TINJAUAN PUSTAKA. Air merupakan sumber energi yang murah dan relatif mudah didapat,

Ukuran: px
Mulai penontonan dengan halaman:

Download "TINJAUAN PUSTAKA. Air merupakan sumber energi yang murah dan relatif mudah didapat,"

Transkripsi

1 TINJAUAN PUSTAKA Tenaga Air Air merupakan sumber energi yang murah dan relatif mudah didapat, karena pada air tersimpan energi potensial (pada air jatuh) dan energi kinetik (pada air mengalir). Tenaga air (hydropower) adalah energi yang diperoleh dari air yang mengalir. Energi yang dimiliki air dapat dimanfaatkan dan digunakan dalam wujud energi mekanis maupun energi listrik. Pemanfaatan energi air banyak dilakukan dengan menggunakan kincir air atau turbin air yang memanfaatkan adanya suatu air terjun atau aliran air di sungai. Sejak awal abad 18 kincir air banyak dimanfaatkan sebagai penggerak penggilingan gandum, penggergajian kayu dan mesin tekstil. Memasuki abad 19 turbin air mulai dikembangkan (Agungchynta, 2007). Energi potensial adalah energi yang dimiliki suatu benda akibat adanya pengaruh tempat atau kedudukan dari benda tersebut. Energi potensial disebut juga dengan energi diam karena benda yang dalam keadaan diam dapat memiliki energi. Jika benda tersebut bergerak, maka benda itu mengalami perubahan energi potensial menjadi energi gerak. Contoh misalnya seperti buah kelapa yang siap jatuh dari pohonnya, air terjun, dan lain sebagainya. Energi kinetik adalah energi dari suatu benda yang dimiliki karena pengaruh gerakannya. Makin besar kecepatan benda bergerak makin besar energi kinetiknya dan semakin besar massa benda yang bergerak makin besar pula energi kinetik yang dimilikinya. Setiap benda yang bergerak memberikan gaya pada benda lain dan memindahkannya sejauh jarak tertentu. Benda yang bergerak

2 memiliki kemampuan untuk melakukan kerja, karenanya dapat dikatakan memiliki energi. Kata kinetik berasal dari bahasa yunani, kinetikos, yang artinya gerak. ketika benda bergerak, benda pasti memiliki kecepatan. Dengan demikian, kita dapat menyimpulkan bahwa energi kinetik merupakan energi yang dimiliki benda karena gerakannya atau kecepatannya. Energi mekanik adalah penjumlahan antara energi kinetik dengan energi potensial suatu benda atau secara matematisnya dapat dituliskan sebagai berikut: EM=Ep+Ek (Sugandi, 2011). Besarnya tenaga air yang tersedia dari suatu sumber air bergantung pada besarnya head dan debit air. Dalam hubungan dengan reservoir air maka head adalah beda ketinggian antara muka air pada reservoir dengan muka air keluar dari kincir air/turbin air. Total energi yang tersedia dari suatu reservoir air adalah merupakan energi potensial air yaitu: dengan E = mgh... (1.1) m adalah massa air h adalah head (m) g adalah percepatan gravitasi m 2 s Selain memanfaatkan air jatuh, tenaga air (hydropower) dapat diperoleh dari aliran air datar. Dalam hal ini energi yang tersedia merupakan energi kinetik

3 1 E = mv 2... (1.2) 2 dengan v adalah kecepatan aliran air m s Daya air yang tersedia dinyatakan sebagai berikut: P 1 ρ Qv 2 2 =... (1.3) atau dengan menggunakan persamaan kontinuitas Q = Av maka dengan P 1 ρ Av 2 3 =... (1.4) 2 A adalah luas penampang aliran air ( m ) (Agungchynta, 2007). Kincir Air Kincir air dapat didefenisikan sebagai peralatan mekanis berbentuk roda (wheel) dengan sudu (bucket atau vane) pada sekeliling tepi-tepinya, yang diletakkan pada poros horizontal. Kincir air berarti kincir dengan media air, di samping ada juga kincir angin dengan media kerja angin. Pada kincir air, air beroperasi pada tekanan atmosfer dan air mengalir melalui sudu-sudu, yang mengakibatkan kincir berputar pada putaran tertentu. Air mengalir dari permukaan atas (head race) ke permukaan (tail race) melalui sudu-sudu tersebut (Paryatmo, 2007).

4 Kincir air merupakan sarana untuk mengubah energi air menjadi energi mekanik berupa torsi pada poros kincir. Ada beberapa tipe kincir air yaitu: 1. Kincir Air Overshot Kincir air overshot bekerja bila air yang mengalir jatuh ke dalam bagian sudu-sudu sisi bagian atas dan karena gaya berat air roda kincir berputar. Kincir air overshot adalah kincir air yang paling banyak digunakan dibandingkan dengan jenis kincir air yang lain. Gambar 1. Kincir air Overshot Sumber: Keuntungan Tingkat efisiensi yang tinggi yang dapat mencapai 85% Tidak membutuhkan aliran yang deras Konstruksi yang sederhana Mudah dalam perawatan Teknologi yang sederhana mudah diterapkan di daerah yang terisolir Kerugian Karena aliran ini berasal dari atas maka biasanya reservoir air atau bendungan air, sehingga memerlukan investasi yang lebih banyak Tidak dapat diterapkan untuk mesin putaran tinggi Membutuhkan ruang yang lebih luas untuk penempatan Daya yang dihasilkan relatif kecil

5 2. Kincir Air Undershot Kincir air undershot bekerja bila air yang mengalir, menghantam dinding sudu yang terletak pada bagian bawah dari kincir air. Kincir air tipe undershot tidak mempunyai tambahan keuntungan dari head. Tipe ini cocok dipasang pada perairan dangkal pada daerah yang rata. Tipe ini disebut juga dengan Vitruvian. Disini aliran air berlawanan dengan arah sudu yang memutar kincir. Gambar 2. Kincir air Undershot Sumber: Keuntungan Konstruksi lebih sederhana Lebih ekonomis Mudah untuk dipindahkan Kerugian Efisiensi kecil Daya yang dihasilkan relatif kecil 3. Kincir Air Breastshot Kincir air Breastshot merupakan perpaduan antara tipe overshot dan undershot dilihat dari energi yang diterimanya. Jarak tinggi jatuhnya tidak melebihi diameter kincir, arah aliran air yang menggerakkan kincir air disekitar sumbu poros dari kincir air. Kincir air jenis ini menperbaiki kinerja dari kincir air tipe undershot.

6 Gambar 3. Kincir air Breastshot Sumber: Keuntungan Tipe ini lebih efisien dari tipe undershot Dibandingkan tipe overshot tinggi jatuhnya lebih pendek Dapat diaplikasikan pada sumber air aliran datar Kerugian Sudu-sudu dari tipe ini tidak rata seperti tipe undershot (lebih rumit) Diperlukan dam pada arus aliran datar Efisiensi lebih kecil dari pada tipe overshot 4. Kincir Air Tub Kincir air Tub merupakan kincir air yang kincirnya diletakkan secara horisontal dan sudu-sudunya miring terhadap garis vertikal dan tipe ini dapat dibuat lebih kecil dari pada tipe overshot maupun tipe undershot. Karena arah gaya dari pancuran air menyamping maka energi yang diterima oleh kincir yaitu energi potensial dan kinetik. Gambar 4. Kincir air Tub Sumber:

7 Keuntungan Memiliki konstruksi yang lebih ringkas Kecepatan putarnya lebih cepat Kerugian Tidak menghasilkan daya yang besar Karena komponennya lebih kecil membutuhkan tingkat ketelitian yang lebih teliti (Santoso, R., 2009). Komponen Kincir Air Dayung kincir air Dayung pada kincir air ini disebut juga sudu, bucket, vane, ataupun blade, terdapat pada sekeliling roda kincir. Luasan sebuah blade yang tercelup didalam air tentunya berubah-ubah karena blade itu berputar dengan pusat rotasinya yaitu poros. Prinsip kerja dari kincir air tipe undershot adalah ketika aliran sungai menumbuk salah satu dari blade maka blade akan bergerak dan secara bergantian masing-masing blade akan tertumbuk oleh aliran air sehingga kincir air akan memutarkan poros dan kincir ini akan menimbulkan torsi putaran yang akan dipakai untuk memutarkan pompa sehingga pompa dapat memompa fluida (Sunarwo, S., 2011). Material dayung kincir pada penelitian ini terbuat dari polikarbonat. Polikarbonat merupakan salah satu jenis dari thermoplastik polimer. Sifatnya mudah dikerjakan (easily worked), dicetak (easily moulded) dan mudah terbentuk dengan panas (easily thermoformed). Material ini banyak digunakan pada industri kimia modern. Material ini memiliki identifikasi kode plastik 7. Polikarbonat lebih banyak dikenal sebagai penutup atap. Material ini dua ratus lima puluh kali lebih kuat dibandingkan kaca, dan duapuluh kali lebih kuat dibandingkan akrilik.

