MODIFIKASI AIRFOIL NACA DENGAN METODA INVERS

Ukuran: px
Mulai penontonan dengan halaman:

Download "MODIFIKASI AIRFOIL NACA DENGAN METODA INVERS"

Transkripsi

1 MODIFIKASI AIRFOIL NACA DENGAN METODA INVERS Muhamad Maris Al Gifari 1 maris_algifari@upi.edu ABSTRAK Alasan modifikasi airfoil dilakukan salah satunya untuk mengurangi biaya operasional agar semakin kecil. Biaya operasional tersebut salah satunya muncul dari biaya bahan bakar yang diperlukan yang akan digunakan untuk menghasilkan gaya dorong pada pesawat. Besarnya gaya dorong yang harus dikeluarkan oleh mesin bergantung pada besarnya gaya hambat (drag) yang harus dilawan. Semakin besar gaya hambat (drag) yang harus dilawan, semakin besar pula gaya dorong yang harus dikeluarkan. Aliran turbulen memiliki gaya gesek lebih besar dibandingkan dengan aliran laminar. Oleh karena itu dalam memodifikasi airfoil, target yang akan dicapai adalah menurunkan harga drag dan sekaligus menaikkan harga L/D pada desainnya. Hal ini dicapai dengan cara memodifikasi distribusi Cp, yang terdiri dari 4 tahap parametrik, yaitu: 1. Menambah gradien recovery distribusi Cp. 2. Menambah daerah linear distribusi Cp ke arah leading edge. 3. Menaikkan titik akhir distribusi Cp. 4. Menambah radius nose airfoil. Bentuk airfoil dicari dengan metoda panel invers, dengan menggunakan distribusi Cp hasil modifikasi sebagai target. Hasil modifikasi menunjukkan penurunan Cd sebesar 5 drag count dan penigkatan L/D sebesar 1 %. Kata kunci: Airfoil, Distribusi tekanan, Metode invers, Karakteristik aerodinamika ABSTRACT One of reason from airfoil modification is reducing operational cost. Operational cost comes from fuel that used for engine. Engine produce thrust that counter drag of airplane. The amount of thrust that we have to produced depends on magnitude of drag. Turbulent flow has bigger friction force than laminar flow. In this modification, the target is to make laminar region flow longer than before so drag will decrease. Beside that, this modification also for make improvement in ratio L/D at design. The way to make modification consist of 4 steps. There are the steps: 1. Increasing the recovery gradient of Cp distribution. 2. Expanding linear region of Cp distribution toward leading edge. 3. Increasing final point of Cp distribution. 1 Jurusan Pendidikan Teknik Mesin, Fakultas Pendidikan Teknologi dan Kejuruan Universitas Pendidikan Indonesia, Bandung, 4154, Indonesia 84

2 4. Increasing airfoil nose radius. Airfoil shape is solved by invers of panel method from Cp distribution as a target. The modification shows that Cd decreases 5 drag count and L/D increases 1%. Keywords: Airfoil, Pressure Distribution, Invers Method, Aerodynamic Characteristics Pendahuluan Prinsip terbang pesawat udara meniru konsep terbang burung pada saat terbang melayang. Pada saat burung terbang melayang, gaya dorong yang sebelumnya telah dihasilkan dari kepakan sayap mendorong burung terbang dan posisi sayap yang tetap bertugas menghasilkan gaya angkat. Begitu pula yang terjadi pada pesawat terbang, sayap bertugas untuk menghasilkan gaya angkat dan engine menghasilkan gaya dorong untuk melawan gaya hambat. Besarnya gaya dorong yang harus dikeluarkan oleh mesin bergantung pada besarnya gaya hambat yang harus dilawan. Semakin besar gaya hambat (drag) yang harus dilawan, semakin besar pula gaya dorong yang harus dikeluarkan. Konsekuensinya dari keperluan gaya dorong yang besar adalah daya mesin yang dikeluarkan mesin harus besar pula. Semakin besar daya mesin yang diperlukan, artinya bahan bakar atau energy yang diperlukan semakin besar. Energi yang diperlukan semakin besar, maka biaya yang perlu dikeluarkan semakin besar. Oleh karena itu, ahli aerodinamika mencari cara agar drag pada pesawat ini berkurang. Banyak hal yang telah dilakukan, salah satunya adalah dengan menjaga agar aliran di sekitar pesawat ini tetap laminar. Jadi bagaimana caranya agar aliran laminar ini dijaga agar tidak mengalami transisi menjadi aliran turbulen. Hal ini dilakukan karena aliran laminar ini memiliki friction drag yang kecil jika dibandingkan dengan aliran turbulen. Sehingga dengan menjaga kondisi aliran tetap laminar maka drag pada pesawat berkurang. Secara umum hal yang dapat dilakukan agar aliran tetap laminar dapat dilakukan dengan 2 cara, yaitu cara aktif dan pasif. Cara aktif dilakukan dengan menggunakan alat tertentu yang dikontrol secara aktif. Sedangkan cara pasif, dilakukan dengan cara dengan mengatur bentuk benda sedemikian rupa sehingga aliran tetap laminar dengan sendirinya. Salah satu cara pasif agar dapat mengontrol aliran agar tetap laminar adalah dengan mendesain bentuk airfoil yang disebut natural laminar flow airfoil. Natural laminar flow airfoil ini akan menjadi dasar bagaimana mendesain wing yang dapat menjaga daerah laminar sebesar mungkin. Proses desain dilakukan dengan cara memodifikasi airfoil NACA , yaitu airfoil utama yang digunakan pada pesawat CN235. Modifikasi dilakukan dengan cara mengubah bentuk distribusi tekanan yang terjadi pada sekitar airfoil NACA Proses modifikasi dilakukan hanya pada upper surface yang memungkinkan untuk melakukan modifikasi pada pesawat udara CN235 sebab jika modifikasi dilakukan pada lower surface maka airfoil harus dikurangi luasnya dan mengharuskan mengkeruk bagian sayap dan hal ini tidak diinginkan. Selain upper surface, modifikasi juga dilakukan dengan menaikkan titik akhir dari distribusi 85

3 tekanan yang terjadi. Serta tahapan proses modifikasi hanya digunakan satu urutan saja, dan proses pencarian bentuk terbaik (optimasi) dilakukan secara manual dengan menganalisis karakteristik aerodinamika setiap geometri. Evaluasi performa aerodinamika dilakukan dengan program MSES. Evaluasi performa aerodinamika ini hanya dilakukan pada bilangan Reynolds 6 juta dan bilangan Mach,2. Hal tersebut dilakukan dengan alasan mengingat daerah terbang CN 235 berada pada sekitar Mach,2 dan data yang tervalidasi berada pada bilangan Reynolds 6 juta. Hal ini dilakukan karena software analisis aerodinamika yang digunakan telah teruji pada bilangan Reynolds di sekitar 6 juta dan bilangan Mach,2, sehingga jika airfoil ini telah terbukti dapat memiliki performa yang lebih baik daripada NACA pada bilangan Reynolds tersebut maka penigkatan performa akan terjadi juga pada pesawat CN235 jika menggunakan airfoil hasil proses desain. Kajian Pustaka Airfoil dan Distirbusi Cp Airfoil adalah penampang melintang pada sebuah sayap yang memiliki bentuk streamline. Streamline adalah bentuk yang memiliki hambatan minimum saat benda tersebut bergerak dalam fluida khususnya udara. Saat udara mengalir di sekitar benda, maka udara akan memberikan tekanan pada benda yang besarnya bergantung pada kecepatannya. Semakin besar kecepatan benda maka tekanan statik yang bekerja pada permukaan benda akan semakin kecil. Distribusi tekanan statik inilah yang selanjutnya jika diintegralkan di sepanjang permukaan akan menghasilkan gaya angkat. Distribusi tekanan statik seringkali dituliskan dalam besaran non-dimensional yaitu Cp. Adapun definisi Cp itu sendiri adalah Simbol huruf p adalah tekanan statik, p adalah tekanan statik aliran bebas dan q adalah tekanan dinamik aliran bebas. Distribusi tekanan untuk kecepatan aliran tertentu yang mengalir pada aliran tertentu memiliki distribusi Cp tertentu juga. Ilustrasi distribusi Cp di sepanjang chord dapat dilihat pada gambar 1 di bawah ini Cp x/c upper surface lower surface Gambar 1 Distribusi Cp di Sekitar Airfoil Nilai unik distribusi Cp untuk setiap kecepatan aliran dan geometri benda tertentu, maka memungkinkan untuk melakukan invers, artinya geometri 86

4 suatu benda dapat dicari berdasrkan profil distribusi teknanan yang diinginkan. Natural Laminar Flow Suatu teknik untuk memperpanjang daerah laminar pada sekitar airfoil dengan cara mengantur bentuknya. Tujuan dari airfoil natural laminar flow ini adalah memperoleh drag yang lebih kecil saat cruise dengan mempertahankan karakteristik aerodinamika yang lainnya. Inverse Method Pada kenyataannya semua jenis pesawat terbang selalu bekerja pada daerah kecepatan subsonik, yaitu pada saat take off dan approach to landing. Berdasarkan pertimbangan kenyataan di atas maka analisis aliran pada kondisi kecepatan ini dengan asumsi densitas berharga tetap masih dapat diterima. Persamaan atur pergerakan fluida yang melatar belakangi metoda ini adalah persamaan Laplace, yang selanjutnya dituangkan dalam bentuk metoda panel vortex linear. Persamaan Laplace adalah persamaan atur model fluida yang alirannya dianggap inkompresibel, tak viskos dan tak rotasional. Oleh karena itu metoda ini terbatas pada kasus aliran subsonik saja dan tak dapat menafsirkan harga gaya hambat (drag). Salah satu yang dikembangkan untuk menganalisis kondisi tersebut adalah metoda panel. Berdasar metoda panel ini selanjutnya dikembangkan metoda invers yang digunakan untuk mencari bentuk airfoil tertentu dengan memberikan distribusi Cp yang disyaratkan. Metoda perancangan airfoil ini dikembangkan dengan memanfaatkan bentuk invers dari metoda panel dimana dengan memberikan distribusi Cp sebagai target maka koordinat airfoil dapat dicari secara iteratif. Dalam proses iterasi ini, jumlah iterasi yang diperlukan tentu sangat bergantung pada airfoil tebakannya. Namun apapun airfoil tebakannya, telah ditemukan metoda SOR yang dapat mempercepat proses konvergensinya. Teori Lapisan Batas Aliran dua dimensi fluida viskos inkompresibel dapat dianalisa dengan persamaan Navier-Stokes dan persamaan kontinuitas. Dengan mengabaikan gaya badan (body force), persamaan Navier-Stokes dituliskan dalam koordiant kartesian sebagai berikut : 2 2 u u u 1 p u u u v 2 2 t x y x x y (1) v v v 1 p 2 v 2 v u v t x y x x 2 y 2... (2) u v x y... (3) Selanjutnya, Ludwig Prandtl membuktikan bahwa pengaruh viskositas itu hanya terdapat pada lapisan tipis dekat permukaan. Lapisan tersebut disebut lapisan batas. Lapisan batas adalah lapisan tipis di dekat permukaan di mana efek viskositas secara efektif memberikan kontribusinya. Tebal lapisan batas didefinisikan sebagai jarak dari permukaan benda ke suatu tempat ketika kecepatan di tempat itu telah mencapai.99 kali kecepatan di luar. Medan aliran di dalam lapisan batas adalah rotasional, di luar lapisan batas aliran dapat dianggap irotasional karena efek viskositas dapat diabaikan. Lapisan batas dapat timbul karena adanya interaksi molekular fluida dengan permukaan benda, oleh karena 87

