BAB II PLTU MUARA KARANG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II PLTU MUARA KARANG"

Transkripsi

1 PLTU MUARA KARANG 2.1 Gambaran Umum PLTU ( Pusat Listrik Tenaga Uap ) merupakan salah satu unit pembangkitan energi listrik yang menggunakan system turbin uap yang dibangun untuk memenuhi pertumbuhan kebutuhan listrik yang trus melonjak dari tahun ke tahun. Salah satu PLTU yang mempunyai peranan yang sangat besar dari pulau Jawa adalah PLTU Muara Karang. PLTU Muara Karang adalah salah satu anak perusahaan dari PT.PLN (Persero) yang berlokasi di teluk Jakarta, Pluit-Jakarta Utara. PLTU Muara Karang terdiri dari lima unit pembangkit, yaitu: u\unit 1, 2, 3, 4, dan Lokasi dan letak Unit pembangkit (UP) Muara Karang mempunyai dua lokasi yang terdiri dari, PLTU dan PLTGU Muara Karang. Lokasi PLTU Mura Karang terletah di sebelag timur muara sungai Karang, yang sekaligus sebagai kantor pusat. PLTU Muara Karang dibangun di atas tanah seluas ± 41,5 hektar, yang terdiri dari ± 12 hektar untuk bangunan sentral, dan ± 29,5 hektar untuk sarana penunjang, seperti gedung, perumahan operator, dan lain-lain. Pusat Listrik Tenaga Uap dan Gas (PLTGU) Muara Karang terletak di sebelah barat muara sungai Karang, Pluit-Jakarta. 4

2 2.1.2 Sejarah Singkat PLTU Muara Karang Unit pembangkit Muara Karang di operasikan pertama kali pada tahun Pada awalya dikelola oleh PLN Pembangkit dan Penyaluran Jawa Bagian Barat PLN (KITLUR JBB), yang dikenal sebagai sektor Muara Karang. Akibat adanya rekonstruksi di tubuh PT. PLN (Persero) pada tahun 1995, maka lahir dua anak perusahaan pada tanggal 3 Oktober 1995, yaitu PT. PLN Pembangkit Tenaga Listrik Jawa Bali I dan II, yang lazim disebut PT. PLN PJB I dan PT. PLN PJB II Pada tahun 1997, sektor Muara Karang berubah namanya menjadi PT. PLN Pembangkit Tenaga Listrik Jawa Bali II Unit Pembangkit Muara Karang ( PT. PJB II UP Muara Karang). Pada tahun 1991, dengan berdasarkan SK Direksi No. 045.K/023/DIR/1998, maka dilakukan pemisahan struktur organisasi UP (Unit Pembangkit) dan UB (Unit Bisnis). Kemudian pada tahun 200, tepatnya pada tanggal 3 Oktober 2000 PT. PLN PJB UPII berubah nama menjadi PT. PJB (PT. Pembangkit Jawa Bali),PT. PLN PJB II UP Muara Karang ikut berubah pula menjadi PT. PJB UP Muara Karang Konsep Desain PLTU Muara Karang Meliputi pusat listrik tenaga uap yang trdiri dari lima unit, yaitu: unit 1, 2, 3, yang menggunakan bahan bakar minyak residu (MFO) dan unit 4 dan 5 menggunakan sistem dual firing yang berarti dapat menggunakan minyak atau gas maupun campuran dari minyak dan gas sebagai bahan bakarnya. Pembangunan yang dilaksanakan oleh Chast T. Main Pada tahun

3 2.1.4 Proses Pembangunan Pembangunan proyek PLTU Muara Karang dibagi dalam dua tahap, yaitu: Tahap I, Unit 1, 2, dan 3 (3 x 100 MW). Tahap II, Unit 4 dan 5 (2 x 200 MW). Tahap I Sesuai dengan rencana semula, pelaksanaan pembangunan PLTU Muara Karang unit 1, 2, dan 3 dilaksanakan pada bulan: Unit 1 : Maret Unit 2 : Juni Unit 3 : maret Akan tetapi karena adanya hambatan yang terutama disebabkan oleh terbatasnya dana valuta asing, jadwal seperti rencana di atas perlu di tinjau kembali, sehingga jadwal penyelesaian pembangunan menjadi sebagai berikut: Unit 1 : April Unit 2 : Juli Unit 3 : April Sinkronisasi dengan jaringan (system kelistrikan) pertama kali adalah sebagai berikut: Unit 1 : 20 Januari Unit 2 : 28 Februari Unit 3 : 28 Juni Selanjutnya, karna adanya hambatan baik teknis maupun nonteknis PLTU Muara Karang unit 1, 2, dan 3 mulai melayani jaringan, mulai tercatat sebagai berikut: Unit 1 : Juli Unit 2 : November

4 Unit 3 : Desember Tahap II Sinkronisasi dengan jaringan (system kelistrikan) pertama kali adalah sebagai berikut: Unit 4 : 26 November Unit 5 : 7 Juni Daya Terpasang Unit pembangkit (UP) Muara Karang mampu memproduksi energi listrik sebesar 7900 GWh pertahun yang disalurkan melalui Jaringan Transmisi Tegangan Tinggi (JTTT) 150 KV yang sebagian besar di utamakan untuk mensuplai kebutuhan listrik Ibu Kota Jakarta, terutama daerah VVIP, seperrti: Istana Presiden dan Gedung MPR/DPR, serta keperluan publik lainnya. Kebutuhan ini dapat dipenuhi oleh PLTGU Muara Karang yang mempunyai daya terpasang 500 MW serta PLTU Muara Karang yang mempumnyai daya terpasang masing-masing 100 MW untuk unit 1, 2, dan 3 serta masing-masing 200 mw untuk unit 4, dan Sistem Penyaluran Tenaga Listrik Tenaga listrik dari PLTU Muara Karang disalurkan melalui kabel udara 150 KV ke gardu induk Angke, gardu induk Duri Kosambi dan melalui kabel bawah tanah 150 KV ke gardu indiuk Budi Kemuliaan yang diteruskan untuk pemakaian di Istana Presiden dan sekitarnya. Tempat penting yang mendapatkan aliran listrik dari PLTU Muara Karang adalah Bandara Internasional Soekarno-Hatta, Gedung MPR/DPR dan sekitarnya. 7

5 2.1.7 Sistem Penyediaan Bahan Bakar Minyak Residu (MFO) sebagai bahan bakar utama PLTU Muara Karang, yang dopasok melalui kapal tanker yang berlabuh di pelabuhan minyak PLTU Muara Karang, sejauh ± 4 Km dari pantai, melalui saluran pipa dasar laut. Untuk memasok bahan bakar tersebut disediakan 3 buah tanki dengan kapasitas 2 x Kl, 1 x Kl,serta tanki HSD dengan kapasitas 2 x 250 KL, yang dipergumakan sebagai alat penunjang. PLTU Muara Karang unit 1, 2, dan 3 beroperasi menggunakan siklus rankine sederhana (non-reheat) yang memiliki heat reat sebesar KCAL/KWH, sedangkan unit 4 dan 5 beroperasi menggunakan siklus rankine reheat dengan heat reat sebesar KCAL/KWH. Apabila PLTU berproduksi dengan beban harian harian ± 80 % akan menghabiskan bahan bakar minyak ± ton/hari Secara keseluruhan, untuk menghasilkan energi listrik sebesar GWh pertahun, membutuhkan: 1. Bahan bakar gas sebanyak ± MMSF. 2. Bahan bakar MFO sebanyak ± Kl. 3. Bahan bakar HSD sebanyak ± Kl Fasilitas Penyediaan Air Serta Pengolahaanya Air penambah ketel untuk kebutuhan PLTU Muara Karang unit 1 sampai dengan 5, diperoleh dari proses desalinasi air laut dengan menggunakan Destilation plant yang mempunyai kapasitas 40 ton/jam. Air penambah tersebut di olah atau dimurnikan pada Demi plant 2 yang berkapasitas 600 ton/jam dan hasilnya ditampung dalam tangki-tangki make up, bersama-sama dengan hasil dari desalinasi yang berkapasitas 2 x 656 ton dan 2 x 760 ton. 8

