BAB II Tinjauan Pustaka

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II Tinjauan Pustaka"

Transkripsi

1 BAB II Tinjauan Pustaka 2.1 Magnetic Resonance Imaging (MRI) Magnetic Resonance Imaging (MRI) adalah suatu teknik penggambaran penampang tubuh berdasarkan prinsip resonansi magnetik inti atom hidrogen. Tehnik penggambaran MRI relatif komplek karena gambaran yang dihasilkan tergantung pada banyak parameter. Alat tersebut memiliki kemampuan membuat gambaran potongan coronal, sagital, aksial dan oblik tanpa banyak memanipulasi tubuh pasien. Bila pemilihan parameternya tepat, kualitas gambaran detil tubuh manusia akan tampak jelas, sehingga anatomi dan patologi jaringan tubuh dapat dievaluasi secara teliti. Magnetic Resonance Imaging yang disingkat dengan MRI adalah suatu alat diagnostik mutahir untuk memeriksa dan mendeteksi tubuh dengan menggunakan medan magnet dan gelombang frekuensi radio, tanpa operasi, penggunaan sinar X ataupun bahan radioaktif. Hasil pemeriksaan MRI adalah berupa rekaman gambar potongan penampang tubuh/organ manusia dengan menggunakan medan magnet berkekuatan antara 0,064 1,5 tesla (1 tesla = 1000 Gauss) dan resonansi getaran terhadap inti atom hidrogen. Beberapa faktor kelebihan yang dimilikinya, terutama kemampuannya membuat potongan koronal, sagital, aksial dan oblik tanpa banyak memanipulasi posisi tubuh pasien sehingga sangat sesuai untuk diagnostik jaringan lunak. 2.2 Komponen MRI Komputer pada MRI merupakan otak dan komponen utama yang digunakan untuk memproses sinyal, menyimpan data dan menampilkan gambar yang dihasilkan. Selain sistem computer, komponen utama pada perangkat MRI adalah: magnet utama, koil gradient X, Y, dan Z, koil pemancar dan penerima radiofrekuensi, serta sistem akuisisi data dalam komputer. Pada gambar 2.1 menunjukkan beberapa perangkat keras dari mesin MRI dimana diantaranya magnet utama, koil gradient X, Y, dan Z, koil pemancar dan penerima radiofrekuensi.

2 Gambar 2.1 Beberapa perangkat keras dari mesin MRI Magnet Utama Magnet utama dipakai untuk membangkitkan medan magnet berkekuatan besar yang mampu menginduksi jaringan tubuh sehingga menimbulkan magnetisasi Koil Gradien Koil gradien dipakai untuk membangkitkan medan magnet gradien yang berfungsi untuk menentukan irisan, pengkodean frekuensi, dan pengkodean fase. Terdapat tiga medan yang saling tegak lurus, yaitu bidang x, y, dan z. Peranannya akan saling bergantian berkaitan dengan potongan yang dipilih yaitu aksial, sagital atau coronal. Gradien ini digunakan untuk memvariasikan medan pada pusat magnet yang terdapat tiga medan yang saling tegak lurus antara ketiganya (x,y,z). Pada gambar dibawah ini dapat dilihat komponen dari koil gradient yang ada pada mesin MRI diamana Kumparan gradien dibagi 3, yaitu : a. Kumparan gradien pemilihan irisan (slice) Gz b. Kumparan gradien pemilihan fase encoding - Gy c. Kumparan gradien pemilihan frekuensi encoding Gx

