TUGAS AKHIR ANALISIS KINERJA MODULASI DISCRETE MULTITONE (DMT) PADA JARINGAN VERY HIGH DATA RATE DIGITAL SUBSCRIBER LINE (VDSL)

Ukuran: px
Mulai penontonan dengan halaman:

Download "TUGAS AKHIR ANALISIS KINERJA MODULASI DISCRETE MULTITONE (DMT) PADA JARINGAN VERY HIGH DATA RATE DIGITAL SUBSCRIBER LINE (VDSL)"

Transkripsi

1 TUGAS AKHIR ANALISIS KINERJA MODULASI DISCRETE MULTITONE (DMT) PADA JARINGAN VERY HIGH DATA RATE DIGITAL SUBSCRIBER LINE (VDSL) Diajukan untuk memenuhi salah satu persyaratan dalam menyelesaikan pendidikan sarjana (S-1) pada Departemen Teknik Elektro O L E H DEWI PERMATA SARI DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2009

2 ANALISIS KINERJA MODULASI DISCRETE MULTITONE (DMT) PADA JARINGAN VERY HIGH DATA RATE DIGITAL SUBSCRIBER LINE (VDSL) Oleh : DEWI PERMATA SARI Tugas Akhir ini diajukan untuk melengkapi salah satu syarat untuk memperoleh gelar sarjana Teknik Elektro. Disetujui Oleh : Dosen Pembimbing, Ir. ARMAN SANI, MT NIP Diketahui oleh : Ketua Departemen Teknik Elektro FT USU, Pelaksana Harian PROF. DR. IR. USMAN BAAFAI NIP DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2009

3 ABSTRAK Modulasi DMT adalah salah satu teknik modulasi multicarrier yang digunakan pada modem Very High Data Rate Digital Subscriber Line (VDSL) dimana penggunaan kanal secara efisien dan memaksimalkan pengiriman jumlah bit pada subkanal yang berbeda-beda. Sinyal-sinyal dibagi kedalam sejumlah kanal dimana masing-masing kanal mempunyai bandwidth yang sama dengan frekuensi yang berbeda sehingga diperoleh keuntungan seperti kanal yang independen. Pada Tugas Akhir ini dilakukan simulasi untuk menghitung BER (Bit error Rate) pada masing-masing subcarrier dari sistem yang dipengaruhi oleh kanal AWGN. Simulasi ini dilakukan dengan menggunakan bahasa pemrograman Matlab 7.1. Dari simulasi yang dilakukan maka akan terlihat proses pengolahan yang terjadi pada masing-masing blok. Dimulai dari sinyal yang diubah ke bentuk bit, pemetaan konstelasi QAM lalu pencerminan dengan IFFT. Selain itu didapat besarnya nilai BER untuk jumlah carrier 1024 adalah dan untuk jumlah carrier nilai BER yang dihasilkan adalah dengan demikian semakin banyak jumlah carrier maka nilai BER yang dihasilkan juga semakin besar.

4 KATA PENGANTAR Segala puji dan syukur hanya bagi Allah SWT yang telah melimpahkan rahmat dan karunianya kepada penulis sehingga penulis dapat menyelesaikan Tugas Akhir ini. Tugas Akhir ini disusun untuk melengkapi salah satu syarat untuk memperoleh gelar sarjana Teknik Elektro pada Departemen Teknik Elektro, Fakultas Teknik, Universitas Sumatera Utara. Tugas Akhir yang berjudul: Analisis Kinerja Modulasi Discrete Multitone (DMT) pada Jaringan Very High Data Rate Digital Subscriber Line (VDSL) ini, berisi analisis kinerja modulasi DMT dan simulasi Bit Error Rate (BER) yang dipengaruhi jumlah subcarrier dan gangguan berupa AWGN. Tugas Akhir ini penulis persembahkan kepada yang teristimewa, yaitu Ayahanda Alm. Umar Ali Nasution dan Ibunda N. Pulungan, SPd serta kakak dan adik penulis, Rizki Ely Syafitri Nasution, SKM dan Siti Luthfiah Nasution yang merupakan motivasi terbesar bagi penulis untuk selalu melakukan yang terbaik. Pada kesempatan ini penulis ingin mengucapkan terima kasih kepada: 1. Bapak Prof. Dr. Ir. Usman Baafai selaku Pelaksana Harian Ketua Departemen Teknik Elektro, Fakultas Teknik, Universitas Sumatera Utara. 2. Bapak Rahmad Fauzi, ST, MT, selaku Sekretaris Departemen Teknik Elektro, Universitas Sumatera Utara. 3. Bapak Ir. Arman Sani, MT, selaku Dosen Pembimbing Tugas Akhir penulis, atas segala bimbingan, pengarahan dan motivasi dalam menyelesaikan Tugas Akhir ini.

5 4. Bapak Ir. Zulkarnaen Pane, selaku Dosen Wali penulis, atas bimbingan dan arahannya dalam menyelesaikan perkuliahan. 5. Seluruh Staf Pengajar Departemen Teknik Elektro, khususnya Konsentrasi Teknik Telekomunikasi yaitu Bapak Ir. Arman Sani, MT, Bapak Ir. M. Zulfin, MT, Bapak Maksum Pinem, ST, MT, Bapak Rahmad Fauzi, ST, MT, Bapak Sihar P. Panjaitan, MT, yang banyak memberi pelajaran moril dan spritual serta masukan dan dorongan bagi penulis untuk selalu menjadi lebih baik. 6. Seluruh Karyawan di Departemen Teknik Elektro, Fakultas Teknik, 7. Prindi, untuk segala masukannya. Teman-teman seperjuangan : Ami, Diana, Harpen, serta rekan-rekan lainnya yang selalu setia menjadi teman-teman terbaik penulis dalam mencapai tujuan bersama Sarjana Teknik. 8. Asisten Lab. Pengukuran Listrik : Meggy, Suib, Kesi, Mudhin, Supenson yang menghibur penulis dan selalu memberikan dukungan. 9. Dan pihak-pihak yang tidak dapat penulis sebutkan satu persatu. Penulis menyadari bahwa Tugas Akhir ini masih jauh dari sempurna. Oleh karena itu, penulis mengharapkan saran dan kritik yang bersifat membangun untuk Tugas Akhir ini. Akhir kata, penulis berharap semoga penulisan Tugas Akhir ini bermanfaat bagi kita semua. Medan, September 2009 Penulis

6 DAFTAR ISI ABSTRAK... i KATA PENGANTAR... ii DAFTAR ISI... iv DAFTAR GAMBAR... viii DAFTAR TABEL... x DAFTAR SINGKATAN... xi BAB I PENDAHULUAN 1.1 Latar Belakang Rumusan Masalah Tujuan Penulisan Batasan Masalah Metodologi Penulisan Sistematika Penulisan... 4 BAB II VERY HIGH DATA RATE DIGITAL SUBSCRIBER LINE (VDSL) 2.1 Umum Digital Subscriber Line (DSL)... 6

7 2.2.1 Kapasitas... 7 a. Modulasi dan Demodulasi... 7 b. Coding... 8 c. Batas Metode Duplexing Teknologi Akses Data Berkecepatan Tinggi Jalur Telepon (Loop telephone) Kabel Koaksial Serat Optik Wireless Jenis-jenis DSL ADSL VDSL HDSL SDSL VDSL Struktur Modem VDSL Keunggulan dan Kekurangan VDSL...20 BAB III MODULASI DISCRETE MULTITONE (DMT) 3.1 Umum Discrete Multitone (DMT)...22

8 3.3 Quadrature Amplitude Modulation (QAM) Pemancar Sistem 16-QAM dengan Konstelasi Rectangular...29 a. 16-QAM Natural Binary Code...29 b. 16-QAM Gray Code Penerima 16-QAM dengan Konstelasi Rectangular Sistem 16-QAM Circular Transformasi Fourier Diskrit Formula DFT Formula IDFT Fast Fourier Transform (FFT) dan Inverse FFT Frequency Division Multiplex (FDM) Struktur Model DMT Transmitter Pembangkitan data masukan Konversi analog ke Digital Konversi Serial ke Paralel Modulasi Sinyal IFFT Cyclic Prefix Kanal Receiver Pembuangan Cyclic Prefix...50

9 FFT Demodulasi Sinyal Konversi Paralel ke Serial Perhitungan BER...51 BAB IV SIMULASI DAN ANALISIS KINERJA MODULASI DMT PADA JARINGAN VDSL 4.1 Umum Prinsip Kerja Sistem Kinerja BER Yang Dipengaruhi Oleh Jumlah Carrier Analisis Data Keluaran Simulasi...57 BAB V PENUTUP 5.1 Kesimpulan Saran...60 DAFTAR PUSTAKA...61 LAMPIRAN

10 DAFTAR GAMBAR Gambar 2.1 Evolusi Teknologi DSL...13 Gambar 2.2 Konfigurasi VDSL...18 Gambar 2.3 Struktur modem VDSL...20 Gambar 3.1 Modulasi DMT...23 Gambar 3.2 Frekuensi Sinyal DMT...24 Gambar 3.3 Blok Diagram Transmisi Multikanal...25 Gambar 3.4 Konstelasi Sinyal QAM Rectangular...27 Gambar 3.5 Konstelasi Sinyal Rectangular dan Sinyal Output...28 (a) 16 QAM Rectangular (b) Sinyal Output Gambar 3.6 Blok Pemancar 16 QAM Rectangular...29 Gambar QAM Natural Binary Code...30 Gambar QAM 2D Gray Code...31 Gambar 3.9 Penerima 16 QAM...32 Gambar 3.10 Modulator 16 QAM Circular...33 Gambar 3.11 Diagram Konstelasi Sinyal Circular 16 QAM...35 Gambar 3.12 Penerima 16 QAM Circular...36 Gambar 3.13 Mekanisme FDM...42 (a) Mekanisme FDM pada Pengirim (b) Mekanisme FDM pada Penerima Gambar 3.14 Blok Rangkaian dari Sistem DMT...44

11 Gambar 3.15 Proses Sampling...46 Gambar 3.16 Ilustrasi serial to parallel converter...47 Gambar 3.17 Konstelasi sinyal 16-QAM...48 Gambar 3.18 cyclic prefix...49 Gambar 4.1 Diagram alir simulasi DMT...55 Gambar 4.2 Grafik perbandingan BER terhadap jumlah carrier...57

12 DAFTAR TABEL Tabel 2.1 Jenis Digital Subscriber Line...14 Tabel 3.1 Perbandingan Output pada Natural Code dan Gray Code...30 Tabel 3.2 Tabel Kebenaran Sinyal 8 PAM...34 Tabel 3.3 Perbandingan Jumlah Komputasi antara DFT dan Algoritma FFT...38 Tabel 4.1 Nilai BER rata-rata untuk masing-masing subcarrier...56

13 DAFTAR SINGKATAN DSL VDSL CAP DMT FDM ISDN POTS HDTV ISP MDF : Digital subscriber Line : Very High Data Rate Digital Subscriber Line : Carrierless Amplitude / Phase : Discrete Multitone : Frequency division Multiplex : Integrated Service Digital Network : Plain Old Telephone Service : High-Definition Television : Internet Service Provider : Main Distribution Frame DSLAM : Digital Subscriber Line Access Multiplexer AWGN BER DFT FFT I IDFT IFFT ISI LPF Q : Additive White Gaussian Noise : Bit Error Rate : Discrete Fourier Transform : Fast Fourier Transform : In-phase : Inverse Discrete Fourier Transform : Invers Fast Fourier Trasform : Intersymbol Interference : Low Pass Filter : Quadrature

14 MCM QAM ASK APSK CP ISI ICI SNR : Multicarrier Modulastion : Quadrature Amplitude Modulation : Amplitude Shift Keying : Amplitude Phase Shift Keying : Cyclic Prefix : Intersymbol Interference : Intersubchannel Interference : Signal to Noise Ratio

15 BAB I PENDAHULUAN 1.1 Latar Belakang Di abad dua puluh satu ini, perkembangan teknologi telekomunikasi tumbuh dengan pesat. Ini ditandai dengan semakin beragamnya jasa atau layanan komunikasi yang ditawarkan kepada masyarakat. Jasa atau layanan komunikasi kabel tembaga yang ditawarkan kepada masyarakat berupa suara dan data. Jasa atau layanan yang ditawarkan tidak hanya suara dan data saja tetapi integrasi antara layanan suara, data, dan gambar atau yang lebih dikenal sebagai layanan multimedia. Hal ini tidak terlepas dari pertumbuhan dan perkembangan aktivitas sosial dan ekonomi masyarakat yang semakin modern yang membutuhkan fleksibelitas yang tinggi didalam berkomunikasi tanpa harus dibatasi ruang dan waktu. Kebutuhan akan layanan multimedia ini berdampak pada penggunaan bandwidth yang sangat besar dan kecepatan data yang semakin tinggi sehingga harus didukung oleh sistem yang handal agar dapat memberikan kualitas layanan dengan baik. Pengaplikasian layanan multimedia pada teknologi yang sudah ada sebelumnya (seperti pada FDMA dan TDMA) menyebabkan menurunnya kapasitas dan kualitas yang berdampak pada menurunnya kinerja sistem. Untuk mengatasi hal ini dilakukan dengan memperbesar bandwidth yang digunakan. Tetapi cara ini sulit dilakukan karena spektrum frekuensi yang tersedia terbatas dan pentransmisian data kecepatan tinggi sangat rentan terhadap lingkungan multipath yang dapat menyebabkan terjadinya interferensi antar simbol (ISI).

16 Ketika permintaan lebar pita yang besar mulai meningkat, beberapa layanan telekomunikasi bereksperimen untuk mengurangi jumlah repeater dan menyederhanakan keseluruhan penyebaran jaringan, sehingga menghasilkan teknologi Digital Subsriber Line (DSL), dengan metode pengkodean menggunakan Carrieless Amplitude / Phase Modulation (CAP) atau Discrete Multitone (DMT). Tetapi yang mendapat standardisasi oleh American National Standards Institute (ANSI) adalah DMT. Dasar pemikiran untuk transformasi kanal pita lebar (wideband channel) adalah Discrete Multi Tone (DMT). DMT berfungsi sebagai modulasi untuk Asymmetric Digital Subscriber Lines (ADSL) dan Very High Data Rate Digital Subscriber Line (VDSL). DMT membagi kanal broadband menjadi beberapa subkanal narrowband untuk mendapatkan kanal yang independen. Pada Tugas Akhir ini, penulis menganalisis bagaimana tentang prinsip kerja modulasi DMT dan analisis kinerjanya pada jaringan VDSL. 1.2 Rumusan Masalah Yang menjadi rumusan masalah pada Tugas Akhir ini adalah : 1. Menguraikan prinsip kerja dari modulasi DMT. 2. Membahas pemilihan modulasi DMT sebagai modulasi dari VDSL yang merupakan bentuk khusus modulasi multicarrier. 3. Membahas mengenai parameter-parameter apa saja yang mempengaruhi modulasi DMT. 4. Menganalisis kinerja dari modulasi DMT pada jaringan VDSL.

17 1.3 Tujuan Penulisan Adapun yang menjadi tujuan penulisan Tugas Akhir ini adalah menguraikan dan menganalisis kinerja dari modulasi DMT pada jaringan VDSL. 1.4 Batasan Masalah Untuk menghindari pembahasan yang meluas maka penulis akan membatasi pembahasan Tugas Akhir ini dengan hal-hal sebagai berikut : 1. Hanya membahas teknik modulasi multicarrier DMT. 2. Tidak membahas VDSL secara mendetail. 3. Tidak membahas teknik pengkodean kanal. 4. Tidak memperhitungkan Peak to Average Power Ratio (PAPR) dalam proses simulasi menghitung BER. 5. Sinkronisasi diantara transmitter dan receiver diasumsikan sempurna (perfect). 6. Analisis kinerja modulasi DMT dilakukan untuk mengetahui Bit Error Rate (BER) pada masing-masing subcarrier berdasarkan jumlah subcarrier yang digunakan, ukuran FFT, jumlah bit yang ditransmisikan, panjang cyclic prefix, frekuensi sampling, periode sampling serta besar ukuran kanal yang digunakan berupa bilangan acak. 7. Simulasi dan Analisis kinerja modulasi DMT menggunakan bahasa pemrograman Matlab 7.1.