5 itu tebal lapisan batas di suatu tempat akan dipengaruhi oleh intensitas interaksi di bagian hulunya yang dapat diwakili oleh panjang karakteristik. Panjang karakteristik L dapat dinyatakan sebagai jarak dari titik stagnasi ke suatu titik yang ditinjau. Selanjutnya dapat dikatakan bahwa secara umum tebal lapisan batas sebanding dengan viskositas. Kita juga dapat berargumentasi semakin besar kecepatan luarnya, tebal lapisan batas akan semakin kecil. Hal ini disebabkan karena adanya kenaikan kecepatan aliran udara luar, suku-suku tegangan inersia menjadi semakin besar, sedangkan viskositasnya konstan sehingga profil kecepatan dalam lapisan batas akan lebih terdorong ke arah u permukaan. di dekat permukaan y bertambah besar. Konsep yang diajukan oleh Prandtl ini maka kasus aliran viskos yang dipenuhi oleh persamaan Navier- Stokes dapat diselesaikan dengan cara membagi dua daerah aliran, yaitu daerah lapisan batas yang dipengaruhi oleh adanya viskositas dan daerah di luar lapisan batas yang tak terpengaruh oleh adanya viskositas. Perhitungan dan analisis di luar lapisan batas dapat dilakukan dengan menyelesaikan persamaan Navier-Stokes yang disederhanakan dengan menghilangkan suku yang mengandung variabel viskositas, sehingga menjadi persamaan yang dikenal dengan sebutan persamaan Euler, full potential ataupun persamaan Laplace. Sedangkan untuk di dalam lapisan batas menggunakan persamaan Navier-Stokes dengan kondisi yang ada di dalam lapisan batas. Metode Penelitian Proses modifikasi dilakukan dengan bantuan perangkat lunak MSES dan NADA. MSES adalah perangkat lunak untuk menganalisis aliran di sekitar airfoil. Adapun persamaan yang digunakan oleh MSES adalah metoda panel yang dipadukan dengan persamaan lapisan batas untuk mendapatkan efek viskositas. Sedangkan NADA adalah perangkat lunak yang berfungsi untuk mendapatkan geometri airfoil berdasarkan distribusi Cp (koefisien tekanan) yang didapatkan dari analisis metoda panel. Distribusi Cp dari metoda panel untuk setiap geometri berbedabeda sehingga dapat hubungan unik antara geometri benda dan distribusi Cp. Berikut ini langkah yang diambil untuk proses modifikasi yang dilakukan: 1. Validasi perangkat lunak NADA dengan cara memasukkan distribusi Cp yang didapatkan dari MSES dengan aliran potensial untuk airfoil NACA Kemudian dibandingkan hasil dari geometri output NADA dengan airfoil aslinya. 2. Memodifikasi distribusi tekanan untuk mendapatkan airfoil baru. Modifikasi distribusi tekanan dilakukan dengan cara berurutan dengan 4 tahap, yaitu : a. Menambah gradien recovery distribusi Cp. b. Menambah daerah linear distribusi Cp ke arah leading edge. c. Menaikkan titik akhir distribusi Cp. d. Menambah radius nose airfoil. Berikut ilustrasi modifikasi yang dilakukan 88

6 Gambar 2 Ilustrasi Langkah Proses Modifikasi Distribusi Cp 3. Mensimulasikan hasil airfoil yang didapatkan dengan menggunakan MSES 4. Menganalisis performa aerodinamika pada setiap simulasi yang dilakukan. 5. Membandingkan hasil sehingga diperoleh kesimpulan faktor-faktor yang mempengaruhi performa aerodinamika Hasil dan Pembahasan Berikut bentuk distribusi Cp dari proses awal desain hingga akhir proses desain. Dari seluruh proses dan parameter desain, ternyata parameter nose radius memberikan kontribusi lebih signifikan dibandingkan dengan parameter lainnya dalam meningkatkan performa airfoil NACA Gambar 3 menunjukkan perbedaan distribusi Cp airfoil original dan distribusi hasil proses desain. Cp x/c original 1 modif 1.2 Gambar 3 Perbandingan Distribusi Cp Airfoil Original dengan Airfoil Hasil Proses Desain 89

7 Proses modifikasi yang dilakukan meliputi : 1. Mengubah gradien daerah recovery menjadi 2, 2. Menambahkan daerah linear ke arah leading edge hingga x di mana memiliki harga Cp = -,73 3. Menambah radius nose airfoil dengan menggembungkan pada titik ((,39),(-,77)) Proses modifikasi tersebut membuat perubahan pada bentuk airfoil jika dibandingkan dengan airfoil original yang ditunjukkan oleh gambar original modif Gambar 4 Perbandingan Geometri Airfoil Original dengan Airfoil Hasil Proses Desain Gambar 5 memperlihatkan detail geometri bagian airfoil yang berubah: original modif Gambar 5 Bagian Lebih Detail Perbandingan Geometri Airfoil Original dengan Airfoil Hasil Proses Desain Perubahan geometri tersebut membawa perubahan pada karakteristik aerodinamika sebagai berikut : 1. Daerah Laminar bertambah pada daerah α > 3 derajat. xtr E 16.1 NACA alpha(deg) Gambar 6 Perbandingan Drag Polar pada Daerah Sekitar desain Airfoil Original dengan Airfoil Hasil Proses Desain 9

8 2. Drag Polar NACA Cd Gambar 7 Perbandingan Drag Polar Airfoil Original dengan Airfoil Hasil Proses Desain Cd Gambar 8 Perbandingan Drag Polar pada Daerah Sekitar Desain Airfoil Original dengan Airfoil Hasil Proses Desain a. Kubah drag polar yang semakin luas, artinya daerah operasi bisa bertambah karena penambahan drag kecil terhadap kenaikan. b. Pengurangan Cd pada design (=,6) sebesar 5 drag count (ΔCd=,5) c. Pengurangan Cd pada airfoil hasil desain sejalan dengan pertumbuhan θ yang terjadi. Airfoil original memiliki pertumbuhan θ lebih cepat dibandingkan dengan airfoil hasil desain. Artinya semakin cepat pertumbuhan θ maka transisi akan semakin cepat dan drag akan lebih besar. 4.5E 3 4.E 3 3.5E 3 3.E 3 2.5E 3 2.E 3 1.5E 3 1.E 3 5.E 4 original Transisi Transisi Hasil desain.e Gambar 9 Pertumbuhan θ pada Airfoil Original dan Airfoil Hasil Desain 91

9 3. Grafik v α original Gambar 1 Perbandingan Kurva v α Airfoil Original dengan Airfoil Hasil Proses Desain Lebih detail pada daerah α tinggi : alpha(deg) original alpha(deg) Gambar 11 Perbandingan Kurva v α pada Daerah α Tinggi Airfoil Original dengan Airfoil Hasil Proses Desain Peningkatan performa aerodinamika yang terjadi yang dapat diamati dari grafik v α adalah a. Δ max =,6 b. Karakteristik aerodinamika yang lebih baik. Dapat dilihat dari stall terjadi lebih smooth dibandingkan dengan kurva airfoil original. c. Peningkatan α stall. Airfoil desain baru memiliki α stall = 21 derajat sedangkan airfoil original memiliki α stall = 2 derajat d. Δ α= =,4 4. Efisiensi Aerodinamika (/Cd v ) pada design (=,6) terjadi penambahan efisiensi aerodinamika sebesar (1%) 92

10 /Cd NACA Gambar 12 Perbandingan Kurva /Cd v Airfoil Original dengan Airfoil Hasil Proses Desain 5. Grafik Cm v Cm NACA Gambar 13 Perbandingan Kurva Cm v Airfoil Original dengan Airfoil Hasil Proses Desain Berikut detail harga Cm pada daerah desain pesawat CN235: Cm NACA Gambar 14 Perbandingan Kurva Cm v pada Daerah Operasi Desain Pesawat CN235 Airfoil Original dengan Airfoil Hasil Proses Desain 93