6 Air dari make up tank ini diolah lagi dengan demi plant 1 yang mempunyai kapasitas 864 ton/hari dan ditampung dalam tanki demin plant dan tanki kondensat dengan kapasitas 2 x 380 ton dan 1 x 760 ton Secara keseluruhan, untuk menghasilkan energi listrik sebesar GWh per tahun, membutuhkan: 1. Air penambah boiler sebanyak ton. 2. Air service sebanyak ton. 3. Air laut sebagai pendingin kondensor yang mengalir secara terusmenerus Sistem Pendingin Untuk keperluan air pendingin kondensor yang cukup dan bersih, maka saluran air masuk (kanal) dibuat menjorok ke laut sepanjang meter, air itu di saring dengan saringan kasar (Bar Screen) dan saringan halus (Traveling Screen) yang kemudian di pompakan kedalam kondensor, dimana sebelum masuk kedalam kondensor air disaring kembali dengan Debris firlter. Untuk memenuhi kebutuhan air pendingin saluran kondensor dipasangi tiga pompa untuk unit 1, 2, dan 3,ditambah satu buah untuk cadangn dengan kapasitas ton/jam Menejemen Lingkungan Ramah lingkungan merupakan trend dunia usaha yang berkembang sekarang ini, sehingga setiap industrai di tuntut untuk mengelola lingkungan dengan baik berstedart Internasional, aman serta berdampak positif bagi lingkunan dan sekitarnya. 9

7 UP Muara Karang telah melaksanakan pengelolaan lingkungan, antara lain : 1. Moengoptimalkan pemakaian bahan bakar gas alam pada semua unit. 2. Pembersihan saluran air. 3. Mengoptimalkan operasional Dust Coolector untuk mengumpulkan partikel padat yang terbawa pada gas buang. 4. Melaksanakan program penghijauan pada lahan yang kosong, untuk menciptakan suasana lingkunan yang indah dan hijau. Untuk mengetahui efektifitas pengelolaan lingkungan, telah di upayakan pemantauan lingkungan terhadap limbah cair dan limbah padat, kwalitas udara, kebisingan, kwalitas air limbah dan air laut secara rutin sesuai dengan ketentuan rencana pemantauan lingkungan. Untuk mengendalikan polusi udara dan air, disekitar UP Muara Karang dilengkapi dengan alat pengendali emisi udara dan air, meliputi: 1. Cerobong yang cukup tinggi untuk semua unit, untuk mendapatkan distribusi gas buang secara luas. 2. Dilakukannya penetralan air,berguna untuk menetralisasi air buangan unit sebelum dibuang ke laut atau sungai 3. Oil Sparator berfungsi sebagai pemisah antara minyak dengan air buangan yang berasal dari area bunker bahan bakar minyak. 4. dust Coollector/ Dust Handling berfungsi untuk menangkap debu hasil pembakaran yang akan dubuang melewati cerobong. 5. Saluran inlet dan outlet pendingin kondensor yang panjangnya mencapai 1 km untuk menurunkan temperatut bakas pendingin Dampak positif pembangunan PLTU dan PLTGU bagi masyarakat disekutar UP Muara Karang adalah: 1. Ketersediaanya listerik untuk kehidupan sehari-hari. 2. Memacu perkembangan industri 3. Mendorong kegiatan ekonomi di sekitar Unit Pembangkit 4. Menyediakan lapangan kerja baru 10

8 2.2 Fungsi PLTU Muara Karang dalam Sistem Kelistrikan se Jawa-Bali Dalam suatu sistem interkoneksi maka unit-unit pembangkit bekerja secara komplementer dalam rangka memenuhi tuntutan sistem beban yang pada dasarnya meliputi tiga hal, yaitu: kehandalan, keamanan dan ekonomis. Pusat listrik baik tenaga uap maupun air mengemban misi ekonomi, sehingga pusat listrik yang ada bertugas untuk menjaga stabilitas dan keandalan sistem se Jawa-Bali. Pola operasi dari sistem tersebut adalah cyclic load operation yang melayani perubahan beban sistem, baik perubahan dalam periodik pendek, panjang, maupun perubahan darurat. Perubahan periodik adalah dalam rangka stabilitas. Sedangkan perubahan beban darurat adalah dalam rangka mengamankan sistem terhadap resiko coolapse atau black out. Funsi PLTU Muara Karang dalam sistem kelistrikan se jawa-bali, yaitu: 1. Sebagai tambahan daya sebesar 300 MW dari unit 1, 2, dan 3, serta 400 MW dari unit 4 dan 5 yang dapat memenuhi penyediaan kebutuhan listrik bagi daerah Jawa Barat dan Jakarta. 2. Sebagai pemikul beban besar. 3. Bagian dari interkoneksi dengan unit-unit lain se Jawa-Bali 2.3 Visi dan Misi Visi UP Muara Karang 1. Menguasai pangsa pasar Indonesia 2. Menjadi perusahaan kelas Dunia Misi UP Muara Karang 1. Menjadikan PT. PLN PJB II sebagai perusahaan publik yang maju dan dinamis, dalam bidang pembangkit tenaga listrik 2. Memberikan hasil yang baik kepada pemegang saham, pegawai, pemasok, pemerintah, dan masyarakat serta lingkungan 3. Memenuhi tuntutan pasar 11

9 2.4. Struktur Organisasi Sejak 20 februari 1999 keorganisasian UP Muara Karang berubah mengikuti perkembangan organisasi di PT. PL PJB yang dinamis sesuai situasi bisnis yang selalu berubah. Perubahan mendasar yang terjadi adalah dipisahkanya fungsi operasi dan pemeliharaan, sehingga UP Muara Karang menjadi organisasi yang ramping, bersih dan khususnya hanya berurusan dengan pengoperasian pembangkit untuk menghasilkan listyrik. Bagian pemeliharaan dilakukan oleh pihak pemeliharaan yang bukan merupakan bagian dari UP Muara Karang. Gambar struktur organisasi PT PJB Pembangkitan Muara Karang ditampilkan pada : Gambar 2.4 Struktur Organisasi PT PJB Muara Karang Sumber : Leaflet PLTU Muara Karang 12

10 2.5. Sumber Daya Manusia Manusia adalah aset terpenting dalam perusahaan, sehingga UP Muara Karang memberikan kesempatan kepada seluruh pegawainya untuk mengikuti pendidikan dan pelatihan agar SDM yang profesional. sejingga tercipta lingkungan kerja yang menggairahkan dan memotifasi mereka untuk selalu bertanggung jawab terhadap pekerjaanya Sikap profesionalisme pada pegawai tetap dipertahankan dan ini terlihat darihasil kinerja perusahaan. Kerja operasional UP Muara Karang beberapa Tahin terakhir menunjukan bahwa hasil dari Availibility Factor dan Forced Outage Rate di atas atandart kelas dunia dari North America Reliability Council (NERC). 2.6 Sistem PLTU Sistem PLTU merupakan sistem pembangkit energi listrik yang memiliki empat komponen utama, yaitu: ketel, turbin, kondensor dan pompa. Ketel berfungsi sebagai penghasil fliuda kerja (uap), tubin berfungsi sebagai penggerak generator, kondensor berfungsi senbagai pengkondensasian uap setelah siklus Rankine. Siklus Rankin terdiri dari beberapa proses 1 2 Proses pemompaan isentronik, berlangsung di dalam pompa. 2 3 Proses pemasukan kalor atau pemanasan pada temperatur konstan, yang berlangsung di dalam ketel. 13

11 3 4 Proses ekspansi isentropik di dalam turbin 4 1 Proses pengeluaran kalor atau pembuangan pada tekanan konstan, yang berlangsung di dalam kondensor Gambar 3.1 FLOW CHART PLTU Muara Karang Garis k-k pada diagram T-s dan h-s dinamakan garis cair jenuh, dimana pada sebelah kiri garis tersebut fluida kerja dalam kondisi cair. Garis K-k dinamakan garis uap jenuh, dimana pada sebelah kanan garis tersebut biasanya dinamakan uap kering. Sedangkan daerah dibawah garis lengkung k-k-k merupakan daerah campuran antara fasa cair dan uap. Uap didalam daerah tersebut biasa dinamakanuap basah. Titik K dinamai titik kritis, dimana temperatur dan tekanan pada titik tersebut dinamai temperatur kritis dan tekanan kritis. 14