18 1.5 Metodologi Penulisan Metode Penulisan yang digunakan dalam penulisan Tugas Akhir ini adalah: 1. Studi Literatur Berupa tinjauan pustaka dan kajian dari buku-buku serta jurnal ilmiah yang berkaitan dengan sistem transmisi komunikasi. 2. Simulasi Berupa perancangan simulasi DMT pada jaringan VDSL dengan menggunakan bahasa pemrograman MATLAB Sistematika Penulisan Untuk memberikan gambaran mengenai tulisan ini, secara singkat dapat diuraikan sistimatika penulisan sebagai berikut: BAB I : Pendahuluan Bab ini menguraikan tentang latar belakang masalah, tujuan penulisan, batasan masalah, metodologi penulisan, serta sistematika penulisan. BAB II : Very High Data Rate Digital Subscriber Line (VDSL) Bab ini menjelaskan sejarah perkembangan DSL, jenis-jenis DSL, struktur VDSL dan keunggulan serta kekurangan VDSL.

19 BAB III : Modulasi Discrete Multitone (DMT) Bab ini berisi tentang penjelasan modulasi DMT dan penjelasan modulasi QAM, DFT dan FDM, serta peranan masing-masing sistem pendukungnya, yaitu A/D converter, S/P converter, pemetaan konstelasi QAM, DFT dan cyclic prefix. BAB IV : Simulasi dan Analisis Kinerja Modulasi DMT pada Jaringan Very High Data Rate Digital Subscriber Line (VDSL) Bab ini menampilkan bentuk sinyal pada tahapan proses simulasi, pembangkitan data acak pada kanal dan analisis Bit Error Rate (BER). BAB V : Penutup Berisi tentang kesimpulan dan saran dari hasil pembahasanpembahasan sebelumnya.

20 BAB II VERY HIGH DATA RATE DIGITAL SUBSCRIBER LINE (VDSL) 2.1 Umum Jaringan telepon dari sentral lokal ke pelanggan secara umum masih menggunakan pesawat kawat tembaga berpilin (twisted pair copper), sementara itu layanan jasa telekomunikasi saat ini tidak hanya terbatas pada suara (telepon) saja. Penggantian saluran kawat tembaga dari sentral ke pelanggan dengan saluran serat optik untuk transmisi multimedia masih sangat mahal. Oleh sebab itu, peningkatan layanan ke pelanggan masih tetap diusahakan dengan mengoptimalkan saluran kawat tembaga, yakni dengan teknologi DSL (Digital Subscriber Line). DSL merupakan cara pemecahan masalah secara teknis bagi perusahaan penyedia layanan telekomunikasi untuk menawarkan biaya lebih murah kepada pelanggannya, walaupun tidak dapat dipungkiri bahwa serat optik merupakan jawaban yang paling tepat dalam jangka panjang untuk mengintegrasikan distribusi jalur pita lebar. 2.2 Digital Suscriber Line (DSL) DSL adalah teknologi akses dengan perangkat khusus pada sentral dan pelanggan yang memungkinkan transmisi broadband melalui kabel tembaga. DSL bekerja menggunakan kabel telepon standard. Teknologi DSL ini membawa kedua sinyal analog serta digital pada satu kabel. Sinyal digital untuk komunikasi data sementara sinyal analog untuk suara seperti halnya yang digunakan telepon sekarang

21 yang disebut sebagai POTS (Plain Old Telephone System). Kemampuan untuk memisahkan sinyal suara dan data ini adalah merupakan suatu keuntungan. Teknologi ini sering disebut dengan istilah teknologi suntikan atau injection technology. Kabel telepon biasa dapat digunakan untuk menghantarkan data dalam jumlah yang besar dan dengan kecepatan yang tinggi. Telepon hanya menggunakan sebagian frekuensi yang mampu dihantarkan oleh tembaga. Sedangkan DSL memanfaatkan lebih banyak frekuensi dengan membaginya (splitting), frekuensi yang lebih tinggi untuk data dan frekuensi yang lebih rendah untuk suara dan faks. Teknologi DSL mempunyai sistem-sistem pendukung yang berpengaruh dalam kinerjanya, yaitu kapasitas (capacity) dan metode duplexing[3] Kapasitas Kapasitas adalah ukuran atau besaran dari data yang dapat ditransmisikan melalui kanal. Pada prakteknya tidak tergantung pada signal/ noise ratio (SNR), tetapi juga metode modulasi dan demodulasi, pengkodean, batasnya dan error yang diperbolehkan. a. Modulasi dan Demodulasi Pada awal perkembangan DSL, modulasi yang digunakan adalah 2B1Q (dua biner satu kuartener). Namun, seiring perkembangannya ada dua bentuk modulasi yang sering digunakan dalam teknologi DSL ini, yaitu[11] :

22 1. Modulasi Carrierless Amplitude / Phase (CAP) CAP adalah teknik modulasi yang mirip dengan Quadrature Amplitude Modulation (QAM), tetapi mempunyai perbedaan penting, yaitu sinyal carrier dikurangi. CAP menggunakan data yang masuk untuk memodulasikan sebuah carrier yang kemudian ditransmisikan melalui kabel yang panjang. Karena carrier tidak mempunyai isi informasi sehingga dapat dikompres sebelum ditransmisikan serta dikembangkan kembali di bagian penerima. Hal ini disebut carrierless. 2. Modulasi Discrete Multitone (DMT) DMT merupakan kombinasi dari QAM dan FDM (Frequency Division Multiplex). Beberapa bandwidth yang tersedia dibagi ke dalam sub-kanal 4 KHZ. DMT bekerja dengan mendistribusikan data yang masuk melalui sejumlah individu carrier- carrier kecil menjadi sejumlah sub-kanal. Karena kesuksesan beberapa perusahaan jasa telekomunikasi yang menggunakan metode modulasi DMT daripada CAP, mendorong disepakatinya standar penggunaan modulasi DSL oleh American National Standard Institute (ANSI) pada tahun b. Coding Ada dua jenis metode pengkodean kanal digunakan untuk DSL adalah block code dan convolutional code.

23 1. Block Code Merupakan salah satu kode yang bersifat forward error correction (FEC) yang mampu untuk mendeteksi dan mengkoreksi error tanpa meminta proses transmisi ulang. Reed-Solomon Code merupakan salah satu teknik block code yang sudah dikenal. Reed-Solomon Code merupakan jenis kode nonbiner yang mampu mengkoreksi error yang muncul secara acak dan tak terduga. 2. Convolutional Code Merupakan jenis kode yang memiliki perbedaan mendasar dari block code dimana urutan bit informasi tidak dikelompokkan dalam blok-blok yang berbeda sebelum dikodekan. Proses yang terjadi adalah bit informasi sebagai masukan secara kontinu yang dimapping kedalam urutan bit output encoder. Salah satu teknik convolutional code yang sering dipakai adalah Algoritma Viterbi c. Batas Pengembang layanan DSL mengakui kerusakan-kerusakan perangkat berdasarkan banyaknya kasus yang terjadi. Untuk menjamin pelayanan, ada data dan error yang diatur dalam mengantisipasi crosstalk dan tingkat noise yang bertambah oleh batas. Untuk itu toleransi dari bit error rate (BER) mempunyai batas untuk video dengan kualitas tinggi dan 10-4 untuk transmisi data[1].

24 2.2.2 Metode Duplexing Metode duplexing merupakan metode hubungan yang digunakan agar pengirim dan penerima dapat berkomunikasi satu sama lain. Metode duplexing yang digunakan pada DSL yaitu full duplex dimana pengiriman data dilakukan dalam dua arah pada waktu yang sama. Adapun efisiensi yang diperoleh dari metode duplexing yaitu sebagai berikut : Efisiensi dari duplexing adalah : data total ( down + up) ε = (2.1) kapasitas Dengan transmisi full duplex ada 3 macam cara yang biasa digunakan yaitu : 1. Echo Cancelling (EC) EC digunakan untuk menghilangkan pembiasan dari pengiriman sinyal lokal dan mentransmisikan ke banyak tujuan secara simultan dengan menggunakan lebar pita pada DSL. 2. Frequency Division Duplexing (FDD) FDD memiliki efisiensi data tergantung dari variasi SNR pada bandwidth. Uplink dan downlink sub-band dipisahkan oleh frekuensi, sehingga FDD lebih efisien dalam hal trafik simetris. Keuntungan lain adalah membuat lebih mudah dan efisien dalam pengalokasian radio karena base station dalam berkomunikasi tidak mendengarkan yang lain (selama pengiriman dan penerimaannya berada pada sub-band yang berbeda) dan oleh karena itu tidak akan menggangu yang lainya.

25 3. Time Division Dulpexing (TDD) TDD merupakan aplikasi dari TDM (teknik sinkronisasi untuk mengatur alur transmisi dimana terdapat dua atau lebih saluran yang sama yang diperoleh dari spektrum frekuensi yang diberikan) untuk memisahkan sinyal. Desain dan sistemnya lebih mudah dan tidak tergantung oleh filter. 2.3 Teknologi Akses Data Berkecepatan Tinggi Saluran telepon merupakan teknologi untuk transmisi data berkecepatan tinggi yang diinginkan untuk konsumen. Medianya berua jalur telepon, kabel koaksial, serat optik dan wireless. Tentunya tidak semua media transmisi mampu melayani semua aplikasi pengiriman dan penerimaan secara sempurna. Oleh karena itu dapat dilihat kelebihan dan kekurangan dari masing-masing media transmisi itu Jalur telepon (Loop telephone) Jalur telepon merupakan layanan tertinggi dikarenakan secara populasi, pengguna terbanyak menggunakan media ini, oleh sebab itu DSL sangat potensial digunakan pada media ini. Walau begitu, 5-10 % dari total jalur telepon tidak mampu menyediakan layanan DSL dikarenakan panjang jarak, kemampuan beban coil atau jumlah dari bridge tap pada media ini. DSL juga dapat terganggu akibat noise dan interferensi pada jalur dan efisiensinya sangat buruk.

26 2.3.2 Kabel koaksial Jaringan kabel koaksial dirancang untuk sistem pengiriman video broadcast. Tetapi rancangannya juga ditingkatkan dan dapat digunakan untuk layanan interaktif lainnya seperti suara dan data. Kekurangan dari jaringan kabel koaksial adalah kebanyakan digunakan untuk pelanggan residensial tetapi sangat sedikit untuk bisnis, sehingga penggunanya terbatas Serat optik Serat optik sangat baik untuk jarak dan bandwidth sehingga dapat mengirim laju bit yang besar dengan jarak yang jauh. Tetapi, nilai ekonomis dan instalasinya yang harus dalam skala yang luas, sehingga kebanyakan digunakan untuk bisnis bisnis besar dan pada area residensial. Penggunaan jaringan optik masih jarang jika penggunaannya radius ratusan meter, dan umumnya digunakan teknologi tembaga untuk DSL seperti kabel koaksial atau ethernet Wireless Akses wireless memungkinkan fleksibilitas pengguna dalam hal lokasi. Wireless juga lebih baik ketika digunakan pada area gedung. Walaupun begitu akses wireless terbatas oleh spektrum bandwidth radio dan area penempatannya. Hubungan wireless secara substansi dapat terganggu oleh noise.

27 2.4 Jenis Jenis DSL DSL umumnya menggunakan sambungan telepon biasa untuk mengirim sinyal-sinyal digital berkecepatan tinggi selain media-media transmisi lainnya. Awal perkembangan DSL, 144 kbps basic rate ISDN (Integrated Service Digital Network) digunakan pada layanan ISDN tahun 1986 dan kemudian disetujui menjadi mode paket ISDN DSL (IDSL)[1]. Karena keterbatasan ISDN DSL maka pada tahun 1992 muncul HDSL dengan mode transmisi simetrik dan asimetrik. Untuk simetrik disebut SDSL (1998) dan untuk asimetrik disebut ADSL (1995). Karena ADSL dianggap dianggap tidak dapat bersaing dengan HFC maka muncul VDSL yang merupakan pengembangan DSL yang memiliki laju bit yang besar. Gambar 2.1 memperlihatkan evolusi dari teknologi yang berkembang dari 144 kbps jalur suara pada tahun 1970 hingga 55 Mbps VDSL (Very-High DSL). Gambar 2.1 Evolusi Teknologi DSL

28 Pada DSL, terdapat berbagai jenis DSL diantaranya Asymmetric DSL (ADSL), High-Speed DSL (HDSL), Single-Line DSL (SDSL) dan Very-High DSL (VDSL). Tabel 2.1 berikut ini menunjukkan jenis dari DSL Tabel 2.1 Jenis Digital Subcriber Line (DSL) No Jenis DSL Upstream Downstream Bandwidth Bandwidth Jarak ft (m) 1 ADSL Kbps Mbps 18,000 (5,500) 2 HDSL Mbps Mbps 12,000 (4,000) 3 IDSL 144 Kbps 144 Kbps 18,000 (5,500) 4 SDSL Mbps Mbps 12,000 (4,000) 5 VDSL Mbps Mbps 1,000-4,500 ( ) Semua istilah-istilah ini dikenal juga dengan sebutan xdsl atau juga keluarga DSL. Perkembangannya diawali pada tahun 1986 ketika ISDN menjadi pilhan utama dalam mentransmisikan data-data untuk modem. Seiring perkembangan pemrosesan sinyal yang begitu pesat, maka muncul HDSL di tahun Bentuk pentransmisian HDSL kemudian terbagi atas yang simetris dan tidak simetris. Untuk yang tidak simetris yaitu ADSL (tahun 1995) dan SDSL (tahun 1998). Pada awal tahun 2000, muncul VDSL, yang merupakan pengembangan DSL yang memiliki laju bit yang besar ADSL Teknologinya secara mendasar cocok untuk mengakses internet karena dibuat untuk memberikan lebih banyak bandwidth untuk aliran ke bawah (downstream), yakni dari sentral ke pelanggan daripada sebaliknya (upstream), dari pelanggan ke sentral. Laju downstream berkisar dari 1.5 Mbps sampai 9 Mbps, sementara

29 upstream dari 16 kbps sampai 640 kbps. Transmisi ADSL bekerja sampai jarak kaki (5.48 km) pada sepasang kawat tembaga berpilin (twisted pair) VDSL VDSL bersifat asimetrik. Rentang operasinya terbatas pada kaki (304 m km), tetapi VDSL dapat menangani lebar pita rata-rata 15 Mbps sampai 55 Mbps untuk downstream dan 1.5 Mbps sampai 4 Mbps untuk upstream melalui sepasang kawat tembaga berpilin sesuai standard ITU-T G Lebar pita yang tersisa memungkinkan perusahaan telekomunikasi memberikan program layanan HDTV (High-Definition Television) dengan menggunakan teknologi VDSL HDSL Tidak seperti ADSL, HDSL ini bersifat simetrik. Teknologi ini dapat memberikan lebar pita Mbps di setiap jalurnya pada dua pasang kawat tembaga berpilin. Pada kenyataannya, karena kecepatan HDSL sesuai dengan saluran T1 sehingga dapat dipakai untuk menyediakan layanan T1. Rentang operasi HDSL lebih terbatas daripada ADSL untuk diatas kaki (3.65 km) harus disediakan penguat sinyal (repeater) untuk memperpanjang jarak layanannya. Karena HDSL membutuhkan dua pasang saluran, maka digunakan terutama untuk koneksi koneksi jaringan PBX (Private Branch Exchange), antar sentral, server server internet dan jaringan data pribadi. Transmisi komunikasi melalui HDSL dapat diterapkan pada akses primer ISDN.

30 2.4.4 SDSL SDSL sama dengan HDSL dalam hal bandwidth yang diberikan, Mbps baik untuk downstream maupun upstream, tetapi penggunannya pada sepasang kawat tembaga berpilin. Penggunaan sepasang kawat saluran ini membatasi rentang operasi SDSL. Dalam praktek, kaki (3 km) merupakan batas aplikasi SDSL. Celah-celah aplikasinya adalah seperti pada residential video converencing atau akses LAN (Local Area Network) jarak jauh. 2.5 VDSL Teknologi VDSL adalah suatu teknologi modem. VDSL merupakan salah satu jenis DSL dengan pentransferan data berkecepatan tinggi. Penelitian tentang cara pentransferan data berkecepatan tinggi dengan menggunakan saluran telepon sudah lama dilakukan oleh para ahli, sedangkan penelitian teknologi VDSL sendiri pertama kali diperkenalkan pada tahun 1991 oleh perusahaan Bellcore-Stanford dengan laju data 10 Mbps untuk simetrik dan asimetrik pada saluran yang lebih pendek. VDSL pertama kali distandarisasi oleh American T1E1 dari perusahaan Amati Communications dan ETSI dari British Telecom sebagai fungsi uji coba ADSL pertama di Inggris. Kemudian pada tahun 1994 dan 1995 ADSL dianggap tidak dapat mensupport layanan video, data dan suara yang diperlukan untuk bersaing dengan HFC. VDSL diusulkan oleh pendukung ADSL sebagai tingkat lanjut dari ADSL. Dengan memanfaatkan jaringan yang ada VDSL dianggap lebih hemat dengan kenyaman dan keamanan yang jauh lebih baik.