11 Terjadi pengurangan harga Cm pada design sebesar,1. Jika hasil desain airfoil ini diterapkan pada pesawat CN235 tentu akan membawa efek perubahan. Berikut perubahan yang akan terjadi : 1. Pengurangan Cd yang terjadi pada desain dan pengurangan harga Cm akan mengurangi drag saat cruise, sehingga gaya dorong yang dibutuhkan menjadi lebih kecil. Gaya dorong yang dibutuhkan lebih kecil maka bahan bakar yang diperlukan semakin kecil pula. Intinya bahan bakar akan lebih hemat. Jika pada gaya dorong yang besarnya tetap, maka kecepatan cruise dapat ditambah sehingga untuk menempuh jarak tertentu akan lebih cepat. 2. Peningkatan max akan memperpendek jarak take off yang diperlukan. Kenaikan efisiensi aerodinamika saat desain kan menambah jarak range yang dapat ditempuh oleh pesawat udara dalam hal ini pesawat CN235. Simpulan dan Saran Setelah melakukan seluruh tahap desain yang dilakukan untuk meningkatkan performa airfoil NACA dapat diambil kesimpulan sebagai berikut : 1. Penambahan gradien recovery yang pada intinya menggeser puncak distribusi Cp menambah daerah laminar pada daerah alfa rendah. 2. Proses desain distribusi Cp yang paling efektif dalam memperbaiki performa aerodinamika adalah memperbesar radius nose airfoil. 3. Proses desain yang telah dilakukan dengan memperluas daerah laminar pada desain berhasil menurunkan drag sebesar 5 drag count dengan mempertahankan performa aerodinamika yang lainnya (missal Cm lebih baik, max lebih baik). Adapun saran untuk perbaikan penelitian untuk kelanjutan yang lebih baik adalah: 1. Verifikasi hasil geometri airfoil yang diperoleh dilakukan eksperimen di dalam terowongan angin. 2. Dalam hal ini proses modifikasi dilakukan secara manual untuk setiap tahap sehingga masih memungkinkan terjadinya perbaikan performa aerodinamika yang lebih baik dengan menggunakan metoda optimasi dengan mencoba seluruh kemungkinan langkah yang dapat dilakukan. Daftar Pustaka Anderson, John. Fundamental of Aerodynamics. McGRAW-HILL International Editions, New York, USA, Pande, Nyoman Dwi Prayuda. Validasi Hasil Analisis Post Stall Program MSES untuk Airfoil Elemen Tunggal di Regime Subsonik Kecepatan Rendah. Laporan Kerja Praktek PTDI, ITB, Indonesia, 26. Fujino, Michisimasa, Yuichi Yoshizaki dan Yuichi Kawamura. Natural- Laminar-Flow-Airfoil Development for a Light Business Jet. Journal of Aircraft, Greensboro, North Carolina, 23. Kuethe, Arnold M, dan Chuen-Yen Chow. Foundation of Aerodynamics 4 th Edition. Jon Wiley & Sons, Inc. Canada, Schlichting, Herman. Boundary Layer Theory. McGRAW-HILL Inc. New York, USA, Sardjadi, Djoko. Mekanika Fluida. Art Pro. Bandung. 26. Sudarmawan, Agus, dan Hadi Winarto. Perancangan Aerofoil Multi Elemen Menggunakan Metoda Panel Orde Tinggi dan Teknik SOR untuk Mempercepat Konvergensi. 94

12 Technical Reports, IPTN, Indonesia, Mc Cormick, Barnes W. Aerodynamics, Aeronautics and Flight Mechanics. Jon Wiley & Sons, Inc. Canada,

Peningkatan Koefisien Gaya Angkat Aerofoil Kennedy-Marsden dengan Zap Flap

Peningkatan Koefisien Gaya Angkat Aerofoil Kennedy-Marsden dengan Zap Flap Jurnal Konversi Energi dan Manufaktur UNJ, Edisi terbit I Oktober 213 Terbit 71 halaman Peningkatan Koefisien Gaya Angkat Aerofoil Kennedy-Marsden dengan Zap Flap Catur Setyawan K 1., Djoko Sardjadi 2

Lebih terperinci

Simulasi Numerik Karakteristik Aliran Fluida Melewati Silinder Teriris Satu Sisi (Tipe D) dengan Variasi Sudut Iris dan Sudut Serang

Simulasi Numerik Karakteristik Aliran Fluida Melewati Silinder Teriris Satu Sisi (Tipe D) dengan Variasi Sudut Iris dan Sudut Serang Simulasi Numerik Karakteristik Aliran Fluida Melewati Silinder Teriris Satu Sisi (Tipe D) dengan Variasi Sudut Iris dan Sudut Serang Astu Pudjanarsa Laborotorium Mekanika Fluida Jurusan Teknik Mesin FTI-ITS

Lebih terperinci

SIMULASI DAN PERHITUNGAN SPIN ROKET FOLDED FIN BERDIAMETER 200 mm

SIMULASI DAN PERHITUNGAN SPIN ROKET FOLDED FIN BERDIAMETER 200 mm Simulasi dan Perhitungan Spin Roket... (Ahmad Jamaludin Fitroh et al.) SIMULASI DAN PERHITUNGAN SPIN ROKET FOLDED FIN BERDIAMETER 00 mm Ahmad Jamaludin Fitroh *), Saeri **) *) Peneliti Aerodinamika, LAPAN

Lebih terperinci

SIMULASI PENGUJIAN PRESTASI SUDU TURBIN ANGIN

SIMULASI PENGUJIAN PRESTASI SUDU TURBIN ANGIN SIMULASI PENGUJIAN PRESTASI SUDU TURBIN ANGIN Sulistyo Atmadi"', Ahmad Jamaludin Fitroh**' ipenellti Pusat Teknologi Dirgantara Terapan. LAPAN ">Peneliti Teknik Penerbangan ITB ABSTRACT Identification

Lebih terperinci

PENELITIAN KARAKTERISTIK AERODINAMIKA AEROFOIL SUDU SKEA NELAYAN NILA 80

PENELITIAN KARAKTERISTIK AERODINAMIKA AEROFOIL SUDU SKEA NELAYAN NILA 80 PENELITIAN KARAKTERISTIK AERODINAMIKA AEROFOIL SUDU SKEA NELAYAN NILA 80 Sulistyo Atmadi Pcnelili Pusat Teknologi Dirgantara Terapan, LAPAN ABSTRACT An economical electric-small-scale wind turbine is intended

Lebih terperinci

FakultasTeknologi Industri Institut Teknologi Nepuluh Nopember. Oleh M. A ad Mushoddaq NRP : Dosen Pembimbing Dr. Ir.

FakultasTeknologi Industri Institut Teknologi Nepuluh Nopember. Oleh M. A ad Mushoddaq NRP : Dosen Pembimbing Dr. Ir. STUDI NUMERIK PENGARUH KELENGKUNGAN SEGMEN KONTUR BAGIAN DEPAN TERHADAP KARAKTERISTIK ALIRAN FLUIDA MELINTASI AIRFOIL TIDAK SIMETRIS ( DENGAN ANGLE OF ATTACK = 0, 4, 8, dan 12 ) Dosen Pembimbing Dr. Ir.

Lebih terperinci

Studi Numerik Karakteristik Aliran Fluida Melintasi Airfoil NASA LS-0417 yang Dimodifikasi dengan Vortex Generator

Studi Numerik Karakteristik Aliran Fluida Melintasi Airfoil NASA LS-0417 yang Dimodifikasi dengan Vortex Generator JURNAL TEKNIK POMITS Vol. 1, No. 2, (2012) ISSN: 2301-9271 1 Studi Numerik Karakteristik Aliran Fluida Melintasi Airfoil NASA LS-0417 yang Dimodifikasi dengan Vortex Generator Nafiatun Nisa dan Sutardi

Lebih terperinci

ANALISA PENGARUH SUDUT PITCH, UNTUK MEMPEROLEH DAYA OPTIMAL TURBIN ANGIN LPN-SKEA 50 KW PADA BEBERAPA KONDISI KECEPATAN ANGIN

ANALISA PENGARUH SUDUT PITCH, UNTUK MEMPEROLEH DAYA OPTIMAL TURBIN ANGIN LPN-SKEA 50 KW PADA BEBERAPA KONDISI KECEPATAN ANGIN Jurnal Teknologi Dirgantara Vol. 7 No. 1 Juni 009:60-66 ANALISA PENGARUH SUDUT PITCH, UNTUK MEMPEROLEH DAYA OPTIMAL TURBIN ANGIN LPN-SKEA KW PADA BEBERAPA KONDISI KECEPATAN ANGIN Sulistyo Atmadi, Ahmad

Lebih terperinci

BAB I PENDAHULUAN. pikiran terlintas mengenai ilmu mekanika fluida, dimana disitu terdapat

BAB I PENDAHULUAN. pikiran terlintas mengenai ilmu mekanika fluida, dimana disitu terdapat BAB I PENDAHULUAN 1.1 Latar Belakang Bila berbicara mengenai masalah aerodinamika, maka dalam pikiran terlintas mengenai ilmu mekanika fluida, dimana disitu terdapat pembahasan mengenai dinamika fluida.

Lebih terperinci

PENELITIAN DAN RANCANGAN OPTIMAL TURBIN PENGGERAK TEROWONGAN ANGIN SUBSONIK SIRKUIT TERBUKA LAPAN

PENELITIAN DAN RANCANGAN OPTIMAL TURBIN PENGGERAK TEROWONGAN ANGIN SUBSONIK SIRKUIT TERBUKA LAPAN PENELITIAN DAN RANCANGAN OPTIMAL TURBIN PENGGERAK TEROWONGAN ANGIN SUBSONIK SIRKUIT TERBUKA LAPAN Sulistyo Atmadi Pencliti Pusat Teknologi Dirgantara Terapan. LAPAN i ABSTRACT In an effort to improve flow

Lebih terperinci

ANALISA AERODINAMIKA FLAP DAN SLAT PADA AIRFOIL NACA 2410 TERHADAP KOEFISIEN LIFT DAN KOEFISIEN DRAG DENGAN METODE COMPUTATIONAL FLUID DYNAMIC

ANALISA AERODINAMIKA FLAP DAN SLAT PADA AIRFOIL NACA 2410 TERHADAP KOEFISIEN LIFT DAN KOEFISIEN DRAG DENGAN METODE COMPUTATIONAL FLUID DYNAMIC NASKAH PUBLIKASI KARYA ILMIAH ANALISA AERODINAMIKA FLAP DAN SLAT PADA AIRFOIL NACA 410 TERHADAP KOEFISIEN LIFT DAN KOEFISIEN DRAG DENGAN METODE COMPUTATIONAL FLUID DYNAMIC Abstraksi Tugas Akhir ini disusun