8 Mengapa kedua bahan ini yang dijadikan perbandingan? Kaca dan akrilik merupakan bahan transparan yang banyak digunakan untuk berbagai keperluan. Polikarbonat pun memiliki sifat transparan yang setara dengan kaca, namun punya kekuatan lebih baik. Selain kuat, polikarbonat juga tahan panas, alias baru meleleh sampai 2000 derajat celcius. Bila material ini terbakar, lelehannya tidak akan menyebar (Naftali, Y.,2008). Gambar 5. Polikarbonat Sumber: Poros Poros merupakan salah satu bagian yang terpenting dari setiap mesin. Hampir setiap mesin meneruskan tenaga bersama-sama dengan putaran. Peranan utama dalam transmisi seperti itu dipegang oleh poros (Sularso dan Sugo, 2007). Dalam hal ini poros dapat dibedakan atas dua jenis: 1. Poros dukung; poros yang khusus diperuntukkan mendukung elemen mesin yang berputar. 2. Poros transmisi atau poros perpindahan; poros yang terutama dipergunakan untuk memindahkan momen puntir. Poros dukung dapat dibagi dalam poros tetap atau poros berhenti atau poros berputar. Pada umumnya poros dukung tetap itu pada kedua atau salah satu

9 ujungnya ditumpu dan sering ditahan terhadap perputaran. Poros dukung pada umumnya dibuat dari baja bukan paduan (Stolk dan Kros, 1986). Alat Pompa Air Semi Mekanis Bertenaga Semi Aliran Alat ini berfungsi untuk memompa air pada daerah aliran sungai. Pompa ini memiliki beberapa komponen penting, antara lain: 1. Kerangka alat, berfungsi sebagai tempat penyangga dan peletakkan lilitan selang tempat mengalirnya. 2. Badan lilitan selang, berfungsi sebagai tempat lilitan selang. 3. Kincir air, berfungsi sebagai sumber tenaga yang menampung aliran air dan mengubahnya menjadi putaran. (Syahputra, 2010). Pengukuran Aliran Sungai Pancaran energi (panas) matahari menimbulkan siklus-siklus berikut: a. Arus sungai mengalir ke laut b. Air laut menguap, membentuk awan (kumpulan uap air) c. Awan bergerak ke atas tanah daratan d. Pada suatu ketinggian, temperatur turun sehingga uap air menjadi air dan turunlah hujan e. Air hujan mengalir ke sungai dan seterusnya. Karena siklus ini tetap berlangsung selama masih ada matahari, maka sepanjang tahun akan ada tenaga air. Lain halnya dengan tenaga uap, tenaga nuklir yang menggunakan bahan bakar, yang suatu saat akan habis persediaannya (Patty, 1995).

10 Pengukuran debit sungai yang lebih teliti sangat penting. Berbagai metode pengukuran telah berkembang pesat khususnya dari sisi instrumentasi. Kini tersedia berbagai alat ukur tinggi air yang sangat praktis dan dapat diprogram untuk mengakuisisi data secara otomatis. Beberapa alat telah pula dilengkapi fasilitas pengiriman data nirkabel sehingga dapat dilakukan pengamatan debit sungai dari waktu ke waktu. Namun demikian, metode pengukuran debit sungai tidak banyak berubah. Metode yang dipakai sama seperti sediakala, yaitu dengan melakukan pengukuran penampang basah dan arus sungai (Sosrodarsono dan Takeda, 1980; Loebis, dkk., 1993). Debit sungai sering diperkirakan pula secara empiris menggunakan persamaan Manning (Chow, 1989; Suresh, 1993;), yang melibatkan luasan penampang basah dan radius hidrolika, kemiringan hidrolika, dan faktor kekasaran/dinding sungai. Radius hidrolika merupakan luasan dibagi permeter penampang basah (Budi, dkk, 2007). Dalam hidrologi dikemukakan, debit air sungai adalah tinggi permukaan air sungai yang terukur oleh alat ukur pemukaan air sungai. Pengukurannya dilakukan tiap hari atau dengan pengertian yang lain debit atau aliran sungai adalah laju aliran air (dalam bentuk volume air) yang melewati suatu penampang melintang sungai per satuan waktu. Dalam sistem satuan SI (Standar Internasional) besarnya debit dinyatakan dalam satuan meter kubik per detik (m 3 /detik) (Suwandi, 2009). Survei aliran sungai bermaksud untuk mendapat gambaran perilaku fisik sungai termasuk diantaranya besar aliran (discharge). Banyak cara pengukuran aliran yang dapat dibedakan berdasarkan jenis alat yang digunakan, yaitu:

11 Alat Ukur Debit Pengukuran debit aliran yang paling sederhana dapat dilakukan dengan metode apung (floating method). Caranya dengan menempatkan benda yang tidak dapat tenggelam di permukaan aliran sungai untuk jarak tertentu dan mencatat waktu yang diperlukan oleh benda apung tersebut bergerak dari suatu titik pengamatan ke titik pengamatan lain yang telah ditentukan. Benda apung yang dapat digunakan dalam pengukuran ini pada dasarnya adalah benda apa saja sepanjang dapat terapung dalam aliran sungai. Pemilihan tempat pengukuran sebaiknya pada bagian sungai yang relatif lurus dengan tidak banyak arus tidak beraturan. Jarak antara dua titik pengamatan yang diperlukan ditentukan sekurang-kurangnya yang memberikan waktu perjalanan selama 20 detik. Pengukuran dilakukan beberapa kali sehingga dapat diperoleh angka kecepatan aliran rata-rata yang memadai. Besarnya kecepatan permukaan aliran sungai (V perm dalam m/dt) adalah: V perm = L/t L = jarak antara dua titik pengamatan (m) t = waktu perjalanan benda apung (detik) (Asdak, 2007). Alat Duga Kedalaman Setiap pengukuran harus diikuti dengan melakukan pendugaan kedalaman. Pendugaan ini dapat dilakukan dengan bermacam-macam alat, tergantung dari kondisi aliran sungai yang akan diukur. Macam-macam alat duga kedalaman tersebut adalah: 1. Batang duga (wading road) 2. Alat pemberat (sounding weight)

12 3. Alat penggulung (sounding reel) 4. Alat tangan penggulung (hand line) 5. Alat duga sonik (sonic sounder) Pengukuran yang dapat dilakukan pada penelitian ini adalah dengan menggunakan alat batang duga. Sesuai dengan pernyataan Loebis (1993) yang menyatakan bahwa pengukuran aliran dengan cara merawas (menggunakan perahu) maka kedalaman dapat dilakukan dengan menggunakan batang penduga. Batang duga yang biasanya terdiri dari empat meter yang masing-masing terdiri dari satu meteran dan alat penunjuk arah yang mempertahankan posisi sumbu alat ukur arus menuju ke arah aliran. Kedalaman aliran yang dapat diukur dengan alat ini maksimum tiga meter dari atas perahu. Akan tetapi apabila aliran yang diukur mempunyai kedalaman lebih dari tiga meter maka pendugaan kedalaman harus menggunakan kabel yang dilengkapi alat pemberat. Alat Pengukur Lebar Sungai Setiap pengukuran aliran selain menduga kedalaman juga harus mengukur jarak dan lebar aliran. Untuk sungai yang ada jembatannya atau kabel gantung melintang maka lebar sungai dapat diukur dengan menggunakan penggaris atau pita ukur. Untuk pengukuran dengan cara merawas atau dengan perahu, lebar sungai dapat diukur dengan kabel baja (tag line). Sedangkan untuk sungai yang sangat lebar dan tidak ada jembatan maupun kabel gantung melintang lebar sungai dapat diukur dengan menggunakan teodolith. Ada beberapa ukuran diameter kabel ukur baja, antara lain: 1/32, 1/16, 3/32, atau 1/8 inci (Loebies, 1993).

