PENGARUH SIKLUS TERMAL TERHADAP KARAKTERISTIK MEKANIK KOMPOSIT HDPE SAMPAH ORGANIK SKRIPSI

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENGARUH SIKLUS TERMAL TERHADAP KARAKTERISTIK MEKANIK KOMPOSIT HDPE SAMPAH ORGANIK SKRIPSI"

Transkripsi

1 PENGARUH SIKLUS TERMAL TERHADAP KARAKTERISTIK MEKANIK KOMPOSIT HDPE SAMPAH ORGANIK SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana teknik Oleh : TRIONO KARSO I JURUSAN TEKNIK MESIN FAKULTAS TEKNIKUNIVERSITAS SEBELAS MARET SURAKARTA 2013

2 PENGARUH SIKLUS TERMAL TERHADAP KARAKTERISTIK MEKANIK KOMPOSIT HDPE-SAMPAH ORGANIK Triono Karso Jurusan Teknik Mesin, Fakultas Teknik Universitas Sebelas Maret, Surakarta Abstrak Tujuan penelitian ini adalah untuk mengetahui pengaruh siklus termal terhadap karakteristik komposit HDPE-sampah organik berupa kekuatan lentur, kekuatan impak dan kekuatan geser tekan. Komposit terbuat dari sampah HDPE dan sampah organik (daun dan ranting). Pembuatan spesimen menggunakan metode pressured sintering dengan tekanan 8,7 kpa, suhu sintering 120 ºC, waktu sintering 10 menit, dan fraksi volume HDPE 0.3. Komposit HDPE-sampah organik akan disiklus termal dengan variasi suhu 60, 70, 80, 90, 100 dan 110 C dengan variasi siklus 100, 150, 200, dan 250 kali. Komposit hasil siklus termal akan diuji kekuatan mekaniknya berupa kekuatan lentur dan geser tekan yang mengacu pada ASTM D1037, dan impak yang mengacu pada ASTM D5941. Penelitian ini juga dilakukan pengamatan permukaan patah hasil uji bending dengan foto SEM (scanning electron microscopy). Peningkatan suhu siklus dari C akan merusak ikatan antara material organik dan HDPE, berdampak pada penurunan nilai bending sebesar 56,93%, geser tekan 71,75% dan impak 74,33%. Variasi jumlah siklus dengan temperatur di bawah suhu softening mengakibatkan kerusakan ikatan yang lebih rendah dibandingkan suhu di atas softening. Penurunan untuk bending sebesar 29,38%, geser tekan 38,32% dan impak 55,66%. Kata kunci : Komposit, HDPE, sampah organik, termal pressured sintering, siklus v

3 THE EFFECT OF THERMAL CYCLING ON MECHANICAL CHARACTERISTICS OF HDPE-ORGANIC WASTE COMPOSITE Triono Karso Department of Mechanical Engineering, Engineering Faculty Sebelas Maret University, Surakarta Abstract The aim of this research is to examine the effect of thermal cycling on the characteristic of HDPE-organic waste composite including flexural strength, impact strength and shear press strength. Composite is made from HDPE waste and organic waste (leaves and twigs). The composite was made by using the pressured sintering method. The pressured sintering process was conducted at 10 minutes sintering time, temperature of 120 C with pressure of 8,7 kpa, and volume fraction of HDPE of 0.3. Thermal cycling of HDPE-organic waste composite use temperature range 60, 70, 80, 90, 100, 110 C and variation of cycle 100, 150, 200, and 250 times. Thermal cycling composites are tested in the form of mechanical strength including the flexural strength and shear press referring to ASTM D1037, and impact referring to ASTM D5941. Besides, the research observed the fracture surface of bending test results by using SEM (scanning electron microscopy) photos. Increased temperature of cycle C will break the bond between organic material and HDPE that affect the impairment for bending is 56.93%, for compression shear 71.75% and for impact is 74.33%. In variation number of cycle with temperature below temperature softening causes demage on the bond that is lower than the softening temperature. A decrease for bending is 29.38%, for compression shear is 38.32%, and for impact is 55.66%. Key words : composite, HDPE, organic waste, pressure sintering, thermal cycling vi

4 KATA PENGANTAR Puji syukur kehadirat Allah SWT karena berkat rahmat, hidayah dan inayah-nya penulis dapat menyelesaikan skripsi ini. Adapun tujuan penulisan skripsi ini adalah untuk memenuhi sebagian persyaratan guna mencapai gelar Sarjana Teknik di Teknik Mesin Fakultas Teknik Universitas Sebelas Maret Surakarta. Penulis menyampaikan terima kasih yang sangat mendalam kepada semua pihak yang telah berpartisipasi dalam penelitian dan penulisan skripsi ini, khususnya kepada : 1. Mamahku Rudatin, Bapakku Karso, kakak-kakakku Wahid Dianto dan Untung Wahyudi, serta adik-adikku tercinta Taufiq Hardiansyah dan Yustika Setia Damayanti, terima kasih atas do a, kasih sayang, dan semangat yang diberikan sehingga penulis dapat menyelesaikan skripsi ini. 2. Bapak Ir. Wijang Wisnu Raharjo, MT., selaku dosen pembimbing I yang dengan ikhlas dan sabar memberikan banyak bantuan dalam penelitian dan penulisan skripsi ini. 3. Bapak Heru Sukanto, ST., MT., selaku dosen pembimbing II yang telah memberikan banyak masukan dalam penelitian dan penulisan skripsi ini. 4. Bapak Wibowo, ST., MT., Bapak Wahyu Purwo Raharjo, ST., MT. dan Bapak Purwadi Joko Widodo, ST., M. Kom., selaku dosen penguji. 5. Bapak Rendy Adhi R., ST., MT., dan Bapak Tri Istanto, ST., MT., selaku pembimbing akademik. 6. Dosen-dosen Teknik Mesin FT UNS yang telah memberikan ilmu yang sangat berguna bagi penulis. 7. Wisnu Adhi Permana Jati, teman seperjuangan penulis, terimaksih buat kerjasama, dukungan dan semangatnya sehingga penulis dapat menyelesaikan penulisan skripsi ini. 8. Muhamad Fandy Assydiqi ST., Didik Riyanto ST., Agung Ibnuwibowo ST., Heri Saputro ST., Tri Prasetyo ST., Pradipta Fajar Yuniarto ST., terima kasih untuk kesempatan yang kalian berikan kepada penulis sehingga penulis dapat mengambil skripsi tentang komposit. vii

5 9. Gita Kusumajati yang telah memberi motifasi, dukungan dan semangat untuk terus tetap berjuang dalam situasi apapun. Selalu sabar dan tidak pernah berhenti memberi teguran dan masukan. Terima kasih juga atas do anya dan perhatianya, terima kasih banyak. 10. Keluarga Mas Gi dan Mba Mut, keponakanku Tiara dan Alghi, dan juga untuk Lina terimakasih atas dukungan, do a dan untuk semuanya. 11. Keluarga Pak Sarjono dan Bu Lestari, buat si Mbah, dek Maya dan dek Nena, terimaksih untuk do a dan dukungannya. 12. Teman-teman Teknik Mesin Fakultas Teknik Non Reguler UNS angkatan 2007 (Supardi ST., Khamdan M. ST., Sukma A. ST., Dani, Eko karim, Eko Pak Eko, Bayu, Apriyan, Agus, Diky, Andry, Tri Haryono, Iva, Mahalevi, Fandi), dan untuk semua teman-teman Teknik Mesin Reguler tanpa terkecuali yang telah memberikan dukungan sehingga penulis dapat menyelesaikan skripsi. 13. Kakak tingkat Fakultas Teknik Mesin UNS angkatan 2005, dan 2006 (mas Albert, mas Dhidit, mas Aji Benot, mas Arif, mas Tri Laksono, mas Dony, dan semuanya tanpa terkecuali) yang telah memberikan semangat. 14. Teman-teman kos Widuri 3 (Halim, Boyo, dan Kucing) dan teman-teman kos Djati Asli, yang telah mendukung dan terus memberikan motifasi penulis harus dapat menyelesaikan skripsi, terima kasih untuk kebersamaannya. 15. Bu Elisa, Mas Har, Pak Endras, & Semua Karyawan Fakultas Teknik terima kasih karena selalu mau untuk penulis repotkan. 16. Berbagai pihak yang tidak dapat disebutkan satu persatu, atas bantuan dan dorongan semangat serta do anya, terima kasih. Penulis menyadari, bahwa dalam skripsi ini masih terdapat banyak kekurangan. Oleh karena itu, bila ada saran, koreksi dan kritik demi kesempurnaan skripsi ini, akan penulis terima dengan ikhlas dan dengan ucapan terima kasih. Surakarta, Januari 2013 viii Penulis

6 DAFTAR ISI Halaman ABSTRAK... v KATA PENGANTAR... vii DAFTAR ISI... ix DAFTAR TABEL... xi DAFTAR GAMBAR... xii DAFTAR LAMPIRAN... xiii BAB I. PENDAHULUAN Latar Belakang Perumusan Masalah Batasan Masalah Tujuan Penelitian Sistematika Penulisan... 3 BAB II. DASAR TEORI Tinjauan Pustaka Teori Tentang Komposit Klasifikasi Material dan Pembentuk Komposit Matrik Filler Karakteristik Komposit Sintering Pencampuran Serbuk Potensi Sampah BAB III. METODE PENELITIAN Tempat Penelitian Bahan Penelitian Alat Penelitian Alat Uji Parameter Langkah Kerja Penelitian Diagram Alir Penelitian Jadwal Penelitian BAB IV. HASIL DAN ANALISA Pengaruh Variasi Suhu Siklus Termal Terhadap Karakteristik Mekanik Komposit HDPE-Sampah Organik Pengukuran Densitas Komposit HDPE-Sampah Organik Pengaruh Variasi Suhu Siklus Termal Terhadap Kekuatan Bending Pengaruh Variasi Suhu Siklus Termal Terhadap Kekuatan Geser Tekan Pengaruh Variasi Suhu Siklus Termal Terhadap Kekuatan Impak Pengaruh Variasi Jumlah Siklus Termla Terhadap Karakteristik Mekanik Komposit HDPE-Sampah Organik Pengukuran Densitas Komposit HDPE-Sampah Organik ix

7 Pengaruh Variasi Jumlah Siklus Termal Terhadap Kekuatan Bending Pengaruh Variasi Jumlah Siklus Termal Terhadap Kekuatan Geser Tekan Pengaruh Variasi Jumlah Siklus Termal Terhadap Kekuatan Impak BAB V. KESIMPULAN DAN SARAN Kesimpulan Saran DAFTAR PUSTAKA LAMPIRAN xii

8 BAB I PENDAHULUAN 1.1 Latar Belakang Kebutuhan jaman sekarang akan pemakaian logam yang terus semakin meningkat membuat ketersedian logam yang semakin menipis di alam, untuk itu di butuhkan sebuah material alternatif yang bisa mewakili sifat-sifat dari logam tersebut, karena alasan ini maka muncullah material baru yang disebut dengan material komposit. Material komposit adalah material yang tersusun dari dua atau lebih material yang bertujuan untuk mendapatkan kombinasi karakteristik terbaik dari setiap material penyusunnya (kuat tetapi ringan). Militer Amerika Serikat adalah pihak yang pertama kali mengembangkan dan memakai bahan komposit. Pesawat AV-8D mempunyai kandungan bahan komposit 27% dalam struktur rangka pesawat pawa awal tahu 1980-an. Penggunaan bahan komposit dalam skala besar pertama kali terjadi pada tahun Ketika itu Airbus A320 pertama kali terbang dengan stabiliser horisontal dan vertikal yang terbuat dari bahan komposit. Airbus telah menggunakan komposit sampai dengan 15% dari berat total rangka pesawat untuk seri A320, A330 dan A340 (William, J.C. 2003). Komposit daur ulang merupakan salah satu jenis komposit yang banyak dikembangkan, salah satu jenisnya adalah komposit daur ulang yang menggunakan bahan dasar sampah organik dan anorganik. Sampah organik biasa digunakan sebagai filler karena memiliki sifat ringan, mudah didaur ulang, tahan korosi, dan harganya murah. Sementara sampah anorganik susah untuk terurai sehingga harus didaur ulang agar dapat digunakan kembali dan tidak mencemari lingkungan. Dalam penelitian ini digunakannya bahan dasar sampah organik dan anorganik karena sampah merupakan permasalahan yang sangat serius di kota kota besar. Salah satu contohnya seperti di kota Solo, menurut petugas Dinas Kebersihan dan Pertamanan (DKP) kota Solo, sampah yang di hasilkan pada hari biasa rata-rata mencapai 260 ton/hari, namun jumlah ini akan terus meningkat 3-6 % saat hari libur (Subroto, 2012). Oleh karena itu pembuatan komposit berbahan dasar sampah merupakan salah satu alternatif commit 1 to user

9 2 untuk mengurangi volume sampah kota, sampah organik (daun dan ranting) berfungsi sebagai pengisi (filler) dan sampah anorganik (HDPE) berfungsi sebagai pengikat (matriks). Pembuatan material komposit dapat menggunakan beberapa metode, salah satunya dengan metode pressured sintering. Pressured sintering adalah suatu proses pengikatan partikel melalui proses pemanasan di bawah titik lebur yang dilakukan selama proses penekanan (kompaksi). Material yang dihasilkan dengan metode ini diharapkan memiliki sifat mekanik dan fisik yang lebih baik. Parameter yang digunakan untuk mengendalikan proses sintering adalah laju pemanasan, suhu, dan waktu sintering (Sugondo, 2000). Beban termal dapat terjadi pada setiap komposit, beban termal timbul dari perbedaan temperatur, atau dari sumber panas lain seperti kebakaran, panas dari listrik, dan panas yang ditimbulkan dari mesin. Beban termal dapat terjadi secara berulang-ulang hingga membentuk siklus termal. Mengingat komponen penyusun komposit ini adalah material organik dan anorganik yang berpotensi mengalami beban termal secara berulang (thermal cycling), maka sangatlah penting untuk mengetahui efek dari beban termal yang berulang terhadap sifat mekanik dari komposit dari komposit HDPE-sampah organik. 1.2 Perumusan Masalah Bagaimana pengaruh siklus termal dengan variasi perubahan suhu dan pengaruh jumlah siklus termal terhadap karakteristik mekanik komposit berbahan dasar HDPE-sampah organik. 1.3 Batasan Masalah Batasan-batasan masalah dalam penelitian ini adalah sebagai berikut : a. Distribusi serbuk HDPE, serbuk ranting dan serbuk daun yang digunakan dalam pembuatan komposit ini dianggap merata selama proses pencampuran. b. Distribusi panas diasumsikan merata selama proses sintering.