12 Untuk mempermudah mengetahui fasa dari fluida biasanya dikatakan bahwa fluida dalam keadaan fluida fasa cair apabila temperatur dibawah temperatur Tc (374,2 o c) dan dalam keadaan fasa uap apabila temperaturnya lebih tinggi dari temperatur Tc. Namun perubahan dari fasa cair ke fasa uap tudak dapat diketahui dengan pasti dan dimana perubahan tersebut terjadi Statika di atas merupakan siklus ideal, dalam kenyataan siklus turbin uap menyimpang dari siklus ideal. Hal ini biasa disebabkan oleh beberapa faktor: 1. Kerugian di dalampipa/saluran fluida kerja, misalnya kerugian gesekan dan kerugian kalor ke atmosfear. Dengan demikian tekanan dan temperatur uap masuk lebih rendah daripada keadaan ideal. 2. Kerugian tekanan di dalam ketel uap, dengan demikian air yang masuk kedalam ketel harus bertekanan lebih tinggi daripada tekanan uap yang harus di hasilkan, sehingga diperlukan kerja pompa yang lebih besar. 3. Kerugian energi di dalam turbin, disebabkan karena adanya gesekan antara fluida kerja dengan bagian dari turbin. Disamping itu juga terdapat kerugian kalor ke atmosfear, namun tidak begitu besar jika dibandingkan dengan kerugian gesekan. 4. Kerugian di dalam pompa, misalnya kerugian gesek, kerugian tekanan, dan kerugian kalor ke atmosfear, kerugian gesekan pada pompa dapat 15

13 menyebabkan daya hisap pompa dapat berkurang, oleh sebab ituuntuk mengatasi kerugian tersebut kecepatan aliran fluida harus dibatasi. 5. Kerugian di dalam kondensor, misalnya: proses pendinginan dibawah tempertur jenuh dari kondensat yang keluar dari kondensor. Hal ini menyebabakan diperlikannya perpindahan kalor 9 pendingin) lebih banyak dari keadaan idial. Kerugian di dalam turbin dapat mempengaruhi efisiensi turbin, disamping itu dapat memperbesar kemungkinan terjadinya erosi pada sudu. Salah satu usaha untuk menaikan efisiensi turbin adalah dengan menaikan tekanan uap dan melakukan pemanasan ulang. Dengan pemanansan ulang bukan hanya dapat memperoeh efisiensi yang lebih baik, tetapi juga menghindari terjadinya uap keluar turbin dengan kadar air yang terlampau tinggi. 16

BAB II TINJAUAN UMUM PT. PJB (PEMBAKITAN JAWA BALI) UP MUARA KARANG

BAB II TINJAUAN UMUM PT. PJB (PEMBAKITAN JAWA BALI) UP MUARA KARANG BAB II TINJAUAN UMUM PT. PJB (PEMBAKITAN JAWA BALI) UP MUARA KARANG 2.1 Gambaran Umum PT.PJB PT pembangkitan jawa-bali (pjb) adalah anak perusaan PT PLN (persero) yang didirikan pada 3 oktober 1995 dengan

Lebih terperinci

BAB II PROFIL UNIT PEMBANGKIT PLTU MUARA KARANG

BAB II PROFIL UNIT PEMBANGKIT PLTU MUARA KARANG BAB II PROFIL UNIT PEMBANGKIT PLTU MUARA KARANG 2.1 Gambaran Umum PLTU ( Pusat Listrik Tenaga Uap ) merupakan salah satu unit pembangkitan energi listrik yang menggunakan system turbin uap yang dibangun

Lebih terperinci

BAB II PROFIL UNIT PEMBANGKITAN MUARA KARANG

BAB II PROFIL UNIT PEMBANGKITAN MUARA KARANG BAB II PROFIL UNIT PEMBANGKITAN MUARA KARANG 2.1 Gambaran Umum Unit pembangkit Muara Karang dioperasikan pertama kali pada tahun 1979. Pada awalya dikelola oleh PT Pembangkit dan Penyaluran Jawa Bagian

Lebih terperinci

BAB III PENGUMPULAN DATA. Pusat Listrik Tenaga Uap ( PLTU ) Muara Karang terletak ditepi pantai

BAB III PENGUMPULAN DATA. Pusat Listrik Tenaga Uap ( PLTU ) Muara Karang terletak ditepi pantai BAB III PENGUMPULAN DATA 3.1. PLTU Muara Karang. Pusat Listrik Tenaga Uap ( PLTU ) Muara Karang terletak ditepi pantai Teluk Jakarta, di Muara Karang. Kapasitas terpasang total PLTU Muara Karang sebesar

Lebih terperinci

BAB II PROFIL PERUSAHAAN

BAB II PROFIL PERUSAHAAN BAB II PROFIL PERUSAHAAN 2.1 Sejarah Singkat Unit Pembangkitan Muara Karang, dioperasikan pertama kali pada tahun 1979 oleh PLN Pembangkitan dan Penyaluran Jawa bagian barat (PLN KJB) yang dikenal dengan

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Sistem kerja PLTU Sistem PLTU merupakan sistem pembangkit energi listrik yang memiliki empat komponen utama, yaitu : ketel, turbin, kondensor dan pompa. Ketel berfungsi sebagai

Lebih terperinci

MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU)

MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU) MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU) DEFINISI PLTGU PLTGU merupakan pembangkit listrik yang memanfaatkan tenaga gas dan uap. Jadi disini sudah jelas ada dua mode pembangkitan. yaitu pembangkitan

Lebih terperinci

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG 1. SIKLUS PLTGU 1.1. Siklus PLTG Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG Proses yang terjadi pada PLTG adalah sebagai berikut : Pertama, turbin gas berfungsi

Lebih terperinci

BAB III DASAR TEORI SISTEM PLTU

BAB III DASAR TEORI SISTEM PLTU BAB III DASAR TEORI SISTEM PLTU Sistem pembangkit listrik tenaga uap (Steam Power Plant) memakai siklus Rankine. PLTU Suralaya menggunakan siklus tertutup (closed cycle) dengan dasar siklus rankine dengan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 8 BAB I PENDAHULUAN 11 Latar Belakang Energi memiliki peranan penting dalam menunjang kehidupan manusia Seiring dengan perkembangan zaman kebutuhan akan energi pun terus meningkat Untuk dapat memenuhi

Lebih terperinci

BAB I PENDAHULUAN. BAB I Pendahuluan

BAB I PENDAHULUAN. BAB I Pendahuluan BAB I PENDAHULUAN 1.1 LATAR BELAKANG PLTU adalah suatu pembangkit listrik dimana energi listrik dihasilkan oleh generator yang diputar oleh turbin uap yang memanfaatkan tekanan uap hasil dari penguapan

Lebih terperinci

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU)

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU) BAB II TINJAUAN PUSTAKA 2.1 Pengertian HRSG HRSG (Heat Recovery Steam Generator) adalah ketel uap atau boiler yang memanfaatkan energi panas sisa gas buang satu unit turbin gas untuk memanaskan air dan

Lebih terperinci

SKRIPSI / TUGAS AKHIR

SKRIPSI / TUGAS AKHIR SKRIPSI / TUGAS AKHIR ANALISIS PEMANFAATAN GAS BUANG DARI TURBIN UAP PLTGU 143 MW UNTUK PROSES DESALINASI ALBERT BATISTA TARIGAN (20406065) JURUSAN TEKNIK MESIN PENDAHULUAN Desalinasi adalah proses pemisahan

Lebih terperinci

PLTU (PEMBANGKIT LISTRIK TENAGA UAP)

PLTU (PEMBANGKIT LISTRIK TENAGA UAP) PLTU (PEMBANGKIT LISTRIK TENAGA UAP) I. PENDAHULUAN Pusat pembangkit listrik tenaga uap pada saat ini masih menjadi pilihan dalam konversi tenaga dengan skala besar dari bahan bakar konvensional menjadi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembangkit Listrik Tenaga Uap (PLTU) PLTU merupakan sistem pembangkit tenaga listrik dengan memanfaatkan energi panas bahan bakar untuk diubah menjadi energi listrik dengan