13 Aliran Fluida Secara khusus, fluida didefenisikan sebagai zat yang berdeformasi terus menerus selama dipengaruhi suatu tegangan geser. Sebuah tegangan (gaya per satuan luas) geser terbentuk apabila sebuah gaya tangensial bekerja pada sebuah permukaan. Apabila benda-benda padat biasa seperti baja atau logam-logam lainya dikenai oleh suatu tegangan geser, mula-mula benda ini akan berdeformasi (mengalir). Namun cairan yang biasa seperti air, minyak dan udara yang akan memenuhi defenisi dari sebuah fluida. Artinya, zat-zat tersebut akan mengalir apabila padanya bekerja sebuah tegangan geser. Beberapa bahan seperti lumpur, aspal, dempul, odol, dan lain sebagainya tidak mudah untuk diklasifikasikan karena bahan-bahan tersebut akan berperilaku seperti benda padat jika tegangan geser yang bekerja kecil (Munson, dkk, 2003). Debit aliran adalah laju aliran air yang melewati suatu penampang melintang pada sungai persatuan waktu. Fungsi dari pengukuran debit aliran adalah untuk mengetahui seberapa banyak air yang mengalir pada suatu sungai dan seberapa cepat air tersebut mengalir dalam waktu satu detik. Cara mengetahui aliran tersebut laminar atau turbulen yaitu dengan melihat bagaimana air tersebut mengalir apakah dia membentuk benang atau membentuk gelombang. Hal-hal yang akan mempengaruhi aliran antar lain besar kecilnya aliran dalam sungai itu dapat dilihat apakah aliran tersebut membentuk benang-benang atau membentuk gelembung yang tidak beraturan (Asdak, 2007). Aliran viskos dapat dibedakan dalam aliran laminar dan turbulen. Aliran adalah laminar apabila partikel-parikel zat cair bergerak teratur dengan membentuk garis lintasan yang kontiniu dan tidak saling berpotongan. Apabila zat

14 warna dinjeksikan pada satu titik dalam aliran, maka zat warna tersebut akan mengalir menurut garis aliran yang teratur seperti benang tanpa terjadi difusi atau penyebaran. Pada aliran di saluran/pipa yang mempunyai bidang batas sejajar, garis-garis lintasan akan sejajar. Sedang di dalam saluran yang mempunyai sisi tidak sejajar, garis aliran akan menguncup atau mengembang sesuai dengan bentuk saluran. Kecepatan partikel zat cair pada masing-masing garis lintasan tidak sama tetapi bertambah dengan jarak dari dinding saluran. Aliran laminer dapat terjadi apabila kecepatan aliran rendah, ukuran saluran sangat kecil dan zat cair mempunyai kekentalan besar. Gambar ini adalah contoh dari aliran laminer di dalam pipa dengan penampang konstan dan tidak konstan. Gambar 6. Aliran laminar Sumber: Triatmodjo, 1993 Pada aliran turbulen, partikel-partikel zat cair bergerak tidak teratur dan garis lintasannya saling berpotongan. Zat warna yang dimasukkan pada suatu titik dalam aliran akan terdifusi dengan cepat ke saluran aliran. Aliran turbulen terjadi apabila kecepatan aliran besar, saluran besar dan zat cair mempunyai kekentalan kecil. Aliran di sungai, saluran irigasi/drainase, dan di laut adalah contoh dari aliaran turbulen (Triatmodjo, 1993).

15 Gambar 7. Aliran turbulen Sumber: Triatmodjo, 1993 Tekanan terjadi dalam suatu fluida bila fluida tersebut dikenai suatu gaya. Dengan menaikkan gaya, tekanan akan naik secara proposional. Tekanan dalam fluida dapat didefenisikan sebagai gaya yang bekerja per satuan luas, atau: P = Tekanan juga dapat muncul dalam suatu fluida akibat berat fluida itu sendiri. Tekanan ini biasanya dikenal sebagai tekanan head dan bergantung pada ketinggian fluida. Pada gambar di bawah ini, tekanan di dasar fluida sebanding dengan ketinggian h. F A h tekanan fluida di dasar P= ρ h (psi atau kgcm -2 ) pascal Gambar 8. Tekanan head dalam fluida Sumber: Parr, 2003 Dalam sistem Imperial dan sistem metrik, tekanan head diberikan oleh: P = ρ h

16 Dengan r adalah identitas dan h adalah ketinggian (keduanya dalam satuan yang benar) sehingga menghasilkan P dalam psi atau kgcm -2. Dalam sistem SI persamaan ditulis ulang sebagai: P = ρ gh Dengan g adalah percepatan yang disebabkan gravitasi (9,81 ms -2 ) sehingga dihasilkan tekanan dalam pascal (Parr, 2003). Pompa Pompa adalah jenis mesin fluida yang digunakan untuk memindahkan fluida melalui pipa dari satu tempat ke tempat lain. Dalam menjalankan fungsinya tersebut, pompa mengubah energi gerak poros untuk menggerakkan sudu-sudu menjadi energi tekanan pada fluida. Pada pemasangan pompa dapat dibedakan atas pemasangan kering dan pemasangan basah. Kita namakan pemasangan kering bila motor pompa dan pompa sendiri tidak ditempatkan dalam zat cair yang akan dipompakan. Pada pemasangan basah, motor pompa dan/atau pompa benar berada dalam air. Selain itu, masih dapat pula dibedakan atas pemasangan horizontal dan pemasangan vertikal (tegak). Misal pada pompa sentrifugal, pompa sekrup dan sebagainya, kita melihat pada poros dari bagian-bagian pompa yang berputar bila poros itu duduk horizontal, maka kita menamakannya pompa horizontal. Jika poros berdiri vertikal, maka pompa dinamakan juga pompa vertikal (Nouwen, 1994). Pompa dapat diklasifikasikan atas dasar: 1. Cara memindahkan fluidanya 2. Jenis penggerak 3. Sifat zat cair yang dipindahkan

17 Menurut cara memindahkan fluidanya, pompa dapat dibedakan atas: a. Positive Displacement Pump (Displacement Pump) Displacement Pumpa adalah pompa dengan volume ruangan yang berubah secara periodik dari besar ke kecil atau sebaliknya. Pada waktu pompa bekerja, energi yang dimasukkan ke fluida adalah energi potensial sehingga fluidanya berpindah dari volume per volume. b. Non-positive Displacement Pump (Dynamic Pump) Pada pompa jenis dynamic, volume ruangannya tidak berubah. Waktu pompa bekerja, energi yang dimasukkan ke dalam fluida adalah energi kinetik sehingga perpindahan fluida terjadi akibat adanya perubahan kecepatan. Berdasarkan jenis penggeraknya, pompa dibagi atas: a. Pompa tangan (hand driven pump) b. Pompa mekanis (dengan penggerak mesin uap, motor bakar maupun motor listrik). Menurut sifat zat cair yang dipindahkan, pompa dibagi atas: a. Pompa air b. Pompa panas berlumpur c. Pompa untuk cairan kental d. Pompa untuk cairan korosif e. Pompa minyak, bensin, solar, residu. (Pudjanarsa dan Nursuhud, 2008). Dengan aliran volume dari suatu pompa yang dimaksud, volume zat cair yang dipindahkan oleh pompa dalam tiap satuan waktu. Dalam teknik pompa kita