Lebih terperinci

SIMULASI NUMERIK PENGARUH MULTI-ELEMENT AIRFOIL TERHADAP LIFT DAN DRAG FORCE PADA SPOILER BELAKANG MOBIL FORMULA SAE DENGAN VARIASI ANGLE OF ATTACK

SIMULASI NUMERIK PENGARUH MULTI-ELEMENT AIRFOIL TERHADAP LIFT DAN DRAG FORCE PADA SPOILER BELAKANG MOBIL FORMULA SAE DENGAN VARIASI ANGLE OF ATTACK SIMULASI NUMERIK PENGARUH MULTI-ELEMENT AIRFOIL TERHADAP LIFT DAN DRAG FORCE PADA SPOILER BELAKANG MOBIL FORMULA SAE DENGAN VARIASI ANGLE OF ATTACK ARIF AULIA RAHHMAN 2109.100.124 DOSEN PEMBIMBING NUR

Lebih terperinci

ANALISIS TEKANAN STATIK ALIRAN DI PERMUKAAN PITOT STATIK TEROWONGAN ANGIN TRANSONIK LAPAN

ANALISIS TEKANAN STATIK ALIRAN DI PERMUKAAN PITOT STATIK TEROWONGAN ANGIN TRANSONIK LAPAN ANALISIS TEKANAN STATIK ALIRAN DI PERMUKAAN PITOT STATIK TEROWONGAN ANGIN TRANSONIK LAPAN Agus Arlbowo, Dana Herdiana, Ahmad Jamaludln Fltroh *)penelitl Unit Uji Aerodinamlka, LAPAN Peneliti Pusat Teknologi

Lebih terperinci

BAB II DASAR TEORI . (2.1)

BAB II DASAR TEORI . (2.1) 5 BAB II DASAR TEORI 2.1 Prinsip Bernoulli Prinsip Bernoulli adalah sebuah istilah di dalam mekanika fluida menyatakan bahwa pada suatu aliran fluida, peningkatan pada kecepatan fluida akan menimbulkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Turbin Angin Bila terdapat suatu mesin dengan sudu berputar yang dapat mengonversikan energi kinetik angin menjadi energi mekanik maka disebut juga turbin angin. Jika energi

Lebih terperinci

ANALISA KARAKTERISTIK AERODINAMIKA UNTUK KEBUTUHAN GAYA DORONG TAKE OFF DAN CRUISE PADA HIGH SPEED FLYING TEST BED (HSFTB) LAPAN

ANALISA KARAKTERISTIK AERODINAMIKA UNTUK KEBUTUHAN GAYA DORONG TAKE OFF DAN CRUISE PADA HIGH SPEED FLYING TEST BED (HSFTB) LAPAN ANALISA KARAKTERISTIK AERODINAMIKA UNTUK KEBUTUHAN GAYA DORONG TAKE OFF DAN CRUISE PADA HIGH SPEED FLYING TEST BED (HSFTB) LAPAN Lintang Madi Sudiro (2106100130) Jurusan Teknik Mesin FTI ITS,Surabaya 60111,email:lintangm49@gmail.com

Lebih terperinci

RANCANG BANGUN ROTOR TURBIN ANGIN 10 KW UNTUK MEMPEROLEH DAYA OPTIMUM PADA VARIASI JUMLAH DAN DIAMETER SUDU

RANCANG BANGUN ROTOR TURBIN ANGIN 10 KW UNTUK MEMPEROLEH DAYA OPTIMUM PADA VARIASI JUMLAH DAN DIAMETER SUDU RANCANG BANGUN ROTOR TURBIN ANGIN 10 KW UNTUK MEMPEROLEH DAYA OPTIMUM PADA VARIASI JUMLAH DAN DIAMETER SUDU Sulistyo Atmadi *), Ahmad Jamaludin Fitroh **) *) Peneliti Pusat Teknologi Dirgantara Terapan,

Lebih terperinci

PENELITIAN KARAKTERISTIK AERODINAMIKA TRAILING EDGE SIRIP ROKET PADA KECEPATAN TRANSONIK DENGAN SIMULASI NUMERIK

PENELITIAN KARAKTERISTIK AERODINAMIKA TRAILING EDGE SIRIP ROKET PADA KECEPATAN TRANSONIK DENGAN SIMULASI NUMERIK PENELITIAN KARAKTERISTIK AERODINAMIKA TRAILING EDGE SIRIP ROKET PADA KECEPATAN TRANSONIK DENGAN SIMULASI NUMERIK Agus Aribowo Peneliti Unit Uji Acrodinamika LAPAN ABSTRACT Research of fin aerodynamic at

Lebih terperinci

M. MIRSAL LUBIS Departemen Teknik Mesin, Fakultas Teknik

M. MIRSAL LUBIS Departemen Teknik Mesin, Fakultas Teknik ANALISIS AERODINAMIKA AIRFOIL NACA 2412 PADA SAYAP PESAWAT MODEL TIPE GLIDER DENGAN MENGGUNAKAN SOFTWARE BERBASIS COMPUTIONAL FLUID DINAMIC UNTUK MEMPEROLEH GAYA ANGKAT MAKSIMUM M. MIRSAL LUBIS Departemen

Lebih terperinci

STUDI AERODINAMIKA PROFIL BOEING COMMERCIAL ENERGY EFFICIENT DENGAN KOMPUTASI BERBASIS FINITE ELEMENT

STUDI AERODINAMIKA PROFIL BOEING COMMERCIAL ENERGY EFFICIENT DENGAN KOMPUTASI BERBASIS FINITE ELEMENT TUGAS AKHIR STUDI AERODINAMIKA PROFIL BOEING COMMERCIAL ENERGY EFFICIENT DENGAN KOMPUTASI BERBASIS FINITE ELEMENT Disusun: EDIEARTA MOERDOWO NIM : D200 050 012 JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

SOLUSI NUMERIK DARI PERSAMAAN NAVIER-STOKES

SOLUSI NUMERIK DARI PERSAMAAN NAVIER-STOKES J. Math. and Its Appl. ISSN: 1829-605X Vol. 8, No. 2, November 2011, 9 15 SOLUSI NUMERIK DARI PERSAMAAN NAVIER-STOKES Chairul Imron, Suhariningsih, B. Widodo and T. Yuwono Post Graduate Student of Universitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. Kompresor Aksial Kompresor aksial merupakan salah satu tipe kompresor yang tergolong dalam rotodynamic compressor, dimana proses kompresi di dalamnya dihasilkan dari efek dinamik

Lebih terperinci

ANALISIS LAPISAN BATAS ALIRAN DALAM NOSEL STUDI KASUS: NOSEL RX 122

ANALISIS LAPISAN BATAS ALIRAN DALAM NOSEL STUDI KASUS: NOSEL RX 122 ANALISIS LAPISAN BATAS ALIRAN DALAM NOSEL STUDI KASUS: NOSEL RX 122 Ahmad Jamaludin Fitroh, Saeri Peneliti Pustekwagan, LAPAN Email : ahmad_fitroh@yahoo.com ABSTRACT The simulation and calculation of boundary

Lebih terperinci

Studi Eksperimen dan Numerik Pengaruh Penambahan Vortex Generator pada Airfoil NASA LS-0417

Studi Eksperimen dan Numerik Pengaruh Penambahan Vortex Generator pada Airfoil NASA LS-0417 JURNAL TEKNIK ITS Vol. 4, No. 1, (2015) ISSN: 2337-3539 (2301-9271 Print) B-102 Studi Eksperimen dan Numerik Pengaruh Penambahan Vortex Generator pada Airfoil NASA LS-0417 Ulul Azmi dan Herman Sasongko

Lebih terperinci

Studi Aerodinamika Profil NACA Dengan Menggunakan Solidwork

Studi Aerodinamika Profil NACA Dengan Menggunakan Solidwork NASKAH PUBLIKASI Studi Aerodinamika Profil NACA 63-212 Dengan Menggunakan Solidwork Tugas akhir ini disusun guna menenuhi sebagian syarat memperoleh derajat Sarjana S1 pada Jurusan Teknik Mesin Fakultas

Lebih terperinci

The Analysis of Velocity Flow Effect on Drag Force by Using Computational Fluid Dynamics

The Analysis of Velocity Flow Effect on Drag Force by Using Computational Fluid Dynamics The Analysis of Velocity Flow Effect on Drag Force by Using Computational Fluid Dynamics Ridwan Abdurrahman 1), Benny Dwika Leonanda 2,*) 1 Indah Kiat Pulp & Paper Corp Tbk Jl. Raya Minas Perawang Km.

Lebih terperinci

PENELITIAN MEKANISME STALL AKIBAT PERKEMBANGAN GELEMBUNG SEPARASI PADA SAYAP NACA 0017 SECARA EKSPERIMEN Dl TEROWONGAN ANGIN SUBSONIK

PENELITIAN MEKANISME STALL AKIBAT PERKEMBANGAN GELEMBUNG SEPARASI PADA SAYAP NACA 0017 SECARA EKSPERIMEN Dl TEROWONGAN ANGIN SUBSONIK = PENELITIAN MEKANISME STALL AKIBAT PERKEMBANGAN GELEMBUNG SEPARASI PADA SAYAP NACA 0017 SECARA EKSPERIMEN Dl TEROWONGAN ANGIN SUBSONIK Agus Aribowo Penditi Unit Uji Aerodinamika, LAPAN ABSTRACT This paper

Lebih terperinci

BAB 4 ANALISA DAN PEMBAHASAN HASIL EKSPERIMEN

BAB 4 ANALISA DAN PEMBAHASAN HASIL EKSPERIMEN BAB 4 ANALISA DAN PEMBAHASAN HASIL EKSPERIMEN 4.1 Data Penelitian Pada metode ini, udara digunakan sebagai fluida kerja, dengan spesifikasi sebagai berikut: Asumsi aliran steady dan incompressible. Temperatur

Lebih terperinci

BAB II DASAR TEORI Aliran tak-termampatkan

BAB II DASAR TEORI Aliran tak-termampatkan 4 BAB II DASAR TEORI 2.1 Prinsip Bernoulli Prinsip Bernoulli adalah sebuah istilah di dalam mekanika fluida yang menyatakan bahwa pada suatu aliran fluida, peningkatan pada kecepatan fluida akan menimbulkan