31 VDSL sebelumnya disebut sebagai VADSL karena pada awalnya, VDSL hanya dapat mengirimkan data digital secara asimetrik seperti ADSL, tetapi dengan kapasitas yang lebih tinggi dari ADSL dan panjang saluran yang lebih pendek dengan kecepatan downstream yang bisa mencapai 55 Mbps. Untuk keperluan upstream, kapasitas tersedia antara 1,5 Mbps hingga 4 Mbps. Istilah VADSL banyak ditentang, terutama oleh American T1E1.4, karena menunjukkan sesuatu yang selalu tidak simetrik dan tentunya VDSL tidak akan menggunakan transmisi simetrik tetapi asimetrik sehingga tidak perlu membaginya dalam dua nama, sehingga nama VADSL lebih dikenal dan digunakan sampai sekarang. Dalam beberapa hal VDSL lebih sederhana dibandingkan ADSL. Saluran transmisi yang lebih pendek pada VDSL menyebabkan hambatan-hambatan pada saluran yang mungkin terjadi pada saluran yang lebih panjang menjadi dapat ditekan. Oleh karena itu, teknologi transceiver-nya dapat menjadi lebih sederhana dan kapasitasnya akan 10 kali lebih tinggi. VDSL merupakan sasaran dari arsitektur jaringan ATM. VDSL memungkinkan terminasi jaringan pasif dan dapat digunakan pada lebih dari satu modem VDSL untuk digunakan pada saluran pelanggan, sama halnya dengan sistem telepon analog biasa (POTS). Sepasang modem (VTU-C & VTU-R) untuk menyalurkan data kecepatan tinggi atau untuk mentransmisikan signal digital dengan menggunakan media transmisi berupa kabel tembaga. VDSL menyediakan bandwidth secara dedicated (no-share bandwidth). VDSL membagi bandwidth menjadi 2 bagian yaitu band frekuensi rendah (0-4 KHz) untuk suara (POTS) dan band frekuensi tinggi (300 KHz-12 MHz) untuk data. VDSL juga diistilahkan dengan BDSL (Broadband DSL) karena dapat mendukung layanan-

32 layanan komunikasi broadband. Dengan kecepatan transmisi data 15 Mbps-55 Mbps arah bawah (downstream) dan 1,5 Mbps-4 Mbps arah atas (upstream). Jarak yang dapat ditempuh teknologi ini cukup pendek sekitar 300 meter sampai 1500 meter, menggunakan twisted pair copper wire, teknologi modem VDSL sebagai suatu langkah maju teknologi x-dsl setelah pengembangan teknologi ADSL. Pengiriman dilakukan dengan beberapa tahap yaitu Modem memodulasi dan mengkodekan (encode) data digital dari PC (komputer) dan kemudian digabungkan dengan sinyal telepon untuk dikirimkan ke sentral. Pada sentral, sinyal telepon dipisahkan dari sinyal digital VDSL untuk kemudian dimodulasikan dan dikodekan. Melalui jaringan komunikasi, data sinyal ini dikirimkan ke pihak yang dituju, seperti ISP (Internet Service Provider).Transmisi data yang digunakan ini tergantung dari penyelenggara jasa VDSL, umumnya ATM (Asynchronous Transfer Mode). Sinyal digital dari ISP dikodekan menjadi sinyal VDSL di sentral. Kemudian modem menggabungkannya dengan sinyal telepon di Main Distribution Frame (MDF) sebelum dikirimkan ke pelanggan, perangkat pemisah (splitter) memisahkan sinyal telepon dari sinyal digital. Sinyal digital didemodulasi dan di-decode, kemudian dikirimkan ke PC. Konfigurasi VDSL dapat dilihat pada Gambar 2.2[1]. internet ISP VDSL VDSLAM 2-wire Splitter Sentral PSTN Fiber Optik ONU / VDSLAM Data Gambar 2.2 Konfigurasi VDSL POTS

33 Konfigurasi VDSL terdiri atas 2 komponen utama, yaitu perangkat VDSLAM (Digital Subscriber Line Access Multiplexer) di sisi operator telekomunikasi dan modem VDSL di sisi pelanggan. VDSLAM ditempatkan di sentral telepon. Perangkat VDSLAM biasanya berukuran besar dan dilengkapi POTS (Plain Old Telephone Service) spliter yang digunakan untuk memisahkan antara suara dan data. 2.6 Struktur Modem VDSL Struktur modem VDSL terdiri dari blok rangkaian pengirim dan blok rangkaian penerima. Proses yang terjadi pada blok pengirim yaitu data input diframekan, kemudian dijadikan kode (coding) dengan menggunakan rangkaian pengkode yang berfungsi untuk mencegah kesalahan-kesalahan pada kode-kode data. Setelah itu dimodulasikan dengan rangkaian modulator DMT (constellation encoder). Lalu sinyal output (sinyal digital) tadi di analisa dengan menggunakan rangkaian IDFT (Inverse Discrete Fourier Transform). Setelah itu dikonverterkan dengan DAC (Digital to Analog Converter) yang sebelum dilewatkan ke rangkaian P/S (Parallel/Serial). Rangkaian driver berfungsi mengamplitudokan sinyal-sinyal output analog dari rangkaian DAC. Setelah itu dengan menggunakan rangkaian hybrid, output dari rangkaian driver dialirkan ke sambungan (line) telepon. Pada modem terdapat rangkaian pengirim dan penerima satu sama lain terpisah. Baik dari sinyal rangkaian pengirim maupun sinyal dari rangkaian penerima menggunakan sepasang saluran telepon yang sama. Rangkaian hybrid bertugas memisahkan sinyal pengirim yang dilewatkan diatas saluran telepon dan sinyal penerima dialirkan ke rangkaian

34 penerima. Gambar 2.3[8] menunjukkan blok struktur modem VDSL yang menggunakan sistem modulasi DMT. Gambar 2.3 Struktur modem VDSL Proses yang terjadi pada blok penerima merupakan kebalikan dari rangkaian pengirim. Sinyal input yang masuk dari saluran telepon diperkuat dengan rangkaian penguat LNA (Low Noise Amplifier). 2.7 Keunggulan dan Kekurangan VDSL Dengan bertambahnya jumlah pengguna internet, kebutuhan akses cepat internet sudah menjadi keharusan. Teknologi VDSL merupakan salah satu solusi untuk akses internet cepat yang memanfaatkan saluran telepon eksisting atau PSTN untuk layanan triple play. Berapa keuntungan yang diperoleh dengan menggunakan VDSL adalah sebagai berikut : 1. Menggunakan kabel tembaga eksisting. Hampir 90% jaringan akses saat ini adalah kabel tembaga.

35 2. Menghemat investasi penggelaran jaringan baru. 3. Cepat dalam proses instalasi. 4. Mendukung transmisi data kecepatan tinggi hingga 55 Mbps untuk downstream dan 4 Mbps untuk upstream. 5. Layanan multimedia mempersyaratkan penggunaan bandwidth yang lebar dan kecepatan tinggi. 6. Dapat menggunakan telepon dan pentransferan data secara bersamaan tanpa ada efek gangguan pada salah satu diantaranya. Tetapi terdapat juga kekurangan penggunaan VDSL. Diantaranya adalah akibat frekuensi tinggi dari VDSL ini menyebabkan interferensi terhadap saluran tembaga[3].

36 BAB III MODULASI DISCRETE MULTITONE (DMT) 3.1 Umum Teknologi modem VDSL mengandalkan modulasi discrete multitone (DMT). DMT mengatur kanal broadband menuju banyak subkanal dari frekuensi terdekat dan memodulasi sinyal encode ke subkanal frekuensi terdekat dengan menggunakan Fast Fourier Transform (FFT). Pada VDSL standar, subkanal terendah tidak digunakan untuk transmisi data hanya mengatur sinyal suara dan ISDN, artinya satu subkanal awal ini sering digunakan sebagai pola perintis. Subkanal tersebut menggunakan sinyal QAM, berdasarkan dari alokasi bit pada penerima dan mengirimkan kembali pada transmitter. 3.2 Discrete Multitone (DMT) DMT adalah teknik modulasi yang membagi-bagi lebar pita yang ada menjadi beberapa sub-band yang sempit untuk menjamin reliabilitas transmisi data, bahkan ketika noise mempengaruhi area tertentu dalam spektrum yang ada. DMT merupakan kombinasi dari QAM dan FDM. Beberapa bandwidth yang tersedia dibagi ke dalam subkanal 4 KHz, dimana masing-masing subkanal memiliki frekuensi carrier sendiri. Pada Gambar 3.1 menunjukkan konsep DMT dengan N kanal. Bit-bit yang dibentuk berdasarkan sumber yang dilewatkan melalui serial-to-parallel converter (S/P), dimana bit-bit N dibagi atas jalur paralel yang masing-masing hanya terdiri

37 dari 1 kode bit. Sinyal-sinyal QAM yang terdiri dari beberapa jalur disatukan bersama oleh FDM dan hasilnya dikirimkan ke sentral/pelanggan[6]. Gambar 3.1 Modulasi DMT American National Standard Institute (ANSI) telah memilih DMT sebagai standar modulasi untuk ADSL dan VDSL. DMT merupakan bentuk spesial dari implementasi modulasi multicarrier (MCM), yang berdasarkan transformasi Fourierdiskrit (DFT) yang dapat disesuaikan ke bentuk digital. Keuntungan utama dari DMT dibandingkan modulasi lainnya pada MCM adalah implementasi bentuk digital dan juga rendahnya tingkat kesulitannya. DMT sebagai metode modulasi yang banyak digunakan dari MCM lainnya, yaitu membagi kanal VDSL menjadi beberapa subkanal sempit dengan lebar pita KHz. Frekuensi kerja sinyal DMT dapat dilihat pada Gambar 3.2[2]. VDSL menyediakan bandwidth secara dedicated (noshare bandwidth). VDSL membagi bandwidth menjadi 2 bagian yaitu band frekuensi rendah (0-4 KHz) untuk suara (POTS) dan band frekuensi tinggi (300 KHz -12 MHz) untuk data.

38 DMT merupakan ide dasar untuk mentransformasikan lebar pita kanal menjadi sub-sub kanal N yang beroperasi secara paralel. Yang membuat kekhususan DMT adalah kemampuan transformasi waktu diskrit yang sangat baik. Sifat pengirimnya meneruskan sistem komunikasi berupa representasi matriks linear, dimana implementasinya berupa transformasi Fourier Diskrit (DFT) KHz Basic Telephone service ISDN upstream downstream Gambar 3.2 Frekuensi Sinyal DMT Blok diagram sistem transmisi data multikanal ditunjukkan pada Gambar 3.3[8] merupakan bentuk umum dari transmisi multikanal. Sistem ini dikonfigurasikan menggunakan Quadrature Amplitude Modulation (QAM), dimana sistem ini berdasarkan efisiensi spektralnya. Laju data biner yang datang pertama sekali menuju demultiplexer, yang menghasilkan laju sub N. Masing-masing laju sub merepresentasikan deretan dari 2 elemen sub-simbol, yaitu a n dan b n. Dimana a n dan b n adalah elemen nilai yang termasuk oleh sub-kanal n. Sedangkan fungsi dasar passband dari QAM ditunjukkan: {φ(t)cos(2πf n t), φ(t)sin(2πf n t)}, n = 1,2,..,N (3.1)

39 Dimana frekuensi pembawa f n dari modulator adalah rata-rata simbol 1/T yang ditunjukkan : n f n = n = 1,2,..., N (3.2) T Fungsi lowpass φ(t) adalah fungsi sinc : 2 t φ ( t) = sin c < t < (3.3) T T Modulator 1 Modulator 1 cos (2pf1t) F (t) Sin (2pf1t) cos (2pf1t) F (t) Sin (2pf1t) Sinyal input Modulator 2 S h(t) S Modulator 2 Sinyal Output Noise cos (2pf2t) F (t) Sin (2pf2t) cos (2pf2t) F (t) Sin (2pf2t) Modulator N Modulator N cos (2pfNt) F (t) Sin (2pfNt) cos (2pfNt) F (t) Sin (2pfNt) Gambar 3.3 Blok Diagram Transmisi Multikanal Untuk masing-masing 2 bentuk fungsi sinc modulasi quadrature yang sebagian orthogonal : ( t)cos(2πf t) )( ( t)sin(2 f t) ) n φ π n φ ( dt = 0 (3.4)

40 Hubungan orthogonal ini menjadi dasar untuk formulasi konstelasi sinyal untuk masing-masing modulator N, dimana : exp (j2πf n t) = cos(2πf n t) + jsin(2πf n t) (3.5) Dengan ini dapat menyempurnakan defenisi fungsi dasar passband dari bentuk kompleks : 1 φ ( t)exp( j2πf nt) n = 1,2,...,N (3.6) 2 Gambar 3.3 juga menyertakan struktur pada penerima. Pada penerima terdiri dari detektor N, dengan kanal keluarannya secara bersamaan diterima oleh detektor. Masing-masing detektor didukung dengan masing-masing operasi fungsi sinc modulasi quadrature dengan bagian dari fungsi dasar passband yang dikirim oleh modulator di transmitter. 3.3 Quadrature Amplitude Modulation (QAM) QAM merupakan kombinasi dari Amplitude Shift Keying (ASK) dengan Phase Shift Keying (PSK) yang disebut juga Amplitude-Phase Shift Keying (APSK). ASK merupakan bentuk dari Amplitude Modulation (AM) dimana frekuensi yang digunakan berdasarkan data digital. Sedangkan PSK adalah teknik modulasi dimana frekuensi carrier juga berdasarkan data digital. QAM biasanya merupakan tingkat lanjut dari PSK dan PAM. Fungsi dasar sinyal QAM memiliki kemiripan dengan sinyal PSK seperti berikut[5]:

41 S m ( t) jθ m j2πf ct = Ame g( t mt ) e (3.7) m = A g( t) [ cos(2πf t + θ ) + sin(2πf t + θ )] m c m Dimana Am = (AI 2 + AQ 2)1/2, sedangkan AI dan AQ adalah informasi yang dibawa sinyal pada masing-masing kanal yang berupa sinyal PAM, sedangkan g(t) adalah pulsa terbentuk dari sinyal yang dibangkitkan. Parameter Am.g(t) disederhanakan sebagai Am(t), yang memberi indikasi sebuah bentuk modulasi amplitudo. Parameter θm memberi indikasi sebuah modulasi fase, dan memiliki nilai: c θ = tan 1 ( A / A ) (3.8) m Q I Untuk suatu konstelasi sinyal QAM M = M1/M2 level, dapat dipilih suatu kombinasi M1-level PAM dan M2-level PSK. Gambar 3.4 menunjukkan beberapa konstelasi rectangular pada beberapa nilai M yang berbeda. Konstelasi sinyal akan menentukan jarak minimum pada masing-masing sinyal yang berdekatan, yang dalam kondisi real diwakili oleh amplitudo dan fasenya. Untuk nilai M = 4 akan menempatkan 4 titik sinyal pada satu lingkaran energi yang sama dan masing-masing memiliki fase berbeda, hal ini akan memberikan bentuk konstelasi seperti QPSK. m Gambar 3.4 Konstelasi Sinyal QAM Rectangular

42 Untuk M = 16 ada beberapa cara pembentukan konstelasi. Salah satu model yaitu konstelasi rectangular (konstelasi square) memiliki keuntungan lebih pembentukannya dan memiliki efisiensi daya tidak terlalu jauh dibanding dengan konstelasi optimalnya. Bentuk rectangular yang dihasilkan pada sistem 16-QAM dapat dilihat pada Gambar 3.5a. Model konstelasi ini dapat dibangkitkan dari dua sinyal PAM pada masing-masing kanal in-phase (I) dan quadrature (Q). Bentuk sinyal output dari 16-QAM secara umum dapat diberikan seperti pada Gambar 3.5b. a. 16 QAM Rectangular b. Sinyal output Gambar 3.5 Konstelasi rectangular dan sinyal output 16-QAM Secara umum diagram blok pemancar 16-QAM seperti pada Gambar 3.6. Disini dibuat asumsi umum bahwa sinyal input merupakan sederetan pasangan 4 bit, dan diikuti dengan proses S/P untuk menghasilkan dua pasangan 2 bit untuk kanal I dan kanal Q. Dua bit disalurkan pada kanal Q, dan dua bit disalurkan pada kanal I. Pasangan 2 bit informasi paralel pada masing-masing kanal selanjutnya dikodekan menggunakan Gray coding. Setiap pasangan bit informasi terkode pada masingmasing kanal memodulasi amplitudo sinyal carrier. Kanal I memodulasi sinyal sinus

43 dengan fase awal -π/2 radiant (cos2πfct) yang selanjutnya disebut in-phase, dan kanal Q memodulasi sinyal sinus yang memiliki fase awal 0 radian (sin2πfct) yang selanjutnya disebut sebagai kanal quadrature. Sinyal carrier termodulasi ini dikombinasi untuk menghasilkan 16 macam bentuk sinyal dengan amplitudo dan fase yang bervariasi dan siap ditransmisi. Gambar 3.6 Blok Pemancar 16-QAM Pemancar Sistem 16-QAM dengan Konstelasi Rectangular Pada bagian ini merupakan gambaran penempatan data input menjadi suatu bentuk konstelasi rectangular yaitu : 16-QAM Natural binary code 16-QAM 2D Gray Code a. 16-QAM Natural binary code Dalam natural binary code 16-QAM, pasangan 2 bit pada kanal Q and kanal I dikodekan secara natural (alamiah). Dua pasangan bit secara natural dikodekan dan hasilnya dalam kanal I dan kanal Q yang terdapat pada Tabel 3.1, sedangkan bentuk konstelasi sinyalnya seperti pada Gambar 3.7.