18 sering mempergunakan istilah kapasitas, hasil, dan penyerahan. Ketiga istilah inilah mempunyai pengertian yang sama dengan aliran arus. Aliran volume dapat dinyatakan dalam berbagai macam satuan. Bila dinyatakan dalam satuan dasar SI, satuan itu adalah m 3 /s. Dalam praktek sering pula dipergunakan m 3 /h (meter kubik tiap jam) dan dm 3 /men (desimeter kubik atau liter tiap menit). Hanya pada pompa yang sangat besar aliran volume itu dinyatakan dalam m 3 /s (Nouwen, 1994). Untuk membangun teori dasar tentang unjuk kerja pompa, kita mengandaikan bahwa alirannya satu dimensi, dan kita menggabungkan vektorvektor kecepatan fluida yang diperoleh dengan pengidealan ini dalam bilah-bilah pendesak, dengan kecepatan tertentu maka akan memberikan tekanan yang menimbulkan kecepatan pada aliran keluar (Munson, dkk, 2002). Pompa spiral Pompa spiral adalah suatu alat untuk memompakan air dari sungai dengan memanfaatkan tenaga arus sungai itu sendiri. Prinsip kerjanya adalah sistem kumparan hidrostatik yaitu air yang dimasukkan ke dalam selang berbentuk spiral, diputar dan timbul tekanan. Pompa spiral yang dibuat merupakan pompa yang pengoperasiannya tanpa menggunakan bahan bakar, tetapi dengan menggunakan aliran air sungai. Bagian penting dari pompa spiral berupa kumparan pipa plastik pada suatu silinder. Besarnya head dan debit yang dihasilkan dapat diatur sesuai dengan kumparan, diameter pipa plastik serta tenaga aliran air sungai yang tersedia (Zakaria, 1990). Pompa sentrifugal Salah satu mesin turbo aliran-radial yang paling umum adalah pompa sentrifugal. Jenis pompa ini mempunyai dua komponen utama: sebuah impeller

19 yang terpasang pada poros yang berputar, selubung diam, tumah keong yang menutupi impeller. Impeller terdiri dari beberapa pisau (blade) dan biasanya melengkung, dan kadang-kadang disebut sudu (vanes), dipasang dengan pola yang teratur di sekeliling poros. Sebuah sketsa yang memperlihatkan ciri-ciri utama sebuah pompa sentrifugal ditunjukkan pada gambar berikut: Gambar 9. Sketsa pompa sentrifugal Sumber: Munson, dkk, 2003 Pompa sentrifugal dapat mempunyai bermacam-macam variasi susunan (impeller terbuka atau terselubung, rumah berbentuk keong atau difuser, hisapan tunggal atau ganda, satu tingkat atau bertingkat banyak), tetapi prinsip dasarnya tetap sama. Kerja diberikan pada fluida oleh perputaran sudu (gerakan sentrifugal dan gaya tangensial sudu bekerja pada fluida dalam suatu jarak tertentu) menghasilkan kenaikan energi kinetik yang besar pada fluida yang mengalir melalui impeller. Energi kinetik ini diubah menjadi kenaikan tekanan saat fluida mengalir dari impeller ke dalam rumah yang menutupi impeller (Munson, dkk, 2003). Faktor utama penentu kinerja pompa sentrifugal adalah desain impeller dan casing. Dalam mendesain sebuah impeller, diperlukan konstanta desain yang secara langsung berhubungan dengan total head dan debit pada titik pengoperasian terbaiknya. Penggunaan konstanta desain yang tepat untuk impeller

20 dapat meminimunkan kehilangan yang terjadi pada impeller yang besarnya 2-10% dari total debit yang dihasilkan pompa. Total head yang dihasilkan impeller bergantung pada permukaan sudu. Kehilangan pada impeller dapat ditekan dengan memperhalus permukaan impeller dan mengatur sudu-sudu impeller sehingga gesekan pada bagian permukaan dan impeller berkurang (Prabowo, dkk, 2004). Efisiensi pompa sentrifugal ditentukan oleh jenis impeller. Baling-baling dan perangkat lainnya yang dirancang untuk memenuhi kondisi tertentu dalam pengoperasian. Jumlah baling-baling dapat bervariasi dari satu sampai delapan, atau lebih, tergantung pada jenis penggunaan, ukuran dan sebagainya. Baling tunggal dengan impeller semi terbuka jenis baling-baling disesuaikan pada bentuk khusus dari masalah pompa industri yang memerlukan pompa berat untuk menangani cairan yang mengandung bahan berserat dan beberapa padatan, sedimen, atau bahan suspensi asing lainnya. Jenis baling-baling terbuka ini cocok untuk cairan yang tidak mengandung benda asing atau materi yang mengandung beberapa zat padat yang mungkin tersangkut diantara impeller dan stationer pelat samping (seperti yang ditemukan dalam limbah atau drainase dimana terdapat sejumlah pasir didalamnya). Di samping tipe terbuka dan semi-terbuka impeller, tipe tertutup atau impeller terselubung dapat digunakan tergantung perawatan, efisiensi yang diinginkan, dan biaya. Jenis impeller tertutup ini dirancang untuk bermacammacam aplikasi pengunaan. Bentuk dan sejumlah baling-baling dibangun oleh kondisi perawatan. Hal itu, lebih efisien, tetapi biaya awal juga lebih tinggi. Impeler tertutup tidak memerlukan piring. Impeller tertutup mengurangi pemakaian minimum, dipastikan dapat beroperasi dengan kapasitas penuh dengan

21 efisiensi awal yang tinggi untuk jangka waktu lama, dan tidak menyumbat, karena tidak tergantung pada jarak pengoperasian dalam waktu dekat (Miller, et al, 2004). Gambar 10. Tipe-tipe impeller Sumber:

TINJAUAN LITERATUR. padi dan sebagainya. Di daerah daerah terpencil, misalnya terbuat dari bambu

TINJAUAN LITERATUR. padi dan sebagainya. Di daerah daerah terpencil, misalnya terbuat dari bambu TINJAUAN LITERATUR Kincir Air Ribuan tahun yang lalu manusia telah memanfaatkan tenaga air untuk beberapa keperluan, misalnya untuk menaikkan air keperluan irigasi, menggiling padi dan sebagainya. Di daerah

Lebih terperinci

Pembangkit Listrik Tenaga Air. BY : Sulistiyono

Pembangkit Listrik Tenaga Air. BY : Sulistiyono Pembangkit Listrik Tenaga Air BY : Sulistiyono Pembangkit listrik tenaga air Tenaga air bahasa Inggris: 'hydropower' adalah energi yang diperoleh dari air yang mengalir. Air merupakan sumber energi yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial fluida, atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. MESIN-MESIN FLUIDA Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

BAB 5 DASAR POMPA. pompa

BAB 5 DASAR POMPA. pompa BAB 5 DASAR POMPA Pompa merupakan salah satu jenis mesin yang berfungsi untuk memindahkan zat cair dari suatu tempat ke tempat yang diinginkan. Zat cair tersebut contohnya adalah air, oli atau minyak pelumas,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1.1 Turbin Air Turbin air adalah turbin dengan media kerja air. Secara umum, turbin adalah alat mekanik yang terdiri dari poros dan sudu-sudu. Sudu tetap atau stationary blade, tidak

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Pompa Pompa adalah peralatan mekanis yang digunakan untuk menaikkan cairan dari dataran rendah ke dataran tinggi atau untuk mengalirkan cairan dari daerah bertekanan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial BAB II TINJAUAN PUSTAKA 2.1. Mesin-Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan

Lebih terperinci

a. Turbin Impuls Turbin impuls adalah turbin air yang cara kerjanya merubah seluruh energi air(yang terdiri dari energi potensial + tekanan +

a. Turbin Impuls Turbin impuls adalah turbin air yang cara kerjanya merubah seluruh energi air(yang terdiri dari energi potensial + tekanan + Turbin air adalah alat untuk mengubah energi potensial air menjadi menjadi energi mekanik. Energi mekanik ini kemudian diubah menjadi energi listrik oleh generator.turbin air dikembangkan pada abad 19

Lebih terperinci

MODUL POMPA AIR IRIGASI (Irrigation Pump)

MODUL POMPA AIR IRIGASI (Irrigation Pump) MODUL POMPA AIR IRIGASI (Irrigation Pump) Diklat Teknis Kedelai Bagi Penyuluh Dalam Rangka Upaya Khusus (UPSUS) Peningkatan Produksi Kedelai Pertanian dan BABINSA KEMENTERIAN PERTANIAN BADAN PENYULUHAN

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian pompa Pompa adalah peralatan mekanis untuk meningkatkan energi tekanan pada cairan yang di pompa. Pompa mengubah energi mekanis dari mesin penggerak pompa menjadi energi