10 3 c. Panas yang diterima oleh komposit dianggap sama dan merata selama proses siklus termal. 1.4 Tujuan Penelitian Tujuan penelitian ini adalah untuk mengetahui pengaruh siklus termal terhadap karakteristik mekanik komposit HDPE-sampah organik berupa kekuatan bending, kekuatan impak dan kekuatan geser tekan. 1.5 Sistematika Penulisan Sistematika penulisan Tugas Akhir ini adalah sebagai berikut : a. Bab I Pendahuluan, menjelaskan tentang latar belakang masalah, perumusan masalah, batasan masalah, tujuan penelitian, serta sistematika penulisan Tugas Akhir. b. Bab II Dasar teori, berisi tinjauan pustaka serta kajian teoritis yang memuat penelitian-penelitian sejenis serta landasan teori yang berkaitan dengan permasalahan yang diteliti. c. Bab III Metode penelitian, menjelaskan peralatan yang digunakan, tempat dan pelaksanaan penelitian, langkah-langkah percobaan dan pengambilan data. d. Bab IV Data dan analisa, menjelaskan data hasil pengujian, perhitungan data hasil pengujian serta analisa hasil dari perhitungan. e. Bab V Penutup, berisi tentang kesimpulan dan saran. Kesimpulan merupakan jawaban dari tujuan penelitian dan pembuktian kebenaran hipotesis. Saran berisi pertimbangan penulis yang ditujukan kepada para peneliti yang ingin melanjutkan atau mengembangkan penelitian yang sejenis.

11 BAB II DASAR TEORI 2.1. Tinjauan Pustaka Termoplastik adalah jenis plastik yang dapat didaur ulang, termoplastik akan melunak saat dipanaskan dan mengeras jika didinginkan dan proses ini bisa dilakukan secara berulang (Asbhy. Dkk, 2007). HDPE (High Density Polyethylene) merupakan salah satu jenis termoplastik yang penggunaannya sangat luas antara lain sebagai kemasan makanan, minuman dan bahan kimia. Penggunan HDPE yang begitu luas mengakibatkan peningkatan limbah plastik HDPE yang semakin tinggi dan jumlah ini akan terus bertambah karena sifat plastik yang tidak mudah terurai secara alami yang pada akhirnya dapat menimbulkan pencemaran lingkungan. Selain sampah plastik, jenis limbah lain yang sering menimbulkan masalah adalah sampah organik. Penelitian komposit HDPE-sampah organik dengan variasi suhu sintering HDPE menghasilkan bahwa peningkatan suhu sintering dari suhu 105 C sampai 127 C akan menaikan kekuatan bending sebesar 171,6 % dan menyebabkan nilai resapan air komposit HDPE-sampah organik turun sebesar 84,23 % (Riyanto, 2011). Penelitian komposit HDPE-sampah organik dengan variasi penambahan fraksi volume HDPE 20 % sampai dengan 50 % meningkatkan sifat fisik dan mekanik material. Secara keseluruhan kekuatan lentur naik sebesar 135,52 %, kekuatan impak naik sebesar 158,53 % dan densitas naik sebesar 31,97 % (Asshiddiqi, 2011). Proses pressured sintering yang diberikan pada spesimen akan meningkatkan jumlah ikatan antar serbuk plastik. Peningkatan jumlah ikatan dimulai pada suhu sintering 120 C karena pada suhu ini serbuk plastik mulai melunak dan mengalami reposisi menempati ruang antar serbuk karet (Sukanto, 2008). Variasi suhu yang semakin meningkat pada siklus termal dapat menurunkan kekuatan mekanik komposit, hal ini sesuai dengan penelitian Cao S., Dkk (2009) yang menunjukan bahwa kekuatan tarik serat karbon berkurang secara signifikan dengan peningkatan suhu dari 16, 30, 55, 80, 120, 160 sampai 200 C, pada suhu commit 4 to user

12 5 tinggi hibridisasi serat mampu mengurangi penurunan kekuatan tarik komposit CFRP. Kemampuan energi serap komposit dengan matrik polimer berkurang seiring dengan peningkatan temperatur perlakuan pada pengujian impak velocity, seperti penelitian yang dilakukan oleh Aktas M., Dkk (2010) dengan menggunakan variasi suhu 20, 60, dan 100 C. Peningkatan jumlah siklus termal yang diberikan pada komposit dengan matrik epoxy dapat menyebabkan kerusakan ikatan antar muka yang dapat menyebabkan terjadinya crack (retakan), hal ini sesuai dengan penelitian Papanicolaou G.C., dkk (2009) yang mengkaji tentang pengaruh perlakuan panas kejut (thermal shock) dengan variasi jumlah siklus 6, 12, 24, 36 dan 48 kali, hasil penelitiannya menunjukan perlakuan thermal shock menyebabkan kegagalan debonding pada matrik karena pengaruh thermal fatique, sedangkan untuk variasi jumlah siklus ditemukan adanya kerusakan micro crack yang meningkat pesat dengan bertambahnya jumlah siklus. Pernyataan tersebut dikuatkan oleh Surdia (2000), yang menyatakan bahwa lamanya waktu berada pada temperatur tinggi juga dapat menjadi satu penyebab menurunnya kekuatan polimer. Polimer dalam waktu yang lama dengan temperatur rendah dapat mengakibatkan kerusakan, tetapi polimer dalam waktu singkat pada temperatur yang lebih tinggi akan memberikan pengaruh kerusakan yang lebih signifikan Teori Tentang Komposit Klasifikasi Material dan Pembentuk Komposit Menurut Gibson (1994) komposit adalah perpaduan dari bahan yang dipilih berdasarkan kombinasi sifat fisik masing-masing material penyusun untuk menghasilkan material baru dengan sifat yang unik dibandingkan sifat material dasar sebelum dicampur dan terjadi ikatan permukaan antara masing-masing material penyusun. Campuran tersebut akan menghasilkan material komposit yang mempunyai sifat mekanik dan karakteristik yang berbeda dari material pembentuknya.

13 6 Karakteristik dan sifat komposit dipengaruhi oleh material-material yang menyusunnya. Dalam hal ini susunan struktur dan interaksi antar unsur-unsur penyusunnya. Interaksi antar unsur-unsur penyusun komposit, yaitu serat dan matrik sangat berpengaruh terhadap kekuatan ikatan antarmuka. Kekuatan ikatan antarmuka yang optimal antara matrik dan serat merupakan aspek yang penting dalam penunjukan sifat-sifat mekanik komposit (Gibson, 1994). Secara umum pengelompokan komposit dapat dibedakan menjadi dua, yang pertama yaitu berdasarkan matrik dan yang kedua berdasarkan penguatnya. Berdasarkan matriknya komposit dapat digolongkan menjadi tiga (Courney, 1983) yaitu : a) Komposit matrik logam (KML), yaitu logam sebagai matrik b) Komposit matrik polimer (KMP), yaitu polimer sebagai matrik c) Komposit matrik keramik (KMK), yaitu keramik sebagai matrik Berdasarkan unsur penguatnya, menurut Courney (1983) dapat dibedakan menjadi tiga : a) Komposit partikel, yaitu penguatnya berbentuk partikel Gambar 2.1. Komposit partikel (Courney, 1983) b) Komposit serat, yaitu penguatnya berbentuk serat Gambar 2.2. Komposit serat (Courney, 1983)

14 7 c) Komposit struktur, yaitu cara penggabungan material komposit Gambar 2.3. Komposit struktur (Courney, 1983) Gambar 2.4. Pembagian komposit berdasarkan penguatnya (Courney, 1983) Matrik (Pengikat) Gibson (1994) mengatakan bahwa matrik dalam struktur komposit bisa berasal dari bahan polimer, logam maupun keramik. Matrik secara umum berfungsi untuk mengikat serat menjadi satu struktur komposit. Fungsi dari matrik adalah sebagai berikut : - Mengikat serat menjadi satu kesatuan struktur - Melindungi serat dari kerusakan akibat kondisi lingkungan - Mentransfer dan mendistribusikan beban ke serat - Menyumbangkan beberapa sifat seperti, kekakuan, ketangguhan, dan tahanan listrik

15 8 Umumnya matriks terbuat dari bahan-bahan yang lunak dan liat. Polimer (plastik) merupakan bahan umum yang biasa digunakan. Polyester, vinilester dan epoksi adalah bahan-bahan polimer yang sejak dahulu telah dipakai sebagai bahan matriks, namun selain itu dapat juga digunakan bahan keramik dan logam. Polimer banyak digunakan karena : - Tidak korosif - Ringan - Mempunyai bentuk yang komplek - Biaya murah Persyaratan di bawah ini perlu dipenuhi sebagai bahan matriks untuk pencetakan bahan komposit : - Resin yang dipakai perlu memiliki viskositas rendah, dapat sesuai dengan bahan penguat dan permeable. - Dapat diukur pada temperatur kamar dalam waktu yang optimal. - Mempunyai penyusutan yang kecil pada pengawetan. - Memiliki kelengketan yang baik dengan bahan penguat. - Mempunyai sifat baik dari bahan yang diawetkan. Tidak ada bahan yang dapat memenuhi semua persyaratan di atas tetapi pada saat ini paling banyak dipakai adalah polyester tak jenuh (Surdia, 2000). Surdia (2000) mengatakan bahwa polimer adalah gabungan beberapa satuan struktur (monomer) yang tersusun secara berulang-ulang dan diikat oleh gaya tarik menarik yang kuat yang disebut ikatan kovalen. Jenis polimer yang umum ada dua yaitu polimer termoset (polimer yang tidak dapat didaur ulang) dan polimer termoplastik (polimer yang dapat didaur ulang). Proses pembuatan polimer ini disebut polimerisasi, yang melibatkan energi panas dan katalisator untuk memisahkan ikatan dalam suatu molekul agar dapat terjadi ikatan dengan molekul-molekul lain yang sejenis (Billmeyer, 1994). High Density Polyethylene (HDPE) merupakan polimer termoplastik yang dibuat dari petroleum, untuk membuat 1 kg HDPE dibutuhkan 1,75 kg petroleum. HDPE memiliki daerah kristalisasi yang lebih luas dari LDPE (Low Density

16 9 Polyethylene). HDPE dengan rantai yang lebih sedikit dari LDPE, memiliki bagian kristal yang lebih besar, sehingga densitasnya lebih besar dan kekuatan tarik yang lebih tinggi dari LDPE. Sedikitnya cabang dipengaruhi oleh pemakaian katalis yang tepat (contoh katalis Ziegler-Natta) dan kondisi reaksi. HDPE juga lebih keras dan tahan temperatur tinggi (120 C untuk waktu yang singkat, dan 110 C untuk waktu kontinyu ( 26 Januari 2013). Gambar 2.5. Simbol daur ulang HDPE HDPE sangat tahan terhadap bahan kimia sehingga memiliki aplikasi yang luas, diantaranya : - Sistem perpipaan transfer panas bumi - Sistem perpipaan gas bumi - Pipa air - Pembungkus kabel Selain itu HDPE juga memiliki sifat ketahan impak cukup baik, memiliki ketahanan terhadap suhu, stabil terhadap oksidasi udara, tetapi tidak tahan terhadap sinar matahari (corneliusse, 2002) Filler (Pengisi) Filler merupakan komponen di dalam material komposit yang bertujuan untuk memperbaiki sifat mekanik dari bahan matrik yang digunakan komposit tersebut. Komposit polimer yang diisi dengan filler banyak dikembangkan karena aplikasinya digunakan untuk meningkatkan kekerasan (hardness) dan modulus elastisitas, tetapi

17 10 juga dapat dilakukan modifikasi terhadap nilai kekuatan (strength), ketangguhan (toughness), stabilitas, konduktivitas panas dan listrik. Interaksi keberadaan partikel di dalam matrik polimer terlihat pada perilaku mekanisnya seperti kekuatan, kekakuan, kekerasan. Beberapa penelitian dilakukan untuk mengurangi kelemahan yang terjadi pada komposit resin, salah satu usahanya adalah dengan menggunakan filler fiber, filler dapat juga berperan dalam memperbaiki sifat mekanik seperti fracture toughness. filler di dalam komposit resin sangat besar peranannya yaitu sebagai penguat dan juga sebagai penghambat retakan yang terjadi pada matrik. Kandungan filler dipertimbangakan sebagai faktor yang sangat penting dalam meningkatkan fracture toughness komposit resin sehingga penambahan filler banyak diteliti untuk meningkatkan kekuatan komposit resin (Sundari, 2009). Pengisi dapat dibagi atas pengisi organik dan anorganik. Contoh pengisi dari bahan anorganik adalah serat kaca, serat kevlar, silica, kalsium, mika, dll. Sedangkan contoh dari pengisi dari bahan organik adalah sekam padi, sagu, kotoran gergaji, daun, ranting, dll. Penggunaan bahan organik sebagai pengisi banyak digunakan misalnya seperti yang dilakukan Ariawan, dkk (2008) komposit sampah kota dengan matrik pati kanji dan unsaturated polyester. Bahan organik digunakan karena relatif murah, mudah didapat, mudah didaur ulang dan lebih ramah lingkungan dibandingkan pengisi dari bahan anorganik Karakteristik Komposit Material komposit merupakan gabungan dari unsur-unsur yang berbeda, hal ini menyebabkan munculnya daerah perbatasan antara pengisi dan matrik. Umumnya pada semua bahan komposit terdapat dua bahan yang berlainan yang dipisahkan oleh antara muka bahan-bahan tersebut. Ikatan antar muka pengisi matriks berfungsi untuk memindahkan beban dari matrik ke penguat (pengisi). Kemampuan pemindahan beban ke penguat tergantung dari daya ikat yang muncul pada antar muka komposit. Kemampuan tersebut dapat dihitung dengan berbagai rumus untuk mengetahui nilai dari sifat-sifat komposit yang dihasilkan.

