motor dengan koil mobil dan variasi putaran mesin terhadap konsumsi bahan bakar pada sepeda motor Honda Supra x tahun 2002 Oleh: Nuryanto K. 2599038 BAB I PENDAHULUAN

Lebih terperinci

BAB II TEORI DASAR Komponen sistem pengapian dan fungsinya

BAB II TEORI DASAR Komponen sistem pengapian dan fungsinya BAB II TEORI DASAR 2.1 Teori Dasar Pengapian Sistem pengapian pada kendaraan Honda Supra X 125 (NF-125 SD) menggunakan sistem pengapian CDI (Capasitor Discharge Ignition) yang merupakan penyempurnaan dari

Lebih terperinci

Materi. Motor Bakar Turbin Uap Turbin Gas Generator Uap/Gas Siklus Termodinamika

Materi. Motor Bakar Turbin Uap Turbin Gas Generator Uap/Gas Siklus Termodinamika Penggerak Mula Materi Motor Bakar Turbin Uap Turbin Gas Generator Uap/Gas Siklus Termodinamika Motor Bakar (Combustion Engine) Alat yang mengubah energi kimia yang ada pada bahan bakar menjadi energi mekanis

Lebih terperinci

BAB III PROSES PEMBAKARAN

BAB III PROSES PEMBAKARAN 37 BAB III PROSES PEMBAKARAN Dalam pengoperasian boiler, prestasi yang diharapkan adalah efesiensi boiler tersebut yang dinyatakan dengan perbandingan antara kalor yang diterima air / uap air terhadap

Lebih terperinci

PENGARUH VOLUME RUANG BAKAR SEPEDA MOTOR TERHADAP PRESTASI MESIN SEPEDA MOTOR 4-LANGKAH

PENGARUH VOLUME RUANG BAKAR SEPEDA MOTOR TERHADAP PRESTASI MESIN SEPEDA MOTOR 4-LANGKAH TURBO Vol. 4 No. 2. 205 p-issn: 230-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/ummojs/index.php/turbo PENGARUH VOLUME RUANG BAKAR SEPEDA MOTOR TERHADAP

Lebih terperinci

Bagaimana perbandingan unjuk kerja motor diesel bahan bakar minyak (solar) dengan dual fuel motor diesel bahan bakar minyak (solar) dan CNG?

Bagaimana perbandingan unjuk kerja motor diesel bahan bakar minyak (solar) dengan dual fuel motor diesel bahan bakar minyak (solar) dan CNG? PERUMUSAN MASALAH Masalah yang akan dipecahkan dalam studi ini adalah : Bagaimana perbandingan unjuk kerja motor diesel bahan bakar minyak (solar) dengan dual fuel motor diesel bahan bakar minyak (solar)

Lebih terperinci

ANALISIS MESIN PENGGERAK PEMBANGKIT LISTRIK DENGAN BAHAN BAKAR BIOGAS. Tulus Subagyo 1

ANALISIS MESIN PENGGERAK PEMBANGKIT LISTRIK DENGAN BAHAN BAKAR BIOGAS. Tulus Subagyo 1 ANALISIS MESIN PENGGERAK PEMBANGKIT LISTRIK DENGAN BAHAN BAKAR BIOGAS Tulus Subagyo 1 Abstrak: Pembangkit listrik tenaga biogas Bahan bakar utama dari motor penggerak untuk menggerakkan generator adalah

Lebih terperinci

K BAB I PENDAHULUAN

K BAB I PENDAHULUAN Pengaruh variasi resistansi ballast resistor cdi dan variasi putaran mesin terhadap perubahan derajat pengapian pada sepeda motor honda astrea grand tahun 1997 Oleh: Wihardi K. 2599051 BAB I PENDAHULUAN

Lebih terperinci

Standby Power System (GENSET- Generating Set)

Standby Power System (GENSET- Generating Set) DTG1I1 Standby Power System (- Generating Set) By Dwi Andi Nurmantris 1. Rectifiers 2. Battery 3. Charge bus 4. Discharge bus 5. Primary Distribution systems 6. Secondary Distribution systems 7. Voltage

Lebih terperinci

2 TINJAUAN PUSTAKA. Kapal Perikanan

2 TINJAUAN PUSTAKA. Kapal Perikanan dengan + 4,2 kg LPG s.d Rp 36.000,- yang setara dengan + 8 kg LPG dalam satu kali tripnya. Melihat hal tersebut, perlu dilakukan penelitian mengenai aplikasi LPG pada motor bakar bensin 6,5 HP sebagai