Lebih terperinci

TUGAS AKHIR PERENCANAAN POMPA SENTRIFUGAL PENGISI KETEL DI PT. INDAH KIAT SERANG

TUGAS AKHIR PERENCANAAN POMPA SENTRIFUGAL PENGISI KETEL DI PT. INDAH KIAT SERANG TUGAS AKHIR PERENCANAAN POMPA SENTRIFUGAL PENGISI KETEL DI PT. INDAH KIAT SERANG Tugas Akhir ini Disusun dan Diajukan Guna Memperoleh Gelar Sarjana Strata Satu Jurusan Teknik Mesin Fakultas Teknik Universitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN USTAKA 2.1. engertian Dasar Tentang Turbin Air Kata turbin ditemukan oleh seorang insinyur yang bernama Claude Bourdin pada awal abad 19, yang diambil dari terjemahan bahasa latin dari

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Dasar-dasar Pompa Sentrifugal Pada industri minyak bumi, sebagian besar pompa yang digunakan ialah pompa bertipe sentrifugal. Gaya sentrifugal ialah sebuah gaya yang timbul akibat

Lebih terperinci

Potensi Tenaga Air di Indonesia Selama ini telah beberapa kali dilakukan studi potensi tenaga air di negara kita. Pada tahun 1968 Lembaga Masalah Ketenagaan- PLN (LMK) mencatat potensi tenaga air sebesar

Lebih terperinci

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI 3 BAB II LANDASAN TEORI II.1. Tinjauan Pustaka II.1.1.Fluida Fluida dipergunakan untuk menyebut zat yang mudah berubah bentuk tergantung pada wadah yang ditempati. Termasuk di dalam definisi ini adalah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pengertian Pompa Pompa adalah suatu mesin yang digunakan untuk memindahkan fluida dari satu tempat ketempat lainnya, melalui suatu media aluran pipa dengan cara menambahkan energi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Dasar Teori Pompa Sentrifugal... Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan gaya sentrifugal.

Lebih terperinci

BAB II DASAR TEORI. E p = Energi potensial (joule) m =Massa benda (kg) g = Percepatan gravitasi (m/s 2 ) h = Ketinggian benda (m)

BAB II DASAR TEORI. E p = Energi potensial (joule) m =Massa benda (kg) g = Percepatan gravitasi (m/s 2 ) h = Ketinggian benda (m) BAB II DASAR TEORI 2.1 Sumber Energi 2.1.1 Energi Potensial Energi potensial adalah energi yang dimiliki suatu benda akibat pengaruh tempat atau kedudukan dari benda tersebut Rumus yang dipakai dalam energi

Lebih terperinci

LOGO POMPA CENTRIF TR UGAL

LOGO POMPA CENTRIF TR UGAL LOGO POMPA CENTRIFUGAL Dr. Sukamta, S.T., M.T. Pengertian Pompa Pompa merupakan salah satu jenis mesin yang berfungsi untuk memindahkan zat cair dari suatu tempat ke tempat yang diinginkan. Klasifikasi

Lebih terperinci

BAB I PENDAHULUAN. memindahkan fluida dari suatu tempat yang rendah ketempat yang. lebih tinggi atau dari tempat yang bertekanan yang rendah ketempat

BAB I PENDAHULUAN. memindahkan fluida dari suatu tempat yang rendah ketempat yang. lebih tinggi atau dari tempat yang bertekanan yang rendah ketempat 1 BAB I PENDAHULUAN 1.1 Pandangan Umum Pompa Pompa adalah suatu jenis mesin yang digunakan untuk memindahkan fluida dari suatu tempat yang rendah ketempat yang lebih tinggi atau dari tempat yang bertekanan

Lebih terperinci

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Ray Posdam J Sihombing 1, Syahril Gultom 2 1,2 Departemen

Lebih terperinci

BAB II. 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro. lebih kecil. Menggunakan turbin, generator yang kecil yang sama seperti halnya PLTA.

BAB II. 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro. lebih kecil. Menggunakan turbin, generator yang kecil yang sama seperti halnya PLTA. BAB II LANDASAN TEORI 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro Pembangkit Listrik Tenaga Mikrohydro atau biasa disebut PLTMH adalah pembangkit listrik tenaga air sama halnya dengan PLTA, hanya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pompa adalah suatu alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan tersebut. Kenaikan tekanan cairan tersebut

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Fluida Fluida diartikan sebagai suatu zat yang dapat mengalir. Istilah fluida mencakup zat cair dan gas karena zat cair seperti air atau zat gas seperti udara dapat mengalir.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Teknologi dispenser semakin meningkat seiring perkembangan jaman. Awalnya hanya menggunakan pemanas agar didapat air dengan temperatur hanya hangat dan panas menggunakan heater, kemudian

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Radiator Radiator memegang peranan penting dalam mesin otomotif (misal mobil). Radiator berfungsi untuk mendinginkan mesin. Pembakaran bahan bakar dalam silinder mesin menyalurkan

Lebih terperinci

II. TINJAUAN PUSTAKA. digalakan penemuan-penemuan atau pemanfatan-pemanfaatan energi-energi

II. TINJAUAN PUSTAKA. digalakan penemuan-penemuan atau pemanfatan-pemanfaatan energi-energi II. TINJAUAN PUSTAKA A. Energi Secara global telah diketahui bersama bahwa sumber energi tak terbaharui semakin berkurang keberadaannya maka sudah selayaknya untuk dicari dan digalakan penemuan-penemuan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian dan Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Mikrohidro atau biasa disebut dengan Pembangkit Listrik Tenaga Mikrohidro (PLTMH), adalah suatu pembangkit listrik

Lebih terperinci

BOILER FEED PUMP. b. Pompa air pengisi yang menggunakan turbin yaitu : - Tenaga turbin :

BOILER FEED PUMP. b. Pompa air pengisi yang menggunakan turbin yaitu : - Tenaga turbin : BOILER FEED PUMP A. PENGERTIAN BOILER FEED PUMP Pompa adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan dengan cara

Lebih terperinci

BAB II DASAR TEORI. bagian yaitu pompa kerja positif (positive displacement pump) dan pompa. kerja dinamis (non positive displacement pump).

BAB II DASAR TEORI. bagian yaitu pompa kerja positif (positive displacement pump) dan pompa. kerja dinamis (non positive displacement pump). BAB II DASAR TEORI 2.1. Dasar Teori Pompa 2.1.1. Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan

Lebih terperinci

BAB III METODOLOGI PENGUKURAN

BAB III METODOLOGI PENGUKURAN BAB III METODOLOGI PENGUKURAN Kincir angin merupakan salah satu mesin konversi energi yang dapat merubah energi kinetic dari gerakan angin menjadi energi listrik. Energi ini dibangkitkan oleh generator

Lebih terperinci

MODEL FISIK KINCIR AIR SEBAGAI PEMBANGKIT LISTRIK

MODEL FISIK KINCIR AIR SEBAGAI PEMBANGKIT LISTRIK MODEL FISIK KINCIR AIR SEBAGAI PEMBANGKIT LISTRIK Rinaldi 1, Andy Hendri dan Akhiar Junaidi 3 1,,3 Jurusan Teknik Sipil, Fakultas Teknik, Universitas Riau ri.naldi @yahoo.com ABSTRAK Salah satu jenis energi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. mesin kerja. Pompa berfungsi untuk merubah energi mekanis (kerja putar poros)

BAB II TINJAUAN PUSTAKA. mesin kerja. Pompa berfungsi untuk merubah energi mekanis (kerja putar poros) BAB II TINJAUAN PUSTAKA 2.1. Pengertian Pompa Pompa adalah salah satu mesin fluida yang termasuk dalam golongan mesin kerja. Pompa berfungsi untuk merubah energi mekanis (kerja putar poros) menjadi energi

Lebih terperinci

PENGARUH SUDUT PIPA PESAT TERHADAP EFISIENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO ( PLTMH )

PENGARUH SUDUT PIPA PESAT TERHADAP EFISIENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO ( PLTMH ) PENGARUH SUDUT PIPA PESAT TERHADAP EFISIENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO ( PLTMH ) Naif Fuhaid 1) ABSTRAK Kebutuhan listrik bagi masyarakat masih menjadi permasalahan penting di Indonesia, khususnya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pompa adalah mesin yang mengkonversikan energi mekanik menjadi energi tekanan. Menurut beberapa literatur terdapat beberapa jenis pompa, namun yang akan dibahas dalam perancangan

Lebih terperinci

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah.