Lebih terperinci

PERUBAHAN DISTRIBUSI TEKANAN AEROFOIL AKIBAT PENGARUH VARIASI SUDUT SERANG

PERUBAHAN DISTRIBUSI TEKANAN AEROFOIL AKIBAT PENGARUH VARIASI SUDUT SERANG PERUBAHAN DISTRIBUSI TEKANAN AEROFOIL AKIBAT PENGARUH VARIASI SUDUT SERANG Syamsul Hadi 1 Abstract : This study aims to measurements pressure distributions caused to angle of attack variations. NACA 0012

Lebih terperinci

RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER (RPKPS)

RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) 1. Nama Kuliah : Aerodinamika 2. Kode/SKS/Semester : TKM 518/3 SKS/VIII 3. Prasya rat : Mekanika Fluida, Termodinamika 4. Status Mata Kuliah :

Lebih terperinci

Tulisan pada bab ini menyajikan simpulan atas berbagai analisa atas hasil-hasil yang telah dibahas secara detail dan terstruktur pada bab-bab

Tulisan pada bab ini menyajikan simpulan atas berbagai analisa atas hasil-hasil yang telah dibahas secara detail dan terstruktur pada bab-bab Tulisan pada bab ini menyajikan simpulan atas berbagai analisa atas hasil-hasil yang telah dibahas secara detail dan terstruktur pada bab-bab sebelumnya. Selanjutnya agar penelitian ini dapat memberikan

Lebih terperinci

PENGARUH SUDUT DIHEDRAL TERHADAP GAYA LIFT EKOR PESAWAT TERBANG TIPE V PADA ANGKA REYNOLDS RENDAH

PENGARUH SUDUT DIHEDRAL TERHADAP GAYA LIFT EKOR PESAWAT TERBANG TIPE V PADA ANGKA REYNOLDS RENDAH PENGARUH SUDUT DIHEDRAL TERHADAP GAYA LIFT EKOR PESAWAT TERBANG TIPE V PADA ANGKA REYNOLDS RENDAH Syamsul Hadi * E mail : syamevi@mesin.uns.ac.id Abstract : Ekor pesawat terbang tipe V adalah hasil penggabungan

Lebih terperinci

STUDI KOMPUTASIONAL NACA 2412 PADA VARIASI SUDUT PENGGUNAAN SINGLE SLOTTED FLAP DAN FIXED SLOT DENGAN SOFTWARE FLUENT

STUDI KOMPUTASIONAL NACA 2412 PADA VARIASI SUDUT PENGGUNAAN SINGLE SLOTTED FLAP DAN FIXED SLOT DENGAN SOFTWARE FLUENT STUDI KOMPUTASIONAL NACA 2412 PADA VARIASI SUDUT PENGGUNAAN SINGLE SLOTTED FLAP DAN FIXED SLOT DENGAN SOFTWARE FLUENT 6.2.16 Skripsi Untuk Memenuhi Persyaratan Mencapai Derajat Sarjana Strata 1 (S1) Disusun

Lebih terperinci

Pengaruh Variasi Jarak Penghalang Berbentuk Segitiga di Depan Silinder Terhadap Koefisien Drag

Pengaruh Variasi Jarak Penghalang Berbentuk Segitiga di Depan Silinder Terhadap Koefisien Drag Jurnal Ilmiah Teknik Mesin CakraM Vol. 3 No. 1, April 009 (43 48) Pengaruh Variasi Jarak Penghalang Berbentuk Segitiga di Depan Silinder Terhadap Koefisien Drag Si Putu Gede Gunawan Tista Jurusan Teknik

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2012

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2012 ANALISIS AERODINAMIKA AIRFOIL NACA 2412 PADA SAYAP PESAWAT MODEL TIPE GLIDER DENGAN MENGGUNAKAN SOFTWARE BERBASIS COMPUTIONAL FLUID DINAMIC UNTUK MEMPEROLEH GAYA ANGKAT MAKSIMUM SKRIPSI Skripsi Yang Diajukan

Lebih terperinci

BAB I PENDAHULUAN. bagian yang kecil sampai bagian yang besar sebelum semua. bagian tersebut dirangkai menjadi sebuah pesawat.

BAB I PENDAHULUAN. bagian yang kecil sampai bagian yang besar sebelum semua. bagian tersebut dirangkai menjadi sebuah pesawat. BAB I PENDAHULUAN 1.1 Latar Belakang Dalam sebuah manufaktur pesawat terbang, desain dan analisis awal sangatlah dibutuhkan sebelum pesawat terbang difabrikasi menjadi bentuk nyata sebuah pesawat yang

Lebih terperinci

NASKAH PUBLIKASI KARYA ILMIAH STUDI WINGLET NACA 2409 MENGGUNAKAN COMPUTATIONAL FLUID DYNAMIC (CFD)

NASKAH PUBLIKASI KARYA ILMIAH STUDI WINGLET NACA 2409 MENGGUNAKAN COMPUTATIONAL FLUID DYNAMIC (CFD) NASKAH PUBLIKASI KARYA ILMIAH STUDI WINGLET NACA 2409 MENGGUNAKAN COMPUTATIONAL FLUID DYNAMIC (CFD) ] Disusun Sebagai Syarat Untuk Mencapai Gelar Sarjana Teknik Jurusan Teknik Mesin Fakultas Teknik Universitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Gaya-Gaya pada pesawat terbang

BAB II TINJAUAN PUSTAKA. 2.1 Gaya-Gaya pada pesawat terbang BAB II TINJAUAN PUSTAKA 2.1 Gaya-Gaya pada pesawat terbang Gaya-gaya utama yang berlaku pada pesawat terbang pada saat terbang dalam keadaan lurus dan datar (straight and level flight). Serta dalam keadaan

Lebih terperinci

ANALISA AERODINAMIKA AIRFOIL NACA 0021 DENGAN ANSYS FLUENT ABSTRAK

ANALISA AERODINAMIKA AIRFOIL NACA 0021 DENGAN ANSYS FLUENT ABSTRAK ANALISA AERODINAMIKA AIRFOIL NACA 0021 DENGAN ANSYS FLUENT M. Fajri Hidayat Program Studi Teknik Mesin, Fakultas Teknik Universitas 17 Agustus 1945 Jakarta Email : fajri17845@gmail.com ABSTRAK Analisa

Lebih terperinci

EFEK DEFLEKSI PADA SUDU TURBIN ANGIN TERHADAP KELUARAN DAYA

EFEK DEFLEKSI PADA SUDU TURBIN ANGIN TERHADAP KELUARAN DAYA 8 EFEK DEFLEKSI PADA SUDU TURBIN ANGIN TERHADAP KELUARAN DAYA Sulistyo Atmadl'. Ahmad Jamaludin Fltroh" * Peneliii Pusat Teknologi Dlrgantara Terapan. LA PAN ">Penelltl Teknlk Penerbangan ITB ABSTRACT

Lebih terperinci

PERMASALAHAN DAN SOLUSI KONSTRUKSI BALIHO DI BANJARMASIN

PERMASALAHAN DAN SOLUSI KONSTRUKSI BALIHO DI BANJARMASIN Permasalahan dan Solusi Konstruksi Baliho di Banjarmasin (Joni Irawan) PERMASALAHAN DAN SOLUSI KONSTRUKSI BALIHO DI BANJARMASIN Joni Irawan (1) (1) Staf Pengajar Jurusan Teknik Sipil Politeknik Negeri

Lebih terperinci

ANALISA KARAKTERISTIK AERODINAMIKA UNTUK KEBUTUHAN GAYA DORONG TAKE OFF DAN CRUISE PADA HIGH SPEED FLYING TEST BED (HSFTB) LAPAN

ANALISA KARAKTERISTIK AERODINAMIKA UNTUK KEBUTUHAN GAYA DORONG TAKE OFF DAN CRUISE PADA HIGH SPEED FLYING TEST BED (HSFTB) LAPAN ANALISA KARAKTERISTIK AERODINAMIKA UNTUK KEBUTUHAN GAYA DORONG TAKE OFF DAN CRUISE PADA HIGH SPEED FLYING TEST BED (HSFTB) LAPAN Oleh : Lintang Madi Sudiro 2106 100 130 Jurusan Teknik Mesin Fakultas Teknologi

Lebih terperinci

SIMULASI NUMERIK DINAMIKA FLUIDASWEPTTAPER WING 3D DENGAN AIRFOIL 64A106 PADA ALIRAN SUBSONIK-SUPERSONIK

SIMULASI NUMERIK DINAMIKA FLUIDASWEPTTAPER WING 3D DENGAN AIRFOIL 64A106 PADA ALIRAN SUBSONIK-SUPERSONIK SIMULASI NUMERIK DINAMIKA FLUIDASWEPTTAPER WING 3D DENGAN AIRFOIL 64A106 PADA ALIRAN SUBSONIK-SUPERSONIK Subagyo BBTA3 BPPTeknologi, Telp.021-7560902, Fax.021-7560901, Kawasan PUSPIPTEK, Setu, Tangerang

Lebih terperinci

ANALISIS DAN OPTIMASI SUDU SKEA 5 KW UNTUK PEMOMPAAN

ANALISIS DAN OPTIMASI SUDU SKEA 5 KW UNTUK PEMOMPAAN Jurnal Teknologi Dirgantara Vol. 8 No. Desember :8-5 ANALISIS DAN OPTIMASI SUDU SKEA 5 KW UNTUK PEMOMPAAN Sulistyo Atmadi, Ahmad Jamaludin Fitroh Peneliti Aerodinamika, LAPAN e-mail: sulistyoa@aerospaceitb.org

Lebih terperinci

ANALISA AERODINAMIKA AIRFOIL NACA 0012 DENGAN ANSYS FLUENT

ANALISA AERODINAMIKA AIRFOIL NACA 0012 DENGAN ANSYS FLUENT ANALISA AERODINAMIKA AIRFOIL NACA 0012 DENGAN ANSYS FLUENT M. Fajri Hidayat Program Studi Teknik Mesin Fakultas Teknik Universitas 17 Agustus 1945 Jakarta Email : fajri17845@gmail.com ABSTRACT Performance