3 Gambar 2.2 Skema koil GG xx, GG yy, dan GG zz Koil Radio Frekuensi Koil radio frekuensi (RF Coil) terdiri dari 2 yaitu koil pemancar dan koil penerima. Koil pemancar berfungsi untuk memancarkan gelombang radio pada inti yang terlokalisir sehingga terjadi eksitasi, sedangkan koil penerima berfungsi untuk menerima sinyal output setelah proses eksitasi terjadi. Koil RF dirancang untuk sedekat mungkin dengan obyek agar sinyal yang diterima memiliki amplitudo besar. Beberapa jenis koil RF diantaranya : a. Koil Volume (Volume Coil) Volume coils dapat digunakan secara eksklusif sebagai coils penerima atau kombinasi coils mengirim / menerima. Volume coils ditandai dengan kualitas sinyal homogen. Tipe lain dari coil volume kumparan tubuh, yang merupakan bagian integral dari sebuah scanner MR dan biasanya terletak di dalam lubang magnet itu sendiri. b. Koil Permukaan (Surface Coil) c. Koil Linier d. Koil Kuadrat e. Phase Array Coil

4 2.2.4 Sistem Komputer Sistem komputer bertugas sebagai pengendali dari sebagian besar peralatan MRI. Dengan kemampuan perangkat lunak yang besar, komputer mampu melakukan tugas-tugas multi (multi tasking), diantaranya adalah operator input, pemilihan slice, kontrol sistem gradien, kontrol sinyal RF dan lain-lain. Komputer juga berfungsi untuk mengolah sinyal hingga menjadi citra MRI yang dapat dilihat pada layar monitor, disimpan ke dalam disk atau CD, atau bisa langsung dicetak. 2.3 Proses Pembentukan Citra Pada MRI Spin Proton Magnetic resonance (MR) pencitraan menggunakan sinyal dari inti atom hidrogen (H) untuk membuat citra. Sebuah atom hidrogen terdiri dari inti yang mengandung satu proton dan elektron tunggal mengorbit inti (seperti terlihat pada Gambar. 2.3). Proton memiliki muatan positif dan elektron muatan negatif, atom hidrogen secara keseluruhan adalah netral. Gambar 2.3 Spin pada inti dari atom H Terlepas dari muatan positif, proton memiliki spin. Spin Proton adalah sifat instristik partikel bermuatan listrik yang berputar pada sumbunya sehingga menimbulkan arus listrik di sekitar sumbu putarnya. Arus listrik ini akan menginduksi medan magnet sehingga inti atom memiliki momen magnetik mikroskopik. Pada unsur yang memiliki nomor atom genap momen magnetik inti akan saling menghilangkan. Untuk itu, agar tetap diperoleh momen magnetik inti maka diperlukan unsur yang memiliki nomor atom ganjil.

5 Ini berarti bahwa proton berputar sekitar porosnya seperti gasing berputar. Proton tersebut memiliki dua sifat penting yaitu Sebagai massa berputar (m), proton memiliki momentum sudut dan berputar untuk mempertahankan orientasi spasial sumbu rotasi (seperti terlihat pada Gambar 2.4a.). Sebagai massa berputar dengan muatan listrik, sebagai tambahan proton memiliki momen magnetic dan berperilaku seperti magnet kecil. Oleh karena itu, proton dipengaruhi oleh medan magnet eksternal dan gelombang elektromagnetik (seperti terlihat pada Gambar. 2.4b). Gambar 2.4a. momentum sudut proton Gambar. 2.4b. proton memiliki momen magnetic Spin proton selalu memiliki besar yang sama dan tidak akan dapat dipercepat atau melambat, karena itu adalah sifat dasar dari partikel elementer. Hidrogen adalah nucleus aktif yang banyak digunakan dalam pencitraan MRI karena hidrogen dalam tubuh sangat banyak dan protonnya mempunyai moment magnetic yang besar. Dalam kondisi normal moment magnetic inti hydrogen arahnya random (seperti terlihat pada Gambar 2.5).