18 11 Densitas Densitas merupakan indikator penting kemampuan suatu komposit. Hal ini menggambarkan seluruh efek dari sifat material. Rumus untuk menghitung densitas : m = (2.1) v dengan, = Densitas (kg/m 3 ) m = massa (kg) v = volume (m 3 ) Bending Kekuatan bending adalah tegangan bending terbesar yang dapat diterima akibat pembebanan luar tanpa mengalami deformasi yang besar atau kegagalan. Pada bagian atas spesimen akan mengalami desakan, dan bagian bawah akan mengalami tegangan tarik. Komposit akan mengalami patah pada bagian bawah yang disebabkan karena tidak mampu menahan tegangan tarik yang diterima. Rumus perhitungan kekuatan bending mengacu pada ASTM D-1037 dengan bentuk dan gambar spesimen seperti pada gambar 2.6. P b L d Gambar 2.6. Three point bending (Sumber : ASTM D-1037) Kekuatan bending ini ditentukan oleh MOR (Modulus of Rupture). Rumus untuk menghitung MOR: 3PL MOR = (2.2) 2 2bd

19 12 dengan, MOR = modulus of rupture ( pembebanan dari tengah), MPa P = beban bending (N) L = panjang span (mm) b = lebar spesimen (mm) d = tebal spesimen (mm) Impak Izod Kekuatan impak diketahui dengan terlebih dahulu dihitung energi yang diserap oleh benda (W), yaitu selisih energi potensial pendulum sebelum dan sesudah mengenai benda. Rumus perhitungan kekuatan impact izod untuk komposit berpenguat plastik mengacu pada ASTM D Pendulum Spesimen Gambar 2.7. Sudut impak (Modul panduan impak izod)... (2.3) dengan, W = Energi yang diserap (J) w = berat pendulum (N) = m. g R = jarak dari pusat rotasi pendulum ke pusat massa (m) = sudut pantul lengan ayun ( ) sudut naik awal lengan ayun ( )

20 13 Kondisi pendulum diayunkan bebas (tanpa mengenai benda uji) sudut pantul lengan ayun lebih kecil daripada sudut naiknya berarti terdapat gesekan, maka nilai W dikurangi dengan energi gesekan (W gesek ). Persamaan untuk menghitung energi total yang diserap oleh benda (W) adalah : W = W spesimen W gesek... (2.4) dengan, = sudut pantul lengan ayun tanpa mengenai benda Perhitungan nilai kekuatan impak benda uji adalah sebagai berikut: W h b 3 a iu = 10 ( J 2 ) m dengan, h = ketebalan benda uji (m) b = lebar benda uji (m) (2.5) Geser Tekan Bentuk dan ukuran spesimen uji geser tekan mengacu pada standar uji ASTM D P Gambar 2.8. Pengujian geser tekan (Sumber : ASTM D-1037) Perhitungan untuk menentukan tegangan geser maksimum adalah: = P 2. A (2.6)

21 14 dengan, = tegangan geser maksimum (MPa) P = beban maksimum (N) A = luas penampang spesimen (mm 2 ) 2.3. Sintering Sintering adalah pengikatan antara partikel-partikel serbuk pada suhu tinggi. Proses sintering dapat terjadi melalui mekanisme transport atom pada kondisi padat, pada beberapa kasus juga melibatkan fase cair. Proses sintering melalui pergerakan atom akan mengurangi energi permukaan (surface energy) antar partikel. Energi permukaan per unit volume berbanding terbalik dengan diameter partikel. Sedangkan energi permukaan tergantung dari luas permukaan. Oleh karena itu, partikel serbuk dengan luas permukaan spesifik yang lebih tinggi akan memiliki energi permukaan yang lebih tinggi pula dan akan memepercepat proses sintering. Luas permukaan spesifik adalah luas permukaan serbuk dibagi dengan massa serbuk (German, 1994). Gambar 2.9 memperlihatkan skema penyusutan pori-pori antar partikel serbuk selama proses sintering. Pada kondisi awal adalah kondisi setelah kompaksi, yaitu masih terdapat pori-pori antar partikel serbuk. Awal proses sintering mulai terjadi pengikatan antar partikel serbuk sehingga pori-pori mulai mengecil. Gambar 2.9. Skema penyusutan pori selama proses sintering (Sumber : German, 1994). Area kontak antara partikel serbuk akan membesar jika proses sintering terus berlanjut, hal ini disebabkan karena adanya tekanan selama proses kompaksi dan partikel serbuk mulai mengalami perubahan fase menjadi lebih lunak, dan ketika material sudah pada kondisi suhu ruang akan menghasilkan ikatan yang lebih kuat,

22 15 selain membentuk ikatan antar partikel, siklus sintering diharapkan dapat menyeragamkan campuran serbuk dan mengurangi porositas. Proses sintering berpengaruh besar dalam menentukan sifat produk, antara lain kekuatan produk, kekerasan, keuletan, konduktifitas panas dan listrik. Dampak proses kompaksi terhadap hasil sintering adalah berkurangnya poripori, serta menambah luas area kontak antar partikel, sehingga sifat material hasil proses sintering akan mengalami peningkatan kekuatan, densitas, serta berkurangnya penyusutan saat proses sintering. Serbuk HDPE pada suhu 120 C sudah mulai melunak karena pada suhu tersebut plastik sudah mendekati titik melting. Pelunakan serbuk plastik mengakibatkan terjadinya ikatan antar serbuk plastik. Ikatan antar serbuk plastik juga dipengaruhi oleh kompaksi yang diberikan. Kompaksi yang diberikan bersamaan dengan proses sintering akan memperbesar ikatan antar serbuk plastik. Bertambahnya ikatan antar partikel serbuk plastik akan menurunkan besarnya pori (Yonanta, 2008) Pencampuran Serbuk (mixing) Pencampuran serbuk dilakukan untuk menghasilkan distribusi komposisi material dan ukuran serbuk yang seragam. Proses ini juga berguna untuk menyeragamkan distribusi ukuran serbuk sebelum kompaksi, karena pada saat penyimpanan atau proses transportasi bisa mengalami getaran yang memungkinkan terjadinya segregasi. Segregasi dapat terjadi karena perbedaan bentuk, densitas, dan ukuran partikel serbuk. Pencampuran serbuk ada tiga mekanisme yaitu difusi, konveksi, dan geser. Mekanisme difusi yaitu pencampuran yang terjadi karena pergerakan partikel serbuk masuk ke partikel serbuk yang lain. Mekanisme konveksi yaitu percampuran dengan perpindahan sekumpulan serbuk ke tempat yang lain. Sedangkan mekanisme geser yaitu pergeseran serbuk karena perputaran plat tegak. Ketiga mekanisme tersebut dapat dilihat pada gambar 2.10.

23 16 Gambar Mekanisme pencampuran serbuk (Sumber : German, 1994) Volum pencampuran serbuk yang optimal adalah antara 20-40% dari volume tabung dan tergantung pada jumlah serbuk di dalam tabung dan kecepatan putar tabung. Perbandingan ideal untuk mendapatkan campuran yang optimal saat dilakukan transportasi untuk dua ukuran partikel adalah 7 : 1, sedangkan untuk tiga ukuran partikel yang berbeda perbandingan yang ideal adalah 49 : 7 : 1 (German, 1994). Kecepatan putar tabung untuk menghasilkan campuran yang optimum dapat dihitung dari persamaan 2.7 (German, 1994). 42, 3 N c =...(2.7) d dengan, N c = Kecepatan putar pada kondisi kritis (rpm), yaitu pada kondisi gaya sentrifugal partikel serbuk ke dinding sama dengan gaya gravitasi. d = Diameter tabung (meter) Kecepatan putar yang optimum adalah sekitar 75% dari kecepatan putar kritis (N c ) Potensi Sampah Pemanfaatan sampah yang terus meningkat juga harus dilakukan, dimana potensi sampah organik di Indonesia adalah 70% yaitu sekitar ton/hari dan sisanya adalah sampah anorganik dan sampah berbahaya, (PSTL ITB, 2010). Diperkirakan ada 500 juta hingga 1 milyar kantong plastik digunakan penduduk dunia dalam satu tahun, berarti ada sekitar 1 juta kantong plastik per menit.

24 17 Indonesia diperkirakan menghasilkan ton sampah plastik per hari (Efendi, dkk, 2010). Saat ini produksi sampah di kota besar tertinggi adalah Jakarta sebanyak ton perhari. Kota Yogyakarta termasuk rendah produksi sampahnya untuk kategori kota besar. Secara nasional produksi sampah per hari mencapai ton (Hamdan, M.M, 2010). Menurut kepala Bidang Persampahan DKP Surakarta, biasanya sampah berkisar ton per hari, tetapi sepekan terakhir naik sampai ton per hari. Kenaikan volume sampah mencapai 40 % (Sudiyatno, 2012). Pada tahun 2008 kapasitas produksi HDPE mencapai ton/tahun (Highlight IBBPPN), diperkuat data dari The Public Bottle Institute (2005) menyatakan bahwa pemakaian HDPE (High Density Polyethylene) 23%, PVC (Polyvinyl Chloride) 6%, LDPE (Low Density Polyethylene) 4%, PP (Polypropylene) 4%, dan PS (Polystyrene) 1%.

25 BAB III METODE PENELITIAN 3.1. Tempat Penelitian Penelitian ini dilakukan di Laboratorium Material Teknik Teknik Mesin Universitas Sebelas Maret Surakarta Bahan Penelitian Pada penelitian ini bahan yang digunakan antara lain: a. HDPE HDPE diperoleh dari toko Vinila Plastik, jl. Makamhaji, Gawok, Baki, Sukoharjo. b. Ranting pohon Ranting pohon diperoleh dari sampah ranting pohon asam londo disekitar kampus Universitas Sebelas Maret. c. Daun Daun diperoleh dari sampah daun angsana disekitar kampus Universitas Sebelas Maret. (a.) (b.) (c.) Gambar 3.1. Bahan penelitian : (a.) HDPE, (b.) daun, (c.) ranting 18

26 Alat Penelitian Spesifikasi alat yang digunakan dalam penelitian dan pengambilan data antara lain adalah : a. Mesh (saringan) Mesh digunakan untuk mendapatkan ukuran HDPE dan ranting pohon setelah di crushing. Ukuran mesh yang digunakan adalah mesh 40, 30, 10, dan 6. Spesifikasi mesh yang digunakan: Merk : TATONAS Model : Laboratory Test Sieve b. Oven dan rangkaian siklus Oven dan rangkaian siklus digunakan untuk memberikan perlakuan siklus termal sesuai dengan yang diinginkan terhadap komposit sebelum pengujian mekanik. c. Alat press yang dilengkapi dengan kontaktor, thermocontroller, timer dan Thermometer digital. Thermocontroller yang dirangkai dengan kontaktor pada alat press digunakan untuk mengontrol suhu pada saat melakukan proses sintering, spesifikasi dari alat press : Luas cetakan 250 x 160 mm Kapasitas dongkrak : 2 ton Pressure Gauge : 100 kg/cm² d. Timbangan digital Timbangan digital digunakan untuk mengukur massa dan selanjutnya untuk menentukan fraksi berat komposit. Spesifikasi timbangan digital : Merk : KRISBOW Model : KW Kapasitas and Reability : 500 g x 0.01 Standard Deviation : 1 Tare Range : g Time Of Stabilizing : 3 s e. Crusher (Pemecah/Penggiling) Crusher digunakan untuk mengiling HDPE, ranting dan daun sebelum disaring menggunakan mesh.

27 20 (a.) (b.) (c.) (d.) (e.) Gambar 3.2. Alat Penelitian : (a.) Mesh, (b.) Oven dan rangkaian siklus, (c.) Alat press, (d.) Timbangan digital, (e.) Crusher

28 Alat Uji a. Universal Testing Machine (UTM) Digunakan untuk pengujian bending dan geser tekan pada spesimen komposit. Pengujian dilakukan di Laboratorium Material Teknik Mesin UNS. Spesifikasi UTM : Merk : Sans/ SHT-4106 Spesifikasi : Servo hidrolik; kapasitas maksimum beban : 100 ton; kontrol dan akusisi menggunakan komputer Gambar 3.3. Universal Testing Machine b. Impak Izod Digunakan untuk pengujian impak pada spesimen komposit. Pengujian dilakukan di Laboratorium Fisika F. MIPA UNS. Spesifikasi impak izod : Merk : Toyoseiki Tokyo Panjang lengan pendulum : 0,36 m Berat pendulum : 1,591 kg Gambar 3.4. Impak Izod

29 22 c. Scanning Electron Microscopy (SEM) Digunakan untuk mengambil gambar mikro spesimen uji bending. Pengujian foto SEM dilakukan di Universitas Negeri Malang (UM). Spesifikasi SEM : Merk : FEI Type : Ins pect-s50 Modus operasional : low vacum (sampel non konduktif) dan high vacum (sampel konduktif) Gambar 3.5. Scanning Electron Microscopy 3.5. Parameter Dalam penelitian ini parameter yang dibuat tetap adalah: a. Suhu sintering 120ºC. b. Tekanan 2 kg/cm 2 (tekanan pada pressure gauge) c. Waktu sintering 10 menit d. Ukuran mesh bahan adalah: Serbuk HDPE = mesh Sampah organik = mesh 6-10 e. Fraksi volume HDPE = 0.3 f. Sampah organik terdiri dari ranting pohon dan daun kering dengan perbandingan 1:1. g. Perlakuan termal Parameter yang dirubah adalah temperatur, yaitu mulai dari temperatur , 80, 90, 100 dan 110 C dengan siklus 100 kali, kemudian di uji.