Lebih terperinci

STUDI EKSPERIMENTAL KARAKTERISTIK ALIRAN PADA AIRFOIL NACA 0015

STUDI EKSPERIMENTAL KARAKTERISTIK ALIRAN PADA AIRFOIL NACA 0015 STUDI EKSPERIMENTAL KARAKTERISTIK ALIRAN PADA AIRFOIL NACA 0015 Oleh: JUMADI NIM. 085524034 S1 Pend. Teknik Mesin, Fakultas Teknik Universitas Negeri Surabaya ABSTRAK Salah satu hal yang sangat menarik

Lebih terperinci

PERHITUNGAN PARAMETER AERODINAMIKA ROKET POLYOT

PERHITUNGAN PARAMETER AERODINAMIKA ROKET POLYOT BAB 4 PERHITUNGAN PARAMETER AERODINAMIKA ROKET POLYOT 4. Perhitungan Parameter Aerodinamika Roket Polyot Menggunakan Digital Datcom dan Missile Datcom Roket Polyot dalam operasinya memiliki lintas terbang

Lebih terperinci

Pengaruh Penempatan Penghalang Berbentuk Silinder Pada Posisi Vertikal Dengan Variasi Jarak Horisontal Di Depan Silinder Utama Terhadap Koefisien Drag

Pengaruh Penempatan Penghalang Berbentuk Silinder Pada Posisi Vertikal Dengan Variasi Jarak Horisontal Di Depan Silinder Utama Terhadap Koefisien Drag Jurnal Ilmiah Teknik Mesin Vol. 4 No.. Oktober 010 (160-165) Pengaruh Penempatan Penghalang Berbentuk Silinder Pada Posisi Vertikal Dengan Variasi Jarak Horisontal Di Depan Silinder Utama Terhadap Koefisien

Lebih terperinci

Bab IV Analisis dan Pengujian

Bab IV Analisis dan Pengujian Bab IV Analisis dan Pengujian 4.1 Analisis Simulasi Aliran pada Profil Airfoil Simulasi aliran pada profil airfoil dimaskudkan untuk mencari nilai rasio lift/drag terhadap sudut pitch. Simulasi ini tidak

Lebih terperinci

ANALISIS TEGANGAN PADA SAYAP HORIZONTAL BAGIAN EKOR AEROMODELLING

ANALISIS TEGANGAN PADA SAYAP HORIZONTAL BAGIAN EKOR AEROMODELLING ANALISIS TEGANGAN PADA SAYAP HORIZONTAL BAGIAN EKOR AEROMODELLING TIPE GLIDER AKIBAT LAJU ALIRAN UDARA DENGAN MENGGUNAKAN SOFTWARE BERBASIS COMPUTIONAL FLUID DYNAMIC (CFD) Ricky Surya Miraza 1, Ikhwansyah

Lebih terperinci

1 PENDAHULUAN CN-235 merupakan pesawat terbang turboprop kelas menengah

1 PENDAHULUAN CN-235 merupakan pesawat terbang turboprop kelas menengah Analisis...(Nila Husnayati dan Mochammad Agoes Moelyadi) ANALISIS AERODINAMIKA DAN STUDI PARAMETER SAYAP CN-235 KONDISI TERBANG JELAJAH (AERODYNAMIC ANALYSIS AND PARAMETRIC STUDY OF CN-235 WING AT CRUISE

Lebih terperinci

INDEPT, Vol. 4, No. 1 Februari 2014 ISSN

INDEPT, Vol. 4, No. 1 Februari 2014 ISSN ANALISIS OPTIMASI TEBAL RIB SAYAP PESAWAT WIG IN GROUND EFFECT 2 SEAT DENGAN FEM Bayu Handoko 1, H. Abu Bakar 2 Program Studi Teknik Penerbangan Fakultas Teknik Universitas Nurtanio Bandung ABSTRAKSI Pada

Lebih terperinci

BAB I PENDAHULUAN. Desain yang baik dari sebuah airfoil sangatlah perlu dilakukan, dengan tujuan untuk meningkatkan unjuk kerja airfoil

BAB I PENDAHULUAN. Desain yang baik dari sebuah airfoil sangatlah perlu dilakukan, dengan tujuan untuk meningkatkan unjuk kerja airfoil BAB I PENDAHULUAN 1.1 Latar Belakang Desain yang baik dari sebuah airfoil sangatlah perlu dilakukan, dengan tujuan untuk meningkatkan unjuk kerja airfoil itu sendiri. Airfoil pada pesawat terbang digunakan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI II. Teori Gelombang II.. Karateristik Gelombang Parameter penting untuk menjelaskan gelombang air adalah panjang gelombang, tinggi gelombang, dan kedalaman air dimana gelombang tersebut

Lebih terperinci

Studi Eksperimen Pengaruh Silinder Pengganggu Di Depan Returning Blade Turbin Angin Savonius Terhadap Performa Turbin

Studi Eksperimen Pengaruh Silinder Pengganggu Di Depan Returning Blade Turbin Angin Savonius Terhadap Performa Turbin JURNAL TEKNIK ITS Vol. 5 No. 2 (2016) ISSN: 2337-3539 (2301-9271 Print) B-599 Studi Eksperimen Pengaruh Silinder Pengganggu Di Depan Returning Blade Turbin Angin Savonius Terhadap Performa Turbin Studi

Lebih terperinci

BAB I PENDAHULUAN. aerodinamika pesawat terbang adalah mengenai airfoil sayap. pesawat. Fenomena pada airfoil yaitu adanya gerakan fluida yang

BAB I PENDAHULUAN. aerodinamika pesawat terbang adalah mengenai airfoil sayap. pesawat. Fenomena pada airfoil yaitu adanya gerakan fluida yang BAB I PENDAHULUAN 1.1. Latar Belakang Aerodinamika merupakan ilmu dasar ketika membahas tentang prinsip pesawat terbang. Dan salah satu pembahasan dalam ilmu aerodinamika pesawat terbang adalah mengenai

Lebih terperinci

BANCANGAN DAN ANALISIS AERODINAMIKA SUDU TURBIN ANGIN KAPASITAS 300 KW

BANCANGAN DAN ANALISIS AERODINAMIKA SUDU TURBIN ANGIN KAPASITAS 300 KW BANCANGAN DAN ANALISIS AERODINAMIKA SUDU TURBIN ANGIN KAPASITAS 300 KW Sullstyo Atmadl, Ahmad Jamaludln Fltroh Penelltl PusatTeknoIogi DlrgantaraTerapan, LAPAN ABSTRACT This particular research is the

Lebih terperinci

Studi Eksperimen Dan Numerik Pengaruh Slat Clearance Serta Slat Angle Untuk Mengeliminasi Stall Pada Airfoil Studi kasus airfoil NACA 2412

Studi Eksperimen Dan Numerik Pengaruh Slat Clearance Serta Slat Angle Untuk Mengeliminasi Stall Pada Airfoil Studi kasus airfoil NACA 2412 JURNAL TEKNIK ITS Vol. 4, No. 1, (2015) ISSN: 2337-3539 (2301-9271 Print) B-108 Studi Eksperimen Dan Numerik Pengaruh Slat Clearance Serta Slat Angle Untuk Mengeliminasi Stall Pada Airfoil Studi kasus

Lebih terperinci

PENGARUH SUDUT BILAH PADA PERFORMA KIPAS AKSIAL TEROWONGAN ANGIN KECEPATAN RENDAH MENGGUNAKAN METODE KOMPUTASI

PENGARUH SUDUT BILAH PADA PERFORMA KIPAS AKSIAL TEROWONGAN ANGIN KECEPATAN RENDAH MENGGUNAKAN METODE KOMPUTASI PENGARUH SUDUT BILAH PADA PERFORMA KIPAS AKSIAL TEROWONGAN ANGIN KECEPATAN RENDAH MENGGUNAKAN METODE KOMPUTASI Dyah Arum Wulandari & Endri Sriadi Jurusan Teknik Mesin, Fakultas Teknik, Universitas Negeri

Lebih terperinci

UNIVERSITAS DIPONEGORO PENGARUH BILANGAN REYNOLD TERHADAP KECEPATAN SUDUT TURBIN GORLOV HYDROFOIL NACA SUDUT KEMIRINGAN 45 TUGAS AKHIR

UNIVERSITAS DIPONEGORO PENGARUH BILANGAN REYNOLD TERHADAP KECEPATAN SUDUT TURBIN GORLOV HYDROFOIL NACA SUDUT KEMIRINGAN 45 TUGAS AKHIR UNIVERSITAS DIPONEGORO PENGARUH BILANGAN REYNOLD TERHADAP KECEPATAN SUDUT TURBIN GORLOV HYDROFOIL NACA 0012-34 SUDUT KEMIRINGAN 45 TUGAS AKHIR ZEVO PRIORY SIBERO L2E 006 096 FAKULTAS TEKNIK JURUSAN TEKNIK

Lebih terperinci

Tugas Akhir Bidang Studi Desain SAMSU HIDAYAT Dosen Pembimbing Dr. Ir. AGUS SIGIT PRAMONO, DEA.