44 Tabel 3.1 Perbandingan output pada Natural Code dan Gray Code Pasangan bit input Natural Code Gray Code Q I Q Output I Output Q Output I Output kanal I kanal Q kanal I kanal Q sin(2πf c t) 00-3sin(2πf c t) 00-3sin(2πf c t) 00-3sin(2πf c t) sin(2πf c t) 01-1sin(2πf c t) 01-1sin(2πf c t) 01-1sin(2πf c t) sin(2πf c t) 10 +1sin(2πf c t) 11 +1sin(2πf c t) 11 +1sin(2πf c t) sin(2πf c t) 11 +3sin(2πf c t) 10 +3sin(2πf c t) 10 +3sin(2πf c t) 1 Gambar QAM Natural binary code Dari gambar 3.7 terlihat bahwa diantara dua titik berdekatan perbedaan dua bit mungkin terjadi, sehingga jika kesalahan dilakukan penerima dalam menerjemahkan suatu informasi bisa menyebabkan kesalahan dua bit. Asumsikan ada sederetan input: 0010, 1000, 1111, dan Pasangan 2 bit output pada modulator kanal Q adalah 00, 10, 11, dan 01. Pada kanal Q sinyal carrier termodulasi akan memiliki bentuk -3sin(2πfct), +1sin(2πfct), +3sin(2πfct), dan -1sin(2πfct). Pasangan 2 bit output pada modulator kanal I adalah 10, 00, 11, dan

45 01. Pada kanal I sinyal carrier termodulasi akan memiliki bentuk -1cos(2πfct), +3cos(2πfct), -3cos(2πfct), dan +1cos(2πfct). b. 16-QAM 2D Gray Code Dalam 16-QAM gray code 2 dimensi (2D), data pada kanal Q dan I dikodekan secara Gray dan kemudian dimapping (ditempatkan) pada konstelasi sinyal 16-QAM rectangular. Pasangan 2 bit input, dikodekan secara gray. Hasil pengkodean kanal Q dan I, bentuk konstelasi sinyal seperti pada Gambar 3.8. Di sini terlihat bahwa dua titik terdekat hanya dibedakan oleh satu bit berbeda. Jika penerima membuat kesalahan dalam menterjemahkan informasi maka hanya akan terjadi kesalahan satu bit. Gambar QAM 2D Gray code Jika ada sederetan input: 0010, 1000, 1111, dan Setelah proses gray coding output pasangan 2 bit pada modulator kanal Q adalah 00, 11, 10, dan 01. Output kanal Q dalam hal ini adalah: -3sin(2πfct), +1sin(2πfct), +3sin(2πfct), dan -

46 1sin(2πfct). Disisi lain output pasangan 2 bit pada kanal I adalah 11, 00, 10, dan 01. Output kanal I dalam hal ini adalah +1cos(2πfct), -3cos(2πfct), +3cos(2πfct), dan - 1cos(2πfct) Penerima 16-QAM Dengan Konstelasi Rectangular Penerima pada 16-QAM mirip dengan penerima pada sistem QPSK, tetapi dalam sistem ini masing-masing kanal tersusun dari 2 bit informasi. Secara umum blok diagram pada penerima 16-QAM dapat digambarkan seperti Gambar 3.9. Seperti pada bagian pemancar, perbedaan pembentukan kontelasi pada bagian penerima ditentukan pada proses demapping. Pada bagian ini diasumsi bahwa carrier lokal yang dibangkitkan oleh penerima dapat bekerja dengan sempurna sehingga memiliki frekuensi dan fase yang sama dengan sinyal termodulasi yang berasal dari pemancar. Gambar 3.9 Penerima 16-QAM Setelah proses filter dengan menggunakan LPF, sinyal PAM pada masingmasing kanal dideteksi didasarkan pada level sinyalnya. Proses berikutnya adalah demapping, langkah ini tergantung pada sistem mapping yang digunakan oleh bagian

47 pemancar. Jika sistem mapping pada bagian pemancar menggunakan natural binary code, proses demapping pada penerima juga harus menggunakan natural binary decode, demikian halnya jika pemancar menggunakan 2D gray code pada sistem mapping Sistem 16-QAM Circular Pada sistem 16-QAM Circular, semua titik pada konstelasi diorientasikan ke titik asal (0,0). Titik-titik tersebut harus memiliki nilai energi bervariasi, sebab sulit untuk menempatkan 16 titik pada satu lingkaran energi yang sama. Dalam hal ini perbedaan fase minimum antar titik-titik terdekat yang memiliki nilai energi sama sebesar π/8 radian. Blok diagram unntuk membangkitkan sinyal 16-QAM dengan konstelasi Circular dapat diberikan pada Gambar Gambar 3.10 Modulator 16 QAM Circular Input data dalam hal ini dipecah menjadi 4 kanal Q, I, C1, dan C2. Masingmasing memiliki bit rate ¼ nilai bit rate input. Empat bit data (satu simbol) secara serial dimasukkan ke splitter (pemecah), selanjutnya dikeluarkan, selanjutnya

48 dikeluarkan secara simultan (serempak). Bit-bit I, C1, dan C2 memasuki 2-to-4 level converter kanal in-phase. Bit-bit Q, C1, dan C2 memasuki 2-to-4 level converter kanal quadrature. Dalam realisasinya 2-to-4 level converter merupakan DAC. Dengan 3 bit input akan menghasilkan 8 kombinasi sinyal. Bit I dan Q menentukan polaritas sinyal (logika 1 = positif dan logika 0 = negatif). Bit-bit pada C1 da C1 menentukan magnitudo sinyal (logika 1 =1.307 dan logika 0 = 0.54). Bit C2 menentukan faktor pengali magnitudo sinyal (logika 1 = 2x dan logika 0 = 1x). Tabel 3.2 menunjukkan tabel kebenaran dari sinyal 8 level PAM yang bersesuaian dengan kondisi ouput pada 2-to-4 level converter. Tabel 3.2 Tabel kebenaran sinyal 8 PAM Sinyal PAM memodulasi carrier in-phase dan quadrature dalam faktor pengali modulator. Karena bit-bit C1 dan C1 tidak mungkin memiliki logic gate sama, output dari kanal in-phase dan quadrature tidak memiliki magnitudo sama walaupun mungkin memiliki polaritas sama. Linear summer mengkombinasikan output dari faktor pengali modulator kanal in-phase dan quadrature untuk menghasilkan 16 kombinasi yang mungkin. Bit

49 input in-phase I=0, C1=0 dan C2=0, pada product modulator output = sin ωct. Bit input quadrature Q=1, C1 =1, dan C2=0 pada product modulator outputnya = - 1,307 cos ωct. Kombinasi pada linear summer memberikan : Output linear summer = sin ωct -1,307 cos ωct = sin (ωct + tan-1(-0.541/-1,307)) = sin (ωct ) (3.9) Disesuaikan dengan bentuk dasar pada sinyal 16-QAM, maka bentuk ini menjadi : Output linear summer = cos (ωct π/2 radian) (3.10) Secara keseluruhan kombinasi dari kanal in-phase dan quadrature pada linear summer memberi hasil seperti pada Tabel 3.2 dan konstelasi sinyal circular yang dihasilkan pada pemancar seperti pada Gambar Gambar 3.11 Diagram konstelasi sinyal circular 16-QAM

50 Blok diagram penerima sistem 16-QAM Circular dapat diberikan seperti pada Gambar Gambar 3.12 Penerima 16 QAM Circular Kerja bagian penerima merupakan kebalikan bagian pemancar. Dari sinyal 16-QAM di-split untuk dilakukan proses pembentukan ulang carrier, dan selanjutnya hasilnya ini digunakan untuk product detector dan setelah proses LPF dan ADC dihasilkan sederetan bit dalam bentuk paralel. Diujung proses merupakan konversi dari paralel ke serial untuk merecover data yang dihasilkan. 3.4 Transformasi Fourier Diskrit Transformasi fourier diskrit banyak digunakan untuk menyederhanakan suatu persoalan desain dan analisis baik dalam persoalan sistem yang kompleks maupun dengan data yang banyak. Dengan metodologi analisis fourier diskrit maka sifat-sifat segala sistem komunikasi pada transmitter masukan dan keluaran,

51 diimplementasikan dengan menggunakan transformasi fourier diskrit / Discrete Fourier Transform (DFT). DFT adalah salah satu dari bentuk transformasi Fourier yang digunakan sebagai ganti integral, digunakan untuk penjumlahan. DFT juga sering disebut Finite Fourier Transform (transformasi Fourier berhingga), yang diterapkan untuk pemrosesan sinyal digital. Untuk urutan bilangan yang diformulasikan oleh DFT menjadi[10] : X k Dimana : = N 1 n= 0 2πi kn N χ e k = 0,, N 1 (3.11) n e = logaritma natural i = unit imajiner Sedangkan untuk IDFT adalah : N 1 1 2πi kn = N χ n X ke n = 0,, N 1 (3.12) N n= 0 FFT sangat dibutuhkan untuk aplikasi dari pemrosesan sinyal digital untuk menyelesaikan persamaan differensial parsial. Penggunaan N subcarrier yang terlalu besar membutuhkan lebih banyak komputasi per unit waktu. Banyaknya komputasi yang dilakukan untuk N subcarrier pada DFT adalah N 2. Ini membuat pengolahan sinyal pada DMT dengan menggunakan DFT/IDFT menjadi kurang efisien. Penerapan algoritma Fast Fourier Transform/Inverse Fast Fourier Transform (FFT/IFFT) pada Discrete Fourier Transform memberikan cara yang efisien untuk pemrosesan sinyal pada DMT yang menggunakan N subcarrier sangat besar. Proses komputasi pada algoritma ini didasarkan pada dekompresi atau pemecahan transformasi menjadi transformasi-transformasi yang lebih kecil ukurannya dan mengkombinasikan hasilnya untuk mendapatkan transformasi total.

52 Pada algoritma FFT ini banyaknya komputasi yang terjadi adalah N/2log 2 N, dimana N adalah banyaknya jumlah subcarrier. Perbandingan jumlah komputasi yang dilakukan oleh DFT dan FFT dapat dilihat pada Tabel 3.3[10]. Tabel 3.3 Perbandingan Jumlah Komputasi antara DFT dan Algoritma FFT Jumlah Stage V Jumlah Titik N Perkalian Langsung N 2 Algoritma FFT (N/2)log 2 N Perbandingan Kecepatan R=N 2 /((N/2)log 2 N) , , , , , , Formula DFT DFT (Discrete Fourier Transform) dari deretan N-titik sinyal waktu diskrit x[n] dimana 0 n N 1didefinisikan sebagai[10]: N 1 n= 0 kn X ( k) = x[ n] W ; k = 0,1,.., N 1 (3.13) Dimana W N didefenisikan sebagai: N 2π j N W N = e (3.14) Sehingga faktor twiddle dari kn W N dapat ditulis sebagai: 2π j kn kn N W N e = (3.15)

53 Maka persamaan (3.12) dapat ditulis menjadi persamaan (3.10) Dari persamaan (3.12) di atas terlihat bahwa DFT X(k) merupakan suatu fungsi diskrit pada variabel integer k. DFT pada X(k) selengkapnya dispesifikasikan oleh nilai N pada X(0), X(1), X(2),..., X(N-1). Secara umum nilai ini merupakan bentuk kompleks, sehingga X(k) dapat dinyatakan dalam bentuk polar maupun rectangular. Dalam bentuk polar dinyatakan sebagai: X ( k) = X ( k) exp[ j X ( k); k = 0,1,2..., N 1 Dimana X (k) adalah magnitudo dari X(k) dan X (k) adalah fasa dari X(k). Dalam bentuk rectangular dapat ditulis sebagai: X ( k) = R + JI ; k = 0,1,2,..., N 1 k k Dimana R k adalah bagian real dari X(k) dan dirumuskan sebagai: R k N 1 2πkn x[0] + = x[ n]cos (3.16) =1 N n Dan I k merupakan bagian imajiner dari X(k) dan dirumuskan sebagai: I k N = n= 1 1 2πkn x[ n]sin N (3.17) Formula IDFT IDFT (Inverse DFT) dari deretan N-titik X(k), dimana 0 k N 1 didefinisikan sebagai: N 1 [ ] = x n N k = 1 0 kn X ( k) WN ; n = 0,1,..., N 1 (3.18)

54 Atau dapat ditulis sebagai sebagai persamaan (3.11). Deretan x[n] mengandung N sampling didalam domain waktu dan deretan X(k) mengandung N sampling didalam domain frekuensi. Titik-titik sampling didalam domain frekuensi terjadi pada N jarak frekuensi yang sama w k = 2πk/N, k = 0, 1, 2,..., N-1. Dengan titik-titik sampling ini, X(k) secara khusus menggambarkan deretan x[n] didalam domain frekuensi. Beberapa sifat yang penting dari DFT dapat dimanfaatkan didalam perhitungan. Sifat ini dapat dilihat bahwa kn W N adalah periodik didalam periode N. Ketika x[n] adalah deretan dengan nilai real, output DFT adalah simetris. DFT dari deretan yang real memiliki sifat-sifat: a. X(0) = X*(0) b. X(N-k) = X*(k), k = 1, 2,..., N-1 Dimana * menyatakan kompleks konjugat. IDFT dari X(k) akan menghasilkan deretan real. Sifat ini dapat dimanfaatkan untuk menghasilkan/membangkitkan sinyal real Fast Fourier Transform (FFT) dan Inverse FFT Algoritma FFT adalah algoritma yang sudah dikenal dengan baik dan digunakan secara luas didalam pemrosesan sinyal digital sebagai algoritma yang efisien didalam mengevaluasi DFT. FFT/IFFT adalah satu dari komponen yang paling penting didalam sistem modulasi DMT. Algoritma ini digunakan pada modulasi dan demodulasi DMT. Algoritma ini awalnya dikembangkan oleh Cooley dan Tokey yang mengajukan sebuah penyelesaian alternatif untuk DFT yang didasarkan pada

55 dekompresi (pemecahan) transformasi menjadi transformasi-transformasi yang lebih kecil ukurannya dan mengkombinasikan hasilnya untuk mendapatkan total transformasi. Bentuk pendekatan algoritma ini dapat dilakukan dengan decimation in time (DIT) dan decimation in frequency (DIF). Didalam proses decimation, baik decimation in time maupun decimation in frequency digunakan beberapa metode radix. Salah satu metodenya adalah radix-2 yang merupakan metode paling fundamental didalam proses decimation. Didalam algoritma radix-2, panjang deretan data x[n] dimana n = 0, 1, 2,...,N-1 merupakan dua pangkat integer positif (N = 2 p, dimana p adalah integer positif). Penggambaran dua (N/2) titik sub deretan x 1 [n] dan x 2 [n] sebagai nilai indeks genap dan nilai indeks ganjil dari x[n] adalah : N x 1[ n] = x[2n]; n = 0,1,2,..., 1 (3.19) 2 N x 2[ n] = x[2n + 1]; n = 0,1,2,..., 1 (3.20) 2 Kemudian DFT N-titik pada persamaan (3.13) dapat dinyatakan sebagai: N = X ( k) n= = 1 0 x[ n] W N ( N / 2) 1 n= 0 kn ( N / 2) 1 2kn x [2n] W + x[2n + 1] W (3.21) N n= 0 k (2n+ 1) N 2 j(2π / N ) 2 j(2π /( N / 2)) Sebagaimana W N = [ e ] = e = WN / 2, persamaan di atas menjadi: ( N / 2) 1 n= 0 ( N / 2) 1 kn k 1 [ n] WN / 2 + WN x2[ n] n= 0 kn X ( k) = x W (3.22) k Atau X k) = X ( k) + W X ( ) (3.23) ( 1 N 2 k N / 2

56 3.5 Frequency Division Multiplex (FDM) FDM merupakan suatu sistem multipleks / multiplexing, yaitu proses penyatuan banyak data dengan menggunakan satu fasilitas. FDM adalah operasi multipleks yang membagi slot-slot dalam domain frekuensi untuk beberapa data hasil dari modulasi. Tiap sinyal dimodulasi dengan frekuensi carrier berbeda. Frekuensi sinyal dipisah sehingga tidak terjadi overlap (guard bands) Oleh beberapa modulasi sub-carrier dari sinyal telepon, beberapa sinyal dapat dibangkitkan dan dimodulasi menuju carrier utama, yang dikirimkan ke kanal menjadi satu sinyal utama (multiplexing). Pada penerima, sinyal utama dipisahkan kemudian didemodulasi menjadi sinyal-sinyal awal. Ketika FDM digunakan untuk melewatkan banyak sinyal dalam menggunakan kanal komunikasi dalam rentang waktu yang sama, dinamakan frequency division multiple access (FDMA). Secara umum mekanisme FDM digambarkan pada Gambar 3.13[6]. a. Mekanisme FDM pada pengirim

57 b. Mekanisme FDM pada penerima Gambar 3.13 Mekanisme FDM pada pengirim dan penerima Koneksi internet melalui jalur telepon twisted pair membutuhkan 3 KHz bandwidth untuk akurasi transfer data. Ketika FDM digunakan untuk jaringan komunikasi, sinyal-sinyal input dikirim dan diterima dengan cepat. Jika sinyal dikirim dengan jarak yang panjang, diperlukan bandwidth yang besar. 3.6 Struktur Model DMT Dasar untuk implementasi DMT menggunakan DFT adalah penggunaan Inverse Fast Fourier Transform (IFFT) dan penggunaan algoritma Fast Fourier Transform (FFT). Penggunaan transformasi ini ketika diterima data masukan yang berada pada pemancar (transmitter), diproses lalu dikembalikan lagi prosesnya pada penerima (receiver). Gambar 3.14 menunjukkan blok diagram dari persamaanpersamaan tersebut dan implikasi prakteknya[3].