Lebih terperinci

ANALISIS PEMBANGUNAN PLTU MADURA KAPASITAS 2 X 200 MW SEBAGAI PROGRAM MW PT. PLN BAGI PEMENUHAN KEBUTUHAN LISTRIK DI PULAU MADURA

ANALISIS PEMBANGUNAN PLTU MADURA KAPASITAS 2 X 200 MW SEBAGAI PROGRAM MW PT. PLN BAGI PEMENUHAN KEBUTUHAN LISTRIK DI PULAU MADURA ANALISIS PEMBANGUNAN PLTU MADURA KAPASITAS 2 X 200 MW SEBAGAI PROGRAM 10.000 MW PT. PLN BAGI PEMENUHAN KEBUTUHAN LISTRIK DI PULAU MADURA OLEH : MUHAMMAD KHAIRIL ANWAR 2206100189 Dosen Pembimbing I Dosen

Lebih terperinci

Pratama Akbar Jurusan Teknik Sistem Perkapalan FTK ITS

Pratama Akbar Jurusan Teknik Sistem Perkapalan FTK ITS Pratama Akbar 4206 100 001 Jurusan Teknik Sistem Perkapalan FTK ITS PT. Indonesia Power sebagai salah satu pembangkit listrik di Indonesia Rencana untuk membangun PLTD Tenaga Power Plant: MAN 3 x 18.900

Lebih terperinci

BAB II TEKNOLOGI PENINGKATAN KUALITAS BATUBARA

BAB II TEKNOLOGI PENINGKATAN KUALITAS BATUBARA BAB II TEKNOLOGI PENINGKATAN KUALITAS BATUBARA 2.1. Peningkatan Kualitas Batubara Berdasarkan peringkatnya, batubara dapat diklasifikasikan menjadi batubara peringkat rendah (low rank coal) dan batubara

Lebih terperinci

TURBIN UAP. Penggunaan:

TURBIN UAP. Penggunaan: Turbin Uap TURBIN UAP Siklus pembangkitan tenaga terdiri dari pompa, generator uap (boiler), turbin, dan kondenser di mana fluida kerjanya (umumnya adala air) mengalami perubaan fasa dari cair ke uap

Lebih terperinci

ANALISA PEMBEBANAN DAN BIAYA PRODUKSI ENERGI LISTRIK PADA PLTU BATUBARA

ANALISA PEMBEBANAN DAN BIAYA PRODUKSI ENERGI LISTRIK PADA PLTU BATUBARA ANALISA PEMBEBANAN DAN BIAYA PRODUKSI ENER LISTRIK PADA PLTU BATUBARA Tomy Hidayat Jurusan Teknik Elektro, Fakultas Teknologi Industri, Universitas Gunadarma, Margonda Raya 100 Depok 16424 telp (021) 78881112,

Lebih terperinci

BAB I PENDAHULUAN. Turbin uap berfungsi untuk mengubah energi panas yang terkandung. menghasilkan putaran (energi mekanik).

BAB I PENDAHULUAN. Turbin uap berfungsi untuk mengubah energi panas yang terkandung. menghasilkan putaran (energi mekanik). BAB I PENDAHULUAN 1.1 LATAR BELAKANG Turbin uap adalah suatu penggerak mula yang mengubah energi potensial menjadi energi kinetik dan energi kinetik ini selanjutnya diubah menjadi energi mekanik dalam

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Dasar Steam merupakan bagian penting dan tidak terpisahkan dari teknologi modern. Tanpa steam, maka industri makanan kita, tekstil, bahan kimia, bahan kedokteran,daya, pemanasan

Lebih terperinci

Efisiensi PLTU batubara

Efisiensi PLTU batubara Efisiensi PLTU batubara Ariesma Julianto 105100200111051 Vagga Satria Rizky 105100207111003 Sumber energi di Indonesia ditandai dengan keterbatasan cadangan minyak bumi, cadangan gas alam yang mencukupi

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Penggunaan pembangkit listrik berbahan bakar fosil memiliki dampak yang dihasilkan yaitu pemanasan global akibat gas rumah kaca, penipisan lapisan ozon untuk CFC

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Landasan Teori PLTGU atau combine cycle power plant (CCPP) adalah suatu unit pembangkit yang memanfaatkan siklus gabungan antara turbin uap dan turbin gas. Gagasan awal untuk

Lebih terperinci

Tenaga Uap (PLTU). Salah satu jenis pembangkit PLTU yang menjadi. pemerintah untuk mengatasi defisit energi listrik khususnya di Sumatera Utara.

Tenaga Uap (PLTU). Salah satu jenis pembangkit PLTU yang menjadi. pemerintah untuk mengatasi defisit energi listrik khususnya di Sumatera Utara. 1 BAB I PENDAHULUAN 1.1 Latar Belakang Kebutuhan akan energi listrik terus-menerus meningkat yang disebabkan karena pertumbuhan penduduk dan industri di Indonesia berkembang dengan pesat, sehingga mewajibkan

Lebih terperinci

BAB III METODE PENELITIAN. 3.1 Flow Chart Flow chart diagram alir digunakan untuk menggambarkan alur proses atau langkah-langkah secara berurutan.

BAB III METODE PENELITIAN. 3.1 Flow Chart Flow chart diagram alir digunakan untuk menggambarkan alur proses atau langkah-langkah secara berurutan. BAB III METODE PENELITIAN 3.1 Flow Chart Flow chart diagram alir digunakan untuk menggambarkan alur proses atau langkah-langkah secara berurutan. 3.1.1 Flow Chart Optimisasi Pembagian Beban Mulai Mengumpulkan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Listrik merupakan salah satu energi yang sangat dibutuhkan oleh manusia pada era modern ini. Tak terkecuali di Indonesia, negara ini sedang gencargencarnya melakukan

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN Pembangkit Listrik Tenaga Uap (PLTU) Energi Alamraya Semesta adalah PLTU yang menggunakan batubara sebagai bahan bakar. Batubara yang digunakan adalah batubara jenis bituminus

Lebih terperinci

BAB I PENDAHULUAN BAB I PENDAHULUAN

BAB I PENDAHULUAN BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan salah satu kebutuhan pokok yang sangat penting dalam kehidupan manusia saat ini, hampir semua aktifitas manusia berhubungan dengan energi listrik.

Lebih terperinci

Pengoperasian pltu. Simple, Inspiring, Performing,

Pengoperasian pltu. Simple, Inspiring, Performing, Pengoperasian pltu PERSIAPAN COLD START PLTU 1. SISTEM AUXILIARY STEAM (UAP BANTU) FUNGSI : a. Menyuplai uap ke sistem bahan bakar minyak pada igniter untuk mengabutkan bahan bakar minyak (Atomizing sistem).

Lebih terperinci

ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1

ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1 EKSERGI Jurnal Teknik Energi Vol No. 2 Mei 214; 65-71 ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1 Anggun Sukarno 1) Bono 2), Budhi Prasetyo 2) 1)

Lebih terperinci

PENGARUH SUHU DAN TEKANAN TERHADAP PENINGKATAN EFISIENSI THERMAL SIKLUS RANKINE PADA PEMBANGKIT DAYA TENAGA UAP. Oleh ( ) TEKNIK MESIN UNILA

PENGARUH SUHU DAN TEKANAN TERHADAP PENINGKATAN EFISIENSI THERMAL SIKLUS RANKINE PADA PEMBANGKIT DAYA TENAGA UAP. Oleh ( ) TEKNIK MESIN UNILA 1 PENGARUH SUHU DAN TEKANAN TERHADAP PENINGKATAN EFISIENSI THERMAL SIKLUS RANKINE PADA PEMBANGKIT DAYA TENAGA UAP Oleh BAYU AGUNG PERMANA JASIRON NENI SUSANTI (0615021007) TEKNIK MESIN UNILA (0715021012)

Lebih terperinci

Tekad Sitepu, Sahala Hadi Putra Silaban Departemen Teknik Mesin, Fakultas Teknik, Universitas Sumatera Utara