Lebih terperinci

PENGARUH PERUBAHAN SUDUT PENYALAAN (IGNITION TIME) TERHADAP EMSISI GAS BUANG PADA MESIN SEPEDA MOTOR 4 (EMPAT) LANGKAH DENGAN BAHAN BAKAR LPG

PENGARUH PERUBAHAN SUDUT PENYALAAN (IGNITION TIME) TERHADAP EMSISI GAS BUANG PADA MESIN SEPEDA MOTOR 4 (EMPAT) LANGKAH DENGAN BAHAN BAKAR LPG PENGARUH PERUBAHAN SUDUT PENYALAAN (IGNITION TIME) TERHADAP EMSISI GAS BUANG PADA MESIN SEPEDA MOTOR 4 (EMPAT) LANGKAH DENGAN BAHAN BAKAR LPG Bambang Yunianto Magister Teknik, Fakultas Teknik Universitas

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. Setelah melakukan pengujian, penulis memperoleh data-data hasil pengujian

IV. HASIL DAN PEMBAHASAN. Setelah melakukan pengujian, penulis memperoleh data-data hasil pengujian IV. HASIL DAN PEMBAHASAN A. HASIL PENGUJIAN Setelah melakukan pengujian, penulis memperoleh data-data hasil pengujian (Tabel 6) yang digunakan untuk menghitung besarnya daya engkol ( bp) dan konsumsi bahan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Motor Bakar Motor bakar merupakan salah satu jenis mesin penggerak yang banyak dipakai dengan memanfaatkan energi kalor dari proses pembakaran menjadi energi mekanik. Sejarah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Defenisi Motor Bakar Mesin Pembakaran Dalam pada umumnya dikenal dengan nama Motor Bakar. Dalam kelompok ini terdapat Motor Bakar Torak dan system turbin gas. Proses pembakaran

Lebih terperinci

OPTIMALISASI SISTEM PENGAPIAN CDI (CAPASITOR DISCHARGE IGNITION) PADA MOTOR HONDA CB 100CC

OPTIMALISASI SISTEM PENGAPIAN CDI (CAPASITOR DISCHARGE IGNITION) PADA MOTOR HONDA CB 100CC OPTIMALISASI SISTEM PENGAPIAN CDI (CAPASITOR DISCHARGE IGNITION) PADA MOTOR HONDA CB 100CC Muhamad Nuryasin, Agus Suprihadi Program Studi D III Teknik Mesin Politeknik Harapan Bersama Jln. Mataram No.

Lebih terperinci

ANALISIS PENCAMPURAN BAHAN BAKAR PREMIUM - PERTAMAX TERHADAP KINERJA MESIN KONVENSIONAL

ANALISIS PENCAMPURAN BAHAN BAKAR PREMIUM - PERTAMAX TERHADAP KINERJA MESIN KONVENSIONAL FLYWHEEL: JURNAL TEKNIK MESIN UNTIRTA Homepage jurnal: http://jurnal.untirta.ac.id/index.php/jwl ANALISIS PENCAMPURAN BAHAN BAKAR PREMIUM - PERTAMAX TERHADAP KINERJA MESIN KONVENSIONAL Sadar Wahjudi 1

Lebih terperinci

BAB III METODE PENGUJIAN DAN PEMBAHASAN PERHITUNGAN SERTA ANALISA

BAB III METODE PENGUJIAN DAN PEMBAHASAN PERHITUNGAN SERTA ANALISA BAB III METODE PENGUJIAN DAN PEMBAHASAN PERHITUNGAN SERTA ANALISA 3.1 Metode Pengujian 3.1.1 Pengujian Dual Fuel Proses pembakaran di dalam ruang silinder pada motor diesel menggunakan sistem injeksi langsung.

Lebih terperinci

PENGARUH PENGGUNAAN X- POWER TERHADAP PERFORMA PADA MESIN MOTOR 4 LANGKAH ABSTRAK

PENGARUH PENGGUNAAN X- POWER TERHADAP PERFORMA PADA MESIN MOTOR 4 LANGKAH ABSTRAK PENGARUH PENGGUNAAN X- POWER TERHADAP PERFORMA PADA MESIN MOTOR 4 LANGKAH Susilo Adi Permono, Margianto, Priyagung Hartono Jurusan Mesin Fakultas Teknik Universitas Islam Malang, Jl. Mayjend Haryono 193

Lebih terperinci

TUGAS AKHIR TM Ari Budi Santoso NRP : Dosen Pembimbing Dr. Bambang Sudarmanta, ST. MT.