30 23 Hasil yang terbaik dipakai untuk siklus berikutnya, yaitu siklus 150, 200 dan 250 kali Langkah Kerja Penelitian a. Persiapan Bahan Dasar Proses penyiapan bahan dasar adalah dengan pengumpulan plastik jenis HDPE yang berasal dari tempat penampungan sampah plastik. Sedangkan sampah organik (daun dan ranting) yang dipakai berasal dari lingkungan sekitar kampus UNS. b. Perlakuan Awal HDPE dicuci dan dibersihkan dari kotoran yang menempel, selanjutnya dijemur agar kering. Sedangkan untuk sampah organik (daun dan ranting) dilakukan penjemuran hingga kering agar mudah hancur saat proses penggilingan (crushing). c. Proses Crushing Bahan dasar setelah perlakuan awal akan digiling dengan mesin crusher hingga hasil dari proses penggilingan menjadi serbuk. d. Penyaringan Serbuk daun, serbuk ranting, dan serbuk HDPE dari hasil crushing selanjutnya akan di saring, untuk ukuran serbuk HDPE yang digunakan adalah yang lolos mesh 30 dan tidak lolos mesh 40, sedangkan ukuran serbuk daun dan ranting pohon yang digunakan adalah yang lolos mesh 6 dan tidak lolos mesh 10. e. Pencampuran Serbuk Proses pencampuran serbuk dilakukan untuk menyeragamkan komposisi, serta mengurangi segregasi yang biasa terjadi akibat adanya pergerakan atau getaran pada serbuk. Pencampuran serbuk dilakukan dalam keadaan kering. Fraksi volume HDPE 30%, serbuk daun 35%, dan serbuk ranting 35%. Penggunaan fraksi volume dalam pencampuran kedua serbuk tersebut untuk memudahkan dalam memperkirakan banyaknya masingmasing bahan dalam campuran. Pencampuran dilakukan dalam tabung silinder yang diputar dengan kecepatan 75 rpm. Perhitungan untuk mengetahui kecepatan putar pencampuran serbuk yang optimum dapat

31 24 dilihat pada persamaan (2.7), dengan volume total serbuk di dalam tabung adalah 40% dari volume tabung. f. Pembuatan Spesimen Pembuatan spesimen dilakukan dengan metode Metode Pressured Sintering. Pressured sintering adalah suatu metode yang mengaplikasikan proses kompaksi dan sintering. Material yang dihasilkan dengan menggunakan metode pressured sintering diharapkan memiliki sifat mekanik dan fisik yang lebih baik. Pada penelitian ini digunakan tekanan sintering 8.7 kpa, temperatur sintering 120ºC, waktu sintering 10 menit, fraksi volume HDPE 30%. g. Perlakuan siklus termal Perlakuan siklus termal divariasi dengan perubahan suhu 60, 70, 80, 90, 100 dan 110 o C dan dengan pengaruh variasi jumlah siklus 100, 150, 200, dan 250 kali untuk mengetahui efek siklus termal terhadap karakteristik kekuatan bending, kekuatan impak dan kekuatan geser tekan komposit HDPE sampah organik. Pada tahap ini komposit dimasukan pada oven dengan suhu 30 o C dan dinaikan sampai suhu yang diinginkan (batas atas). Proses menaikan suhu ini disebut dengan heating rate, kemudian ditahan selama 2 menit dan suhu diturunkan sampai 30 o C (batas bawah), proses penurunan suhu ini disebut dengan cooling rate dan ditahan selama 2 menit lagi (1 siklus). Proses ini akan belangsung secara kontinyu sampai dengan jumlah siklus yang diinginkan. Selisih waktu antara heating dan cooling rate antara siklus satu dengan siklus berikutnya tidak boleh lebih dari 10 %, agar sesuai dengan standar penelitian. h. Tahap pengujian Pengujian Densitas Pengujian ini mengacu pada ASTM D-792, dimana dalam pengujian ini tidak ditentukan dimensi spesimen yang akan diuji, melainkan ditentukan oleh massa spesimen. Massa spesimen yang digunakan adalah antara 1-50 gram.

32 25 Pengujian kekuatan bending Pengujian ini mengacu pada ASTM D Satuan : mm Gambar 3.6. Dimensi spesimen bending Pengujian kekuatan impak Pengujian ini mengacu pada ASTM D Satuan : mm Gambar 3.7. Dimensi spesimen impak Pengujian geser tekan Pengujian ini mengacu pada ASTM D ,8 Satuan : mm Gambar 3.8. Dimensi spesimen geser tekan

33 26 i. Pengolahan Data Data yang telah diperoleh dari hasil pengujian selanjutnya dianalisa dengan melakukan perhitungan terhadap besarnya kekuatan bending, kekutan impact dan geser tekan dari komposit HDPE - ranting - daun. Data hasil pengujian selanjutnya dapat disusun grafik hubungan antara variasi suhu dengan pengaruh jumlah siklus termal terhadap kekuatan lentur, kekuatan geser tekan dan kekuatan impak. Hasil pengujian ini diambil yang terbaik, sehingga akan didapatkan variasi suhu dengan pengaruh jumlah siklus termal yang menghasilkan sifat mekanik dengan nilai optimal untuk spesimen.

34 Diagram Alir Mulai Ranting, daun Perlakuan awal (Penjemuran kadar air 10%) Proses crushing Penyaringan dengan mesh 6-10 HDPE Perlakuan awal (Pencucian dan Penjemuran sampai kering) Proses crushing Penyaringan dengan mesh Mixing sampah organik dan HDPE pada N= 75 rpm, fraksi volume HDPE = 0.3 Pembuatan Spesimen Metode Pressured Sintering dengan P = 8.7 kpa, T = 120ºC, waktu sintering 10 menit, fraksi volume HDPE 0.3 Perlakuan siklus termal Variasi suhu 60, 70, 80, 90, 100,110 C dengan siklus 100 kali Pengujian Densitas (ASTM D-792) Bending (ASTM D-1037), Impact (ASTM D-5941), Geser Tekan (ASTM D-1037) Perlakuan siklus termal Suhu dengan hasil terbaik, divariasi dengan siklus 150, 200, 250 kali Pengujian Densitas (ASTM D-792) Bending (ASTM D-1037), Impact (ASTM D-5941), Geser Tekan (ASTM D-1037) SEM Pengolahan Data Kesimpulan Selesai Gambar 3.9. Diagram alir metode penelitian

35 Jadwal Penelitian BULAN No KEGIATAN Mencari referensi 2 Pembuatan proposal penelitian 3 Persiapan alat pembuatan komposit 4 Pelaksanaan penelitian 5 Pengambilan data 6 Analisa data 7 Hasil & kesimpulan penelitian 8 Pembuatan laporan

36 BAB IV HASIL DAN ANALISA 4.1. Pengaruh Variasi Suhu Siklus Termal Terhadap Karakteristik Mekanik Komposit HDPE-Sampah Organik Pengaruh variasi temperatur siklus termal terhadap karakteristik mekanik komposit HDPE sampah organik pada penelitian ini dapat diketahui dengan beberapa pengujian, antara lain pengukuran densitas, uji bending, uji impak, uji geser tekan dan pengamatan struktur spesimen dengan foto SEM Pengukuran Densitas Komposit HDPE-Sampah organik Pengukuran densitas dilakukan untuk mengetahui keseragaman komposit dan memprediksi kekuatan suatu komposit. Pada penelitian ini pengukuran densitas komposit HDPE-sampah organik dilakukan sebelum dan setelah perlakuan siklus termal. Hasil pengukuran densitas ditampilkan pada gambar 4.1. Densitas rata-rata ( kg/m3) R² = Suhu ( C) Gambar 4.1. Penurunan nilai densitas komposit HDPE-sampah organik setelah dikenai siklus termal Gambar 4.1 menunjukan terjadinya penurunan nilai densitas komposit, nilai densitas komposit berbanding terbalik dengan peningkatan suhu yang diberikan, semakin tinggi suhu yang diberikan maka semakin turun nilai densitasnya, tetapi penurunan yang terjadi tidak signifikan (sangat kecil). 29

37 30 Penurunan densitas yang sangat kecil ini disebabkan karena massa komposit turun akibat kadar air yang berkurang. Fakta ini dapat dilihat pada gambar 4.2. Pada gambar 4.2 terlihat perubahan warna dari komposit sebelum dan sesudah dikenai siklus termal, komposit sebelum dikenai siklus termal memiliki warna yang lebih gelap, sedangkan komposit yang telah dikenai siklus termal warnanya lebih terang dan terlihat lebih kering, meskipun massa dan volume komposit turun sangat kecil (cenderung masih utuh), namun ikatan yang terjadi antar muka telah melemah (debonding), dapat dilihat pada gambar 4.4. Hal ini disebabkan karena pada saat proses siklus termal material HDPE sudah melewati suhu distorsi (suhu distorsi HDPE : C (Martienssen W. dan Warlimont H., (2005)) yang menyebabkan HDPE mengalami fase perubahan bentuk dari padat ke fase cair (koefisien termal) yang terjadi secara brulang-ulang. Perubahan fase yang terjadi akibat siklus termal akan membuat HDPE dan sampah organik memuai, tetapi kemampuan memuai yang berbeda antara kedua material ini menyebabkan ikatan antar muka menjadi lemah. (a.) Gambar 4.2. Perubahan warna komposit : (a.) sebelum dikenai siklus termal; (b) setelah dikenai siklus termal Pengaruh Variasi Suhu Siklus Termal Terhadap Kekuatan Bending Hasil pengujian bending komposit HDPE-sampah organik ditampilkan pada gambar 4.3 di bawah ini. (b.)

38 31 7 Jumlah siklus = 100 kali Kekuatan bending (Mpa) R² = Temperatur ( C) Gambar 4.3. Pengaruh variasi suhu siklus termal terhadap kekuatan bending komposit HDPE-sampah organik Nilai kekuatan bending semakin turun dengan bertambahnya temperatur. Penurunan kekuatan bending dari temperatur 30 C (tanpa perlakuan) sampai temperatur 110 C mencapai 56,93 %. Semakin tinggi temperatur siklus termal akan menurunkan kekuatan bending komposit HDPE-sampah organik. Penurunan kekuatan bending yang sangat signifikan terjadi pada temperatur 110 C yaitu sebesar 44,96 %, hal ini disebabkan karena temperatur distorsi dari HDPE yang hanya sekitar C (Martienssen W. dan Warlimont H., 2005) sehingga saat diberi perlakuan siklus termal material HDPE mengalami perubahan fase dari padat ke fase cair yang mengakibatkan ikatan antar muka antara HDPE dan sampah organik menjadi melemah dan lama kelamaan sampah organik akan terlepas dari HDPE dan meninggalkan pori yang bertambah banyak seiring dengan ditambahkannya temperatur siklus termal. Pori yang timbul sangat mempengaruhi kekuatan bending, karena pori merupakan tempat awal terjadinya retakan (initial crack). Ikatan antar muka yang melemah akan menyebabkan ketahan daya lengkung komposit HDPE-sampah organik berkurang. Fakta ini dapat dilihat pada gambar 4.4 yang merupakan gambar penampang patah bending yang diamati menggunakan foto SEM.

39 32 Kondisi seperti ini sesuai dengan penelitian yang dilakukan Papanicolaou G.C., dkk. (2009), pengaruh perlakuan panas kejut (thermal shock) terhadap komposit dengan matrik epoxy menyebabkan kegagalan debonding pada matrik karena pengaruh thermal fatique dan sesuai dengan penelitian Surdia, (2000), bahwa lamanya waktu berada pada temperatur tinggi juga dapat menjadi satu penyebab menurunnya kekuatan polimer, polimer dalam waktu singkat pada temperatur yang lebih tinggi akan memberikan pengaruh kerusakan signifikan. HDPE Daun Ikatan antar muka Ranting (a.) Ranting Ikatan antar muka yang melemah (debonding) Daun HDPE Pori (b.) Gambar 4.4. Pengamatan SEM (a.) sebelum dikenai siklus termal; (b.) setelah dikenai siklus termal

40 Pengaruh Variasi Suhu Siklus Termal Terhadap Kekuatan Geser Tekan Hasil pengujian geser tekan komposit HDPE-sampah organik ditampilkan pada gambar Jumlah siklus = 100 kali Kekuatan Geser tekan (MPa) R² = Temperature ( C) Gambar 4.5. Pengaruh variasi suhu siklus termal terhadap kekuatan geser tekan komposit HDPE-sampah organik Kekuatan geser tekan juga mengalami penurunan, seperti pada pengujian bending, yaitu kekuatan geser tekan semakin turun dengan semakin bertambahnya temperatur siklus termal. Penurunan kekuatan geser tekan dari variasi tanpa perlakuan sampai variasi dengan temperatur 110 C mencapai 71,75 %. Penurunan nilai geser tekan terbesar terjadi pada temperatur 110 C yaitu sebesar 63,25 %, ini disebabkan karena pada temperatur 110 C material penyusun komposit seperti daun dan ranting mulai terlepas dari ikatan yang disebabkan karena perubahan fase dari HDPE. Terlepasnya daun dan ranting dari ikatan menyebabkan timbulnya pori baru yang mengakibatkan ikatan antar muka pada komposit HDPE-sampah organik menjadi lemah dan rusak, sehingga ketahanan komposit untuk menahan gaya geser berkurang. Hal ini bisa dilihat pada gambar 4.4.

41 Pengaruh Variasi Suhu Siklus Termal Terhadap Kekuatan Impak Hasil dari pengujian kekuatan impak komposit HDPE-sampah organik dapat dilihat pada gambar Jumlah siklus = 100 kali Kekuatan Impak (MPa) R² = Gambar 4.6. Pengaruh variasi suhu siklus termal terhadap kekuatan impak komposit HDPE-sampah organik Seperti halnya pada pengujian bending dan geser tekan, kekuatan impak juga mengalami penurunan dengan bertambahnya temperatur siklus termal. Penurunan kekuatan impak dari variasi tanpa perlakuan sampai variasi dengan temperatur 110 C mencapai 74,33 %, sedangkan penurunan terbesar terjadi pada perlakuan siklus termal dengan temperatur 110 C yaitu sebesar 67,76 %. Semakin tinggi variasi temperatur yang diberikan akan semakin memperlemah ikatan antar muka, karena perlakuan siklus termal mengakibatkan perubahan fase pada HDPE dan menyebabkan kedua material penyusun komposit memuai, tetapi kemampuan memuai yang berbeda dari material HDPE dan sampah organik menyebabkan pori yang semakin besar dan banyak (gambar 4.4), hal ini akan menurunkan kemampuan menahan energi atau beban kejut yang menyebabkan kekuatan impak menurun. Fakta ini sesuai dengan penelitian Aktas M., Dkk (2010) yang menyatakan bahwa, kemampuan energi serap komposit dengan matrik epoxy berkurang seiring dengan peningkatan temperatur perlakuan pada pengujian impak velocity. Temperature ( C)

42 35 Nilai uji impak mengalami prosentase penurunan yang paling besar jika dibandingkan dengan penurunan nilai bending dan geser tekan, hal ini disebabkan uji impak menggunakan beban dinamik, sehingga komposit menerima pembebanan yang cepat atau beban kejut (rapid loading)(prasetya N., Dkk, 2009), pada pembebanan cepat terjadi penyerapan energi yang besar dari energi kinetik pendulum yang menumbuk spesimen. Berbeda dengan uji bending dan geser tekan yang mengalami beban statik yaitu komposit diberikan beban secara perlahan-lahan. Penyerapan energi yang besar pada uji impak akan diubah menjadi berbagai respon material seperti deformasi plastis, dan efek inersia. Efek inersia adalah kemampuan suatu material untuk mempertahankan bentuknya ketika diberikan gaya, ketika diberikan pembebanan dengan kecepatan tinggi material tersebut tidak sempat untuk mempertahankan bentuknya dan akhirnya patah. Turunnya kekuatan impak juga dapat dilihat dari besar kecilnya sudut pantul lengan ayun yang mengenai spesimen. Semakin besar sudut pantul lengan ayun yang dihasilkan ( kecil, begitu juga sebaliknya Pengaruh Variasi Jumlah Siklus Termal Terhadap Karakteristik Mekanik Komposit HDPE-Sampah Organik Penelitian ini selain untuk mengetahui pengaruh variasi temperatur siklus termal juga untuk mengetahui pengaruh variasi jumlah siklus terhadap karakteristik mekanik komposit HDPE sampah organik. Variasi siklus yang digunakan adalah 100 kali, 150 kali, 200 kali dan 250 kali dengan temperatur yang tetap yaitu 60 C, sedangkan pengujian yang dilakukan sama dengan variasi temperatur yaitu pengukuran densitas, uji bending, uji impact, uji geser tekan dan pengamatan struktur spesimen dengan foto SEM Pengukuran Densitas Komposit HDPE-Sampah organik Pengukuran densitas komposit dilakukan setelah perlakuan siklus termal. Hasil pengukuran densitas ditampilkan pada gambar 4.7.