Tekad Sitepu, Sahala Hadi Putra Silaban Departemen Teknik Mesin, Fakultas Teknik, Universitas Sumatera Utara PERANCANGAN HEAT RECOVERY STEAM GENERATOR (HRSG) YANG MEMANFAATKAN GAS BUANG TURBIN GAS DI PLTG PT. PLN (PERSERO) PEMBANGKITAN DAN PENYALURAN SUMATERA BAGIAN UTARA SEKTOR BELAWAN Tekad Sitepu, Sahala Hadi

Lebih terperinci

BAB I PENDAHULUAN. mendirikan beberapa pembangkit listrik, terutama pembangkit listrik dengan

BAB I PENDAHULUAN. mendirikan beberapa pembangkit listrik, terutama pembangkit listrik dengan BAB I PENDAHULUAN 1.1 Latar Belakang Seiring dengan kebutuhan energi listrik pada zaman globalisasi ini, Indonesia melaksanakan program percepatan pembangkitan listrik sebesar 10.000 MW dengan mendirikan

Lebih terperinci

BAB I PENDAHULUAN. Gambar 1.1. Potensi dan kapasitas terpasang PLTP di Indonesia [1]

BAB I PENDAHULUAN. Gambar 1.1. Potensi dan kapasitas terpasang PLTP di Indonesia [1] BAB I PENDAHULUAN I.1. Latar Belakang Dewasa ini kelangkaan sumber energi fosil telah menjadi isu utama. Kebutuhan energi tersebut setiap hari terus meningkat. Maka dari itu, energi yang tersedia di bumi

Lebih terperinci

PEMBANGKIT LISTRIK TENAGA PANAS LAUT BAB I PENDAHULUAN

PEMBANGKIT LISTRIK TENAGA PANAS LAUT BAB I PENDAHULUAN A. Latar Belakang PEMBANGKIT LISTRIK TENAGA PANAS LAUT BAB I PENDAHULUAN Pembangkit listrik yang terdapat di Indonesia sebagian besar menggunakan sumber daya tidak terbarukan untuk memenuhi kebutuhan listrik

Lebih terperinci

ANALISA HEAT RATE DENGAN VARIASI BEBAN PADA PLTU PAITON BARU (UNIT 9)

ANALISA HEAT RATE DENGAN VARIASI BEBAN PADA PLTU PAITON BARU (UNIT 9) EKSERGI Jurnal Teknik Energi Vol 10 No. 1 Januari 2014; 23-28 ANALISA HEAT RATE DENGAN VARIASI BEBAN PADA PLTU PAITON BARU (UNIT 9) Agus Hendroyono Sahid, Dwiana Hendrawati Program Studi Teknik Konversi

Lebih terperinci

KONVERSI ENERGI PANAS BUMI HASBULLAH, MT

KONVERSI ENERGI PANAS BUMI HASBULLAH, MT KONVERSI ENERGI PANAS BUMI HASBULLAH, MT TEKNIK ELEKTRO FPTK UPI, 2009 POTENSI ENERGI PANAS BUMI Indonesia dilewati 20% panjang dari sabuk api "ring of fire 50.000 MW potensi panas bumi dunia, 27.000 MW

Lebih terperinci

BAB IV DESAIN DASAR PEMBANGKIT LISTRIK TENAGA SAMPAH DI KOTA BANDUNG

BAB IV DESAIN DASAR PEMBANGKIT LISTRIK TENAGA SAMPAH DI KOTA BANDUNG BAB IV DESAIN DASAR PEMBANGKIT LISTRIK TENAGA SAMPAH DI KOTA BANDUNG Konstruksi umum PLTSa pada dasarnya adalah merupakan PLTU dengan kekhususan pada pemrosesan bahan bakar sebelum masuk tungku pembakaran

Lebih terperinci

JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK ELEKTRONIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS GUNADARMA

JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK ELEKTRONIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS GUNADARMA ANALISA SISTEM KONTROL LEVEL DAN INSTRUMENTASI PADA HIGH PRESSURE HEATER PADA UNIT 1 4 DI PLTU UBP SURALAYA. Disusun Oleh : ANDREAS HAMONANGAN S (10411790) JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK ELEKTRONIKA

Lebih terperinci

MAKALAH PEMBANGKIT LISRIK TENAGA UAP

MAKALAH PEMBANGKIT LISRIK TENAGA UAP MAKALAH PEMBANGKIT LISRIK TENAGA UAP Oleh IRHAS MUFTI FIRDAUS 321 11 030 YULIA REZKY SAFITRI 321 11 078 HARDIANA 321 11 046 MUH SYIFAI PIRMAN 321 11 034 PROGRAM STUDI TEKNIK LISTRIK JURUSAN TEKNIK ELEKTRO

Lebih terperinci

BAB I Pendahuluan BAB I PENDAHULUAN

BAB I Pendahuluan BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Seiring dengan meningkatnya jumlah penduduk dunia, kebutuhan manusia yang harus dipenuhi secara global juga meningkat termasuk kebutuhan akan energi. Kemajuan dibidang

Lebih terperinci

PEMANFAATAN LIMBAH KAYU (BIOMASSA) UNTUK PEMBANGKIT LISTRIK. PT. Harjohn Timber. Penerima Penghargaan Energi Pratama Tahun 2011 S A R I

PEMANFAATAN LIMBAH KAYU (BIOMASSA) UNTUK PEMBANGKIT LISTRIK. PT. Harjohn Timber. Penerima Penghargaan Energi Pratama Tahun 2011 S A R I PEMANFAATAN LIMBAH KAYU (BIOMASSA) UNTUK PEMBANGKIT LISTRIK PT. Harjohn Timber Penerima Penghargaan Energi Pratama Tahun 2011 S A R I PT. Harjhon Timber adalah salah satu Penerima Penghargaan Energi Pratama

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perusahaan Listrik Negara ( PLN ) mempunyai sistem transmisi listrik di Pulau Jawa yang terhubung dengan Pulau Bali dan Pulau Madura yang disebut dengan sistem interkoneksi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

BAB IV HASIL DAN ANALISIS

BAB IV HASIL DAN ANALISIS BAB IV HASIL DAN ANALISIS Gambar 4.1 Lokasi PT. Indonesia Power PLTP Kamojang Sumber: Google Map Pada gambar 4.1 merupakan lokasi PT Indonesia Power Unit Pembangkitan dan Jasa Pembangkitan Kamojang terletak

Lebih terperinci

ANALISIS KONSUMSI BAHAN BAKAR PADA PEMBANGKIT LISTRIK TENAGA UAP ( PLTU ) UNIT 3 DAN 4 GRESIK

ANALISIS KONSUMSI BAHAN BAKAR PADA PEMBANGKIT LISTRIK TENAGA UAP ( PLTU ) UNIT 3 DAN 4 GRESIK Wahana Teknik Vol 02, Nomor 02, Desember 2013 Jurnal Keilmuan dan Terapan teknik Hal 70-80 ANALISIS KONSUMSI BAHAN BAKAR PADA PEMBANGKIT LISTRIK TENAGA UAP ( PLTU ) UNIT 3 DAN 4 GRESIK Wardjito, Sugiyanto

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Kebutuhan manusia akan tenaga listrik terus meningkat. Tenaga listrik digunakan pada berbagai lini kehidupan seperti rumah tangga, perkantoran, industri baik home industry,

Lebih terperinci

BAB I PENDAHULUAN. juga dapat digunakan untuk pemanas. menghasilkan uap. Dimana bahan bakar yang digunakan berupa

BAB I PENDAHULUAN. juga dapat digunakan untuk pemanas. menghasilkan uap. Dimana bahan bakar yang digunakan berupa BAB I PENDAHULUAN 1.1. Latar Belakang Ketel uap merupakan suatu pesawat tenaga yang banyak digunakan dan dianggap layak dalam dunia industri di negara indonesia. Dimana ketel biasanya digunakan untuk penggerak

Lebih terperinci

BAB I PENDAHULUAN. pembangkit listrik yang sedang dikembangkan di Indonesia dikarenakan sumbernya yang

BAB I PENDAHULUAN. pembangkit listrik yang sedang dikembangkan di Indonesia dikarenakan sumbernya yang BAB I PENDAHULUAN 1.1. Latar Belakang Pembangkit Listrik Tenaga Biomassa Sawit (PLTBS) merupakan salah satu pembangkit listrik yang sedang dikembangkan di Indonesia dikarenakan sumbernya yang merupakan

Lebih terperinci

BAB I PENDAHULUAN I.1

BAB I PENDAHULUAN I.1 BAB I PENDAHULUAN I.1 Latar Belakang Penelitian Energi memiliki peranan penting dalam menunjang kehidupan manusia. Seiring dengan perkembangan zaman, kebutuhan akan energi terus meningkat. Untuk dapat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Turbin gas adalah suatu unit turbin dengan menggunakan gas sebagai fluida kerjanya. Sebenarnya turbin gas merupakan komponen dari suatu sistem pembangkit. Sistem turbin gas paling

Lebih terperinci

BAB III SISTEM REFRIGERASI DAN POMPA KALOR

BAB III SISTEM REFRIGERASI DAN POMPA KALOR BAB III SISTEM REFRIGERASI DAN POMPA KALOR Untuk mengenalkan aspek-aspek refrigerasi, pandanglah sebuah siklus refrigerasi uap Carnot. Siklus ini adalah kebalikan dari siklus daya uap Carnot. Gambar 1.