6 Gambar 2.5 Inti hydrogen arahnya random Namun apabila ditempatkan dalam suatu medan magnet yang kuat, moment magnetic inti-inti atom akan menyesuaikan arah dengan medan magnet (seperti terlihat pada Gambar 2.6). Gambar 2.6 inti-inti atom H yang parallel dan anti parallel Faktor-faktor yang mempengaruhi penyesuaian inti-inti atom hidrogen terhadap medan magnet eksternal adalah kuat lemahnya medan magnet dan energi inti atom, yakni bila energi lebih lemah tidak cukup kuat untuk berlawanan dengan medan magnet (BB 0 ), dan bila energi tinggi maka akan cukup untuk anti parallel (seperti terlihat pada Gambar 2.6). Inti yang paling banyak mendominasi jaringan biologi tubuh manusia adalah atom hydrogen. Atom hydrogen sangat banyak terdapat dalam jaringan biologi tubuh manusia dan protonnya mempunyai moment magnetic yang besar. Hal ini menyebabkan sinyal hidrogen yang dihasilkan 1000 kali lebih besar dari pada atom lainnya dalam tubuh, sehingga atom inilah yang digunakan sebagai sumber sinyal dalam pencitraan MRI.

7 2.3.2 Presesi Tiap-tiap spin inti hidrogen membentuk Net Magnetisation Vector (NMV) (seperti terlihat pada Gambar 2.8) pada sumbu atau porosnya. Pengaruh dari medan magnet eksternal (BB 0 ) akan menghasilkan spin sekunder atau gerakan NMV mengelilingi BB 0. Spin sekunder ini disebut precession (seperti terlihat pada Gambar 2.7), dan menyebabkan magnetik moment bergerak secara circular mengelilingi BB 0. Jalur sirkulasi pergerakan itu disebut precessional path dan kecepatan gerakan NMV mengelilingi BB 0 disebut frekuensi presesi. Satuan frekuensinya MHz, dimana 1 Hz = 1 putaran per-detik. Kecepatan atau frekuensi presesi proton atom hydrogen tergantung pada kuat magnet eksternal yang diberikan pada jaringan. Semakin kuat medan semakin cepat presesi proton dan frekuensi presesi yang tergantung pada kuat medan magnetik disebut dengan frekuensi Larmor yang mengikuti persamaan : ωω 0 = γγ 0 BB 0 (1) Dimana: ωω 0 adalah frekuensi Larmor dalam megahertz (MHz) γγ 0 rasio gyromagnetic (MHz/T) BB 0 kekuatan medan magnet eksternal dalam satuan tesla (T) Proton memiliki rasio gyromagnetic dari γ = 42,58 MHz / T, sehingga frekuensi Larmor dari 68,866 MHz di 1,5 T.

8 Gambar 2.7 Proses dari Presesi atom Hydrogen Gambar 2.8 Ilustrasi dari Net Magnetisasi Vector (NMV) Resonansi Merupakan sebuah fenomena diamana Radio Frekuensi (RF) dipancarkan dengan frekuensi yang sama dengan frekuensi larmor atom maka akan terjadi fenomena resonansi. Apabila objek diletakkan dalam medan magnet eksternal yang sangat kuat, maka inti-inti atomnya akan berada pada arah yang searah atau berlawanan dengan medan magnet eksternal dan intiinti itu akan mengalami perpindahan dari suatu energi ke tingkat energi yang lain setelah diberikan Radio Frekuensi (seperti terlihat pada Gambar 2.9). Proses perpindahan energi ini seringkali merubah arah dari NMV, akibatnya vektor dapat berubah arah dari arah longitudinal atau parallel medan magnet eksternal, ke arah vektor yang lain.

9 Gambar 2.9 pemberian Radiofrekuensi pada atom Hidrogen Pulsa Radio Frekuensi yang dipancarkan harus mempunyai frekuensi tertentu untuk dapat berperan dalam proses transisi energi pada atom, dan harus disesuaikan dengan kekuatan medan magnet eksternal (lihat Table 2.1). Table 2.1 Karakteristik Atom Isotope Symbol Spin Quantum Number Gyro Magnetic Ratio (MHz/T) Hydrogen H 1 1/2 42,6 Carbon C 13 1/2 10,7 Oxygen O 17 5/2 5,8 Fluorine F 19 1/2 40,0 Sodium Na 23 3/2 11,3 Magnesium Mg 25 5/2 2,6 Phosphorus P 31 1/2 17,2 Sulphur S 33 3/2 3,3 Iron Fe 57 1/2 1,4 Besar nilai magnetisasi dari obyek atau jaringan yang berada dalam medan magnet eksternal merupakan hubungan linier yaitu semakin besar nilai medan magnet eksternalnya maka akan semakin besar nilai magnetisasinya, setelah pemberian sinyal Radiofrekuensi maka atom hydrogen akan memancarkan energi berupa sinyal dimana sinyal ini diterima oleh koil Radio Frekuensi Receiver, diamana sinyal ini disebut sinyal MR (magnetic resonance),