58 Data Random ADC S/P Modu lasi IFFT P/S Cyclic Prefix Channel Data output P/S demodul asi FFT S/P Remove Prefix Gambar Blok rangkaian dari sistem DMT Berdasarkan Gambar 3.14, pada sisi input data merupakan blok pengirim dan setelah melewati kanal, data akan dikirim menuju sisi penerima. 3.7 Transmitter Data masukan umumnya berupa 3 sumber komunikasi yaitu data, suara dan gambar. Data-data yang berupa sinyal tersebut akan diolah pada sisi pemancar adanya proses gangguan DMT berupa AWGN dan pembentukan kembali sinyal asli di penerima. Sisi transmitter terdiri dari blok-blok rangkaian yaitu konversi analog ke digital, konversi serial ke paralel, modulasi sinyal, IFFT dan cyclic extension Pembangkitan Data Masukan Proses simulasi dimulai dengan pembangkitan sejumlah bit-bit masukan secara acak oleh random data generator yang terdistribusi Uniform, hal ini dikarenakan probabilitas kemunculan bit 0 dan bit 1 yang dihasilkan adalah sama.

59 Pembangkitan data masukan pada simulasi ini berdasarkan pada pembangkitan bilangan acak berdistribusi Uniform. Distribusi ini memiliki kepadatan probabilitas yang sama untuk semua untuk semua besaran yang dikeluarkan / diambil yang terletak antara 0 dan 1. Fungsi kepadatan probabilitas dinyatakan dengan persamaan: 1 untuk A x B f ( x) = ( B A) (3.24) 0 untuk lainnya Dimana A, B = konstanta Proses pembangkitan distribusi Uniform dilakukan dengan persamaan: X = A + ( B A) U n (3.25) Dimana A = 0 dan B = 1 (untuk distribusi Uniform standar) U n = bilangan acak pada interval [0,1]. Data yang dibangkitkan dari pembangkitan data random elemen yang terdapat di dalam data tersebut terdiri dari bit 0 atau bit Konversi Analog ke Digital Konversi analog ke digital yaitu mengubah bentuk sinyal analog menjadi bentuk sinyal digital. Pada pengkonversian analog ke digital ada 2 metode yang digunakan ketika sinyal data melalui rangkaian ini, yaitu proses sampling dan kuantisasi. Sampling adalah proses pencuplikan sinyal kontinu (sinyal analog) pada interval waktu diskrit. Proses sampling dapat dilihat pada Gambar 3.15[9].

60 Gambar 3.15 Proses sampling Jika pada suatu sinyal terdapat frekuensi tertinggi f max, maka rata-rata sampel sinyalnya paling tidak 2f max, yang dijelaskan pada persamaan (3.26). F s = 2 f max (3.26) Sinyal analog yang terkuantisasi akan diubah menjadi deretan bit. Pada kuantisasi, sinyal input dibagi menjadi 2 B level sinyal dan setiap sampel dibulatkan ke level terdekat. Proses kuantisasi dapat dilihat pada persamaan q 2 B = 2A/ (3.27) dimana: A = amplitudo B = bit Pada proses kuantisasi, terdapat error yang tidak dapat dihilangkan (e), didistribusikan secara acak pada interval ± q/2. Maka noise kuantisasinya adalah : σ 2 e = 1 = q q / 2 q / 2 2 q = 12 2 e P( e) de q / 2 e q / 2 2 de (3.28)

61 Dengan daya sinyal A 2 /2, maka error pada kuantisasi yang dinamakan SQNR (signal-to-quantization noise power ratio) dijelaskan pada persamaan (3.29). 2 A / SQNR = 10log 10log 2 q /12 = 2 = 6.02B dB 2B (3.29) Konversi Serial ke Paralel Blok serial ke paralel berfungsi untuk merubah aliran data yang terdiri dari 1 baris dan beberapa kolom menjadi beberapa baris dan beberapa kolom. Hasil dari blok serial ke paralel ini adalah matriks bit-bit informasi dengan jumlah baris menyatakan banyaknya subcarrier yang digunakan setiap simbol. Gambar 3.16 menunjukan Ilustrasi konversi serial ke paralel. Gambar 3.16 Ilustrasi konversi serial ke paralel Modulasi Sinyal Data paralel yang diperoleh dipetakan (mapped) sesuai dengan teknik modulasi yang digunakan. Modulasi yang digunakan pada Tugas Akhir ini adalah modulasi 16-QAM dimana data akan dipetakan ke dalam konstelasi real (in-phase)

62 dan konstelasi imaginary (quadrature). Pada modulasi ini setiap simbol diwakili oleh 4 bit data informasi. Q I Gambar 3.17 konstelasi sinyal 16-QAM Pada persamaan 3.7 dapat dilihat persamaan dari sinyal QAM dimana kanal inphase I menggunakan cos (2πf c t) sebagai simbol pembawa, sedangkan kanal quadraturephase Q menggunakan sin(2πf c t) sebagai sinyal pembawa. Probabilitas Bit Error Rate (BER) sinyal QAM pada kanal AWGN diformulasikan dengan persamaan 3.30[13]. BER 3 erfc erfc 64 2 = Eb / N 0 Eb / N (3.30) Inverse Fast Fourier Transform (IFFT) IFFT mentransformasikan data paralel domain frekuensi menjadi data paralel domain waktu. Setelah konstelasi mapping, blok-blok yang bernilai bilangan

63 kompleks akan diubah menggunakan IFFT. Pada DMT proses IFFT juga disebut pencerminan (mirror). Proses IFFT akan menjamin ortogonalitas antar subcarrier Cyclic Prefix Cyclic Prefix merupakan pengulangan simbol dari pengirim yang berada di awal simbol dan akan muncul kembali pada penerima. Pada modulasi DMT VDSL Cylic Prefix disebut juga dengan Guard Interval [2]. Gambar 3.18 menunjukkan ilustrasi dari cyclic prefix. copy Cyclic Prefix v Gambar 3.18 cyclic prefix v frame VDSL = VDSL simbol (N) + cyclic prefix (v) Sample dicopi dari akhir simbol DMT dan ditambahkan pada awal simbol. Dengan membuang sampel Cyclic Prefix pada receiver sebelum demodulasi menggunakan FFT, ISI dan ICI dapat dieliminasi dengan sempurna sehingga simbol tetap terjaga. 3.8 Kanal Simbol-simbol DMT ditransmisikan kedalam suatu kanal yang dipengaruhi oleh AWGN. Sinyal utama yang telah mengalami gangguan AWGN akan dideteksi oleh receiver untuk dipisahkan dari sinyal asli. Noise ini merusak sinyal karena

64 terjadinya pergerakan elektron yang bersifat acak sehingga besarnya white noise juga berubah secara acak terhadap waktu. Model matematika sinyal masukan pada penerima yang diasumsikan mengalami kerusakan karena adanya Additive White Gaussian Noise ditunjukkan pada Persamaan r ( t) = s( t) + n( t) (3.31) Dimana : r (t) = sinyal yang diterima s(t) = sinyal yang dikirim n(t) = noise (white gaussian Noise) 3.9 Receiver Proses pada Receiver merupakan kebalikan dari transmitter. Pada penerima, terdiri dari pembuangan Cyclic Prefix, FFT, demodulasi, konversi paralel ke serial Pembuangan Cyclic Prefix Setelah semua proses pengiriman dilakukan, cyclic prefix akan dibuang ketika sinyal diproses pada blok penerima. Tujuannya adalah untuk membuang noise yang terjadi ketika sinyal berada di kanal karena sinyal yang harus diterima oleh stasiun penerima adalah sinyal asli yang dikirimkan yaitu simbol tanpa cyclic prefix Fast Fourier Transform (FFT) FFT berfungsi untuk mengubah sinyal domain waktu ke domain frekuensi dimana sinyal yang berbentuk bilangan kompleks akan diubah ke sinyal aslinya dengan penghapusan data yang di-mirror atau disebut juga proses de-mirroring.

65 3.9.3 Demodulasi Sinyal Blok ini berfungsi untuk mendemodulasikan data paralel setelah proses FFT berdasarkan konstelasi modulasi yang digunakan yaitu 16-QAM Konversi Paralel ke Serial Pada blok ini data paralel keluaran hasil demodulasi diubah menjadi satu jalur dalam bentuk serial dalam domain frekuensi untuk mendapatkan data asli yang dikirimkan oleh transmitter Perhitungan BER (Bit Error Rate) Metode perhitungan BER yang digunakan pada Tugas Akhir ini adalah metode Monte Carlo. Untuk menghitung jumlah kesalahan dilakukan proses pengurangan data yang dikirim dengan data yang diterima. Untuk perhitungan Bit Error Rate (BER) dihitung dengan membandingkan antara data output dan data input kemudian jumlah bit yang salah dibagi dengan jumlah bit yang dibangkitkan. Proses ini pada software Matlab dapat direpresentsikan sebagai berikut, jika data yang dibangkitkan adalah : seldata = rand(1,para*nd*ml) > 0.5; jika kesalahan terjadi dalam kanal komunikasi maka terjadi perubahan dari bit 0 menjadi bit 1, dan juga berubah dari bit 1 menjadi bit 0. maka data yang diterima adalah : demodata1 = reshape(demodata,1,para*nd*ml);

66 Untuk menghitung jumlah kesalahan, dilakukan proses pengurangan data yang dikirim dengan data yang diterima. Jika tidak ada kesalahan yang terjadi, maka panjang nod dibuat sebagai vektor nol. Namun sebaliknya, jika terjadi kesalahan maka panjang nod akan dibuat sebagai vektor bukan nol (nonzero) yang bernilai -1 atau 1 pada posisi error. Dengan mengambil nilai mutlak dari elemen-elemen subdata, dapat dibuat vektor yang dinyatakan dengan 1 pada tiap elemen yang mengalami error. Pengurangan vektor dinyatakan sebagai sebagai berikut: noe2 = sum(abs(demodata1-seldata)); nod2 =length(seldata); sehingga dengan demikian laju kesalahan bit (BER) dapat dihitung dengan membagi jumlah bit yang salah (noe) dengan jumlah bit yang dibangkitkan (nod) seperti berikut: ber=(noe./nod);

67 BAB IV SIMULASI DAN ANALISIS KINERJA MODULASI DMT PADA JARINGAN VDSL 4.1 Umum Pada BAB IV ini akan ditampilkan hasil simulasi dan analisa kinerja sistem (BER) yang dipengaruhi oleh jumlah subcarrier dan penambahan AWGN. Pada Tugas akhir ini data masukan yang digunakan merupakan data random yang berdistribusi uniform dengan kepadatan probabilitas yang sama untuk semua besaran yang diambil terletak antara 0 dan 1. Sampel yang digunakan dimulai dari n+1, dimana n = 0,1,2,3,4. Parameter masukan yang digunakan untuk memudahkan simulasi DMT yaitu : 1. Jumlah subcarrier (N) = 1024, 2048, 4096, 8192, Jumlah bit per simbol (M) = 4 3. Jumlah simbol DMT untuk satu loop = 8 4. Ukuran IFFT/FFT = Panjang Cyclic Prefix (cp) = Periode sampling (T) = 0.05 μs 7. Frekuensi sampling (fs) = 20 MHz 8. Periode CP (Tcp) = 0.8 μs 9. Frekuensi space subcarrier = MHz 10. Simbol rate = bps 11. Bit rate per carrier = bps

68 4.2 Prinsip Kerja Sistem Adapun prinsip kerja dari sistem yang disimulasikan adalah sebagai berikut : 1. Transmitter membangkitkan data bilangan acak yang terdistribui Uniform. 2. Data yang dibangkitkan dikonversikan dari analog ke bentuk digital. 3. Transmitter mengkonversikan data dari bentuk serial ke paralel. 4. Transmitter kemudian melakukan proses modulasi QAM dengan konstelasi IQ. 5. Proses penambahan cyclic prefix pada setiap simbol DMT. 6. Transmitter kemudian melakukan proses transformasi x-titik melalui IFFT yang menghasilkan simbol DMT. 7. Kemudian pada kanal transmisi, dilakukan penambahan gangguan, yaitu berupa variabel atenuasi dari AWGN. Untuk menganalisis kinerja BER terhadap jumlah carrier pada sistem. 8. Selanjutnya pada receiver dilakukan proses penghapusan cyclic prefix dengan mencuplik x-baris waktu terakhir pada setiap matrik sinyal domain waktu sesuai panjang FFT. 9. Receiver kemudian melakukan proses FFT. 10. Receiver selanjutnya melakukan proses demodulasi dengan pendeteksian magnitudo dari simbol-simbol DMT. 11. Receiver akhirnya mengkonversikan data yang diterima dari bentuk paralel ke serial untuk mendapatkan data asli yang dikirimkan oleh transmitter. Agar lebih jelas, diagram alir simulasi dapat dilihat pada Gambar 3.18.

69 Mulai Set Parameter Bangkitkan Data random Ubah data masukan menjadi bit data Ubah bit-bit data ke dalam bentuk paralel Memodulasi tiap-tiap bit paralel pada subcarrier yang berbeda Alirkan sinyal hasil modulasi ke dalam IFFT Tambahkan cyclic Prefix Y T Tampilkan prefiks sinyal di data Diproses di kanal dengan pengaruh AWGN Buang cyclic prefix Alirkan sinyal ke dalam FFT Demodulasi tiap-tiap sinyal Ubah sinyal ke bentuk bit serial Hitung Bit Error Rate Selesai Gambar 4.1 Diagram Alir Simulasi DMT

70 4.3 Kinerja BER Yang Dipengaruhi Oleh Jumlah Carrier Simulasi ini bertujuan untuk mengetahui pengaruh kinerja BER yang dipengaruhi oleh jumlah carrier. Adapun variasi jumlah carrier yang digunakan di dalam simulasi, yaitu: 1024, 2048, 4096, 8192 dan Tabel 4.1 menunjukkan nilai BER rata-rata untuk masing-masing subcarrier. Tabel 4.1 Nilai BER rata-rata untuk masing-masing subcarrier No Carrier BER Berdasarkan tabel 4.1 terlihat bahwa untuk jumlah carrier 1024, BER yang dihasilkan adalah dan untuk jumlah carrier 16384, BER yang dihasilkan adalah Untuk lebih jelasnya dapat dilihat pada lampiran I. Gambar 4.2 menunjukkan perbandingan BER terhadap jumlah carrier.