43 36 Densitas rata-rata (kg/m3) R² = Jumlah Siklus Gambar 4.7. Penurunan nilai densitas komposit HDPE-sampah organik setelah dikenai siklus termal Gambar 4.7 di atas dapat dilihat bahwa nilai untuk densitas komposit penurunannya sangat kecil bahkan bisa dikatakan cenderung tetap. Meskipun nilai untuk densitas cenderung tetap tetapi ikatan yang terjadi antar muka material penyusun komposit telah rusak. Fakta ini bisa dilihat pada gambar Penurunan nilai densitas yang sangat kecil ini disebabkan karena massa dari komposit mengalami penurunan akibat kadar air di dalam komposit yang turun setelah komposit dikenai siklus termal. Fakta ini bisa dilihat pada gambar 4.8. Pada gambar 4.8 terlihat perubahan warna dari komposit sebelum dan sesudah dikenai siklus termal. Komposit sebelum dikenai siklus termal memiliki warna yang lebih gelap, sedangkan komposit yang telah dikenai siklus termal warnanya lebih terang dan terlihat lebih kering.

44 37 (a.) (b.) Gambar 4.8. Perubahan warna komposit : (a.) sebelum dikenai siklus termal; (b) setelah dikenai siklus termal Pengaruh Variasi Jumlah Siklus Termal Terhadap Kekuatan Bending Hasil pengujian bending komposit HDPE-sampah organik ditampilkan pada gambar 4.9 di bawah ini. 6 Temperatur = 60 C R² = Jumlah Siklus Gambar 4.9. Pengaruh variasi jumlah siklus termal terhadap kekuatan bending komposit HDPE-sampah organik

45 38 Pengaruh banyaknya jumlah siklus terhadap kekuatan bending komposit HDPE-sampah organik ditunjukkan pada gambar 4.9. Rata-rata kekuatan bending menurun seiring dengan meningkatnya jumlah siklus yang diberikan, namun penurunan yang terjadi tidak sebesar penurunan yang terjadi pada siklus termal dengan variasi temperatur. Hal ini sesuai dengan penelitian (Surdia, 2000), bahwa lamanya waktu berada pada temperatur tinggi juga dapat menjadi satu penyebab menurunnya kekuatan polimer. Polimer dalam waktu yang lama dengan temperatur rendah dapat mengakibatkan kerusakan. Penurunan kekuatan bending dari variasi siklus 100 kali sampai variasi siklus 250 kali mencapai 29,38 %. Penurunan kekuatan bending yang sangat signifikan terjadi pada siklus 250 kali yaitu sebesar 20,96 %, hal ini disebabkan karena pada siklus 250 kali ikatan antar muka yang terjadi semakin melemah (debonding) dan mulai terlepas sehingga menyebabkan terjadinya pori yang merupakan awal dari terbentuknya retakan (initial crack) menyebabkan ketahanan untuk menahan daya lengkung berkurang. Fakta ini dapat dilihat pada gambar 4.10 yang merupakan gambar penampang patah bending yang diamati menggunakan foto SEM. Pernyataan ini ini juga dikuatkan dengan penilitian Papanicolaou G.C., dkk (2009) yang mengkaji tentang pengaruh perlakuan panas kejut (thermal shock) dengan variasi jumlah siklus 6, 12, 24, 36 dan 48 kali, hasil penelitiannya menunjukan perlakuan thermal shock menyebabkan kegagalan debonding pada matrik karena pengaruh thermal fatique, sedangkan untuk variasi jumlah siklus ditemukan adanya kerusakan micro crack yang meningkat pesat dengan bertambahnya jumlah siklus.

46 39 HDPE Daun Ikatan antar muka Ranting (a.) Ranting Ikatan antar muka yang melemah (debonding) Daun HDPE Pori (b.) Gambar Pengamatan SEM (a.) sebelum dikenai variasi siklus termal; (b.) setelah dikenai variasi siklus termal Pengaruh Variasi Jumlah Siklus Termal Terhadap Kekuatan Geser Tekan Hasil pengujian geser tekan komposit HDPE-sampah organik dengan variasi jumlah siklus termal dapat dilihat pada gambar 4.11.

SKRIPSI. gelar Sarjana teknikk. Oleh : WILLY SAPUTRA NIM. I JURUSAN. commit to user

SKRIPSI. gelar Sarjana teknikk. Oleh : WILLY SAPUTRA NIM. I JURUSAN. commit to user PENGARUH TEKANAN PENGEPRESAN TERHADAP KEKUATAN GESER TEKAN DAN BENDING KOMPOSIT LIMBAH KERTAS HVS - SEKAM PADI SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana teknikk Oleh : WILLY

Lebih terperinci

PENGARUH VARIASI SUHU SIKLUS TERMAL TERHADAP KARAKTERISTIK MEKANIK KOMPOSIT HDPE SAMPAH ORGANIK

PENGARUH VARIASI SUHU SIKLUS TERMAL TERHADAP KARAKTERISTIK MEKANIK KOMPOSIT HDPE SAMPAH ORGANIK 8 PENGARUH VARIASI SUHU SIKLUS TERMAL TERHADAP KARAKTERISTIK MEKANIK KOMPOSIT HDPE SAMPAH ORGANIK Triono Karso 1, Wijang Wisnu Raharjo 2, Heru Sukanto 2 1 Program Sarjana Jurusan Teknik Mesin Universitas

Lebih terperinci

PENGARUH WAKTU SINTERING TERHADAP KARAKTERISTIK MEKANIK KOMPOSIT HDPE SAMPAH ORGANIK

PENGARUH WAKTU SINTERING TERHADAP KARAKTERISTIK MEKANIK KOMPOSIT HDPE SAMPAH ORGANIK digilib.uns.ac.id PENGARUH WAKTU SINTERING TERHADAP KARAKTERISTIK MEKANIK KOMPOSIT HDPE SAMPAH ORGANIK SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Oleh : AGUNG IBNUWIBOWO

Lebih terperinci

PENGARUH PERLAKUAN ALKALI TERHADAP SIFAT MEKANIK KOMPOSIT KENAF - POLYPROPYLENE

PENGARUH PERLAKUAN ALKALI TERHADAP SIFAT MEKANIK KOMPOSIT KENAF - POLYPROPYLENE PENGARUH PERLAKUAN ALKALI TERHADAP SIFAT MEKANIK KOMPOSIT KENAF - POLYPROPYLENE SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Oleh : KOMANG TRISNA ADI PUTRA NIM. I1410019

Lebih terperinci

PENGARUH KEKUATAN BENDING DAN TARIK BAHAN KOMPOSIT BERPENGUAT SEKAM PADI DENGAN MATRIK UREA FORMALDEHIDE

PENGARUH KEKUATAN BENDING DAN TARIK BAHAN KOMPOSIT BERPENGUAT SEKAM PADI DENGAN MATRIK UREA FORMALDEHIDE PENGARUH KEKUATAN BENDING DAN TARIK BAHAN KOMPOSIT BERPENGUAT SEKAM PADI DENGAN MATRIK UREA FORMALDEHIDE Harini Program Studi Teknik Mesin Universitas 17 agustus 1945 Jakarta yos.nofendri@uta45jakarta.ac.id

Lebih terperinci

PENGARUH MEDIA PERENDAMAN TERHADAP KARAKTERISTIK MEKANIK KOMPOSIT HDPE SAMPAH ORGANIK

PENGARUH MEDIA PERENDAMAN TERHADAP KARAKTERISTIK MEKANIK KOMPOSIT HDPE SAMPAH ORGANIK digilib.uns.ac.id PENGARUH MEDIA PERENDAMAN TERHADAP KARAKTERISTIK MEKANIK KOMPOSIT HDPE SAMPAH ORGANIK SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Oleh : TRI PRASTYO

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Kebutuhan material di dunia industri khususnya manufaktur semakin lama semakin meningkat. Material yang memiliki karakteristik tertentu seperti kekuatan, keuletan,

Lebih terperinci

PENGARUH SUHU PENCAMPURAN TERHADAP KEKUATAN TARIK DAN FRACTURE TOUGHNESS EPOXY RESIN - ORGANOCLAY MONTMORILLONITE NANOKOMPOSIT SKRIPSI

PENGARUH SUHU PENCAMPURAN TERHADAP KEKUATAN TARIK DAN FRACTURE TOUGHNESS EPOXY RESIN - ORGANOCLAY MONTMORILLONITE NANOKOMPOSIT SKRIPSI PENGARUH SUHU PENCAMPURAN TERHADAP KEKUATAN TARIK DAN FRACTURE TOUGHNESS EPOXY RESIN - ORGANOCLAY MONTMORILLONITE NANOKOMPOSIT SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana

Lebih terperinci

ANALISA PENGARUH PENAMBAHAN CU PADA MATRIKS KOMPOSIT ALUMINIUM REMELTING

ANALISA PENGARUH PENAMBAHAN CU PADA MATRIKS KOMPOSIT ALUMINIUM REMELTING ANALISA PENGARUH PENAMBAHAN CU PADA MATRIKS KOMPOSIT ALUMINIUM REMELTING PISTON BERPENGUAT PASIR SILIKA TERHADAP KEKUATAN IMPAK DAN STUKTUR MIKRO PADA KOMPOSIT MATRIK ALUMINIUM DENGAN METODE STIR CASTING

Lebih terperinci

DYAN YOGI PRASETYO I

DYAN YOGI PRASETYO I ANALISA PENGARUH KECEPATAN PENGADUKAN DAN TEMPERATUR TUANG PADA AMC BERPENGUAT PASIR SILICA TERHADAP KEKUATAN IMPAK DAN TARIK DENGAN METODE STIR CASTING SKRIPSI Diajukan sebagai salah satu syarat untuk

Lebih terperinci

Pengaruh Variasi Fraksi Volume, Temperatur, Waktu Curing dan Post-Curing Terhadap Karakteristik Tekan Komposit Polyester - Hollow Glass Microspheres

Pengaruh Variasi Fraksi Volume, Temperatur, Waktu Curing dan Post-Curing Terhadap Karakteristik Tekan Komposit Polyester - Hollow Glass Microspheres JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: 2337-3539 (2301-9271 Print) F 196 Pengaruh Variasi Fraksi Volume, Temperatur, Waktu Curing dan Post-Curing Terhadap Karakteristik Tekan Komposit Polyester

Lebih terperinci

METODOLOGI PENELITIAN. Penelitian dilakukan di Laboratorium Material Teknik Mesin Jurusan Teknik

METODOLOGI PENELITIAN. Penelitian dilakukan di Laboratorium Material Teknik Mesin Jurusan Teknik 34 III. METODOLOGI PENELITIAN A. Tempat Penelitian Penelitian dilakukan di Laboratorium Material Teknik Mesin Jurusan Teknik Mesin Universitas Lampung dan Laboratorium Teknik Mesin Politeknik Universitas

Lebih terperinci

I. PENDAHULUAN. Komposit adalah kombinasi dari satu atau lebih material yang menghasilkan

I. PENDAHULUAN. Komposit adalah kombinasi dari satu atau lebih material yang menghasilkan 1 I. PENDAHULUAN A. Latar Belakang Bahan komposit merupakan salah satu bahan alternatif yang dapat digunakan untuk pembuatan kampas rem. Dalam perkembangan teknologi komposit mengalami kemajuan yang sangat

Lebih terperinci

Pengaruh Variasi Panjang Serat Cantula Terhadap Kekuatan Komposit HDPE-Karet & Serat Cantula Dengan Pressured Sintering SKRIPSI

Pengaruh Variasi Panjang Serat Cantula Terhadap Kekuatan Komposit HDPE-Karet & Serat Cantula Dengan Pressured Sintering SKRIPSI Pengaruh Variasi Panjang Serat Cantula Terhadap Kekuatan Komposit HDPE-Karet & Serat Cantula Dengan Pressured Sintering SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana teknik

Lebih terperinci

ANALISA PENGARUH PENAMBAHAN MG PADA KOMPOSIT MATRIKS ALUMINIUM REMELTING

ANALISA PENGARUH PENAMBAHAN MG PADA KOMPOSIT MATRIKS ALUMINIUM REMELTING ANALISA PENGARUH PENAMBAHAN MG PADA KOMPOSIT MATRIKS ALUMINIUM REMELTING PISTON BERPENGUAT SIO2 TERHADAP KEKUATAN IMPAK DAN STRUKTUR MIKRO DENGAN METODE STIR CASTING SKRIPSI Diajukan sebagai salah satu

Lebih terperinci

PENGARUH PENAMBAHAN COUPLING AGENT TERHADAP SIFAT MEKANIK KOMPOSIT POLYESTER-CANTULA DENGAN ANYAMAN SERAT 3D ANGLE INTERLOCK

PENGARUH PENAMBAHAN COUPLING AGENT TERHADAP SIFAT MEKANIK KOMPOSIT POLYESTER-CANTULA DENGAN ANYAMAN SERAT 3D ANGLE INTERLOCK PENGARUH PENAMBAHAN COUPLING AGENT TERHADAP SIFAT MEKANIK KOMPOSIT POLYESTER-CANTULA DENGAN ANYAMAN SERAT 3D ANGLE INTERLOCK SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik

Lebih terperinci

Kata kunci : Serat batang pisang, Epoxy, Hand lay-up, perbahan temperatur.