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. 1 D49 1. Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. Hasil pengukuran adalah. A. 4,18 cm B. 4,13 cm C. 3,88 cm D. 3,81 cm E. 3,78 cm 2. Ayu melakukan

Lebih terperinci

Stabilitas Konstruksi Bendungan

Stabilitas Konstruksi Bendungan Stabilitas Konstruksi Bendungan Merupakan perhitungan konstruksi untuk menentukan ukuran (dimensi) bendungan, agar mampu menahan muatan-muatan dan gaya-gaya yang bekerja dalam keadaan apapun, (angin, gempa,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Pompa adalah salah satu jenis mesin fluida yang berfungsi untuk

BAB II TINJAUAN PUSTAKA. Pompa adalah salah satu jenis mesin fluida yang berfungsi untuk BAB II TINJAUAN PUSTAKA 2.1 Pompa Pompa adalah salah satu jenis mesin fluida yang berfungsi untuk memindahkan zat cair dari suatu tempat ke tempat lain yang diinginkan. Pompa beroperasi dengan membuat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian dasar tentang turbin air Turbin berfungsi mengubah energi potensial fluida menjadi energi mekanik yang kemudian diubah lagi menjadi energi listrik pada generator.

Lebih terperinci

PERALATAN INDUSTRI KIMIA (MATERIAL HANDLING)

PERALATAN INDUSTRI KIMIA (MATERIAL HANDLING) PERALATAN INDUSTRI KIMIA (MATERIAL HANDLING) Kimia Industri (TIN 4206) PERALATAN INDUSTRI KIMIA YANG DIBAHAS : I Material Handling II Size Reduction III Storage IV Reaktor V Crystallization VI Heat treatment

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian pompa Pompa adalah alat untuk memindahkan fluida dari tempat satu ketempat lainnya yang bekerja atas dasar mengkonversikan energi mekanik menjadi energi kinetik.

Lebih terperinci

PERANCANGAN KINCIR TERAPUNG PADA SUNGAI UNTUK PEMBANGKIT LISTRIK

PERANCANGAN KINCIR TERAPUNG PADA SUNGAI UNTUK PEMBANGKIT LISTRIK PERANCANGAN KINCIR TERAPUNG PADA SUNGAI UNTUK PEMBANGKIT LISTRIK Jones Victor Tuapetel 1), Diyan Poerwoko 2) 1, 2) Program Studi Teknik Mesin Institut Teknologi Indonesia E-mail: jvictor_tuapetel@yahoo.com,

Lebih terperinci

POMPA. yusronsugiarto.lecture.ub.ac.id

POMPA. yusronsugiarto.lecture.ub.ac.id POMPA yusronsugiarto.lecture.ub.ac.id PENGERTIAN KARAKTERISTIK SISTIM PEMOMPAAN JENIS-JENIS POMPA PENGKAJIAN POMPA Apa yang dimaksud dengan pompa dan sistem pemompaan? http://www.scribd.com/doc/58730505/pompadan-kompressor

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Prinsip Kerja Pompa Hidram Prinsip kerja hidram adalah pemanfaatan gravitasi dimana akan menciptakan energi dari hantaman air yang menabrak faksi air lainnya untuk mendorong ke

Lebih terperinci

FLUIDA BERGERAK. Di dalam geraknya pada dasarnya dibedakan dalam 2 macam, yaitu : Aliran laminar / stasioner / streamline.

FLUIDA BERGERAK. Di dalam geraknya pada dasarnya dibedakan dalam 2 macam, yaitu : Aliran laminar / stasioner / streamline. FLUIDA BERGERAK ALIRAN FLUIDA Di dalam geraknya pada dasarnya dibedakan dalam 2 macam, yaitu : Aliran laminar / stasioner / streamline. Aliran turbulen Suatu aliran dikatakan laminar / stasioner / streamline

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Turbin Angin Turbin angin adalah suatu sistem konversi energi angin untuk menghasilkan energi listrik dengan proses mengubah energi kinetik angin menjadi putaran mekanis rotor

Lebih terperinci

BAB II PRINSIP-PRINSIP DASAR HIDRAULIK

BAB II PRINSIP-PRINSIP DASAR HIDRAULIK BAB II PRINSIP-PRINSIP DASAR HIDRAULIK Dalam ilmu hidraulik berlaku hukum-hukum dalam hidrostatik dan hidrodinamik, termasuk untuk sistem hidraulik. Dimana untuk kendaraan forklift ini hidraulik berperan

Lebih terperinci

MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA

MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA 13321070 4 Konsep Dasar Mekanika Fluida Fluida adalah zat yang berdeformasi terus menerus selama dipengaruhi oleh suatutegangan geser.mekanika fluida disiplin ilmu

Lebih terperinci

II. TINJAUAN PUSTAKA. A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH)

II. TINJAUAN PUSTAKA. A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) 6 II. TINJAUAN PUSTAKA A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Pembangkit Listrik Tenaga Mikrohidro (PLTMH), adalah suatu pembangkit listrik skala kecil yang menggunakan tenaga air

Lebih terperinci

PERTEMUAN VII KINEMATIKA ZAT CAIR

PERTEMUAN VII KINEMATIKA ZAT CAIR PERTEMUAN VII KINEMATIKA ZAT CAIR PENGERTIAN Kinematika aliran mempelajari gerak partikel zat cair tanpa meninjau gaya yang menyebabkan gerak tersebut. Macam Aliran 1. Invisid dan viskos 2. Kompresibel

Lebih terperinci

BAB FLUIDA. 7.1 Massa Jenis, Tekanan, dan Tekanan Hidrostatis

BAB FLUIDA. 7.1 Massa Jenis, Tekanan, dan Tekanan Hidrostatis 1 BAB FLUIDA 7.1 Massa Jenis, Tekanan, dan Tekanan Hidrostatis Massa Jenis Fluida adalah zat yang dapat mengalir dan memberikan sedikit hambatan terhadap perubahan bentuk ketika ditekan. Yang termasuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan

Lebih terperinci

LATIHAN SOAL MENJELANG UJIAN TENGAH SEMESTER STAF PENGAJAR FISIKA TPB

LATIHAN SOAL MENJELANG UJIAN TENGAH SEMESTER STAF PENGAJAR FISIKA TPB LATIHAN SOAL MENJELANG UJIAN TENGAH SEMESTER STAF PENGAJAR FISIKA TPB Soal No. 1 Seorang berjalan santai dengan kelajuan 2,5 km/jam, berapakah waktu yang dibutuhkan agar ia sampai ke suatu tempat yang

Lebih terperinci

BAB 3 POMPA SENTRIFUGAL

BAB 3 POMPA SENTRIFUGAL 3 BAB 3 POMPA SENTRIFUGAL 3.1.Kerja Pompa Sentrifugal Pompa digerakkan oleh motor, daya dari motor diberikan kepada poros pompa untuk memutar impeler yang dipasangkan pada poros tersebut. Zat cair yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Perancangan Instalasi Penjernihan Air (IPA)

BAB II TINJAUAN PUSTAKA. 2.1 Perancangan Instalasi Penjernihan Air (IPA) BAB II TINJAUAN PUSTAKA 2.1 Perancangan Instalasi Penjernihan Air (IPA) Dalam perencanaan dan perancangan istalasi penjernihan air (IPA) harus memenuhi persyaratan-persyaratan yang berlaku guna mendapatkan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Perpipaan Dalam pembuatan suatu sistem sirkulasi harus memiliki sistem perpipaan yang baik. Sistem perpipaan yang dipakai mulai dari sistem pipa tunggal yang sederhana

Lebih terperinci

BAB II LANDASAN TEORI. tidak terdefinisi. Standar tersebut dapat berupa barang yang nyata, dengan syarat