71 Gambar 4.2 Grafik perbandingan BER terhadap jumlah carrier Dari Gambar 4.2 diperoleh bahwa nilai BER hasil simulasi akan semakin besar sesuai dengan jumlah carrier yang digunakan. Semakin besarnya nilai BER maka kinerja sistem akan semakin buruk. 4.4 Analisis Data Keluaran Simulasi Untuk mendapatkan hasil perhitungan dan selang kepercayaan untuk mean μ = E(X) dimana X adalah variabel acak yang ditentukan sebagai perulangan independen dari simulasi dan x 1, x 2...x n akan dihasilkan dari variabel acak[12].

VDSL (Very High bit-rate DSL)

VDSL (Very High bit-rate DSL) VDSL (Very High bit-rate DSL) Oleh Endi Sopyandi 0404030377 DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS INDONESIA DEPOK 2008 Daftar Isi Halaman Judul Daftar Isi 1 1 Pendahuluan 2 2 Kerangka Teoritis

Lebih terperinci

TUGAS AKHIR ANALISIS KINERJA DISCRETE MULTITONE (DMT) PADA TEKNOLOGI ASYMMETRIC SUSCRIBER DIGITAL LINE (ADSL) O L E H ADHI PRADANA

TUGAS AKHIR ANALISIS KINERJA DISCRETE MULTITONE (DMT) PADA TEKNOLOGI ASYMMETRIC SUSCRIBER DIGITAL LINE (ADSL) O L E H ADHI PRADANA TUGAS AKHIR ANALISIS KINERJA DISCRETE MULTITONE (DMT) PADA TEKNOLOGI ASYMMETRIC SUSCRIBER DIGITAL LINE (ADSL) O L E H ADHI PRADANA 020402014 DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS SUMATERA

Lebih terperinci

Politeknik Elektronika Negeri Surabaya PENS DIGITAL SUBSCRIBER LINE (DSL) Modul 6 Jaringan Teleponi. Prima Kristalina PENS (Desember 2014)

Politeknik Elektronika Negeri Surabaya PENS DIGITAL SUBSCRIBER LINE (DSL) Modul 6 Jaringan Teleponi. Prima Kristalina PENS (Desember 2014) Politeknik Elektronika Negeri Surabaya 1 DIGITAL SUBSCRIBER LINE (DSL) Modul 6 Jaringan Teleponi Prima Kristalina (Desember 2014) 2 Overview Latar Belakang Kondisi Jarlokat saat ini Konsep Dasar DSL Teknik

Lebih terperinci

Pengantar Asymmetric Digital Subscriber Line (ADSL)

Pengantar Asymmetric Digital Subscriber Line (ADSL) Pengantar Asymmetric Digital Subscriber Line (ADSL) Apabila Kita memperhatikan perkembangan teknologi telekomunikasi saat ini, maka hampir dapat dipastikan perkembangan yang paling pesat dalam teknologi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Definisi Sistem Modulasi Modulasi (mapping) adalah proses perubahan karakteristik dari sebuah gelombang carrier atau pembawa aliran bit informasi menjadi simbol-simbol. Proses

Lebih terperinci

BAB II ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) (multicarrier) yang saling tegak lurus (orthogonal). Pada prinsipnya, teknik OFDM

BAB II ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) (multicarrier) yang saling tegak lurus (orthogonal). Pada prinsipnya, teknik OFDM BAB II ORTHOGONAL FREQUENCY DIVISION MULTIPLEING (OFDM) 21 Umum OFDM merupakan sebuah teknik transmisi dengan beberapa frekuensi (multicarrier) yang saling tegak lurus (orthogonal) Pada prinsipnya, teknik

Lebih terperinci

TUGAS AKHIR PEMODELAN DAN SIMULASI ORTHOGONAL FREQUENCY AND CODE DIVISION MULTIPLEXING (OFCDM) PADA SISTEM KOMUNIKASI WIRELESS OLEH

TUGAS AKHIR PEMODELAN DAN SIMULASI ORTHOGONAL FREQUENCY AND CODE DIVISION MULTIPLEXING (OFCDM) PADA SISTEM KOMUNIKASI WIRELESS OLEH TUGAS AKHIR PEMODELAN DAN SIMULASI ORTHOGONAL FREQUENCY AND CODE DIVISION MULTIPLEXING (OFCDM) PADA SISTEM KOMUNIKASI WIRELESS Diajukan untuk memenuhi salah satu persyaratan dalam menyelesaikan Pendidikan

Lebih terperinci

PENGUJIAN TEKNIK FAST CHANNEL SHORTENING PADA MULTICARRIER MODULATION DENGAN METODA POLYNOMIAL WEIGHTING FUNCTIONS ABSTRAK

PENGUJIAN TEKNIK FAST CHANNEL SHORTENING PADA MULTICARRIER MODULATION DENGAN METODA POLYNOMIAL WEIGHTING FUNCTIONS ABSTRAK Abstrak PENGUJIAN TEKNIK FAST CHANNEL SHORTENING PADA MULTICARRIER MODULATION DENGAN METODA POLYNOMIAL WEIGHTING FUNCTIONS Jongguran David/ 0322136 Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof. Drg.

Lebih terperinci

Home Networking. Muhammad Riza Hilmi, ST.

Home Networking. Muhammad Riza Hilmi, ST. Home Networking Muhammad Riza Hilmi, ST. saya@rizahilmi.com http://learn.rizahilmi.com Pengertian Jaringan adalah dua komputer atau lebih yang saling berhubungan satu dengan yang lainnya menggunakan media

Lebih terperinci

TEKNOLOGI JARINGAN AKSES

TEKNOLOGI JARINGAN AKSES TEKNOLOGI JARINGAN AKSES Digital Line Carrier atau Pair Gain DLC memungkinkan penggunaan 1 pair kabel untuk beberapa pelanggan, misalnya 1 line untuk 8 pelanggan. Perbedaan UDLC dan IDLC Teknologi DLC

Lebih terperinci

DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2011

DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2011 TUGAS AKHIR EVALUASI KINERJA MIMO-OFDM DENGAN MODULASI ADAPTIF PADA LONG TERM EVOLUTION DALAM ARAH DOWNLINK Diajukan untuk memenuhi salah satu persyaratan dalam menyelesaikan pendididikan sarjana (S-1)

Lebih terperinci

TUGAS AKHIR ANALISIS KINERJA ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING PADA SISTEM DVB-T (DIGITAL VIDEO BROADCASTING TERRESTRIAL)

TUGAS AKHIR ANALISIS KINERJA ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING PADA SISTEM DVB-T (DIGITAL VIDEO BROADCASTING TERRESTRIAL) TUGAS AKHIR ANALISIS KINERJA ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING PADA SISTEM DVB-T (DIGITAL VIDEO BROADCASTING TERRESTRIAL) Diajukan untuk memenuhi persyaratan menyelesaikan pendidikan sarjana (S-1)

Lebih terperinci

TREND JARINGAN. Muhammad Riza Hilmi, ST.

TREND JARINGAN. Muhammad Riza Hilmi, ST. TREND JARINGAN Muhammad Riza Hilmi, ST. saya@rizahilmi.com http://www.rizahilmi.com Jaringan Komputer Sebuah sistem yang terdiri atas komputer-komputer yang didesain untuk dapat berbagi sumber daya (printer,

Lebih terperinci

Frequency Division Multiplexing

Frequency Division Multiplexing Multiplexing 1 Multiplexing 2 Frequency Division Multiplexing FDM Sinyal yang dimodulasi memerlukan bandwidth tertentu yang dipusatkan di sekitar frekuensi pembawa disebut channel Setiap sinyal dimodulasi

Lebih terperinci

Jaringan Komputer Multiplexing

Jaringan Komputer Multiplexing Jaringan Komputer Multiplexing Multiplexing Frequency Division Multiplexing FDM Bandwidth yang bisa digunakan dari suatu media melebihi bandwidth yang diperlukan dari suatu channel Setiap sinyal dimodulasi

Lebih terperinci

BAB III PEMODELAN MIMO OFDM DENGAN AMC

BAB III PEMODELAN MIMO OFDM DENGAN AMC BAB III PEMODELAN MIMO OFDM DENGAN AMC 3.1 Pemodelan Sistem Gambar 13.1 Sistem transmisi MIMO-OFDM dengan AMC Dalam skripsi ini, pembuatan simulasi dilakukan pada sistem end-to-end sederhana yang dikhususkan

Lebih terperinci

ANALISIS UNJUK KERJA CODED OFDM MENGGUNAKAN KODE CONVOLUTIONAL PADA KANAL AWGN DAN RAYLEIGH FADING

ANALISIS UNJUK KERJA CODED OFDM MENGGUNAKAN KODE CONVOLUTIONAL PADA KANAL AWGN DAN RAYLEIGH FADING ANALISIS UNJUK KERJA CODED OFDM MENGGUNAKAN KODE CONVOLUTIONAL PADA KANAL AWGN DAN RAYLEIGH FADING F. L. H. Utomo, 1 N.M.A.E.D. Wirastuti, 2 IG.A.K.D.D. Hartawan 3 1,2,3 Jurusan Teknik Elektro, Fakultas

Lebih terperinci

ANALISIS UNJUK KERJA TEKNIK MIMO STBC PADA SISTEM ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING

ANALISIS UNJUK KERJA TEKNIK MIMO STBC PADA SISTEM ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING ANALISIS UNJUK KERJA TEKNIK MIMO STBC PADA SISTEM ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING T.B. Purwanto 1, N.M.A.E.D. Wirastuti 2, I.G.A.K.D.D. Hartawan 3 1,2,3 Jurusan Teknik Elektro, Fakultas Teknik,

Lebih terperinci

Simulasi Modulasi Discrete Multitone pada Asymmetric Digital Subscriber Line. Purwanto Nugroho L2F

Simulasi Modulasi Discrete Multitone pada Asymmetric Digital Subscriber Line. Purwanto Nugroho L2F Simulasi Modulasi Discrete Multitone pada Asymmetric Digital Subscriber Line Purwanto Nugroho L2F 96 62 Jurusan Teknik Elektro Fakultas Teknik Universitas Diponegoro Semarang, Indonesia ABSTRAK Permintaan

Lebih terperinci

OFDM : Orthogonal Frequency Division Multiplexing

OFDM : Orthogonal Frequency Division Multiplexing OFDM : Orthogonal Frequency Division Multiplexing I. Pendahuluan OFDM (Orthogonal Frequency Division Multiplexing) adalah sebuah teknik transmisi yang menggunakan beberapa buah frekuensi yang saling tegak

Lebih terperinci

BAB I PENDAHULUAN. Tuntutan kebutuhan manusia untuk dapat berkomunikasi di segala tempat,

BAB I PENDAHULUAN. Tuntutan kebutuhan manusia untuk dapat berkomunikasi di segala tempat, BAB I PENDAHULUAN 1.1 Latar Belakang Tuntutan kebutuhan manusia untuk dapat berkomunikasi di segala tempat, waktu, dan kondisi diam atau bergerak menyebabakan perkembangan telekomunikasi nirkabel (wireless)

Lebih terperinci

BAB IV SIMULASI DAN UNJUK KERJA MODULASI WIMAX

BAB IV SIMULASI DAN UNJUK KERJA MODULASI WIMAX BAB IV SIMULASI DAN UNJUK KERJA MODULASI WIMAX Sebelum pembuatan perangkat lunak simulator, maka terlebih dahulu dilakukan pemodelan terhadap sistem yang akan disimulasikan. Pemodelan ini dilakukan agar

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Bab II Landasan teori

BAB I PENDAHULUAN. 1.1 Latar Belakang. Bab II Landasan teori 1 1.1 Latar Belakang BAB I PENDAHULUAN Layanan komunikasi dimasa mendatang akan semakin pesat dan membutuhkan data rate yang semakin tinggi. Setiap kenaikan laju data informasi, bandwith yang dibutuhkan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 5 BAB II LANDASAN TEORI 2.1. PENDAHULUAN Teknologi internet saat ini sudah menjadi sebuah teknologi dan jaringan komunikasi data yang paling populer sekrang ini. Beberapa tahun lalu trafik E-mail dan WWW

Lebih terperinci

Analisis Throughput Pada Sistem MIMO dan SISO ABSTRAK

Analisis Throughput Pada Sistem MIMO dan SISO ABSTRAK Analisis Throughput Pada Sistem MIMO dan SISO Febriani Veronika Purba (0722120) Jurusan Teknik Elektro, Fakultas Teknik, Jalan Prof. Drg. Suria Sumantri 65 Bandung 40164, Indonesia Email : febri_vayung@yahoo.com

Lebih terperinci

PARADIGMA VOL. IX. NO. 1. JANUARI 2007

PARADIGMA VOL. IX. NO. 1. JANUARI 2007 IMPLEMENTASI TEKNOLOGI MODEM ADSL DALAM JARINGAN LOKAL AKSES TEMBAGA Oleh: Sri Hartanto ABSTRAK Pada umumnya, saluran telepon dalam Jaringan Lokal Akses Tembaga (Jarlokat) hanya menggunakan frekuensi voice

Lebih terperinci

BAB I PENDAHULUAN. 1.2 Tujuan

BAB I PENDAHULUAN. 1.2 Tujuan BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Radio Over Fiber (RoF) merupakan teknologi dimana sinyal microwave (listrik) didistribusikan menggunakan media dan komponen optik. Sinyal listrik digunakan

Lebih terperinci

PERBANDINGAN KINERJA ANTARA OFDM DAN OFCDM PADA TEKNOLOGI WiMAX

PERBANDINGAN KINERJA ANTARA OFDM DAN OFCDM PADA TEKNOLOGI WiMAX PERBANDINGAN KINERJA ANTARA OFDM DAN OFCDM PADA TEKNOLOGI WiMAX Dian Ratih Utami, Ali Hanafiah Rambe, ST., MT. Konsentrasi Teknik Telekomunikasi, Departemen Teknik Elektro Fakultas Teknik Universitas Sumatera

Lebih terperinci

BAB I PENDAHULUAN. Tuntutan kebutuhan manusia untuk dapat berkomunikasi di segala tempat,

BAB I PENDAHULUAN. Tuntutan kebutuhan manusia untuk dapat berkomunikasi di segala tempat, BAB I PENDAHULUAN 1.1 Latar Belakang Tuntutan kebutuhan manusia untuk dapat berkomunikasi di segala tempat, waktu, dan kondisi (statis dan bergerak) menyebabkan telekomunikasi nirkabel (wireless) berkembang

Lebih terperinci

MULTIPLEXING. Frequency-division Multiplexing (FDM)

MULTIPLEXING. Frequency-division Multiplexing (FDM) MULTIPLEXING Multiplexing merupakan rangkaian yang memiliki banyak input tetapi hanya 1 output dan dengan menggunakan sinyal-sinyal kendali, kita dapat mengatur penyaluran input tertentu kepada outputnya,

Lebih terperinci

DIGITAL SUBSCRIBER LINE

DIGITAL SUBSCRIBER LINE DIGITAL SUBSCRIBER LINE Jaringan Teleponi 1 1 PREVIEW 1. DSL Evolution 2. Basic Concept of DSL 3. DSL Components 4. X-DSL variants : - HDSL -SDSL -ADSL -VDSL 5. Modulation Techniques 6. DSL on future 7.