Tugas Akhir Bidang Studi Desain SAMSU HIDAYAT Dosen Pembimbing Dr. Ir. AGUS SIGIT PRAMONO, DEA. Tugas Akhir Bidang Studi Desain SAMSU HIDAYAT 2106 100 020 Dosen Pembimbing Dr. Ir. AGUS SIGIT PRAMONO, DEA. Latar Belakang Roket Pengorbit Satelit (RPS) membutuhkan roket yang dapat diluncurkan berulang

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2014) 1-5 1

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2014) 1-5 1 JURNAL TEKNIK POMITS Vol. 1, No. 1, (2014) 1-5 1 STUDI EKSPERIMEN DAN NUMERIK TENTANG ALIRAN BOUNDARY LAYER YANG MELINTASI BUMP SETENGAH LINGKARAN DENGAN PENGGANGGU BERUPA KAWAT MELINTANG Studi Kasus Untuk

Lebih terperinci

STUDI NUMERIK PENGARUH PENAMBAHAN BODI PENGGANGGU TERHADAP KARAKTERISTIK ALIRAN FLUIDA MELINTASI SILINDER UTAMA

STUDI NUMERIK PENGARUH PENAMBAHAN BODI PENGGANGGU TERHADAP KARAKTERISTIK ALIRAN FLUIDA MELINTASI SILINDER UTAMA JURNAL TEKNIK POMITS Vol. 1, No. 2, (2012) ISSN: 2301-9271 1 STUDI NUMERIK PENGARUH PENAMBAHAN BODI PENGGANGGU TERHADAP KARAKTERISTIK ALIRAN FLUIDA MELINTASI SILINDER UTAMA Studi Kasus: Pengaruh penambahan

Lebih terperinci

II. TINJAUAN PUSTAKA. fluida. Sifat-sifat fluida diasumsikan pada keadaan steady, ada gesekan aliran dan

II. TINJAUAN PUSTAKA. fluida. Sifat-sifat fluida diasumsikan pada keadaan steady, ada gesekan aliran dan II. TINJAUAN PUSTAKA A. Dasar Mekanika Fluida Disini diuraikan tentang sifat-sifat fluida yang mempengaruhi dinamika dari fluida. Sifat-sifat fluida diasumsikan pada keadaan steady, ada gesekan aliran

Lebih terperinci

PERHITUNGAN KARAKTERISTIK AERODINAMIKA, ANALISIS DINAMIKA DAN KESTABILAN GERAK DUA DIMENSI MODUS LONGITUDINAL ROKET RX 250 LAPAN

PERHITUNGAN KARAKTERISTIK AERODINAMIKA, ANALISIS DINAMIKA DAN KESTABILAN GERAK DUA DIMENSI MODUS LONGITUDINAL ROKET RX 250 LAPAN PERHITUNGAN KARAKTERISTIK AERODINAMIKA, ANALISIS DINAMIKA DAN KESTABILAN GERAK DUA DIMENSI MODUS LONGITUDINAL ROKET RX 25 LAPAN Singgih Satrio Wibowo Dosen Program Studi Teknik Aeronautika Jurusan Teknik

Lebih terperinci

NASKAH PUBLIKASI KARYA ILMIAH

NASKAH PUBLIKASI KARYA ILMIAH NASKAH PUBLIKASI KARYA ILMIAH STUDI PERBANDINGAN KARAKTERISTIK AIRFOIL NACA 0012 DENGAN NACA 2410 TERHADAP KOEFISIEN LIFT DAN KOEFISIEN DRAG PADA BERBAGAI VARIASI SUDUT SERANG DENGAN CFD Abstraksi Tugas

Lebih terperinci

Analisis Desain Layar 3D Menggunakan Pengujian Pada Wind Tunnel

Analisis Desain Layar 3D Menggunakan Pengujian Pada Wind Tunnel JURNAL TEKNIK ITS Vol. 1, (Sept, 2012) ISSN: 2301-9271 G-372 Analisis Desain Layar 3D Menggunakan Pengujian Pada Wind Tunnel Danang Priambada, Aries Sulisetyono Jurusan Teknik Perkapalan, Fakultas Teknologi

Lebih terperinci

Analisa Sudut Serang Hidrofoil Terhadap Gaya Angkat Kapal Trimaran Hidrofoil Menggunakan Metode Computational Fluid Dynamics (Cfd)

Analisa Sudut Serang Hidrofoil Terhadap Gaya Angkat Kapal Trimaran Hidrofoil Menggunakan Metode Computational Fluid Dynamics (Cfd) JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: 2337-3539 (2301-9271 Print) G-402 Analisa Sudut Serang Hidrofoil Terhadap Gaya Angkat Kapal Trimaran Hidrofoil Menggunakan Metode Computational Fluid Dynamics

Lebih terperinci

92 Mekanika, Vol 6 Nomor 2, Januari 2008

92 Mekanika, Vol 6 Nomor 2, Januari 2008 PENGARUH TWISTED MULTIPLE WINGLET TERHADAP GAYA LIFT AEROFOIL NACA 0012 PADA ANGKA REYNOLDS RENDAH Syamsul Hadi 1 Abstrak: This effort examined the potential of twisted multiple winglets without increasing

Lebih terperinci

PENGEMBANGAN PERANCANGAN AIRFOIL SUDU TURBIN ANGIN KECEPATAN RENDAH BERBASIS KOMPUTASI CERDAS

PENGEMBANGAN PERANCANGAN AIRFOIL SUDU TURBIN ANGIN KECEPATAN RENDAH BERBASIS KOMPUTASI CERDAS PENGEMBANGAN PERANCANGAN AIRFOIL SUDU TURBIN ANGIN KECEPATAN RENDAH BERBASIS KOMPUTASI CERDAS Ismoyo Haryanto, MSK Tony Suryo Utomo, Muhammad Nuim Labib Jurusan Teknik Mesin, Fakultas Teknik, Universitas

Lebih terperinci

ANALISA EFEKTIVITAS SUDUT DEFLEKSI AILERON PADA PESAWAT UDARA NIR AWAK (PUNA) ALAP-ALAP

ANALISA EFEKTIVITAS SUDUT DEFLEKSI AILERON PADA PESAWAT UDARA NIR AWAK (PUNA) ALAP-ALAP ANALISA EFEKTIVITAS SUDUT DEFLEKSI AILERON PADA PESAWAT UDARA NIR AWAK (PUNA) ALAP-ALAP Gunawan Wijiatmoko 1) 1) TRIE, BBTA3, Badan Pengkajian dan Penerapan Teknologi Kawasan PUSPIPTEK Gedung 240, Tangerang

Lebih terperinci

DAFTAR ISI. Hal i ii iii iv v vi vii

DAFTAR ISI. Hal i ii iii iv v vi vii DAFTAR ISI HALAMAN JUDUL... LEMBAR PERSETUJUAN PEMBIMBING. HALAMAN PENGESAHAN. PERNYATAAN. MOTTO... HALAMAN PERSEMBAHAN... KATA PENGANTAR... DAFTAR ISI... DAFTAR GAMBAR.. DAFTAR TABEL... DAFTAR LAMBANG

Lebih terperinci

PENGARUH KETIDAKLURUSAN DAN KETIDAKSIMETRISAN PEMASANGAN SIRIP PADA PRESTASI TERBANG ROKET RX-250-LPN

PENGARUH KETIDAKLURUSAN DAN KETIDAKSIMETRISAN PEMASANGAN SIRIP PADA PRESTASI TERBANG ROKET RX-250-LPN PENGARUH KETIDAKLURUSAN DAN KETIDAKSIMETRISAN PEMASANGAN SIRIP PADA PRESTASI TERBANG ROKET RX-250-LPN Sulistyo Atmadi, Ahmad Riyadi Peneliti Bidang Aerodinamika dan Struktur, LAPAN ABSTRACT The performance

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 KAJIAN PENELITIAN Sebelumnya telah ada dilakukan penelitian-penelitian mengenai analisa CFD pada sayap pesawat. Hidayat, M (2012) melakukan penelitian pada airfoil NACA 0021

Lebih terperinci

Investigasi Eksperimental Pengaruh Posisi Relatif Antar Airfoil pada Airfoil Multi Komponen Pada Kondisi Aliran Masuk dengan Bilangan Reynolds Rendah

Investigasi Eksperimental Pengaruh Posisi Relatif Antar Airfoil pada Airfoil Multi Komponen Pada Kondisi Aliran Masuk dengan Bilangan Reynolds Rendah Investigasi Eksperimental Pengaruh Posisi Relatif Antar Airfoil pada Airfoil Multi Komponen Pada Kondisi Aliran Masuk dengan Bilangan Reynolds Rendah Herman Sasongko, I Made Arya Djoni Jurusan Teknik Mesin

Lebih terperinci

tudi kasus pengaruh perbandingan rusuk b/a = 12/12, 5/12, 4/12, 3/12, 2/12, 1/12, 0/12 dengan Re = 3 x 10 4.

tudi kasus pengaruh perbandingan rusuk b/a = 12/12, 5/12, 4/12, 3/12, 2/12, 1/12, 0/12 dengan Re = 3 x 10 4. TUGAS AKHIR (KONVERSI ENERGI) TM 091486 STUDI EKSPERIMENTAL DAN NUMERIK KARAKTERISTIK ALIRAN FLUIDA MELINTASI PRISMA TERPANCUNG Dengan PANJANG CHORD (L/A) = 4 tudi kasus pengaruh perbandingan rusuk b/a

Lebih terperinci

ANALISIS AERODINAMIKA

ANALISIS AERODINAMIKA ANALISIS AERODINAMIKA PADA SAYAP PESAWAT TERBANG DENGAN MENGGUNAKAN SOFTWARE BERBASIS COMPUTATIONAL FLUID DYNAMICS (CFD) MUHAMAD MULYADI Fakultas Teknologi Industri, Jurusan Teknik Mesin. Abstraksi Karakteristik

Lebih terperinci

2 a) Viskositas dinamik Viskositas dinamik adalah perbandingan tegangan geser dengan laju perubahannya, besar nilai viskositas dinamik tergantung dari

2 a) Viskositas dinamik Viskositas dinamik adalah perbandingan tegangan geser dengan laju perubahannya, besar nilai viskositas dinamik tergantung dari VARIASI JARAK NOZEL TERHADAP PERUAHAN PUTARAN TURIN PELTON Rizki Hario Wicaksono, ST Jurusan Teknik Mesin Universitas Gunadarma ASTRAK Efek jarak nozel terhadap sudu turbin dapat menghasilkan energi terbaik.