Lebih terperinci

ANALISIS TERMODINAMIKA PERFORMA HRSG PT. INDONESIA POWER UBP PERAK-GRATI SEBELUM DAN SESUDAH CLEANING DENGAN VARIASI BEBAN

ANALISIS TERMODINAMIKA PERFORMA HRSG PT. INDONESIA POWER UBP PERAK-GRATI SEBELUM DAN SESUDAH CLEANING DENGAN VARIASI BEBAN ANALISIS TERMODINAMIKA PERFORMA HRSG PT. INDONESIA POWER UBP PERAK-GRATI SEBELUM DAN SESUDAH CLEANING DENGAN VARIASI BEBAN Ilham Bayu Tiasmoro. 1), Dedy Zulhidayat Noor 2) Jurusan D III Teknik Mesin Fakultas

Lebih terperinci

OLEH :: INDRA PERMATA KUSUMA

OLEH :: INDRA PERMATA KUSUMA STUDI PEMANFAATAN BIOMASSA LIMBAH KELAPA SAWIT SEBAGAI BAHAN BAKAR PEMBANGKIT LISTRIK TENAGA UAP DI KALIMANTAN SELATAN (STUDI KASUS KAB TANAH LAUT) OLEH :: INDRA PERMATA KUSUMA 2206 100 036 Dosen Dosen

Lebih terperinci

BAB II STUDI LITERATUR

BAB II STUDI LITERATUR BAB II STUDI LITERATUR 2.1 Kebutuhan Air Tawar Siklus PLTU membutuhkan air tawar sebagai bahan baku. Hal ini dikarenakan peralatan PLTU sangat rentan terhadap karat. Akan tetapi, semakin besar kapasitas

Lebih terperinci

BAB I PENDAHULUAN. Dunia industri dewasa ini mengalami perkembangan pesat. akhirnya akan mengakibatkan bertambahnya persaingan khususnya

BAB I PENDAHULUAN. Dunia industri dewasa ini mengalami perkembangan pesat. akhirnya akan mengakibatkan bertambahnya persaingan khususnya BAB I PENDAHULUAN I.1. Latar Belakang Masalah Dunia industri dewasa ini mengalami perkembangan pesat. Perkembangan itu ditandai dengan berkembangnya ilmu dan teknologi yang akhirnya akan mengakibatkan

Lebih terperinci

BAB II ISI. 2.1 Komponen Penting PLTU Penanganan Batubara

BAB II ISI. 2.1 Komponen Penting PLTU Penanganan Batubara BAB I PENDAHULUAN Pembangkit Listrik Tenaga Uap (PLTU), merupakan salah satu andalan pembangkit tenaga listrik yang menjadi jantung untuk kegiatan industry. Salah satu bahan bakar PLTU adalah batubara.

Lebih terperinci

BAB 1 PENDAHULUAN. generator. Steam yang dibangkitkan ini berasal dari perubahan fase air

BAB 1 PENDAHULUAN. generator. Steam yang dibangkitkan ini berasal dari perubahan fase air BAB 1 PENDAHULUAN 1.1 Latar Belakang Pembangkit Listrik Tenaga Uap (PLTU) adalah pembangkit listrik yang memanfaatkan energi panas dari uap kering (steam) untuk memutar turbin sehingga dapat digunakan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Desalinasi Desalinasi merupakan suatu proses menghilangkan kadar garam berlebih dalam air untuk mendapatkan air yang dapat dikonsumsi binatang, tanaman dan manusia.

Lebih terperinci

SISTEM TENAGA LISTRIK

SISTEM TENAGA LISTRIK SISTEM TENAGA LISTRIK SISTEM TENAGA LISTRIK Sistem Tenaga Listrik : Sekumpulan Pusat Listrik dan Gardu Induk (Pusat Beban) yang satu sama lain dihubungkan oleh Jaringan Transmisi sehingga merupakan sebuah

Lebih terperinci

SESSION 12 POWER PLANT OPERATION

SESSION 12 POWER PLANT OPERATION SESSION 12 POWER PLANT OPERATION OUTLINE 1. Perencanaan Operasi Pembangkit 2. Manajemen Operasi Pembangkit 3. Tanggung Jawab Operator 4. Proses Operasi Pembangkit 1. PERENCANAAN OPERASI PEMBANGKIT Perkiraan

Lebih terperinci

TURBIN GAS. Berikut ini adalah perbandingan antara turbin gas dengan turbin uap. Berat turbin per daya kuda yang dihasilkan lebih besar.

TURBIN GAS. Berikut ini adalah perbandingan antara turbin gas dengan turbin uap. Berat turbin per daya kuda yang dihasilkan lebih besar. 5 TURBIN GAS Pada turbin gas, pertama-tama udara diperoleh dari udara dan di kompresi dengan menggunakan kompresor udara. Udara kompresi kemudian disalurkan ke ruang bakar, dimana udara dipanaskan. Udara

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Dasar Termodinamika 2.1.1 Siklus Termodinamika Siklus termodinamika adalah serangkaian proses termodinamika mentransfer panas dan kerja dalam berbagai keadaan tekanan, temperatur,

Lebih terperinci

PERATURAN MENTERI NEGARA LINGKUNGAN HIDUP NOMOR 21 TAHUN 2008

PERATURAN MENTERI NEGARA LINGKUNGAN HIDUP NOMOR 21 TAHUN 2008 SALINAN PERATURAN MENTERI NEGARA LINGKUNGAN HIDUP NOMOR 21 TAHUN 2008 TENTANG BAKU MUTU EMISI SUMBER TIDAK BERGERAK BAGI USAHA DAN/ATAU KEGIATAN PEMBANGKIT TENAGA LISTRIK TERMAL MENTERI NEGARA LINGKUNGAN

Lebih terperinci

BAB III TURBIN UAP PADA PLTU

BAB III TURBIN UAP PADA PLTU BAB III TURBIN UAP PADA PLTU 3.1 Turbin Uap Siklus Renkine setelah diciptakan langsung diterima sebagai standar untuk pembangkit daya yang menggunakan uap (steam ). Siklus Renkine nyata yang digunakan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Prinsip Pembangkit Listrik Tenaga Gas

BAB II DASAR TEORI. 2.1 Prinsip Pembangkit Listrik Tenaga Gas BAB II DASAR TEORI. rinsip embangkit Listrik Tenaga Gas embangkit listrik tenaga gas adalah pembangkit yang memanfaatkan gas (campuran udara dan bahan bakar) hasil dari pembakaran bahan bakar minyak (BBM)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Dasar Termodinamika 2.1.1 Siklus Termodinamika Siklus termodinamika adalah serangkaian proses termodinamika mentransfer panas dan kerja dalam berbagai keadaan tekanan, temperatur,

Lebih terperinci

Permasalahan. - Kapasitas terpasang 7,10 MW - Daya mampu 4,92 MW - Beban puncak 31,75 MW - Defisit daya listrik 26,83 MW - BPP sebesar Rp. 1.