Lebih terperinci

Teknik Sistem Komunikasi 1 BAB I PENDAHULUAN

Teknik Sistem Komunikasi 1 BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Model Sistem Komunikasi Sinyal listrik digunakan dalam sistem komunikasi karena relatif gampang dikontrol. Sistem komunikasi listrik ini mempekerjakan sinyal listrik untuk membawa

Lebih terperinci

KOMUNIKASI DATA Teknik Pengkodean Sinyal. Fery Antony, ST Universitas IGM

KOMUNIKASI DATA Teknik Pengkodean Sinyal. Fery Antony, ST Universitas IGM KOMUNIKASI DATA Teknik Pengkodean Sinyal Fery Antony, ST Universitas IGM Gambar Teknik Pengkodean dan Modulasi a) Digital signaling: sumber data g(t), berupa digital atau analog, dikodekan menjadi sinyal

Lebih terperinci

Quadrature Amplitudo Modulation-16 Sigit Kusmaryanto,

Quadrature Amplitudo Modulation-16 Sigit Kusmaryanto, Quadrature Amplitudo Modulation-16 Sigit Kusmaryanto, http://sigitkus@ub.ac.id BAB I PENDAHULUAN 1.1 Latar Belakang Seiring dengan perkembangan ilmu pengetahuan dan teknologi yang sangat pesat, kebutuhan

Lebih terperinci

BAB II KONSEP DASAR. 2.1 Orthogonal Frequency Division Multiplexing (OFDM)

BAB II KONSEP DASAR. 2.1 Orthogonal Frequency Division Multiplexing (OFDM) BAB II KONSEP DASAR 2.1 Orthogonal Frequency Division Multiplexing (OFDM) OFDM merupakan sebuah teknik transmisi dengan beberapa frekuensi (multicarrier) yang saling tegak lurus (orthogonal). Pada prinsipnya,

Lebih terperinci

BAB II DASAR TEORI. Dasar teori yang mendukung untuk tugas akhir ini adalah teori tentang device atau

BAB II DASAR TEORI. Dasar teori yang mendukung untuk tugas akhir ini adalah teori tentang device atau 7 BAB II DASAR TEORI Dasar teori yang mendukung untuk tugas akhir ini adalah teori tentang device atau komponen yang digunakan, antara lain teori tentang: 1. Sistem Monitoring Ruangan 2. Modulasi Digital

Lebih terperinci

Analisa Kinerja Orthogonal Frequency Division Multiplexing (OFDM) Berbasis Perangkat Lunak

Analisa Kinerja Orthogonal Frequency Division Multiplexing (OFDM) Berbasis Perangkat Lunak Analisa Kinerja Orthogonal Frequency Division Multiplexing (OFDM) Berbasis Perangkat Lunak Kusuma Abdillah, dan Ir Yoedy Moegiharto, MT Politeknik Elektro Negeri Surabaya Institut Teknologi Sepuluh November

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Balakang 1.2. Perumusan Masalah

BAB I PENDAHULUAN 1.1. Latar Balakang 1.2. Perumusan Masalah BAB I PENDAHULUAN 1.1. Latar Balakang Dengan semakin berkembangnya kebutuhan akses data berkecepatan tinggi, diperlukan suatu layanan broadband dimana memiliki pita frekuensi yang lebar. Layanan broadband

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Metodologi penelitian merupakan suatu cara berpikir yang di mulai dari menentukan suatu permasalahan, pengumpulan data baik dari buku-buku panduan maupun studi lapangan, melakukan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Sejalan dengan perkembangan teknologi informasi dan telekomunikasi yang sangat pesat, maka sistem komunikasi wireless digital dituntut untuk menyediakan layanan data

Lebih terperinci

Teknik Pengkodean (Encoding) Dosen : I Dewa Made Bayu Atmaja Darmawan

Teknik Pengkodean (Encoding) Dosen : I Dewa Made Bayu Atmaja Darmawan Teknik Pengkodean (Encoding) Dosen : I Dewa Made Bayu Atmaja Darmawan Pendahuluan Pengkodean karakter, kadang disebut penyandian karakter, terdiri dari kode yang memasangkan karakter berurutan dari suatu

Lebih terperinci

STMIK AMIKOM YOGYAKARTA. Oleh : Nila Feby Puspitasari

STMIK AMIKOM YOGYAKARTA. Oleh : Nila Feby Puspitasari STMIK AMIKOM YOGYAKARTA Oleh : Nila Feby Puspitasari Data digital, sinyal digital - Merupakan bentuk paling sederhana dari pengkodean digital - Data digital ditetapkan satu level tegangan untuk biner satu

Lebih terperinci

BAB I PENDAHULUAN. 500 KHz. Dalam realisasi modulator BPSK digunakan sinyal data voice dengan

BAB I PENDAHULUAN. 500 KHz. Dalam realisasi modulator BPSK digunakan sinyal data voice dengan BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pada saat ini perkembangan teknologi semakin pesat, terutama dalam bidang komunikasi data. Komunikasi berarti pengiriman informasi dari pengirim ke penerima

Lebih terperinci

BAB II DASAR TEORI. Bab 2 Dasar Teori Teknologi Radio Over Fiber

BAB II DASAR TEORI. Bab 2 Dasar Teori Teknologi Radio Over Fiber BAB II DASAR TEORI 2. 1 Teknologi Radio Over Fiber Teknologi ROF adalah sebuah teknologi dimana sinyal microwave (elektrik) didistribusikan oleh komponen dan teknik optik [8]. Sistem ROF terdiri dari CU

Lebih terperinci

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB I PENDAHULUAN 1.1 LATAR BELAKANG BAB I PENDAHULUAN 1.1 LATAR BELAKANG Layanan 3G komersial telah diluncurkan sejak tahun 2001 dengan menggunakan teknologi WCDMA. Kecepatan data maksimum yang dapat dicapai sebesar 2 Mbps. Walaupun demikian,

Lebih terperinci

ANALISIS KINERJA BASIC RATE ACCESS (BRA) DAN PRIMARY RATE ACCESS (PRA) PADA JARINGAN ISDN

ANALISIS KINERJA BASIC RATE ACCESS (BRA) DAN PRIMARY RATE ACCESS (PRA) PADA JARINGAN ISDN Widya Teknika Vol.18 No.1; Maret 2010 ISSN 1411 0660 : 1-5 ANALISIS KINERJA BASIC RATE ACCESS (BRA) DAN PRIMARY RATE ACCESS (PRA) PADA JARINGAN ISDN Anis Qustoniah 1), Dewi Mashitah 2) Abstrak ISDN (Integrated

Lebih terperinci

MULTI MEDIA AKSES (MMA)

MULTI MEDIA AKSES (MMA) JETri, Volume 1, Nomor 1, Agustus 2001, Halaman 57-68, ISSN 1412-0372 MULTI MEDIA AKSES (MMA) Suhartati A & Yuli KN Dosen Jurusan Teknik Elektro Universitas Trisakti Abstract The very high necessity of

Lebih terperinci

KONSEP DAN TERMINOLOGI ==Terminologi==

KONSEP DAN TERMINOLOGI ==Terminologi== TRANSMISI DATA KONSEP DAN TERMINOLOGI ==Terminologi== Direct link digunakan untuk menunjukkan jalur transmisi antara dua perangkat dimana sinyal dirambatkan secara langsung dari transmitter menuju receiver

Lebih terperinci

BAB II JARINGAN LONG TERM EVOLUTION (LTE)

BAB II JARINGAN LONG TERM EVOLUTION (LTE) BAB II JARINGAN LONG TERM EVOLUTION (LTE) Pada bab dua ini akan dibahas mengenai evolusi jaringan komunikasi bergerak seluler, jaringan Long Term Evolution (LTE). Lalu penjelasan mengenai dasar Orthogonal

Lebih terperinci

KINERJA SISTEM OFDM MELALUI KANAL HIGH ALTITUDE PLATFORM STATION (HAPS) LAPORAN TUGAS AKHIR. Oleh: YUDY PUTRA AGUNG NIM :

KINERJA SISTEM OFDM MELALUI KANAL HIGH ALTITUDE PLATFORM STATION (HAPS) LAPORAN TUGAS AKHIR. Oleh: YUDY PUTRA AGUNG NIM : KINERJA SISTEM OFDM MELALUI KANAL HIGH ALTITUDE PLATFORM STATION (HAPS) LAPORAN TUGAS AKHIR Oleh: YUDY PUTRA AGUNG NIM : 132 03 017 Program Studi : Teknik Elektro SEKOLAH TEKNIK ELEKTRO DAN INFORMATIKA

Lebih terperinci

Rijal Fadilah. Transmisi & Modulasi

Rijal Fadilah. Transmisi & Modulasi Rijal Fadilah Transmisi & Modulasi Pendahuluan Sebuah sistem komunikasi merupakan suatu sistem dimana informasi disampaikan dari satu tempat ke tempat lain. Misalnya tempat A yang terletak ditempat yang

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Jaringan wireless menjadi salah satu sarana yang paling banyak dimanfaatkan dalam sistem komunikasi. Untuk menciptakan jaringan wireless yang mampu

Lebih terperinci

DAFTAR ISI. ABSTRAK. i ABSTRACT... ii KATA PENGANTAR... iii DAFTAR ISI.. v DAFTAR GAMBAR. vii DAFTAR TABEL.. viii DAFTAR ISTILAH...

DAFTAR ISI. ABSTRAK. i ABSTRACT... ii KATA PENGANTAR... iii DAFTAR ISI.. v DAFTAR GAMBAR. vii DAFTAR TABEL.. viii DAFTAR ISTILAH... ABSTRAK Broadband Wireless Access (BWA) telah menjadi cara terbaik untuk mempercepat koneksi Internet dan penggabungan data, suara dan layanan video. Broadband Wireless Access (BWA) dapat membantu memperluas

Lebih terperinci

JENIS-JENIS KONEKSI INTERNET

JENIS-JENIS KONEKSI INTERNET JENIS-JENIS KONEKSI INTERNET Jenis-jenis dari koneksi Internet adalah senagai berikut : A. Koneksi fisik, misalnya ethernet, fiber-optik, modem, ADSL, wave-lan, satelit, dan masih banyak lagi. Dari segi

Lebih terperinci

BAB I PENDAHULUAN. Sistem radio digital (Digital Audio Broadcasting, DAB, sekarang ini lazim

BAB I PENDAHULUAN. Sistem radio digital (Digital Audio Broadcasting, DAB, sekarang ini lazim BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Sistem radio digital (Digital Audio Broadcasting, DAB, sekarang ini lazim disebut dengan radio digital) sangat inovatif dan merupakan sistem penyiaran multimedia

Lebih terperinci

PENGARUH MODULASI M-PSK PADA UNJUK KERJA SISTEM ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM)

PENGARUH MODULASI M-PSK PADA UNJUK KERJA SISTEM ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) PENGARUH MODULASI M-PSK PADA UNJUK KERJA SISTEM ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) Wike Septi Fadhila 1), Imam Santoso, ST, MT 2) ; Ajub Ajulian Zahra, ST, MT 2) Jurusan Teknik Elektro,

Lebih terperinci

BAB II TEKNIK PENGKODEAN

BAB II TEKNIK PENGKODEAN BAB II TEKNIK PENGKODEAN 2.1 Pendahuluan Pengkodean karakter, kadang disebut penyandian karakter, terdiri dari kode yang memasangkan karakter berurutan dari suatu kumpulan dengan sesuatu yang lain. Seperti

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teknologi Broadband Merupakan jaringan yang dikonfigurasi dengan menggunakan kabel serat optik dengan kapasitas yang sangat tinggi yang menghubungkan pelanggan pada jaringan.

Lebih terperinci

Modulasi Digital. Levy Olivia Nur, MT

Modulasi Digital. Levy Olivia Nur, MT Modulasi Digital Levy Olivia Nur, MT Model Komunikasi Digital Sumber informasi Analog atau digital Format Simbol digital Modulator Channel Baseband atau bandpass Noise Tujuan Informasi Unformat Demodulat

Lebih terperinci

LOGO IMPLEMENTASI MODULASI DAN DEMODULASI M-ARY QAM PADA DSK TMS320C6416T

LOGO IMPLEMENTASI MODULASI DAN DEMODULASI M-ARY QAM PADA DSK TMS320C6416T IMPLEMENTASI MODULASI DAN DEMODULASI M-ARY QAM PADA DSK TMS320C6416T 2210106006 ANGGA YUDA PRASETYA Pembimbing 1 Pembimbing 2 : Dr. Ir. Suwadi, MT : Ir. Titik Suryani, MT Latar Belakang 1 2 Perkembangan

Lebih terperinci

BAB IV PEMODELAN SIMULASI

BAB IV PEMODELAN SIMULASI BAB IV PEMODELAN SIMULASI Pada tugas akhir ini akan dilakukan beberapa jenis simulasi yang bertujuan untuk mengetahui kinerja dari sebagian sistem Mobile WiMAX dengan menggunakan model kanal SUI. Parameter-parameter

Lebih terperinci

Analisis Kualitas Jaringan Tembaga Terhadap Penerapan Teknologi Annex M Pada Perangkat MSAN Studi Kasus Di PT.Telkom Purwokerto

Analisis Kualitas Jaringan Tembaga Terhadap Penerapan Teknologi Annex M Pada Perangkat MSAN Studi Kasus Di PT.Telkom Purwokerto Analisis Kualitas Jaringan Tembaga Terhadap Penerapan Teknologi Annex M Pada Perangkat MSAN Studi Kasus Di PT.Telkom Purwokerto Solichah Larasati 1 Wahyu Pamungkas 2 Eka Wahyudi 3 123 Sekolah Tinggi Teknologi

Lebih terperinci

SINYAL & MODULASI. Ir. Roedi Goernida, MT. Program Studi Sistem Informasi Fakultas Rekayasa Industri Institut Teknologi Telkom Bandung

SINYAL & MODULASI. Ir. Roedi Goernida, MT. Program Studi Sistem Informasi Fakultas Rekayasa Industri Institut Teknologi Telkom Bandung SINYAL & MODULASI Ir. Roedi Goernida, MT Program Studi Sistem Informasi Fakultas Rekayasa Industri Institut Teknologi Telkom Bandung 2012 1 Pengertian Sinyal Merupakan suatu perubahan amplitudo dari tegangan,

Lebih terperinci

BAB III DISCRETE FOURIER TRANSFORM SPREAD OFDM

BAB III DISCRETE FOURIER TRANSFORM SPREAD OFDM BAB III DISCRETE FOURIER TRANSFORM SPREAD OFDM Pada bab tiga ini akan membahas mengenai seluk beluk DFTS-OFDM baik dalam hal dasar-dasar DFTS-OFDM hingga DFTS-OFDM sebagai suatu sistem yang digunakan pada

Lebih terperinci

TEE 843 Sistem Telekomunikasi. 7. Modulasi. Muhammad Daud Nurdin Jurusan Teknik Elektro FT-Unimal Lhokseumawe, 2016

TEE 843 Sistem Telekomunikasi. 7. Modulasi. Muhammad Daud Nurdin Jurusan Teknik Elektro FT-Unimal Lhokseumawe, 2016 TEE 843 Sistem Telekomunikasi 7. Modulasi Muhammad Daud Nurdin syechdaud@yahoo.com Jurusan Teknik Elektro FT-Unimal Lhokseumawe, 2016 Modulasi Prinsip Dasar Modulasi Modulasi Gelombang Kontinu Modulasi

Lebih terperinci

TEKNIK PENGKODEAN SINYAL

TEKNIK PENGKODEAN SINYAL TEKNIK PENGKODEAN SINYAL Sumber: Bab 5 Data and Computer Communications William Stallings Program Studi S1 Teknik Telekomunikasi Jurusan Teknik Elektro Sekolah Tinggi Teknologi Telkom 3/17/2006 JARINGAN

Lebih terperinci

BAB I PENDAHULUAN. Gambar 1.1. Konsep global information village [2]

BAB I PENDAHULUAN. Gambar 1.1. Konsep global information village [2] 1 BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan komunikasi suara, data, dan multimedia melalui Internet dan perangkat-perangkat bergerak semakin bertambah pesat [1-2]. Penelitian dan pengembangan teknologi

Lebih terperinci

BAB I PENDAHULUAN PENDAHULUAN

BAB I PENDAHULUAN PENDAHULUAN BAB I PENDAHULUAN PENDAHULUAN 1.1 Latar Belakang Dewasa ini kebutuhan akan komunikasi nirkabel sangat pesat. Gedung-gedung perkantoran, perumahan-perumahan, daerah-daerah pusat perbelanjaan menuntut akan

Lebih terperinci

Internet kabel menggunakan media kabel koaksial sebagai media aksesnya. Asalnya kabel koaksial ini hanya digunakan untuk

Internet kabel menggunakan media kabel koaksial sebagai media aksesnya. Asalnya kabel koaksial ini hanya digunakan untuk CARA KERJA INTERNET TV KABEL Internet kabel menggunakan media kabel koaksial sebagai media aksesnya. Asalnya kabel koaksial ini hanya digunakan untuk menyalurkan signal TV saja. Dalam beberapa sistem,

Lebih terperinci

PERANCANGAN DAN PEMBUATAN PULSE CODE MODULATION MENGGUNAKAN KOMPONEN DASAR ELEKTRONIKA

PERANCANGAN DAN PEMBUATAN PULSE CODE MODULATION MENGGUNAKAN KOMPONEN DASAR ELEKTRONIKA PERANCANGAN DAN PEMBUATAN PULSE CODE MODULATION MENGGUNAKAN KOMPONEN DASAR ELEKTRONIKA LAPORAN TUGAS AKHIR Disusun Sebagai Salah Satu Syarat Untuk Menyelesaikan Program Pendidikan Diploma 3 Oleh: SHALLY