10 2.3.4 MR Signal Akibat resonansi NMV yang mengalami inphase pada bidang transversal. Hukum Faraday menyatakan jika receiver koil ditempatkan pada area medan magnet yang bergerak misalnya NMV yang mengalami presesi pada bidang transversal tadi akan dihasilkan voltage dalam receiver koil. Oleh karena itu NMV yang bergerak menghasilkan medan magnet yang berfluktuasi dalam koil. Saat NMV berpresesi sesuai frekuensi Larmor pada bidang transversal, maka akan terjadi voltage. Voltage ini merupakan MR signal. Frekuensi dari signal adalah sama dengan frekuensi Larmor, besar kecilnya sinyal tergantung pada banyaknya magnetisasi dalam bidang transversal. Bila masih banyak NMV, akan menimbulkan sinyal yang kuat dan tampak terang pada gambar, bila NMV lemah akan sedikit menimbulkan sinyal dan akan tampak gelap pada citra MRI. Pada saat terjadi magnetisasi transversal maka terjadi pula keadaan in phase pada bidang transversal sehingga akan terjadi induksi dari medan magnet terhadap koil penerima yang akan tercatat sebagai sinyal. Kuat dan lemahnya magnetisasi pada bidang transversal ini akan berpengaruh pada kekuatan signal MR dan berpengaruh pada intensitas gelap dan terang pada citra MRI. Bila signal MR kuat maka akan memberikan gambaran citra yang terang atau Hiperintens, sedangkan apabila signal MRI lemah akan memberikan citra MRI gelap atau Hipointens. Bila pulsa RF dihentikan, moment magnetik pada bidang transversal yang dalam keadaan Inphase akan mengalami Dephase kembali sehingga magnetisasi pada bidang transversal akan menurun, akibatnya induksi pada koil penerima juga akan semakin melemah yang dikenal dengan sinyal Free Induction Decay (FID) Sinyal Free Induction Decay (FID) Selama melakukan gerakan presesi, vektor magnetisasi dalam koordinat kartesian dapat diuraikan menjadi dua komponen yaitu : 1. Komponen logitudinal MM zz pada sumbu z, yakni arah magnetisasi (M) mula-mula sebelum mengalami simpangan (sama dengan arah medan magnet eksternal).

11 2. Komponen tranversal MM xxxx pada bidang xy (tegak lurus arah medan magnet ekternal) Selama berpresesi arah MM zz tetap, sedangkan MM xxxx berputar pada bidang xy (seperti terlihat pada gambar 2.10), dimana putaran MM xxxx inilah yang menghasilkan sinyal NMR dimana dipancarkan dari proton yang beresonansi yang sinyalnya disebut sebagai Sinyal Free Induction Decay (FID). Gambar 2.10 Skema dari Free Induction Decay (FID) Relaksasi (Relaxation) Sebuah proses diamana atom hidrogen kembali kepada kesetimbangannya. Selama NMV membuang seluruh energinya yang diserap dan kembali pada BB 0 disebut sebagai proses Relaksasi. Pada saat NMV kehilangan magnetisasi transversal yang dikarenakan Dephase terjadi proses Relaksasi yang menghasilkan recoveri magnetisasi longitudinal (MM zz ) dan decay dari magnetisasi transversal (MM xxxx ). a. Recoveri dari magnetisasi longitudinal disebabkan oleh proses yang dinamakan TT 1 recoveri.