Permasalahan. - Kapasitas terpasang 7,10 MW - Daya mampu 4,92 MW - Beban puncak 31,75 MW - Defisit daya listrik 26,83 MW - BPP sebesar Rp. 1. STUDI PEMBANGUNAN PLTU MAMUJU 2X7 MW DITINJAU DARI ASPEK TEKNIS, EKONOMI DAN LINGKUNGAN SERTA PENGARUHNYA TERHADAP TARIF LISTRIK REGIONAL SULAWESI BARAT Yanuar Teguh Pribadi NRP: 2208100654 Dosen Pembimbing

Lebih terperinci

MAKALAH PEMBANGKIT LISRIK TENAGA GAS (PLTG) DAN PEMBANGKIT LISRIK TENAGA GAS UAP (PLTGU)

MAKALAH PEMBANGKIT LISRIK TENAGA GAS (PLTG) DAN PEMBANGKIT LISRIK TENAGA GAS UAP (PLTGU) MAKALAH PEMBANGKIT LISRIK TENAGA GAS (PLTG) DAN PEMBANGKIT LISRIK TENAGA GAS UAP (PLTGU) Oleh IRHAS MUFTI FIRDAUS 321 11 030 YULIA REZKY SAFITRI 321 11 078 HARDIANA 321 11 046 MUH SYIFAI PIRMAN 321 11

Lebih terperinci

PEMBANGKIT LISTRIK TENAGA GAS (PLTG)

PEMBANGKIT LISTRIK TENAGA GAS (PLTG) PEMBANGKIT LISTRIK TENAGA GAS (PLTG) A. Pengertian PLTG (Pembangkit listrik tenaga gas) merupakan pembangkit listrik yang memanfaatkan gas untuk memutar turbin dan generator. Turbin dan generator adalah

Lebih terperinci

BAB II. Prinsip Kerja Mesin Pendingin

BAB II. Prinsip Kerja Mesin Pendingin BAB II Prinsip Kerja Mesin Pendingin A. Sistem Pendinginan Absorbsi Sejarah mesin pendingin absorbsi dimulai pada abad ke-19 mendahului jenis kompresi uap dan telah mengalami masa kejayaannya sendiri.

Lebih terperinci

ANALISIS EFISIENSI TURBIN GAS TERHADAP BEBAN OPERASI PLTGU MUARA TAWAR BLOK 1

ANALISIS EFISIENSI TURBIN GAS TERHADAP BEBAN OPERASI PLTGU MUARA TAWAR BLOK 1 ANALISIS EFISIENSI TURBIN GAS TERHADAP BEBAN OPERASI PLTGU MUARA TAWAR BLOK 1 Ir Naryono 1, Lukman budiono 2 Lecture 1,College student 2,Departement of machine, Faculty of Engineering, University Muhammadiyah

Lebih terperinci

ANALISA HEAT RATE PADA TURBIN UAP BERDASARKAN PERFORMANCE TEST PLTU TANJUNG JATI B UNIT 3

ANALISA HEAT RATE PADA TURBIN UAP BERDASARKAN PERFORMANCE TEST PLTU TANJUNG JATI B UNIT 3 EKSERGI Jurnal Teknik Energi Vol 10 No. 3 September 2014; 72-77 ANALISA HEAT RATE PADA TURBIN UAP BERDASARKAN PERFORMANCE TEST PLTU TANJUNG JATI B UNIT 3 Bachrudin Azis Mustofa, Sunarwo, Supriyo (1) Mahasiswa

Lebih terperinci

PERATURAN MENTERI NEGARA LINGKUNGAN HIDUP NOMOR 21 TAHUN 2008

PERATURAN MENTERI NEGARA LINGKUNGAN HIDUP NOMOR 21 TAHUN 2008 SALINAN PERATURAN MENTERI NEGARA LINGKUNGAN HIDUP NOMOR 21 TAHUN 2008 TENTANG BAKU MUTU EMISI SUMBER TIDAK BERGERAK BAGI USAHA DAN/ATAU KEGIATAN PEMBANGKIT TENAGA LISTRIK TERMAL MENTERI NEGARA LINGKUNGAN

Lebih terperinci

Studi Pembangunan PLTU 2x60 MW di Kabupaten Pulang Pisau berkaitan dengan Krisis Energi di Kalimantan Tengah

Studi Pembangunan PLTU 2x60 MW di Kabupaten Pulang Pisau berkaitan dengan Krisis Energi di Kalimantan Tengah Studi Pembangunan PLTU 2x60 MW di Kabupaten Pulang Pisau berkaitan dengan Krisis Energi di Kalimantan Tengah oleh: Alvin Andituahta Singarimbun 2206 100 040 DosenPembimbing 1: Ir. Syarifuddin M, M.Eng

Lebih terperinci

PEMBANGKIT LISTRIK TENAGA GAS (PLTG) Prepared by: anonymous

PEMBANGKIT LISTRIK TENAGA GAS (PLTG) Prepared by: anonymous PEMBANGKIT LISTRIK TENAGA GAS (PLTG) Prepared by: anonymous Pendahuluan PLTG adalah pembangkit listrik yang menggunakan tenaga yang dihasilkan oleh hasil pembakaran bahan bakar dan udara bertekanan tinggi.

Lebih terperinci

BAB IV GAMBARAN UMUM LOKASI PENELITIAN. Pembangunan fisik PLTU ini dimulai sejak tahun 2001 (Lot I: Site Preparation).

BAB IV GAMBARAN UMUM LOKASI PENELITIAN. Pembangunan fisik PLTU ini dimulai sejak tahun 2001 (Lot I: Site Preparation). BAB IV GAMBARAN UMUM LOKASI PENELITIAN A. Sejarah Singkat PT PLN (Persero) Pembangunan fisik PLTU ini dimulai sejak tahun 2001 (Lot I: Site Preparation). Kemudian diteruskan pada tahapan pembangunan sipil

Lebih terperinci

BAB 1 PENDAHULUAN. Persaingan antar perusahaan di bidang manufaktur dan jasa sangat ketat. Hal ini

BAB 1 PENDAHULUAN. Persaingan antar perusahaan di bidang manufaktur dan jasa sangat ketat. Hal ini 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Persaingan antar perusahaan di bidang manufaktur dan jasa sangat ketat. Hal ini dilihat dari banyaknya perusahaan-perusahaan yang mencoba merebut pasar yang ada di

Lebih terperinci

MULTIREFRIGERASI SISTEM. Oleh: Ega T. Berman, S.Pd., M,Eng

MULTIREFRIGERASI SISTEM. Oleh: Ega T. Berman, S.Pd., M,Eng MULTIREFRIGERASI SISTEM Oleh: Ega T. Berman, S.Pd., M,Eng SIKLUS REFRIGERASI Sistem refrigerasi dengan siklus kompresi uap Proses 1 2 : Kompresi isentropik Proses 2 2 : Desuperheating Proses 2 3 : Kondensasi

Lebih terperinci

BAB I PENDAHULUAN. apabila terjadi gangguan di salah satu subsistem, maka daya bisa dipasok dari

BAB I PENDAHULUAN. apabila terjadi gangguan di salah satu subsistem, maka daya bisa dipasok dari 1 1.1 Latar Belakang BAB I PENDAHULUAN Permintaan energi listrik di Indonesia menunjukkan peningkatan yang cukup pesat dan berbanding lurus dengan pertumbuhan ekonomi dan pertambahan penduduk. Dalam rangka

Lebih terperinci

BAB III METODE STUDI SEKURITI SISTEM KETERSEDIAAN DAYA DKI JAKARTA & TANGERANG

BAB III METODE STUDI SEKURITI SISTEM KETERSEDIAAN DAYA DKI JAKARTA & TANGERANG BAB III METODE STUDI SEKURITI SISTEM KETERSEDIAAN DAYA DKI JAKARTA & TANGERANG 2007-2016 Dari keterangan pada bab sebelumnya, dapat dilihat keterkaitan antara kapasitas terpasang sistem pembangkit dengan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Siklus PLTU Sistem pembangkit listrik tenaga uap (Steam Power Plant) memakai siklus Rankine. PLTU Suralaya menggunakan siklus tertutup (closed cycle) dengan dasar siklus rankine

Lebih terperinci

1. PENDAHULUAN PROSPEK PEMBANGKIT LISTRIK DAUR KOMBINASI GAS UNTUK MENDUKUNG DIVERSIFIKASI ENERGI

1. PENDAHULUAN PROSPEK PEMBANGKIT LISTRIK DAUR KOMBINASI GAS UNTUK MENDUKUNG DIVERSIFIKASI ENERGI PROSPEK PEMBANGKIT LISTRIK DAUR KOMBINASI GAS UNTUK MENDUKUNG DIVERSIFIKASI ENERGI INTISARI Oleh: Ir. Agus Sugiyono *) PLN sebagai penyedia tenaga listrik yang terbesar mempunyai kapasitas terpasang sebesar

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang 1.1. Latar Belakang BAB I PENDAHULUAN Di dunia industri terutama dibidang petrokimia dan perminyakan banyak proses perubahan satu fluida ke fluida yang lain yang lain baik secara kimia maupun non kimia.