BAB II LANDASAN TEORI. tidak terdefinisi. Standar tersebut dapat berupa barang yang nyata, dengan syarat BAB II LANDASAN TEORI II. 1. Teori Pengukuran II.1.1. Pengertian Pengukuran Pengukuran adalah proses menetapkan standar untuk setiap besaran yang tidak terdefinisi. Standar tersebut dapat berupa barang

Lebih terperinci

BAB I PENDAHULUAN. misalnya untuk mengisi ketel, mengisi bak penampung (reservoir) pertambangan, satu diantaranya untuk mengangkat minyak mentah

BAB I PENDAHULUAN. misalnya untuk mengisi ketel, mengisi bak penampung (reservoir) pertambangan, satu diantaranya untuk mengangkat minyak mentah BAB I PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari, penggunaan pompa sangat luas hampir disegala bidang, seperti industri, pertanian, rumah tangga dan sebagainya. Pompa merupakan alat yang

Lebih terperinci

15 BAB III TINJAUAN PUSTAKA 3.1 Pengertian Pompa Pompa adalah mesin fluida yang berfungsi untuk memindahkan fluida cair dari suatu tempat ke tempat lain dengan cara memberikan energi mekanik pada pompa

Lebih terperinci

BAB II DASAR TEORI. dari suatut empat ketempat lain dengan cara menaikkan tekanan cairan tersebut.

BAB II DASAR TEORI. dari suatut empat ketempat lain dengan cara menaikkan tekanan cairan tersebut. BAB II DASAR TEORI 2.1. Dasar Teori Pompa 2.1.1. Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatut empat ketempat lain dengan cara menaikkan tekanan cairan tersebut.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sifat Sifat Zat Air zat cair mempunyai atau menunjukan sifat-sifat atau karakteristik-karakteristik yang dapat ditunjukkan sebagai berikut. 2.1 Tabel Sifat-sifat air sebagai fungsi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Pompa Pompa adalah suatu peralatan mekanik yang digerakkan oleh tenaga mesin yang digunakan untuk memindahkan cairan (fluida) dari suatu tempat ke tempat lain, dimana

Lebih terperinci

BAB I PENGUJIAN TURBIN AIR FRANCIS

BAB I PENGUJIAN TURBIN AIR FRANCIS BAB I PENGUJIAN TURBIN AIR FRANCIS 1.1 Pendahuluan 1.1.1 Tinjauan Umum Praktikan sangat membantu dalam mendapatkan gambaran yang nyata tentang alat/mesin yang telah dipelajari di bangku kuliah. Dengan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro BAB II TINJAUAN PUSTAKA 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro Pembangunan sebuah PLTMH harus memenuhi beberapa kriteria seperti, kapasitas air yang cukup baik dan tempat yang memadai untuk

Lebih terperinci

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA MODUL KULIAH : MEKANIKA FLUIDA DAN SKS : 3 HIROLIKA Oleh : Acep Hidayat,ST,MT. Jurusan Teknik Perencanaan Fakultas Teknik Perencanaan dan Desain Universitas Mercu Buana Jakarta 2011 MODUL 12 HUKUM KONTINUITAS

Lebih terperinci

PENGARUH KECEPATAN SUDUT TERHADAP EFISIENSI POMPA SENTRIFUGAL JENIS TUNGGAL

PENGARUH KECEPATAN SUDUT TERHADAP EFISIENSI POMPA SENTRIFUGAL JENIS TUNGGAL TURBO Vol. 4 No. 2. 2015 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/ummojs/index.php/turbo PENGARUH KECEPATAN SUDUT TERHADAP EFISIENSI

Lebih terperinci

BAB I PENDAHALUAN 1.1 Latar Belakang.

BAB I PENDAHALUAN 1.1 Latar Belakang. BAB I PENDAHALUAN 1.1 Latar Belakang. Material atau bahan dalam industri teknik kimia dapat berupa bentuk padat, cair dan gas. Material dalam bentuk cair sendiri misalnya saja pada industri minuman, tentunya

Lebih terperinci

Vol 9 No. 2 Oktober 2014

Vol 9 No. 2 Oktober 2014 VARIASI TINGGI PIPA HISAP PADA POMPA TERHADAP PERUBAHAN KAPASITAS ALIRAN(APLIKASI PADA PENAMPUNGAN EMBER TUMPAH WATERBOOM ) Budi Johan, Agus wibowo2, Irfan Santoso Mahasiswa, Progdi Teknik Mesin Universitas

Lebih terperinci

1. POMPA MENURUT PRINSIP DAN CARA KERJANYA

1. POMPA MENURUT PRINSIP DAN CARA KERJANYA 1. POMPA MENURUT PRINSIP DAN CARA KERJANYA 1. Centrifugal pumps (pompa sentrifugal) Sifat dari hidrolik ini adalah memindahkan energi pada daun/kipas pompa dengan dasar pembelokan/pengubah aliran (fluid

Lebih terperinci

STRUKTURISASI MATERI. Fluida statis ALFIAH INDRIASTUTI

STRUKTURISASI MATERI. Fluida statis ALFIAH INDRIASTUTI STRUKTURISASI MATERI Fluida statis ALFIAH INDRIASTUTI STRUKTURISASI MATERI Fluida Statis Tekanan hidrostatik Zat Cair Gas Fluida Fluida statis Hukum Pascal Hukum Archimedes Tegangan Permukaan A. Tekanan

Lebih terperinci

9. Dari gambar berikut, turunkan suatu rumus yang dikenal dengan rumus Darcy.

9. Dari gambar berikut, turunkan suatu rumus yang dikenal dengan rumus Darcy. SOAL HIDRO 1. Saluran drainase berbentuk empat persegi panjang dengan kemiringan dasar saluran 0,015, mempunyai kedalaman air 0,45 meter dan lebar dasar saluran 0,50 meter, koefisien kekasaran Manning

Lebih terperinci

PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P

PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P ANGGAPAN YANG DIGUNAKAN ZAT CAIR ADALAH IDEAL ZAT CAIR ADALAH HOMOGEN DAN TIDAK TERMAMPATKAN ALIRAN KONTINYU DAN SEPANJANG GARIS ARUS GAYA YANG BEKERJA HANYA

Lebih terperinci

Rumus Minimal. Debit Q = V/t Q = Av

Rumus Minimal. Debit Q = V/t Q = Av Contoh Soal dan tentang Fluida Dinamis, Materi Fisika kelas 2 SMA. Mencakup debit, persamaan kontinuitas, Hukum Bernoulli dan Toricelli dan gaya angkat pada sayap pesawat. Rumus Minimal Debit Q = V/t Q

Lebih terperinci

Klasisifikasi Aliran:

Klasisifikasi Aliran: Klasisifikasi Aliran: 1) Aliran Invisid dan Viskos 2) Aliran kompresibel dan tak kompresible 3) Aliran laminer dan turbulen 4) Aliran steady dan unsteady 5) Aliran seragam dan tak seragam 6) Aliran satu,

Lebih terperinci

Edy Sriyono. Jurusan Teknik Sipil Universitas Janabadra 2013

Edy Sriyono. Jurusan Teknik Sipil Universitas Janabadra 2013 Edy Sriyono Jurusan Teknik Sipil Universitas Janabadra 2013 Aliran Pipa vs Aliran Saluran Terbuka Aliran Pipa: Aliran Saluran Terbuka: Pipa terisi penuh dengan zat cair Perbedaan tekanan mengakibatkan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Angin Angin adalah gerakan udara yang terjadi di atas permukaan bumi. Angin terjadi karena adanya perbedaan tekanan udara, ketinggian dan temperatur. Semakin besar

Lebih terperinci

FISIKA STATIKA FLUIDA SMK PERGURUAN CIKINI

FISIKA STATIKA FLUIDA SMK PERGURUAN CIKINI FISIKA STATIKA FLUIDA SMK PERGURUAN CIKINI MASSA JENIS Massa jenis atau kerapatan suatu zat didefinisikan sebagai perbandingan massa dengan olum zat tersebut m V ρ = massa jenis zat (kg/m 3 ) m = massa