Lebih terperinci

EXTERNAL FLOW. Apa itu external flow? pesawat terbang, mobil dan gumpalan salju yang turun

EXTERNAL FLOW. Apa itu external flow? pesawat terbang, mobil dan gumpalan salju yang turun MEKANIKA FLUIDA II EXTERNAL FLOW Apa itu external flow? A l i r a n u d a r a d i s e k i t a r pesawat terbang, mobil dan gumpalan salju yang turun b e g i t u j u ga a l i ra n a i r d i sekitar kapal

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2. Blade Falon Dasar dari usulan penelitian ini adalah konsep turbin angin yang berdaya tinggi buatan Amerika yang diberi nama Blade Falon. Blade Falon merupakan desain sudu turbin

Lebih terperinci

ANALISA ALIRAN DAN TEKANAN PADA BULBOUS BOW DENGAN DIMPLE (CEKUNGAN) MENGGUNAKAN PENDEKATAN CFD

ANALISA ALIRAN DAN TEKANAN PADA BULBOUS BOW DENGAN DIMPLE (CEKUNGAN) MENGGUNAKAN PENDEKATAN CFD ANALISA ALIRAN DAN TEKANAN PADA BULBOUS BOW DENGAN DIMPLE (CEKUNGAN) MENGGUNAKAN PENDEKATAN CFD Oleh Achmad Irfan Santoso 1), Irfan Syarif Arief ST, MT 2), Ir. Toni Bambang Musriyadi, PGD. 2) 1) Mahasiswa

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Dinamika fluida adalah salah satu disiplin ilmu yang mengkaji perilaku dari zat cair dan gas dalam keadaan diam ataupun bergerak dan interaksinya dengan benda padat.

Lebih terperinci

Wiwik Sulistyono, Naif Fuhaid, Ahmad Farid (2013), PROTON, Vol. 5 No. 1/Hal

Wiwik Sulistyono, Naif Fuhaid, Ahmad Farid (2013), PROTON, Vol. 5 No. 1/Hal PENGARUH PEMASANGAN TAIL DAN FRONT BOAT TERHADAP UNJUK KERJA AERODINAMIK PADA KENDARAAN SEDAN Wiwik Sulistyono 1), Naif Fuhaid 2), Ahmad Farid 3) ABSTRAK Dalam era modern sekarang ini perkembangan industri

Lebih terperinci

Pengaruh Variasi Diameter O-ring pada Permukaan Silinder terhadap Koefisien Drag

Pengaruh Variasi Diameter O-ring pada Permukaan Silinder terhadap Koefisien Drag MESIN, Vol. 25, No. 2, 2016, 54-62 54 Pengaruh Variasi Diameter O-ring pada Permukaan Silinder terhadap Koefisien Drag Si Putu Gede Gunawan Tista *, Ainul Ghurri, I Ketut Suanjaya Adi Putra Jurusan Teknik

Lebih terperinci

ANALISIS PENGARUH PERPINDAHAN PANAS TERHADAP KARAKTERISTIK LAPISAN BATAS PADA PELAT DATAR

ANALISIS PENGARUH PERPINDAHAN PANAS TERHADAP KARAKTERISTIK LAPISAN BATAS PADA PELAT DATAR ANALISIS PENGARUH PERPINDAHAN PANAS TERHADAP KARAKTERISTIK LAPISAN BATAS PADA PELAT DATAR Oleh: 1) Umrowati, 2) Prof. DR. Basuki Widodo, M.Sc, 3) Drs. Kamiran, M.Si Jurusan Matematika Fakultas Matematika

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Potensi Energi Air Potensi energi air pada umumnya berbeda dengaan pemanfaatan energi lainnya. Energi air merupakan salah satu bentuk energi yang mampu diperbaharui karena sumber

Lebih terperinci

STUDI NUMERIK : MODIFIKASI BODI NOGOGENI PROTOTYPE PROJECT GUNA MEREDUKSI GAYA HAMBAT

STUDI NUMERIK : MODIFIKASI BODI NOGOGENI PROTOTYPE PROJECT GUNA MEREDUKSI GAYA HAMBAT STUDI NUMERIK : MODIFIKASI BODI NOGOGENI PROTOTYPE PROJECT GUNA MEREDUKSI GAYA HAMBAT GLADHI DWI SAPUTRA 2111 030 013 DOSEN PEMBIMBING DEDY ZULHIDAYAT NOOR, ST, MT, PhD PROGRAM STUDI DIPLOMA III TEKNIK

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

UNIVERSITAS GUNADARMA FAKULTAS TEKNOLOGI INDUSTRI

UNIVERSITAS GUNADARMA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS GUNADARMA FAKULTAS TEKNOLOGI INDUSTRI ANALISIS AERODINAMIKA PADA AHMED BODY CAR DENGAN MENGGUNAKAN SOFTWARE BERBASIS COMPUTATIONAL FLUID DYNAMICS (CFD) http://www.gunadarma.ac.id/ Disusun Oleh:

Lebih terperinci

TIME CYCLE YANG OPTIMAL PADA SIMULASI PERILAKU TERBANG BURUNG ALBATROSS Disusun oleh: Nama : Herry Lukas NRP : ABSTRAK

TIME CYCLE YANG OPTIMAL PADA SIMULASI PERILAKU TERBANG BURUNG ALBATROSS Disusun oleh: Nama : Herry Lukas NRP : ABSTRAK TIME CYCLE YANG OPTIMAL PADA SIMULASI PERILAKU TERBANG BURUNG ALBATROSS Disusun oleh: Nama : Herry Lukas NRP : 0522114 Jurusan Teknik Elektro, Fakultas Teknik,, Jl.Prof.Drg.Suria Sumantri, MPH No.65, Bandung,

Lebih terperinci

SIMULASI AERODINAMIS DAN TEGANGAN PROPELER PESAWAT TIPE AIRFOIL NACA M6 MELALUI ANALISA KOMPUTASI DINAMIKA MENGGUNAKAN MATERIAL PADUAN (94% Al-6% Mg)

SIMULASI AERODINAMIS DAN TEGANGAN PROPELER PESAWAT TIPE AIRFOIL NACA M6 MELALUI ANALISA KOMPUTASI DINAMIKA MENGGUNAKAN MATERIAL PADUAN (94% Al-6% Mg) SIMULASI AERODINAMIS DAN TEGANGAN PROPELER PESAWAT TIPE AIRFOIL NACA M6 MELALUI ANALISA KOMPUTASI DINAMIKA MENGGUNAKAN MATERIAL PADUAN (94% Al-6% Mg) SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat

Lebih terperinci

Skripsi. Untuk Memenuhi Sebagian Persyaratan Mencapai Derajat Sarjana Strata 1 (S1) Disusun Oleh: SLAMET SUTRISNO JURUSAN TEKNIK PENERBANGAN

Skripsi. Untuk Memenuhi Sebagian Persyaratan Mencapai Derajat Sarjana Strata 1 (S1) Disusun Oleh: SLAMET SUTRISNO JURUSAN TEKNIK PENERBANGAN ANALISA PENGARUH TAPER RASIO TERHADAP EFISIENSI AERODINAMIKA DAN EFEKTIFITAS TWIST ANGLE PADA DESAIN SAYAP SEKELAS CESSNA 162 MENGGUNAKAN SOFTWARE FLUENT Skripsi Untuk Memenuhi Sebagian Persyaratan Mencapai

Lebih terperinci

ANALISIS LOSSES PIPA LURUS BERDIAMETER 40 cm PADA TEROWONGAN ANGIN LAPAN

ANALISIS LOSSES PIPA LURUS BERDIAMETER 40 cm PADA TEROWONGAN ANGIN LAPAN Analisis Losses Pipa Lurus Berdiameter 40 cm... (Ahmad Jamaludin Fitroh) ANALISIS LOSSES PIPA LURUS BERDIAMETER 40 cm PADA TEROWONGAN ANGIN LAPAN Ahmad Jamaludin Fitroh Peneliti Aerodinamika, Kedeputian

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Fluida

BAB II DASAR TEORI. 2.1 Definisi Fluida BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antarmolekul

Lebih terperinci

Jl. Pajajaran No.219, Arjuna, Cicendo, Bandung, Jawa Barat 40174

Jl. Pajajaran No.219, Arjuna, Cicendo, Bandung, Jawa Barat 40174 Analisis CFD Karakteristik Aerodinamika... (Awalu Romadhon dan Dana Herdiana) ANALISIS CFD KARAKTERISTIK AERODINAMIKA PADA SAYAP PESAWAT LSU-05 DENGAN PENAMBAHAN VORTEX GENERATOR (ANALYSIS OF CFD AERODYNAMIC

Lebih terperinci

PENGARUH VARIASI SUDUT SERANG SUDU PADA PRESTASI TURBIN ANGIN

PENGARUH VARIASI SUDUT SERANG SUDU PADA PRESTASI TURBIN ANGIN PENGARUH VARIASI SUDUT SERANG SUDU PADA PRESTASI TURBIN ANGIN Sullstyo Atmadi*', Ahmad Jamaludln Fltroh">, Firman Hartono") ipeneliti Pusat Teknologi Dirgantara Terapan, LAPAN "ipenelitlteknik Penerbangan

Lebih terperinci

Prosiding SNaPP2015 Sains dan Teknologi ISSN EISSN Subagyo

Prosiding SNaPP2015 Sains dan Teknologi ISSN EISSN Subagyo Prosiding SNaPP2015 Sains dan Teknologi ISSN 2089-3582 EISSN 2303-2480 SIMULASI ALIRAN INTERNAL PADA PEMIPAAN INLET ENGINE TIGA DIMENSI Subagyo UPT-LAGG BPPT Kawasan Puspiptek Gd. 240 Tangerang Selatan

Lebih terperinci

Analisa Unjuk Kerja Flap Sebagai Penambah Koefisien Gaya Angkat

Analisa Unjuk Kerja Flap Sebagai Penambah Koefisien Gaya Angkat Analisa Unjuk Kerja Flap ebagai Penambah Koefisien Gaya Angkat Rifdian I. Akademi Teknik dan Keselamatan Penerbangan urabaya Jl.Jemur Andayani 1/73 Wonocolo urabaya 6036 Telp.(031)841087, Fax.(031)8490005

Lebih terperinci

Study Eksperimental Jarak Terhadap Koefisien Tekanan Silinder Ganda Diposisikan Alined

Study Eksperimental Jarak Terhadap Koefisien Tekanan Silinder Ganda Diposisikan Alined Jurnal Ilmiah Teknik Mesin CakraM Vol. 3 No.2. Oktober 2009 (133-137) Study Eksperimental Jarak Terhadap Koefisien Tekanan Silinder Ganda Diposisikan Alined Ketut Astawa, Sukadana & Karnata. Jurusan Teknik

Lebih terperinci