Lebih terperinci

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya BAB II DASAR TEORI 2.1 Hot and Cool Water Dispenser Hot and cool water dispenser merupakan sebuah alat yang digunakan untuk mengkondisikan temperatur air minum baik dingin maupun panas. Sumber airnya berasal

Lebih terperinci

INOVASI PEMANFAATAN BRINE UNTUK PENGERINGAN HASIL PERTANIAN. PT Pertamina Geothermal Energi Area Lahendong

INOVASI PEMANFAATAN BRINE UNTUK PENGERINGAN HASIL PERTANIAN. PT Pertamina Geothermal Energi Area Lahendong INOVASI PEMANFAATAN BRINE UNTUK PENGERINGAN HASIL PERTANIAN PT Pertamina Geothermal Energi Area Lahendong Penerima Penghargaan Energi Pratama Tahun 2011 S A R I PT. Pertamina Geothermal Energi adalah salah

Lebih terperinci

MAKALAH SEMINAR KERJA PRAKTEK. PROSES SINKRON GENERATOR PADA PEMBANGKIT di PT. GEO DIPA ENERGI UNIT I DIENG

MAKALAH SEMINAR KERJA PRAKTEK. PROSES SINKRON GENERATOR PADA PEMBANGKIT di PT. GEO DIPA ENERGI UNIT I DIENG MAKALAH SEMINAR KERJA PRAKTEK PROSES SINKRON GENERATOR PADA PEMBANGKIT di PT. GEO DIPA ENERGI UNIT I DIENG Reza Pahlefi¹, Dr.Ir. Joko Windarto, MT.² ¹Mahasiswa dan ²Dosen Jurusan Teknik Elektro Fakultas

Lebih terperinci

BAB II TINJAUAN PUSTAKA. suatu pembangkit daya uap. Siklus Rankine berbeda dengan siklus-siklus udara

BAB II TINJAUAN PUSTAKA. suatu pembangkit daya uap. Siklus Rankine berbeda dengan siklus-siklus udara BAB II TINJAUAN PUSTAKA Analisa Termodinamika Siklus Rankine adalah siklus teoritis yang mendasari siklus kerja dari suatu pembangkit daya uap Siklus Rankine berbeda dengan siklus-siklus udara ditinjau

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Konsumsi listrik daerah Sumatera bagian Utara setiap tahunnya terus meningkat sejalan dengan peningkatan pertumbuhan ekonomi masyarakatnya. Oleh karena itu, perkiraan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar belakang

BAB I PENDAHULUAN. 1.1 Latar belakang 1 BAB I PENDAHULUAN 1.1 Latar belakang Energi listrik dalam era sekarang ini sudah merupakan kebutuhan primer, dengan perkembangan teknologi, cara hidup, nilai kebutuhan dan pendapatan perkapita serta

Lebih terperinci

BAB V TURBIN GAS. Berikut ini adalah perbandingan antara turbin gas dengan turbin uap. No. Turbin Gas Turbin Uap

BAB V TURBIN GAS. Berikut ini adalah perbandingan antara turbin gas dengan turbin uap. No. Turbin Gas Turbin Uap BAB V TURBIN GAS Pada turbin gas, pertama-tama udara diperoleh dari udara dan di kompresi dengan menggunakan kompresor udara. Udara kompresi kemudian disalurkan ke ruang bakar, dimana udara dipanaskan.

Lebih terperinci

Apa itu PLTU? Pembangkit listrik tenaga uap (PLTU) adalah pembangkit yang mengandalkan energi kinetik dari uap untuk menghasilkan energi listrik.

Apa itu PLTU? Pembangkit listrik tenaga uap (PLTU) adalah pembangkit yang mengandalkan energi kinetik dari uap untuk menghasilkan energi listrik. Apa itu PLTU? Pembangkit listrik tenaga uap (PLTU) adalah pembangkit yang mengandalkan energi kinetik dari uap untuk menghasilkan energi listrik. Bentuk utama dari pembangkit listrik jenis ini adalah Generator

Lebih terperinci

ANALISA PERFORMANSI KETEL UAP DENGAN KAPASITAS 260 TON/JAM DAN TEKANAN 86 BAR DI UNIT 3 PADA PLTU SEKTOR PEMBANGKIT BELAWAN

ANALISA PERFORMANSI KETEL UAP DENGAN KAPASITAS 260 TON/JAM DAN TEKANAN 86 BAR DI UNIT 3 PADA PLTU SEKTOR PEMBANGKIT BELAWAN ANALISA PERFORMANSI KETEL UAP DENGAN KAPASITAS 260 TON/JAM DAN TEKANAN 86 BAR DI UNIT 3 PADA PLTU SEKTOR PEMBANGKIT BELAWAN LAPORAN TUGAS AKHIR Diajukan untuk Memenuhi Sebagian Persyaratan dalam Menyelesaikan

Lebih terperinci

MODUL 5A PEMBANGKIT LISTRIK TENAGA UAP (PLTU)

MODUL 5A PEMBANGKIT LISTRIK TENAGA UAP (PLTU) MODUL 5A PEMBANGKIT LISTRIK TENAGA UAP (PLTU) Definisi dan Pengantar Pembangkit Listrik Tenaga Uap (PLTU) adalah pembangkit listrik yang memanfaatkan energi panas dari uap (steam) untuk memutar turbin

Lebih terperinci

BAB IV HASIL ANALISA DAN PEMBAHASAN. 4.1 Pembangkit Listrik Tenaga Panas Bumi Single Flash System

BAB IV HASIL ANALISA DAN PEMBAHASAN. 4.1 Pembangkit Listrik Tenaga Panas Bumi Single Flash System 32 BAB IV HASIL ANALISA DAN PEMBAHASAN 4.1 Pembangkit Listrik Tenaga Panas Bumi Single Flash System PLTP Gunung Salak merupakan PLTP yang berjenis single flash steam system. Oleh karena itu, seperti yang

Lebih terperinci

BAB I PENDAHULUAN. Dalam proses PLTU dibutuhkan fresh water yang di dapat dari proses

BAB I PENDAHULUAN. Dalam proses PLTU dibutuhkan fresh water yang di dapat dari proses BAB I PENDAHULUAN 1.1. Latar Belakang Pada Pembangkit Listrik Tenaga Uap, untuk menghasilkan uap dibutuhkan air yang dipanaskan secara bertahap melalui beberapa heater sebelum masuk ke boiler untuk dipanaskan

Lebih terperinci

SEJARAH DAN STRUKTUR ORGANISASI PT INDONESIA POWER

SEJARAH DAN STRUKTUR ORGANISASI PT INDONESIA POWER LAMPIRAN SEJARAH DAN STRUKTUR ORGANISASI PT INDONESIA POWER Data Umum Perusahaan PT. INDONESIA POWER merupakan salah satu anak perusahaan listrik milik PT. PLN (Persero) yang didirikan pada tanggal 3 Oktober

Lebih terperinci

BAB IV PEMILIHAN SISTEM PEMANASAN AIR

BAB IV PEMILIHAN SISTEM PEMANASAN AIR 27 BAB IV PEMILIHAN SISTEM PEMANASAN AIR 4.1 Pemilihan Sistem Pemanasan Air Terdapat beberapa alternatif sistem pemanasan air yang dapat dilakukan, seperti yang telah dijelaskan dalam subbab 2.2.1 mengenai

Lebih terperinci