Lebih terperinci

BAB I PENGUJIAN TURBIN AIR FRANCIS

BAB I PENGUJIAN TURBIN AIR FRANCIS BAB I PENGUJIAN TURBIN AIR FRANCIS 1.1 Pendahuluan 1.1.1 Latar Belakang Seiring dengan perkembang teknologi yang semakin maju, banyak diciptakan peralatan peralatan yang inovatif serta tepat guna. Dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pengertian dan Prinsip Dasar Alat uji Bending 2.1.1. Definisi Alat Uji Bending Alat uji bending adalah alat yang digunakan untuk melakukan pengujian kekuatan lengkung (bending)

Lebih terperinci

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui

Lebih terperinci

Teori kinetik-molekuler yang telah kita diskusikan menjelaskan sifat-sifat zat gas. Teori ini berdasarkan tiga buah asumsi:

Teori kinetik-molekuler yang telah kita diskusikan menjelaskan sifat-sifat zat gas. Teori ini berdasarkan tiga buah asumsi: LUID nda telah familiar dengan tiga buah wujud zat di lingkungan sekitar anda. nda bernapas menggunakan udara, minum dan berenang menggunakan air, dan mendirikan bangunan menggunakan benda padat. Secara

Lebih terperinci

Pengukuran Debit. Persyaratan lokasi pengukuran debit dengan mempertimbangkan factor-faktor, sebagai berikut:

Pengukuran Debit. Persyaratan lokasi pengukuran debit dengan mempertimbangkan factor-faktor, sebagai berikut: Pengukuran Debit Pengukuran debit dapat dilakukan secara langsung dan secara tidak langsung. Pengukuran debit secara langsung adalah pengukuran yang dilakukan dengan menggunakan peralatan berupa alat pengukur

Lebih terperinci

Tegangan Permukaan. Fenomena Permukaan FLUIDA 2 TEP-FTP UB. Beberapa topik tegangan permukaan

Tegangan Permukaan. Fenomena Permukaan FLUIDA 2 TEP-FTP UB. Beberapa topik tegangan permukaan Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas Beberapa topik tegangan permukaan Fenomena permukaan sangat mempengaruhi : Penetrasi melalui membran

Lebih terperinci

USAHA, ENERGI & DAYA

USAHA, ENERGI & DAYA USAHA, ENERGI & DAYA (Rumus) Gaya dan Usaha F = gaya s = perpindahan W = usaha Θ = sudut Total Gaya yang Berlawanan Arah Total Gaya yang Searah Energi Kinetik Energi Potensial Energi Mekanik Daya Effisiensi

Lebih terperinci

Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel

Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel Konsep Aliran Fluida Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel Hal-hal yang diperhatikan : Sifat Fisis Fluida : Tekanan, Temperatur, Masa

Lebih terperinci

Hukum Kekekalan Energi Mekanik

Hukum Kekekalan Energi Mekanik Hukum Kekekalan Energi Mekanik Konsep Hukum Kekekalan Energi Dalam kehidupan kita sehari-hari terdapat banyak jenis energi. Selain energi potensial dan energi kinetik pada benda-benda biasa (skala makroskopis),

Lebih terperinci

JENIS-JENIS POMPA DAN KOMPRESOR

JENIS-JENIS POMPA DAN KOMPRESOR JENIS-JENIS POMPA DAN KOMPRESOR KOMPRESOR Sebelum membahas mengenai jenis-jenis kompresor yang ada, lebih baiknya kita pahami dahulu apa itu kompressor dan bagaimana cara kerjanya. Kompressor merupakan

Lebih terperinci

PENGUJIAN TURBIN AIR FRANCIS

PENGUJIAN TURBIN AIR FRANCIS PENGUJIAN TURBIN AIR FRANCIS BAB I PENDAHULUAN 1.1 Latar Belakang Seiring dengan perkembangan teknologi yang semakin maju, banyak diciptakan peralatan peralatan yang inovatif serta tepat guna. Dalam bidang

Lebih terperinci

SET 04 MEKANIKA FLUIDA. Fluida adalah zat yang dapat mengalir dan memberikan sedikit hambatan terhadap perubahan bentuk ketika ditekan.

SET 04 MEKANIKA FLUIDA. Fluida adalah zat yang dapat mengalir dan memberikan sedikit hambatan terhadap perubahan bentuk ketika ditekan. 04 MTERI DN LTIHN SOL SMPTN TOP LEVEL - XII SM FISIK SET 04 MEKNIK FLUID Fluida adalah zat yang dapat mengalir dan memberikan sedikit hambatan terhadap perubahan bentuk ketika ditekan.. FlUid sttis a.

Lebih terperinci

PERENCANAAN MOTOR BAKAR DIESEL PENGGERAK POMPA

PERENCANAAN MOTOR BAKAR DIESEL PENGGERAK POMPA TUGAS AKHIR PERENCANAAN MOTOR BAKAR DIESEL PENGGERAK POMPA Disusun : JOKO BROTO WALUYO NIM : D.200.92.0069 NIRM : 04.6.106.03030.50130 JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SURAKARTA

Lebih terperinci

Soal SBMPTN Fisika - Kode Soal 121

Soal SBMPTN Fisika - Kode Soal 121 SBMPTN 017 Fisika Soal SBMPTN 017 - Fisika - Kode Soal 11 Halaman 1 01. 5 Ketinggian (m) 0 15 10 5 0 0 1 3 5 6 Waktu (s) Sebuah batu dilempar ke atas dengan kecepatan awal tertentu. Posisi batu setiap

Lebih terperinci

SUMBER DAYA DAN TENAGA DI BIDANG PERTANIAN

SUMBER DAYA DAN TENAGA DI BIDANG PERTANIAN SUMBER DAYA DAN TENAGA DI BIDANG PERTANIAN A. Macam macam sumber daya di bidang pertanian Tenaga yang dipakai dibidang pertanian berasal dari: 1. Sumber daya alam yang terbarukan; seperti air, angin dan

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Pembangkit Listrik Tenaga Air (PLTA) Pembangkit listrik tenaga air (PLTA) dapat dibangun apabila terdapat debit air dan tinggi jatuh yang cukup sehingga kelayakannya dapat tercapai.

Lebih terperinci

Dr. Sukamta, S.T., M.T.

Dr. Sukamta, S.T., M.T. POMPA ROTARI ROTARI Dr. Sukamta, S.T., M.T. POMPA Pompa merupakan peralatan mekanik yang digerakan oleh tenaga mesin yang digunakan untuk memindahkan cairan (fluida) dari suatu tempat ke tempat lainnya,

Lebih terperinci

BAB II DASAR TEORI. 2.1 Prinsip Pembangkit Listrik Tenaga Gas

BAB II DASAR TEORI. 2.1 Prinsip Pembangkit Listrik Tenaga Gas BAB II DASAR TEORI. rinsip embangkit Listrik Tenaga Gas embangkit listrik tenaga gas adalah pembangkit yang memanfaatkan gas (campuran udara dan bahan bakar) hasil dari pembakaran bahan bakar minyak (BBM)

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT 3.1 Prinsip Kerja Turbin Angin Prinsip kerja dari turbin angin adalah mengubah energi mekanis dari angin menjadi energi putar pada kincir. Lalu putaran kincir digunakan untuk memutar

Lebih terperinci

Deni Rafli 1, Mulfi Hazwi 2. Universitas Sumatera Utara (USU) Jl. Almamater, Kampus USU Medan INDONESIA

Deni Rafli 1, Mulfi Hazwi 2. Universitas Sumatera Utara (USU) Jl. Almamater, Kampus USU Medan INDONESIA SIMULASI NUMERIK PENGGUNAAN POMPA SEBAGAI TURBIN PADA PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO (PLTMH) DENGAN HEAD 9,29 M DAN 5,18 M MENGGUNAKAN PERANGKAT LUNAK CFD PADA PIPA BERDIAMETER 10,16 CM Deni Rafli

Lebih terperinci

Gambar 2.1. Grafik hubungan TSR (α) terhadap efisiensi turbin (%) konvensional

Gambar 2.1. Grafik hubungan TSR (α) terhadap efisiensi turbin (%) konvensional BAB II DASAR TEORI Bab ini berisi dasar teori yang berhubungan dengan perancangan skripsi antara lain daya angin, daya turbin angin, TSR (Tip Speed Ratio), aspect ratio, overlap ratio, BHP (Break Horse

Lebih terperinci