TUGAS AKHIR TM Ari Budi Santoso NRP : Dosen Pembimbing Dr. Bambang Sudarmanta, ST. MT. TUGAS AKHIR TM091486 Ari Budi Santoso NRP : 2106100132 Dosen Pembimbing Dr. Bambang Sudarmanta, ST. MT. JURUSAN TEKNIK MESIN Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2012

Lebih terperinci

BAB II DASAR TEORI 2.1 Motor Bensin Prinsip Dasar Motor Bensin

BAB II DASAR TEORI 2.1 Motor Bensin Prinsip Dasar Motor Bensin 3 BAB II DASAR TEORI 2.1 Motor Bensin Motor bensin dapat juga disebut sebagai motor otto. Motor tersebut dilengkapi dengan busi dan karburator. Busi menghasilkan loncatan bunga api listrik yang membakar

Lebih terperinci

STUDI PERBANDINGAN KINERJA MOTOR STASIONER EMPAT LANGKAH SATU SILINDER MENGGUNAKAN BAHAN BAKAR GAS LPG DAN BIOGAS

STUDI PERBANDINGAN KINERJA MOTOR STASIONER EMPAT LANGKAH SATU SILINDER MENGGUNAKAN BAHAN BAKAR GAS LPG DAN BIOGAS STUDI PERBANDINGAN KINERJA MOTOR STASIONER EMPAT LANGKAH SATU SILINDER MENGGUNAKAN BAHAN BAKAR GAS LPG DAN BIOGAS oleh: Novian Eka Purnama NRP. 2108 030 018 PROGRAM STUDI DIPLOMA III JURUSAN TEKNIK MESIN

Lebih terperinci

Gambar 2.1. Fraksi-fraksi pengolahan pada minyak bumi mentah. Sumber : id.wikipedia.org/wiki/ Crude_Oil_Distillation

Gambar 2.1. Fraksi-fraksi pengolahan pada minyak bumi mentah. Sumber : id.wikipedia.org/wiki/ Crude_Oil_Distillation BAB II TINJAUAN PUSTAKA 2.1 Bahan Bakar Hidrokarbon Bahan bakar adalah suatu materi yang bisa terbakar dan bisa diubah menjadi energi. Bahan bakar hidrokarbon adalah bahan bakar yang didominasi oleh susunan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Turbin gas adalah suatu unit turbin dengan menggunakan gas sebagai fluida kerjanya. Sebenarnya turbin gas merupakan komponen dari suatu sistem pembangkit. Sistem turbin gas paling

Lebih terperinci

Farel H. Napitupulu Staf Pengajar Departemen Teknik Mesin FT USU. m& = konsumsi bahan bakar (kg/s) LHV = low heating value (nilai kalor bawah) (kj/kg)

Farel H. Napitupulu Staf Pengajar Departemen Teknik Mesin FT USU. m& = konsumsi bahan bakar (kg/s) LHV = low heating value (nilai kalor bawah) (kj/kg) Jurnal Sistem Teknik Industri Volume 7, No. 1 Januari 2006 PENGARUH NILAI KALOR (HEATING VALUE) SUATU BAHAN BAKAR TERHADAP PERENCANAAN VOLUME RUANG BAKAR KETEL UAP BERDASARKAN METODE PENENTUAN NILAI KALOR

Lebih terperinci

Grafik bhp vs rpm BHP. BHP (hp) Putaran Engine (rpm) tanpa hho. HHO (plat) HHO (spiral) Poly. (tanpa hho) Poly. (HHO (plat)) Poly.

Grafik bhp vs rpm BHP. BHP (hp) Putaran Engine (rpm) tanpa hho. HHO (plat) HHO (spiral) Poly. (tanpa hho) Poly. (HHO (plat)) Poly. Grafik bhp vs rpm BHP BHP (hp) 80 70 60 50 40 30 20 10 0 500 1500 2500 3500 4500 5500 Putaran Engine (rpm) tanpa hho HHO (plat) HHO (spiral) Poly. (tanpa hho) Poly. (HHO (plat)) Poly. (HHO (spiral)) Grafik

Lebih terperinci

Fahmi Wirawan NRP Dosen Pembimbing Prof. Dr. Ir. H. Djoko Sungkono K, M. Eng. Sc

Fahmi Wirawan NRP Dosen Pembimbing Prof. Dr. Ir. H. Djoko Sungkono K, M. Eng. Sc Fahmi Wirawan NRP 2108100012 Dosen Pembimbing Prof. Dr. Ir. H. Djoko Sungkono K, M. Eng. Sc Latar Belakang Menipisnya bahan bakar Kebutuhan bahan bakar yang banyak Salah satu solusi meningkatkan effisiensi

Lebih terperinci