Kata kunci : Serat batang pisang, Epoxy, Hand lay-up, perbahan temperatur. KARAKTERISTIK EFEK PERUBAHAN TEMPERATUR PADA KOMPOSIT SERAT BATANG PISANG DENGAN PERLAKUAN NaOH BERMETRIK EPOXY Ngafwan 1, Muh. Al-Fatih Hendrawan 2, Kusdiyanto 3, Jurusan Teknik Mesin Fakultas Teknik

Lebih terperinci

PENGARUH VARIASI KETEBALAN CORE KOMPOSIT SANDWICH rhdpe DAN CANTULA TERHADAP KEKUATAN BENDING DAN DESAK

PENGARUH VARIASI KETEBALAN CORE KOMPOSIT SANDWICH rhdpe DAN CANTULA TERHADAP KEKUATAN BENDING DAN DESAK PENGARUH VARIASI KETEBALAN CORE KOMPOSIT SANDWICH rhdpe DAN CANTULA TERHADAP KEKUATAN BENDING DAN DESAK SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Oleh: ANDRI SETIADI

Lebih terperinci

PENGARUH FRAKSI VOLUME PARTIKEL TERHADAP KETAHANAN BAKAR KOMPOSIT FLY ASH-RIPOXY R-802

PENGARUH FRAKSI VOLUME PARTIKEL TERHADAP KETAHANAN BAKAR KOMPOSIT FLY ASH-RIPOXY R-802 digilib.uns.ac.id PENGARUH FRAKSI VOLUME PARTIKEL TERHADAP KETAHANAN BAKAR KOMPOSIT FLY ASH-RIPOXY R-802 SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Oleh: YOGA PRASETYA

Lebih terperinci

ANALISA PENGARUH PENAMBAHAN MG PADA KOMPOSIT MATRIK ALUMINIUM REMELTING

ANALISA PENGARUH PENAMBAHAN MG PADA KOMPOSIT MATRIK ALUMINIUM REMELTING ANALISA PENGARUH PENAMBAHAN MG PADA KOMPOSIT MATRIK ALUMINIUM REMELTING PISTON BERPENGUAT SIO2 MENGGUNAKAN METODE STIR CASTING TERHADAP KEKERASAN DAN DENSITAS SKRIPSI Diajukan sebagai salah satu syarat

Lebih terperinci

BAB I PENDAHULUAN. Penggunaan sambungan material komposit yang telah. banyak menggunakan jenis sambungan mekanik dan

BAB I PENDAHULUAN. Penggunaan sambungan material komposit yang telah. banyak menggunakan jenis sambungan mekanik dan BAB I PENDAHULUAN 1.1 Latar Belakang Penggunaan sambungan material komposit yang telah dilakukan banyak menggunakan jenis sambungan mekanik dan sambungan ikat, tetapi pada zaman sekarang para rekayasawan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Ilmu rekayasa material menjadi suatu kajian yang sangat diminati akhir - akhir ini. Pemanfaatan material yang lebih dikembangkan saat ini adalah polimer. Polimer

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Kemajuan ilmu pengetahuan dan teknologi yang berkembang saat ini mendorong para peneliti untuk menciptakan dan mengembangkan suatu hal yang telah ada maupun menciptakan

Lebih terperinci

LAPORAN TUGAS AKHIR SIFAT MEKANIK KOMPOSIT SERAT TANGKAI ILALANG SEBAGAI BAHAN PANEL RAMAH LINGKUNGAN

LAPORAN TUGAS AKHIR SIFAT MEKANIK KOMPOSIT SERAT TANGKAI ILALANG SEBAGAI BAHAN PANEL RAMAH LINGKUNGAN LAPORAN TUGAS AKHIR SIFAT MEKANIK KOMPOSIT SERAT TANGKAI ILALANG SEBAGAI BAHAN PANEL RAMAH LINGKUNGAN Diajukan Sebagai Syarat Memperoleh Gelar Sarjana Teknik Jurusan Teknik Industri Fakultas Teknik Universitas

Lebih terperinci

Kekuatan tarik komposit lamina berbasis anyaman serat karung plastik bekas (woven bag)

Kekuatan tarik komposit lamina berbasis anyaman serat karung plastik bekas (woven bag) Jurnal Kompetensi Teknik Vol. 8, No.2, Mei 2017 1 Kekuatan tarik komposit lamina berbasis anyaman serat karung plastik bekas (woven bag) Heri Yudiono 1, Rusiyanto 2, dan Kiswadi 3 1,2 Teknik Mesin, Fakultas

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Material komposit merupakan material yang tersusun dari sedikitnya dua macam material yang memiliki sifat fisis yang berbeda yakni sebagai filler atau material penguat

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Metode Penelitian Metode penelitian yang dilakukan pada penelitian ini berupa metode eksperimen. Penelitian dilakukan untuk mengetahui pengaruh daun sukun dalam matrik polyethylene.

Lebih terperinci

2015 PEMBUATAN D AN KARAKTERISASI SIFAT MEKANIK KOMPOSIT LIMBAH D AUN SUKUN D ENGAN MATRIK POLYETHYLENE

2015 PEMBUATAN D AN KARAKTERISASI SIFAT MEKANIK KOMPOSIT LIMBAH D AUN SUKUN D ENGAN MATRIK POLYETHYLENE BAB I PENDAHULUAN A. Latar Belakang Penelitan Plastik memiliki kelebihan kepraktisan dan bobot ringan yang membuatnya banyak dipakai. Orang-orang di seluruh dunia umumnya menggunakan plastik untuk keperluan

Lebih terperinci

BAB I PENDAHULUAN. Universitas Sumatera Utara

BAB I PENDAHULUAN. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 LATAR BELAKANG Penggunaan polimer dan komposit dewasa ini semakin meningkat di segala bidang. Komposit berpenguat serat banyak diaplikasikan pada alat-alat yang membutuhkan material

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di Laboratorium Material Teknik Jurusan Teknik Mesin,

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di Laboratorium Material Teknik Jurusan Teknik Mesin, III. METODOLOGI PENELITIAN A. Tempat Penelitian Penelitian ini dilakukan di Laboratorium Material Teknik Jurusan Teknik Mesin, Laboratorium Mekanik Politeknik Negeri Sriwijaya. B. Bahan yang Digunakan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Dengan berkembangnya teknologi pembuatan komposit polimer yaitu dengan merekayasa material pada saat ini sudah berkembang pesat. Pembuatan komposit polimer tersebut

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Indonesia merupakan negara agraris yang kaya akan tanaman penghasil kayu yang banyak dimanfaatkan untuk berbagai keperluan, baik untuk keperluan industri besar, industri

Lebih terperinci

TUGAS AKHIR PENELITIAN SIFAT FISIS DAN MEKANIS KOMPOSIT SERBUK TIMAH PEREKAT EPOXY UKURAN SERBUK 100 MESH DENGAN FRAKSI VOLUME (20, 35, 50) %

TUGAS AKHIR PENELITIAN SIFAT FISIS DAN MEKANIS KOMPOSIT SERBUK TIMAH PEREKAT EPOXY UKURAN SERBUK 100 MESH DENGAN FRAKSI VOLUME (20, 35, 50) % TUGAS AKHIR PENELITIAN SIFAT FISIS DAN MEKANIS KOMPOSIT SERBUK TIMAH PEREKAT EPOXY UKURAN SERBUK 100 MESH DENGAN FRAKSI VOLUME (20, 35, 50) % Diajukan untuk Memenuhi Tugas dan Syarat-syarat Guna Memperoleh

Lebih terperinci

PENGARUH WAKTU PERENDAMAN SERAT CANTULA DALAM LARUTAN NaOH TERHADAP KEKUATAN BENDING DAN IMPAK KOMPOSIT rhdpe-cantula

PENGARUH WAKTU PERENDAMAN SERAT CANTULA DALAM LARUTAN NaOH TERHADAP KEKUATAN BENDING DAN IMPAK KOMPOSIT rhdpe-cantula PENGARUH WAKTU PERENDAMAN SERAT CANTULA DALAM LARUTAN NaOH TERHADAP KEKUATAN BENDING DAN IMPAK KOMPOSIT rhdpe-cantula SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Oleh:

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3. 1. DIAGRAM ALIR PENELITIAN Dikeringkan, Dipotong sesuai cetakan Mixing Persentase dengan Rami 15,20,25,30,35 %V f Sampel Uji Tekan Sampel Uji Flexural Sampel Uji Impak Uji

Lebih terperinci

PENGARUH KANDUNGAN DAN UKURAN PARTIKEL SERBUK GENTENG SOKKA TERHADAP KETANGGUHAN IMPAK KOMPOSIT GEOPOLIMER SKRIPSI

PENGARUH KANDUNGAN DAN UKURAN PARTIKEL SERBUK GENTENG SOKKA TERHADAP KETANGGUHAN IMPAK KOMPOSIT GEOPOLIMER SKRIPSI PENGARUH KANDUNGAN DAN UKURAN PARTIKEL SERBUK GENTENG SOKKA TERHADAP KETANGGUHAN IMPAK KOMPOSIT GEOPOLIMER SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Disusun oleh

Lebih terperinci

PENGARUH UKURAN NECK RISER TERHADAP CACAT PENYUSUTAN DAN CACAT POROSITAS PADA PROSES PENGECORAN ALUMINIUM MENGGUNAKAN CETAKAN PASIR SKRIPSI

PENGARUH UKURAN NECK RISER TERHADAP CACAT PENYUSUTAN DAN CACAT POROSITAS PADA PROSES PENGECORAN ALUMINIUM MENGGUNAKAN CETAKAN PASIR SKRIPSI PENGARUH UKURAN NECK RISER TERHADAP CACAT PENYUSUTAN DAN CACAT POROSITAS PADA PROSES PENGECORAN ALUMINIUM MENGGUNAKAN CETAKAN PASIR SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana

Lebih terperinci

BAB I PENDAHULUAN. Salah satu material yang sangat penting bagi kebutuhan manusia adalah

BAB I PENDAHULUAN. Salah satu material yang sangat penting bagi kebutuhan manusia adalah 1 BAB I PENDAHULUAN 1.1 Latar Belakang Salah satu material yang sangat penting bagi kebutuhan manusia adalah logam. Seiring dengan jaman yang semakin maju, kebutuhan akan logam menjadi semakin tinggi.

Lebih terperinci

SIFAT FISIS DAN MEKANIS PADA KOMPOSIT POLYESTER SERAT BATANG PISANG YANG DISUSUN ASIMETRI [ 45 o / -30 o / 45 o / -30 o ]

SIFAT FISIS DAN MEKANIS PADA KOMPOSIT POLYESTER SERAT BATANG PISANG YANG DISUSUN ASIMETRI [ 45 o / -30 o / 45 o / -30 o ] TUGAS AKHIR SIFAT FISIS DAN MEKANIS PADA KOMPOSIT POLYESTER SERAT BATANG PISANG YANG DISUSUN ASIMETRI [ 45 o / -30 o / 45 o / -30 o ] Diajukan Sebagai Syarat Menyelesaikan Program Studi Strata Satu Pada

Lebih terperinci

Pramuko Ilmu Purboputro Jurusan Teknik Mesin Universitas Muhammadiyah Surakarta

Pramuko Ilmu Purboputro Jurusan Teknik Mesin Universitas Muhammadiyah Surakarta PENGARUH KOMPOSISI SERAT SABUT KELAPA TERHADAP KOEFISIEN GESEK DAN TEMPERATUR GESEK PADA BAHAN KOPLING CLUTCH KENDARAAN DARI KOMPOSIT SERAT SABUT KELAPA SERBUK TEMBAGA FIBERGLASS DENGAN MATRIK PHENOL Pramuko

Lebih terperinci

PENGARUH WAKTU PEMAPARAN CUACA (WEATHERING) TERHADAP KARAKTERISTIK MEKANIK KOMPOSIT HDPE SAMPAH ORGANIK

PENGARUH WAKTU PEMAPARAN CUACA (WEATHERING) TERHADAP KARAKTERISTIK MEKANIK KOMPOSIT HDPE SAMPAH ORGANIK 11 PENGARUH WAKTU PEMAPARAN CUACA (WEATHERING) TERHADAP KARAKTERISTIK MEKANIK KOMPOSIT SAMPAH ORGANIK Wisnu Adhi Permana Jati 1, Wijang Wisnu Raharjo 2, Heru Sukanto 2 Program Sarjana Jurusan Teknik Mesin

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi bahan sudah berkembang sangat pesat dari tahun ke tahun sejak abad ke-20. Banyak industri yang sudah tidak bergantung pada penggunaan logam sebagai

Lebih terperinci

BAB I PENDAHULUAN. Di negeri kita yang tercinta ini, sampah menjadi masalah yang serius.

BAB I PENDAHULUAN. Di negeri kita yang tercinta ini, sampah menjadi masalah yang serius. BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Di negeri kita yang tercinta ini, sampah menjadi masalah yang serius. Bahkan di wilayah yang seharusnya belum menjadi masalah telah menjadi masalah. Yang lebih

Lebih terperinci

BAB IV PENGEMBANGAN MATERIAL PENYUSUN BLOK REM KOMPOSIT

BAB IV PENGEMBANGAN MATERIAL PENYUSUN BLOK REM KOMPOSIT BAB IV PENGEMBANGAN MATERIAL PENYUSUN BLOK REM KOMPOSIT IV.1 Pemilihan Material Penyusun Dari penelitian yang telah dilakukan sebelumnya, didapatkan kesimpulan bahwa material penyusun dari rem komposit

Lebih terperinci

ANALISA PENGARUH FRAKSI MASSA PENGUAT SiO 2 TERHADAP KEKUATAN IMPAK DAN STRUKTUR MIKRO PADA KOMPOSIT MATRIK ALUMINIUM MENGGUNAKAN METODE STIR CASTING

ANALISA PENGARUH FRAKSI MASSA PENGUAT SiO 2 TERHADAP KEKUATAN IMPAK DAN STRUKTUR MIKRO PADA KOMPOSIT MATRIK ALUMINIUM MENGGUNAKAN METODE STIR CASTING ANALISA PENGARUH FRAKSI MASSA PENGUAT SiO 2 TERHADAP KEKUATAN IMPAK DAN STRUKTUR MIKRO PADA KOMPOSIT MATRIK ALUMINIUM MENGGUNAKAN METODE STIR CASTING SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh

Lebih terperinci

PENENTUAN FRAKSI FILLER SERBUK ALUMINIUM DALAM PEMBUATAN KOMPOSIT EPOKSI SEBAGAI BAHAN ALTERNATIF BALING-BALING KINCIR ANGIN TUGAS AKHIR.