12 b. Decay dari magnetisasi transverse disebabkan oleh proses yang dinamakan TT 2 decay TT 1 Recoveri (Longitudinal Relaxation) Disebabkan oleh inti-inti atom yang memberikan energinya pada lingkungan sekitarnya atau lattice, dan disebut spin lattice relaksasi. Energi yang dibebaskan pada sekeliling lattice menyebabkan inti-inti atom untuk recoveri kemagnetisasi longitudinal. Rate Recoveri adalah proses eksponensial denganwaktu yang konstan yang disebut TT 1. TT 1 adalah waktu pada saat 63% magnetisasi longitudinal (MM zz ) untuk Recoveri (seperti terlihat pada gambar 2.11). Gambar 2.11 Diagram TT 1 Recoveri (spin lattice relaksasi)

13 2.3.8 TT 2 Decay (Transverse Relaxation) Disebabkan oleh pertukaran energi inti atom dengan atom yang lain. Pertukaran energi ini disebabkan oleh medan magnet dari tiap-tiap inti atom berinteraksi dengan inti atom lain. Seringkali dinamakan spin-spin relaksasi dan menghasilkan decay atau hilangnya magnetisasi transversal. Rate decay juga merupakan proses eksponensial, sehingga waktu relaksasi TT 2 dari jaringan soft tissue konstan. TT 2 adalah waktu pada saat 37% magnetisasi transversal (MM xxxx ) meluruh (seperti terlihat pada gambar 2.12). Gambar 2.12 Grafik dari TT 2 Decay (spin-spin relaksasi) Besarnya dan proses waktu frekuensi TT 1 dan TT 2 sangat berpengaruh pada sinyal keluaran yang akan ditransformasikan sebagai kontras citra MR, sebab kurva TT 1 akan menentukan magnetisasi transversal (MM xxxx ). Peluruhan TT 2 (waktu relaksasi TT 2 ) adalah efek yang paling berkontribusi pada gambar citra, sebab pada proses dephase proton akan dihasilkan suatu induksi sinyal.

14 Pengulangan pulsa RF terjadi sebelum kurva recovery menjadi maksimal sehingga obyek jaringan dengan TT 1 pendek (cepat kembali ke kondisi kesetimbangan) akan mempunyai jumlah recovery yang banyak dibandingkan dengan jaringan yang mempunyai waktu yang panjang, sehingga dalam citra MRI akan di dapatkan gambar yang hitam pada pembobotan TT 1 spin echo. Setelah pulsa RF diberikan pada obyek sebesar 63,9 MHz, magnetisasi longitudinal (MM zz ) akan diputar 90 ke bidang transversal (MM xxxx ) dan terjadi proses relaksasi TT 2. Jaringan yang mempunyai nilai TT 2 pendek, dephase yang terjadi sangat cepat sehingga intensitas sinyal yang dihasilkan sangat besar dan jaringan dengan waktu relaksasi TT 2 pendek ini akan kelihatan hitam pada pembobotan nilai TT 2. Proses relaksasi TT 1 dan TT 2 adalah suatu kerja yang berlawanan yaitu pada saat proses pertumbuhan kembali magnetisasi longitudinal (MM zz ) diimbangi dengan peluruhan yang cepat pada kurva relaksasi TT 2. Dua efek relaksasi TT 1 dan TT 2 terjadi ketika objek diberikan gelombang radio RF yang merupakan bentuk pulsa sequence. Pulsa sequence dalam pencitraan MRI dibentuk untuk mengetahui bagaimana efek TT 1 pada pembobotan citra TT 1 Weighted, efek TT 2 pada pembobotan citra TT 2 Weighted. Rangkaian pulsa RF dephasing phase echo dalam mendapatkan citra MRI dilakukan pengulangan untuk satu pemeriksaan. Waktu pengulangan antara pulsa sequence yang satu dengan yang berikutnya disebut dengan Time Repetition (TR), sedangkan waktu tengah antara pengiriman pulsa pertama dengan sudut 90º dan sinyal maksimum (echo) disebut dengan Time Echo (TE). Parameter TT 1 dan TT 2 sebagai sifat intrinsik jaringan, serta TE dan TR sebagai parameter teknis yang digunakan akan mengontrol derajat kehitaman pada citra MRI. Pada TT 2 Weighted derajat kehitaman gambar akan dikontrol oleh TE dan TT 2 (Spin spin relaxation), sedangkan untuk TT 1 Weighted derajat kehitaman akan dikontrol oleh TR dan TT 1 ((Spin lattice relaxation). Secara umum TT 1 Weighted akan menunjukkan struktur anatomi, dan TT 2 Weighted menunjukkan struktur patologi.