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Pada pengerjaan Tugas Akhir ini penelitian dilakukan menggunakan bahasa pemograman matlab R2008b. Untuk mendapatkan koefisien respon impuls kanal harus mengikuti metodologi

Lebih terperinci

ANALISIS JARAK TERHADAP REDAMAN, SNR (SIGNAL TO NOISE RATIO), DAN KECEPATAN DOWNLOAD PADA JARINGAN ADSL

ANALISIS JARAK TERHADAP REDAMAN, SNR (SIGNAL TO NOISE RATIO), DAN KECEPATAN DOWNLOAD PADA JARINGAN ADSL ANALISIS JARAK TERHADAP REDAMAN, (SIGNAL TO NOISE RATIO), DAN KECEPATAN DOWNLOAD PADA JARINGAN ADSL Anggun Fitrian Isnawati 1) Irwan Susanto 2) Renny Ayu Purwanita 3) 1,2,3 Program Studi D3 Teknik Telekomunikasi

Lebih terperinci

VISUALISASI SISTEM ADSL (ASYMMETRIC DIGITAL SUBSCRIBER LINE) dengan MENGGUNAKAN MODULASI QAM (QUADRATURE AMPLITUDE MODULATION )

VISUALISASI SISTEM ADSL (ASYMMETRIC DIGITAL SUBSCRIBER LINE) dengan MENGGUNAKAN MODULASI QAM (QUADRATURE AMPLITUDE MODULATION ) VISUALISASI SISTEM ADSL (ASYMMETRIC DIGITAL SUBSCRIBER LINE) dengan MENGGUNAKAN MODULASI QAM (QUADRATURE AMPLITUDE MODULATION ) Oleh : Tri Yosiana Indriaswari NIM : L2F300569 Jurusan Teknik Elektro Universitas

Lebih terperinci

PRINSIP UMUM. Bagian dari komunikasi. Bentuk gelombang sinyal analog sebagai fungsi waktu

PRINSIP UMUM. Bagian dari komunikasi. Bentuk gelombang sinyal analog sebagai fungsi waktu TEKNIK MODULASI PRINSIP UMUM PRINSIP UMUM Bagian dari komunikasi Bentuk gelombang sinyal analog sebagai fungsi waktu PRINSIP UMUM Modulasi merupakan suatu proses dimana informasi, baik berupa sinyal audio,

Lebih terperinci

BAB II TEKNOLOGI DIGITAL VIDEO BROADCASTING-TERRESTRIAL (DVB-T) standar DVB dalam penyiaran televisi digital terrestrial (DVB-T) dan hand-held

BAB II TEKNOLOGI DIGITAL VIDEO BROADCASTING-TERRESTRIAL (DVB-T) standar DVB dalam penyiaran televisi digital terrestrial (DVB-T) dan hand-held BAB II TEKNOLOGI DIGITAL VIDEO BROADCASTING-TERRESTRIAL (DVB-T) 2.1 Umum Saat ini salah satu pengembangan DVB yang menarik adalah penggunaan standar DVB dalam penyiaran televisi digital terrestrial (DVB-T)

Lebih terperinci

TUGAS AKHIR ANALISIS KINERJA MULTIPLEXER PADA ISDN (INTEGRATED SERVICE DIGITAL NETWORK) Oleh MAISARAH HARAHAP

TUGAS AKHIR ANALISIS KINERJA MULTIPLEXER PADA ISDN (INTEGRATED SERVICE DIGITAL NETWORK) Oleh MAISARAH HARAHAP TUGAS AKHIR ANALISIS KINERJA MULTIPLEXER PADA ISDN (INTEGRATED SERVICE DIGITAL NETWORK) Diajukan untuk memenuhi salah satu persyaratan dalam menyelesaikan pendidikan sarjana (S-1) pada Departemen Teknik

Lebih terperinci

BAB III INTERFERENSI RADIO FM DAN SISTEM INTERMEDIATE DATA RATE (IDR)

BAB III INTERFERENSI RADIO FM DAN SISTEM INTERMEDIATE DATA RATE (IDR) BAB III INTERFERENSI RADIO FM DAN SISTEM INTERMEDIATE DATA RATE (IDR) 3.1 Interferensi Radio FM Pada komunikasi satelit banyak ditemui gangguan-gangguan (interferensi) yang disebabkan oleh banyak faktor,

Lebih terperinci

SIMULASI TEKNIK MODULASI OFDM QPSK DENGAN MENGGUNAKAN MATLAB

SIMULASI TEKNIK MODULASI OFDM QPSK DENGAN MENGGUNAKAN MATLAB SIMULASI TEKNIK MODULASI OFDM QPSK DENGAN MENGGUNAKAN MATLAB Rosalia H. Subrata & Ferrianto Gozali Jurusan Teknik Elektro, Universitas Trisakti Jalan Kiai Tapa No. 1, Grogol, Jakarta Barat E-mail: rosalia@trisakti.ac.id,

Lebih terperinci

ANALISIS PERBANDINGAN TEKNOLOGI SPREAD SPECTRUM FHSS DAN DSSS PADA SISTEM CDMA

ANALISIS PERBANDINGAN TEKNOLOGI SPREAD SPECTRUM FHSS DAN DSSS PADA SISTEM CDMA ANALISIS PERBANDINGAN TEKNOLOGI SPREAD SPECTRUM FHSS DAN DSSS PADA SISTEM CDMA Linda Nurmalia, Maksum Pinem Konsentrasi Teknik Telekomunikasi, Departemen Teknik Elektro Fakultas Teknik Universitas Sumatera

Lebih terperinci

1. Adaptive Delta Modulation (ADM) Prinsip yang mendasari semua algoritma ADM adalah sebagai berikut:

1. Adaptive Delta Modulation (ADM) Prinsip yang mendasari semua algoritma ADM adalah sebagai berikut: 1. Adaptive Delta Modulation (ADM) Adaptive delta modulation (ADM) merupakan modifikasi dari DM (Delta Modulation). ADM digunakan untuk mengatasi bising kelebihan beban yang terjadi pada modulator data

Lebih terperinci

SIMULASI PERBANDINGAN KINERJA MODULASI M-PSK DAN M-QAM TERHADAP LAJU KESALAHAN DATA PADA SISTEM ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM)

SIMULASI PERBANDINGAN KINERJA MODULASI M-PSK DAN M-QAM TERHADAP LAJU KESALAHAN DATA PADA SISTEM ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) SIMULASI PERBANDINGAN KINERJA MODULASI M-PSK DAN M-QAM TERHADAP LAJU KESALAHAN DATA PADA SISTEM ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) Aditya Ananta 1), Imam Santoso 2), Ajub Ajulian Zahra 2)

Lebih terperinci

KOMUNIKASI DATA SUSMINI INDRIANI LESTARININGATI, M.T

KOMUNIKASI DATA SUSMINI INDRIANI LESTARININGATI, M.T Multiplexing Multiplexing adalah suatu teknik mengirimkan lebih dari satu (banyak) informasi melalui satu saluran. Tujuan utamanya adalah untuk menghemat jumlah saluran fisik misalnya kabel, pemancar &

Lebih terperinci

ANALISIS JARAK TERHADAP REDAMAN, SNR (SIGNAL TO NOISE RATIO), DAN KECEPATAN DOWNLOAD PADA JARINGAN ADSL

ANALISIS JARAK TERHADAP REDAMAN, SNR (SIGNAL TO NOISE RATIO), DAN KECEPATAN DOWNLOAD PADA JARINGAN ADSL ANALISIS JARAK TERHADAP REDAMAN, (SIGNAL TO NOISE RATIO), DAN KECEPATAN DOWNLOAD PADA JARINGAN ADSL Anggun Fitrian Isnawati 1) Irwan Susanto 2) Renny Ayu Purwanita 3) 1,2,3 Program Studi D3 Teknik Telekomunikasi

Lebih terperinci

BAB II SISTEM KOMUNIKASI

BAB II SISTEM KOMUNIKASI BAB II SISTEM KOMUNIKASI 2.1 Sistem Komunikasi Digital Dalam mentransmisikan data dari sumber ke tujuan, satu hal yang harus dihubungkan dengan sifat data, arti fisik yang hakiki di pergunakan untuk menyebarkan

Lebih terperinci

I. PENDAHULUAN. kebutuhan informasi suara, data (multimedia), dan video. Pada layanan

I. PENDAHULUAN. kebutuhan informasi suara, data (multimedia), dan video. Pada layanan I. PENDAHULUAN A. Latar Belakang Perkembangan layanan informasi komunikasi melaju begitu pesat. Pada awalnya layanan informasi komunikasi hanya berupa suara melalui teknologi switching PSTN, sekarang telah

Lebih terperinci

TUGAS AKHIR ANALISIS BER OFDM DENGAN MENGGUNAKAN LOW-DENSITY PARITY-CHECK (LDPC) PADA SISTEM DVB-T (DIGITAL VIDEO BROADCASTING TERRESTRIAL)

TUGAS AKHIR ANALISIS BER OFDM DENGAN MENGGUNAKAN LOW-DENSITY PARITY-CHECK (LDPC) PADA SISTEM DVB-T (DIGITAL VIDEO BROADCASTING TERRESTRIAL) TUGAS AKHIR ANALISIS BER OFDM DENGAN MENGGUNAKAN LOW-DENSITY PARITY-CHECK (LDPC) PADA SISTEM DVB-T (DIGITAL VIDEO BROADCASTING TERRESTRIAL) Diajukan untuk memenuhi persyaratan menyelesaikan Pendidikan

Lebih terperinci

TUGAS AKHIR. PENGARUH PANJANG CYCLIC PREFIX TERHADAP KINERJA SISTEM OFDM PADA WiMAX MUHAMMAD FAISAL

TUGAS AKHIR. PENGARUH PANJANG CYCLIC PREFIX TERHADAP KINERJA SISTEM OFDM PADA WiMAX MUHAMMAD FAISAL TUGAS AKHIR PENGARUH PANJANG CYCLIC PREFIX TERHADAP KINERJA SISTEM OFDM PADA WiMAX Diajukan untuk memenuhi salah satu persyaratan dalam menyelesaikan pendidikan sarjana (S-1) pada Departemen Teknik Elektro

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Dasar Jaringan Lokal Akses Tembaga Secara umum yang dimaksud dengan jaringan lokal pada sistem telekomunikasi adalah suatu bentuk jaringan akses (transmisi) yang secara

Lebih terperinci

SIMULASI ESTIMASI FREKUENSI UNTUK QUADRATURE AMPLITUDE MODULATION MENGGUNAKAN DUA SAMPEL TERDEKAT

SIMULASI ESTIMASI FREKUENSI UNTUK QUADRATURE AMPLITUDE MODULATION MENGGUNAKAN DUA SAMPEL TERDEKAT Abstrak SIMULASI ESTIMASI FREKUENSI UNTUK QUADRATURE AMPLITUDE MODULATION MENGGUNAKAN DUA SAMPEL TERDEKAT Ferdian Belia/9922074 Jurusan Teknik Elektro, Fakultas Teknik Elektro, Jalan Prof. Drg. Suria Sumantri

Lebih terperinci

DAFTAR PUSTAKA a. b. c. d. e. f.

DAFTAR PUSTAKA a. b. c. d. e. f. DAFTAR PUSTAKA 1. DIKTAT PT. TELKOM, 1987, Pengantar Sistem Telekomunikasi Jaringan, Perumtel, Bandung. 2. DIKTAT PT. TELKOM, 1996, Teknik Fundamental Technical Plan, PT. Telekomunikasi Indonesia, Indonesia.

Lebih terperinci

TUGAS AKHIR ANALISIS PERFORMANSI DAN TRAFFIK JARINGAN HFC (HYBRID FIBER COAXIAL) UNTUK LAYANAN TRIPLE PLAY

TUGAS AKHIR ANALISIS PERFORMANSI DAN TRAFFIK JARINGAN HFC (HYBRID FIBER COAXIAL) UNTUK LAYANAN TRIPLE PLAY TUGAS AKHIR ANALISIS PERFORMANSI DAN TRAFFIK JARINGAN HFC (HYBRID FIBER COAXIAL) UNTUK LAYANAN TRIPLE PLAY Diajukan guna melengkapi sebagian syarat dalam mencapai gelar Sarjana Strata Satu (S1) Disusun

Lebih terperinci

Simulasi MIMO-OFDM Pada Sistem Wireless LAN. Warta Qudri /

Simulasi MIMO-OFDM Pada Sistem Wireless LAN. Warta Qudri / Simulasi MIMO-OFDM Pada Sistem Wireless LAN Warta Qudri / 0122140 Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof.Drg.Suria Sumantri, MPH 65, Bandung, Indonesia, Email : jo_sakato@yahoo.com ABSTRAK Kombinasi

Lebih terperinci

JARINGAN AKSES BROADBAND

JARINGAN AKSES BROADBAND JARINGAN AKSES BROADBAND 1. Konsep Umum Broadband Secara umum, Broadband dideskripsikan sebagai komunikasi data yang memiliki kecepatan tinggi dan kapasitas tinggi. Perangkat transmisi yang digunakan diantaranya

Lebih terperinci

BAB II DASAR TEORI A. JARINGAN LOKAL AKSES KABEL TEMBAGA (JARLOKAT) (di sentral) melalui konstruksi kabel primer (terdiri dari manhole dan duct) dan

BAB II DASAR TEORI A. JARINGAN LOKAL AKSES KABEL TEMBAGA (JARLOKAT) (di sentral) melalui konstruksi kabel primer (terdiri dari manhole dan duct) dan Tugas Akhir BAB II BAB II DASAR TEORI A. JARINGAN LOKAL AKSES KABEL TEMBAGA (JARLOKAT) JARLOKAT (Jaringan lokal Akses Kabel Tembaga) adalah sebuah jaringan akses yang menggunakan kabel tembaga sebagai

Lebih terperinci

BAB IV SINYAL DAN MODULASI

BAB IV SINYAL DAN MODULASI DIKTAT MATA KULIAH KOMUNIKASI DATA BAB IV SINYAL DAN MODULASI IF Pengertian Sinyal Untuk menyalurkan data dari satu tempat ke tempat yang lain, data akan diubah menjadi sebuah bentuk sinyal. Sinyal adalah

Lebih terperinci

Simulasi Dan Analisa Efek Doppler Terhadap OFDM Dan MC-CDMA

Simulasi Dan Analisa Efek Doppler Terhadap OFDM Dan MC-CDMA Simulasi Dan Analisa Efek Doppler Terhadap OFDM Dan MC-CDMA Ruliyanto, Rianto ugroho Program Studi Teknik Elektro, Fakukultas Teknik dan Sains, Universitas asional Jakarta Korespondensi: Rully_33@yahoo.co.id

Lebih terperinci

BINARY PHASA SHIFT KEYING (BPSK)

BINARY PHASA SHIFT KEYING (BPSK) BINARY PHASA SHIFT KEYING (BPSK) Sigit Kusmaryanto http://sigitkus@ub.ac.id I Pendahuluan Modulasi adalah proses penumpangan sinyal informasi pada sinyal pembawa sehingga menghasilkan sinyal termodulasi.

Lebih terperinci

Pembuatan Modul Praktikum Teknik Modulasi Digital 8-QAM, 16-QAM, dan 64-QAM dengan Menggunakan Software

Pembuatan Modul Praktikum Teknik Modulasi Digital 8-QAM, 16-QAM, dan 64-QAM dengan Menggunakan Software Pembuatan Modul Praktikum Teknik Modulasi Digital 8-, 16-, dan 64- dengan Menggunakan Software Luluk Faridah 1, Aries Pratiarso 2 1 Mahasiswa Politeknik Elektronika Negeri Surabaya, Jurusan Teknik Telekomunikasi

Lebih terperinci

TRANSMISI DATA DAN ADSL / DSL SISTEM KOMUNIKASI DATA

TRANSMISI DATA DAN ADSL / DSL SISTEM KOMUNIKASI DATA TRANSMISI DATA DAN ADSL / DSL SISTEM KOMUNIKASI DATA ERA SYAFITRI HARRIS [04] XI TELEKOMUNIKASI 1 KATA PENGANTAR Puji syukur kehadirat Tuhan Yang Maha Kuasa atas segala limpahan Rahmat, Inayah dan Taufik

Lebih terperinci

KINERJA AKSES JAMAK OFDM-CDMA

KINERJA AKSES JAMAK OFDM-CDMA KINERJA AKSES JAMAK OFDM-CDMA Sukiswo 1, Ajub Ajulian Zahra 2 Jurusan Teknik Elektro, Fakultas Teknik, Universitas Diponegoro, Jln. Prof. Sudharto, SH, Tembalang, Semarang, 50275 E-mail: 1 sukiswok@yahoo.com,

Lebih terperinci