PENENTUAN FRAKSI FILLER SERBUK ALUMINIUM DALAM PEMBUATAN KOMPOSIT EPOKSI SEBAGAI BAHAN ALTERNATIF BALING-BALING KINCIR ANGIN TUGAS AKHIR. PENENTUAN FRAKSI FILLER SERBUK ALUMINIUM DALAM PEMBUATAN KOMPOSIT EPOKSI SEBAGAI BAHAN ALTERNATIF BALING-BALING KINCIR ANGIN TUGAS AKHIR Oleh : ARFAN WIJAYA NRP. 2401 100 066 Surabaya, Juni 2006 Mengetahui/Menyetujui

Lebih terperinci

PENGARUH PERLAKUAN PANAS TERHADAP FREKUENSI PRIBADI DAN RASIO REDAMAN KOMPOSIT HIBRYD SERAT KARBON DAN SERAT GELAS

PENGARUH PERLAKUAN PANAS TERHADAP FREKUENSI PRIBADI DAN RASIO REDAMAN KOMPOSIT HIBRYD SERAT KARBON DAN SERAT GELAS PENGARUH PERLAKUAN PANAS TERHADAP FREKUENSI PRIBADI DAN RASIO REDAMAN KOMPOSIT HIBRYD SERAT KARBON DAN SERAT GELAS SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Oleh

Lebih terperinci

III.METODELOGI PENELITIAN. Penelitian ini dilaksanakan selama tiga bulan terhitung pada bulan Februari Mei

III.METODELOGI PENELITIAN. Penelitian ini dilaksanakan selama tiga bulan terhitung pada bulan Februari Mei 17 III.METODELOGI PENELITIAN 3.1. Waktu dan Tempat Pelaksanaan Penelitian Penelitian ini dilaksanakan selama tiga bulan terhitung pada bulan Februari Mei 2012. Adapun tempat pelaksanaan penelitian ini

Lebih terperinci

ANALISA PENGARUH VARIASI SUHU SINTERING PADA PENCETAKAN BOLA PLASTIK BERONGGA PROSES ROTATION MOLDING

ANALISA PENGARUH VARIASI SUHU SINTERING PADA PENCETAKAN BOLA PLASTIK BERONGGA PROSES ROTATION MOLDING TUGAS AKHIR ANALISA PENGARUH VARIASI SUHU SINTERING PADA PENCETAKAN BOLA PLASTIK BERONGGA PROSES ROTATION MOLDING Diajukan Sebagai Syarat Menyelesaikan Program Studi Strata Satu Pada Jurusan Teknik Mesin

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang 1.1. Latar Belakang BAB I PENDAHULUAN Material untuk rekayasa struktur terbagi menjadi empat jenis, diantaranya logam, keramik, polimer, dan komposit (Ashby, 1999). Material komposit merupakan alternatif

Lebih terperinci

BAB I PENDAHULUAN. penduduknya menjadikan beras sebagai makanan pokoknya, serta. produksi berasnya merata di seluruh tanah air.

BAB I PENDAHULUAN. penduduknya menjadikan beras sebagai makanan pokoknya, serta. produksi berasnya merata di seluruh tanah air. BAB I PENDAHULUAN 1.1. Latar Belakang Indonesia sebagai negara agraris yang mayoritas penduduknya menjadikan beras sebagai makanan pokoknya, serta produksi berasnya merata di seluruh tanah air. Berdasarkan

Lebih terperinci

PENGARUH FRAKSI BERAT SERAT TERHADAP SIFAT AKUSTIK KOMPOSIT rhdpe-cantula

PENGARUH FRAKSI BERAT SERAT TERHADAP SIFAT AKUSTIK KOMPOSIT rhdpe-cantula PENGARUH FRAKSI BERAT SERAT TERHADAP SIFAT AKUSTIK KOMPOSIT rhdpe-cantula SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Oleh: MOHAMMAD TAUFIK BURHANY HENDROWARSITO NIM.

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Teknologi rekayasa material serta berkembangnya isu lingkungan hidup menuntut terobosan baru dalam menciptakan material yang berkualitas tinggi dan ramah lingkungan.

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Metode yang digunakan dalam penelitian ini adalah dengan metode eksperimen.

BAB III METODOLOGI PENELITIAN. Metode yang digunakan dalam penelitian ini adalah dengan metode eksperimen. BAB III METODOLOGI PENELITIAN 3.1 Metode Penelitian Metode yang digunakan dalam penelitian ini adalah dengan metode eksperimen. 3.2 Alat dan Bahan 3.2.1 Alat yang Digunakan Alat yang akan digunakan dalam

Lebih terperinci

JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SURAKARTA

JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SURAKARTA TUGAS AKHIR ANALISIS KOMPOSIT DENGAN PENGUAT SERAT NANAS 40% DAN SERBUK KAYU SENGON 60% PADA FRAKSI VOLUME 40%,50%,60% BERMATRIK RESIN POLYESTER UNTUK PANEL AKUISTIK Disusun Sebagai Syarat Menyelesaikan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Laporan Tugas Akhir 3.1 Diagram Alir Proses Gambar 3.1. Diagram alir penelitian 25 Penelitian ini ditunjang dengan simulasi komputer dari hasil penelitian komposit PE-serbuk

Lebih terperinci

TUGAS AKHIR PENELITIAN SIFAT FISIS DAN MEKANIS KOMPOSIT SERBUK TIMAH PEREKAT EPOXY UKURAN SERBUK 60 MESH DENGAN FRAKSI VOLUME (20, 35, 50) %

TUGAS AKHIR PENELITIAN SIFAT FISIS DAN MEKANIS KOMPOSIT SERBUK TIMAH PEREKAT EPOXY UKURAN SERBUK 60 MESH DENGAN FRAKSI VOLUME (20, 35, 50) % TUGAS AKHIR PENELITIAN SIFAT FISIS DAN MEKANIS KOMPOSIT SERBUK TIMAH PEREKAT EPOXY UKURAN SERBUK 60 MESH DENGAN FRAKSI VOLUME (20, 35, 50) % Diajukan untuk Memenuhi Tugas dan Syarat-syarat Guna Memperoleh

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA 6 II. TINJAUAN PUSTAKA Pada bab ini akan diuraikan secara garis besar pengetahuan teori yang menunjang dalam penelitian yang akan dilakukan. A. Batu Marmer Marmer adalah batuan kristalin yang berasal dari

Lebih terperinci

Kevin Yoga Pradana Dosen Pembimbing: Prof. Dr. Ir. Wajan Berata, DEA

Kevin Yoga Pradana Dosen Pembimbing: Prof. Dr. Ir. Wajan Berata, DEA PENGARUH VARIASI FRAKSI VOLUME, TEMPERATUR DAN WAKTU POST-CURING TERHADAP KARAKTERISTIK BENDING KOMPOSIT POLYESTER - PARTIKEL HOLLOW GLASS MICROSPHERES Kevin Yoga Pradana 2109 100 054 Dosen Pembimbing:

Lebih terperinci

Fajar Nugroho Sekolah Tinggi Teknologi Adisutjipto, Yogyakarta. Jl. Janti Blok R Lanud Adisutjipto

Fajar Nugroho Sekolah Tinggi Teknologi Adisutjipto, Yogyakarta. Jl. Janti Blok R Lanud Adisutjipto Seminar SENATIK Nasional Vol. II, 26 Teknologi November Informasi 2016, ISSN: dan 2528-1666 Kedirgantaraan (SENATIK) Vol. II, 26 November 2016, ISSN: 2528-1666 MdM- 41 STUDI PENGARUH PROSES MANUFAKTUR

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian ini dilakukan di Laboratorium Teknologi Material, Laboratorium

BAB III METODOLOGI PENELITIAN. Penelitian ini dilakukan di Laboratorium Teknologi Material, Laboratorium BAB III METODOLOGI PENELITIAN A. Metode Penelitian Penelitian ini dilakukan di Laboratorium Teknologi Material, Laboratorium Metrologi Industri Teknik Mesin serta Laboratoium Kimia Teknik Kimia Universitas

Lebih terperinci

KAJIAN PENGGUNAAN SERAT PLASTIK TERHADAP KUAT TARIK BELAH DAN KUAT TEKAN PADA CAMPURAN BETON TANPA AGREGAT KASAR

KAJIAN PENGGUNAAN SERAT PLASTIK TERHADAP KUAT TARIK BELAH DAN KUAT TEKAN PADA CAMPURAN BETON TANPA AGREGAT KASAR KAJIAN PENGGUNAAN SERAT PLASTIK TERHADAP KUAT TARIK BELAH DAN KUAT TEKAN PADA CAMPURAN BETON TANPA AGREGAT KASAR Agustiar Jurusan Teknik Sipil Fakultas Teknik Universitas Muhammadiyah Aceh Email : ampenan70@gmail.com

Lebih terperinci

METODE PENELITIAN. Sampel tanah yang digunakan berupa tanah lempung anorganik yang. merupakan bahan utama paving block sebagai bahan pengganti pasir.

METODE PENELITIAN. Sampel tanah yang digunakan berupa tanah lempung anorganik yang. merupakan bahan utama paving block sebagai bahan pengganti pasir. III. METODE PENELITIAN A. Metode Pengambilan Sampel 1. Tanah Lempung Anorganik Sampel tanah yang digunakan berupa tanah lempung anorganik yang merupakan bahan utama paving block sebagai bahan pengganti

Lebih terperinci

BAB I PENDAHULUAN. paling sering ditemui diantaranya adalah sampah plastik, baik itu jenis

BAB I PENDAHULUAN. paling sering ditemui diantaranya adalah sampah plastik, baik itu jenis BAB I PENDAHULUAN 1.1 Latar Belakang Sampah merupakan hasil aktivitas manusia yang tidak dapat dimanfaatkan. Namun pandangan tersebut sudah berubah seiring berkembangnya jaman. Saat ini sampah dipandang

Lebih terperinci

BAB I PENDAHULUAN. meningkat. Hampir setiap produk menggunakan plastik sebagai kemasan atau

BAB I PENDAHULUAN. meningkat. Hampir setiap produk menggunakan plastik sebagai kemasan atau BAB I PENDAHULUAN 1.1 Latar Belakang Kemajuan teknologi plastik membuat aktivitas produksi plastik terus meningkat. Hampir setiap produk menggunakan plastik sebagai kemasan atau bahan dasar. Material plastik

Lebih terperinci

Djati Hery Setyawan D

Djati Hery Setyawan D TUGAS AKHIR ANALISIS SIFAT FISIS DAN MEKANIS KOMPOSIT SERAT ACAK ENCENG GONDOK DENGAN PANJANG SERAT 25 mm, 50 mm, 100 mm MENGGUNAKAN MATRIK POLYESTER Laporan Ini Disusun Sebagai Salah Satu Syarat Untuk

Lebih terperinci

KARAKTRISASI MEKANIK BAHAN KAMPAS KOPLING DARI BAHAN SERAT KELAPA, SERBUK TEMPURUNG ARANG KELAPA, SERBUK TEMBAGA DENGAN MATRIK RESIN PHENOLIC

KARAKTRISASI MEKANIK BAHAN KAMPAS KOPLING DARI BAHAN SERAT KELAPA, SERBUK TEMPURUNG ARANG KELAPA, SERBUK TEMBAGA DENGAN MATRIK RESIN PHENOLIC TUGAS AKHIR KARAKTRISASI MEKANIK BAHAN KAMPAS KOPLING DARI BAHAN SERAT KELAPA, SERBUK TEMPURUNG ARANG KELAPA, SERBUK TEMBAGA DENGAN MATRIK RESIN PHENOLIC Diajukan untuk memenuhi tugas Dan Syarat- Syarat

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN 26 BAB IV HASIL DAN PEMBAHASAN Pada penelitian ini, pembuatan soft magnetic menggunakan bahan serbuk besi dari material besi laminated dengan perlakuan bahan adalah dengan proses kalsinasi dan variasi

Lebih terperinci

I. PENDAHULUAN. aktifitas yang diluar kemampuan manusia. Umumnya mesin merupakan suatu alat

I. PENDAHULUAN. aktifitas yang diluar kemampuan manusia. Umumnya mesin merupakan suatu alat I. PENDAHULUAN A. Latar Belakang Pembuatan mesin pada awalnya bertujuan untuk memberikan kemudahan dalam aktifitas yang diluar kemampuan manusia. Umumnya mesin merupakan suatu alat yang berfungsi untuk

Lebih terperinci

METODOLOGI PENELITIAN. Penelitian dilakukan di laboratorium material teknik, Jurusan Teknik Mesin,

METODOLOGI PENELITIAN. Penelitian dilakukan di laboratorium material teknik, Jurusan Teknik Mesin, 28 III. METODOLOGI PENELITIAN 3.1. Tempat Penelitian Penelitian dilakukan di laboratorium material teknik, Jurusan Teknik Mesin, Fakultas Teknik, Universitas Lampung dan laboratorium uji material Jurusan

Lebih terperinci

PENGARUH FRAKSI BERAT SERAT TERHADAP SIFAT AKUSTIK KOMPOSIT rhdpe-cantula

PENGARUH FRAKSI BERAT SERAT TERHADAP SIFAT AKUSTIK KOMPOSIT rhdpe-cantula PENGARUH FRAKSI BERAT SERAT TERHADAP SIFAT AKUSTIK KOMPOSIT rhdpe-cantula SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Oleh: MOHAMMAD TAUFIK BURHANY HENDROWARSITO NIM.

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan rekayasa teknologi saat ini tidak hanya bertujuan untuk membantu umat manusia, namun juga harus mempertimbangkan aspek lingkungan. Segala hal yang berkaitan

Lebih terperinci

PENGARUH KOMPOSISI CAMPURAN HARDENER DENGAN RESIN POLYESTER TERHADAP KUAT TARIK DAN BENDING POLIMER TERMOSET

PENGARUH KOMPOSISI CAMPURAN HARDENER DENGAN RESIN POLYESTER TERHADAP KUAT TARIK DAN BENDING POLIMER TERMOSET PENGARUH KOMPOSISI CAMPURAN HARDENER DENGAN RESIN POLYESTER TERHADAP KUAT TARIK DAN BENDING POLIMER TERMOSET La Maaliku 1, Yuspian Gunawan 2, Aminur 2 1 Mahasiswa Program Studi Teknik Mesin Fakultas Teknik

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN A. Tempat dan Waktu Penelitian 1. Tempat Penelitian Penelitian ini dilakukan dalam beberapa tahapan penelitian yang berbeda tempat pelaksanaannya. Pemilihan lokasi penelitian

Lebih terperinci

BAB IV DATA HASIL PENELITIAN

BAB IV DATA HASIL PENELITIAN BAB IV DATA HASIL PENELITIAN 4.1 PEMBUATAN SAMPEL 4.1.1 Perhitungan berat komposit secara teori pada setiap cetakan Pada Bagian ini akan diberikan perhitungan berat secara teori dari sampel komposit pada

Lebih terperinci

BAB V ANALISIS DAN INTERPRETASI HASIL

BAB V ANALISIS DAN INTERPRETASI HASIL BAB V ANALISIS DAN INTERPRETASI HASIL Pada bab ini akan diuraikan analisis terhadap hasil pengolahan data. Pembahasan mengenai analisis hasil pengujian konduktivitas panas, pengujian bending, perhitungan

Lebih terperinci

BAB I PENDAHULUAN. endemik. Bambu merupakan jenis rumput rumputan yang beruas. yang tinggi. Beberapa jenis bambu mampu tumbuh hingga sepanjang

BAB I PENDAHULUAN. endemik. Bambu merupakan jenis rumput rumputan yang beruas. yang tinggi. Beberapa jenis bambu mampu tumbuh hingga sepanjang BAB I PENDAHULUAN 1.1 Latar Belakang Di Indonesia terdapat berbagai jenis bambu diperkirakan sekitar 159 spesies dari total 1.250 jenis bambu yang terdapat di dunia. Bahkan sekitar 88 jenis bambu yang

Lebih terperinci

TUGAS AKHIR. PENGARUH PROSENTASE BAHAN KIMIA 4%, 5%, 6%, 7% NaOH TERHADAP SIFAT FISIS DAN MEKANIS KOMPOSIT SERAT BULU KAMBING DENGAN MATRIK POLYESTER

TUGAS AKHIR. PENGARUH PROSENTASE BAHAN KIMIA 4%, 5%, 6%, 7% NaOH TERHADAP SIFAT FISIS DAN MEKANIS KOMPOSIT SERAT BULU KAMBING DENGAN MATRIK POLYESTER TUGAS AKHIR PENGARUH PROSENTASE BAHAN KIMIA 4%, 5%, 6%, 7% NaOH TERHADAP SIFAT FISIS DAN MEKANIS KOMPOSIT SERAT BULU KAMBING DENGAN MATRIK POLYESTER Disusun Dan Diajukan Untuk Melengkapi Syarat-Syarat

Lebih terperinci

FAJAR TAUFIK NIM : JURUSAN TEKNIK MESIN SEKOLAH TINGGI TEKNOLOGI ADISUTJIPTO YOGYAKARTA

FAJAR TAUFIK NIM : JURUSAN TEKNIK MESIN SEKOLAH TINGGI TEKNOLOGI ADISUTJIPTO YOGYAKARTA PENGARUH VARIASI WAKTU DAN KECEPATAN PENGADUKAN EPOXY TERHADAP KEKUATAN TARIK DAN IMPAK PADA KOMPOSIT SERBUK KAYU ALBASIA SKRIPSI Untuk memenuhi persyaratan mencapai derajat Sarjana Strata 1 Disusun Oleh

Lebih terperinci

OPTIMALISASI KEKUATAN BENDING DAN IMPACT KOMPOSIT BERPENGUAT SEKAM PADI BERMATRIK UREA FORMALDEHYDE TERHADAP FRAKSI VOLUM DAN TEBAL CORE

OPTIMALISASI KEKUATAN BENDING DAN IMPACT KOMPOSIT BERPENGUAT SEKAM PADI BERMATRIK UREA FORMALDEHYDE TERHADAP FRAKSI VOLUM DAN TEBAL CORE TUGAS AKHIR OPTIMALISASI KEKUATAN BENDING DAN IMPACT KOMPOSIT BERPENGUAT SEKAM PADI BERMATRIK UREA FORMALDEHYDE TERHADAP FRAKSI VOLUM DAN TEBAL CORE Diajukan Guna Memenuhi Syarat Untuk Mencapai Derajat

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 21 BAB III METODE PENELITIAN 3.1. DIAGRAM ALIR PENELITIAN : Literatur Persiapan Bahan Penimbangan resin ABS dan graphite disesuaikan dengan fraksi volume Dispersi ABS dengan MEK Pencampuran ABS terdispersi

Lebih terperinci

BAB I PENDAHULUAN 1.1.Latar Belakang

BAB I PENDAHULUAN 1.1.Latar Belakang 1 BAB I PENDAHULUAN 1.1.Latar Belakang Produk keramik adalah suatu produk industri yang sangat penting dan berkembang pesat pada masa sekarang ini. Hal ini disebabkan oleh pesatnya perkembangan ilmu pengetahuan

Lebih terperinci

METODOLOGI PENELITIAN. Penelitian dilakukan di Laboratorium Material Teknik Mesin Jurusan Teknik

METODOLOGI PENELITIAN. Penelitian dilakukan di Laboratorium Material Teknik Mesin Jurusan Teknik III. METODOLOGI PENELITIAN A. Tempat Penelitian Penelitian dilakukan di Laboratorium Material Teknik Mesin Jurusan Teknik Mesin dan Laboratorium Ilmu Tanah Jurusan Teknik Sipil Universitas Lampung serta

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Material komposit merupakan suatu materi yang dibuat dari variasi penggunaan matrik polimer dengan suatu substrat yang dengan sengaja ditambahkan atau dicampurkan untuk

Lebih terperinci

PENGARUH WAKTU PEMAPARAN CUACA (WEATHERING) TERHADAP KARAKTERISTIK MEKANIK KOMPOSIT HDPE SAMPAH ORGANIK

PENGARUH WAKTU PEMAPARAN CUACA (WEATHERING) TERHADAP KARAKTERISTIK MEKANIK KOMPOSIT HDPE SAMPAH ORGANIK PENGARUH WAKTU PEMAPARAN CUACA (WEATHERING) TERHADAP KARAKTERISTIK MEKANIK KOMPOSIT HDPE SAMPAH ORGANIK SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Oleh : WISNU ADHI

Lebih terperinci

I. PENDAHULUAN. mempunyai sifat lebih baik dari material penyusunnya. Komposit terdiri dari penguat (reinforcement) dan pengikat (matriks).

I. PENDAHULUAN. mempunyai sifat lebih baik dari material penyusunnya. Komposit terdiri dari penguat (reinforcement) dan pengikat (matriks). 1 I. PENDAHULUAN A. Latar Belakang Komposit merupakan hasil penggabungan antara dua atau lebih material yang berbeda secara fisis dengan tujuan untuk menemukan material baru yang mempunyai sifat lebih

Lebih terperinci

BAB I PENDAHULUAN 1.1. LATAR BELAKANG

BAB I PENDAHULUAN 1.1. LATAR BELAKANG BAB I PENDAHULUAN 1.1. LATAR BELAKANG Perkembangan teknologi polimer pada saat ini telah memudahkan manusia untuk memenuhi kebutuhannya akan bahan yang dapat didaur ulang (recycle), salah satu produk polimer

Lebih terperinci

Kategori Sifat Material

Kategori Sifat Material 1 TIN107 Material Teknik Kategori Sifat Material 2 Fisik Mekanik Teknologi Kimia 6623 - Taufiqur Rachman 1 Sifat Fisik 3 Kemampuan suatu bahan/material ditinjau dari sifat-sifat fisikanya. Sifat yang dapat

Lebih terperinci

Rekayasa Dan Manufaktur Komposit Core Berpenguat Serat Sabut Kelapa Bermatrik Serbuk Gypsum Dengan Fraksi Volume Serat 20%, 30%, 40%, 50%

Rekayasa Dan Manufaktur Komposit Core Berpenguat Serat Sabut Kelapa Bermatrik Serbuk Gypsum Dengan Fraksi Volume Serat 20%, 30%, 40%, 50% TUGAS AKHIR Rekayasa Dan Manufaktur Komposit Core Berpenguat Serat Sabut Kelapa Bermatrik Serbuk Gypsum Dengan Fraksi Volume Serat 20%, 30%, 40%, 50% Tugas akhir ini disusun guna menenuhi sebagian syarat

Lebih terperinci

INVESTIGASI TEKANAN OPTIMAL PADA PROSES PRESSURED SINTERING KOMPOSIT PLASTIK HDPE-KARET

INVESTIGASI TEKANAN OPTIMAL PADA PROSES PRESSURED SINTERING KOMPOSIT PLASTIK HDPE-KARET INVESTIGASI TEKANAN OPTIMAL PADA PROSES PRESSURED SINTERING KOMPOSIT PLASTIK HDPE-KARET Heru Sukanto 1 ABSTRACT : The purpose of the research is to investigate the optimum compaction of pressured sintering

Lebih terperinci

SINTESIS DAN KARAKTERISASI SIFAT MEKANIK SERTA STRUKTUR MIKRO KOMPOSIT RESIN YANG DIPERKUAT SERAT DAUN PANDAN ALAS (Pandanus dubius)

SINTESIS DAN KARAKTERISASI SIFAT MEKANIK SERTA STRUKTUR MIKRO KOMPOSIT RESIN YANG DIPERKUAT SERAT DAUN PANDAN ALAS (Pandanus dubius) SINTESIS DAN KARAKTERISASI SIFAT MEKANIK SERTA STRUKTUR MIKRO KOMPOSIT RESIN YANG DIPERKUAT SERAT DAUN PANDAN ALAS (Pandanus dubius) Citra Mardatillah Taufik, Astuti Jurusan Fisika FMIPA Universitas Andalas

Lebih terperinci

VARIASI KUNINGAN 2 GRAM, 4 GRAM, 6 GRAM PADA PEMBUATAN DAN KEKERASAN DENGAN PERBANDINGAN KAMPAS REM YAMAHAPART

VARIASI KUNINGAN 2 GRAM, 4 GRAM, 6 GRAM PADA PEMBUATAN DAN KEKERASAN DENGAN PERBANDINGAN KAMPAS REM YAMAHAPART TUGAS AKHIR PENGARUH VARIASI KUNINGAN 2 GRAM, 4 GRAM, 6 GRAM PADA PEMBUATAN KAMPAS REM TERHADAP KEAUSAN, SUHU, DAN KEKERASAN DENGAN PERBANDINGAN KAMPAS REM YAMAHAPART Diajukan guna memenuhi sebagian syarat

Lebih terperinci

BAB III PROSEDUR PENELITIAN

BAB III PROSEDUR PENELITIAN BAB III PROSEDUR PENELITIAN III.1 Umum Penelitian yang dilakukan adalah penelitian berskala laboratorium untuk mengetahui pengaruh variasi komposisi aditif (additive) yang efektif dalam pembuatan keramik

Lebih terperinci

Pengaruh Fraksi Volume Filler terhadap Kekuatan Bending dan Ketangguhan Impak Komposit Nanosilika Phenolic

Pengaruh Fraksi Volume Filler terhadap Kekuatan Bending dan Ketangguhan Impak Komposit Nanosilika Phenolic Jurnal Rekayasa Mesin Vol.5, No.1 Tahun 2014: 27-32 ISSN 0216-468X Pengaruh Fraksi Volume Filler terhadap Kekuatan Bending dan Ketangguhan Impak Komposit Kuncoro Diharjo 1, Ischiadica Elharomy 1, Agus

Lebih terperinci

PENGARUH FRAKSI VOLUME PARTIKEL GENTENG SEBAGAI FILLER TERHADAP PERUBAHAN SIFAT KETAHANAN BAKAR MATERIAL KOMPOSIT POLYESTER RESIN.

PENGARUH FRAKSI VOLUME PARTIKEL GENTENG SEBAGAI FILLER TERHADAP PERUBAHAN SIFAT KETAHANAN BAKAR MATERIAL KOMPOSIT POLYESTER RESIN. PENGARUH FRAKSI VOLUME PARTIKEL GENTENG SEBAGAI FILLER TERHADAP PERUBAHAN SIFAT KETAHANAN BAKAR MATERIAL KOMPOSIT POLYESTER RESIN. 1) Siswanto, 2) Jumardi, 3) Basmal 1),2) Jurusan Teknik Mesin Politeknik

Lebih terperinci

PENGARUH FRAKSI VOLUME DAN UKURAN PARTIKEL KOMPOSIT POLYESTER RESIN BERPENGUAT PARTIKEL GENTING TERHADAP KEKUATAN TARIK DAN KEKUATAN BENDING ABSTRACT

PENGARUH FRAKSI VOLUME DAN UKURAN PARTIKEL KOMPOSIT POLYESTER RESIN BERPENGUAT PARTIKEL GENTING TERHADAP KEKUATAN TARIK DAN KEKUATAN BENDING ABSTRACT PENGARUH FRAKSI VOLUME DAN UKURAN PARTIKEL KOMPOSIT POLYESTER RESIN BERPENGUAT PARTIKEL GENTING TERHADAP KEKUATAN TARIK DAN KEKUATAN BENDING Siswanto 1, Kuncoro Diharjo 2. 1. Mahasiswa Pasca Sarjana Teknik

Lebih terperinci

STUDI TEMPERATUR OPTIMAL TERHADAP CAMPURAN BAHAN POLYPROPYLENE DAN POLYETHYLENE PADA PROSES MIXING UNTUK PEMAKAIAN PLASTIC INJECTION MOLDING SKRIPSI

STUDI TEMPERATUR OPTIMAL TERHADAP CAMPURAN BAHAN POLYPROPYLENE DAN POLYETHYLENE PADA PROSES MIXING UNTUK PEMAKAIAN PLASTIC INJECTION MOLDING SKRIPSI STUDI TEMPERATUR OPTIMAL TERHADAP CAMPURAN BAHAN POLYPROPYLENE DAN POLYETHYLENE PADA PROSES MIXING UNTUK PEMAKAIAN PLASTIC INJECTION MOLDING SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Alat dan Bahan Penelitian Dalam suatu penelitian dibutuhkan alat dan bahan, demikian juga pada penelitian ini. Berikut adalah peralatan dan bahan-bahan yang digunakan dalam

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah 1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Sampah dan produk-produk sampingan industri adalah salah satu unsur yang dapat membuat lingkungan tercemar dan karenanya harus dilakukan suatu usaha untuk

Lebih terperinci

Pengaruh Suhu Sintering Terhadap Densitas dan Kekuatan Komposit Plastik - Karet

Pengaruh Suhu Sintering Terhadap Densitas dan Kekuatan Komposit Plastik - Karet Jurnal Ilmiah Teknik Mesin CakraM Vol. 3 No. 1, Juni 2009 (57-61) Pengaruh Suhu Sintering Terhadap Densitas dan Kekuatan Komposit Plastik - Karet Heru Sukanto Jurusan Teknik Mesin, Fakultas Teknik, Uiversitas

Lebih terperinci