15 2.3.9 Relaksasi TT 1 dan TT 2 Eksitasi pulsa RF mengakibatkan vector magnetisasi (M) dari satu jaringan akan memiliki arah menjauhi arah medan magnet luar (BB 0 ). Pulsa RF 90º artinya M berubah arah 90º dari keadaan semula atau tegak lurus terhadap BB 0. Jika diibaratkan BB 0 sejajar sumbu Z, Sumbu X, sumbu Y tegak lurus terhadap Z seperti pada gambar 2.13, maka pulsa RF menyebabkan M sejajar sumbu XY (MM XXXX ). Gambar 2.13 M sejajar sumbu XY (MM XXXX ). Pada saat M berada pada sumbu XY (MM XXXX ) inilah sinyal tertinggi yang bisa ditangkap oleh detector. Semakin lama, MM XXXX akan berkurang karena kembali ke Z dengan proses yang disebut Relaksasi, sampai akhirnya tidak adalagi vector magnetisasi pada sumbu xy. Demikian pula sinyal yang ditangkap. Setiap inti atom H memiliki waktu relaksasi TT 1 dan TT 2 yang berbeda-beda tergantung dari pada jaringan apa dia terikat. Waktu relaksasi TT 1 dan TT 2 beberapa jaringan tubuh dapat dilihat seperti table dibawah.

16 Tabel 4.2 Waktu relaksasi TT 1 beberapa jaringan TT 1 Constans (in ms) 0,2 Tesla 1,0 Tesla 1,5 Tesla Fat 240 Muscle White Matter Gray Matter CSF 1,400 2,500 3,000 Tabel 4.2 Waktu relaksasi TT 2 beberapa jaringan TT 2 Constans (in ms) Fat 84 Muscle 47 White Matter 92 Gray Matter 101 CSF 1,400 Waktu relaksasi TT 2 lebih cepat dari relaksasi TT 1. TT 1 dan TT 2 lemak (fat) lebih cepat dari cairan otak (CSF). Suatu citra TT 1 terbobot artinya kontras jaringan sesuai dengan relaksasi TT 1, yaitu lemak TT 1 nya cepat tampak hiperintens dibandingkan cairan yang TT 1 nya lama seperti gambar 2.14 dibawah ini

17 Gambar 2.14 grafik relaksasi TT 1 Suatu citra TT 2 terbobot artinya kontras jaringan sesuai dengan relaksasi TT 2, yaitu cairan yang relaksasi TT 2 nya lama, tampak hiperintes dibanding lemak yang TT 2 nya cepat, seperti pada gambar 2.15, cairan CSF tampak Hipointens pada TT 1 terbobot dan TT 2 terbobot pada citra lumbal dapat dlilihat pada gambar 2.16 Gambar 2.15 grafik relaksasi TT 2

18 TT 1 TT 2 Gambar 2.16 Citra potongan Sagital TT 1 dan TT 2 terbobot dari lumbal TT 1 terbobot dan TT 2 terbobot ini ditentukan dengan pengaturan waktu perulangan (Time Repetition/TR) pulsa RF dan waktu echo (Time echo/te). TR panjang dan TE panjang akan menghasilkan TT 2 terbobot, sedangkan TR pendek dan TE pendek akan menghasilkan TT 1 terbobot. 2.4 Parameter Pembentuk Citra Pada MRI Spin Echo (SE) Spin Echo adalah sequence yang paling banyak digunakan pada pemeriksaan MRI. Pada spin echo standar, segera setelah pulsa pertama dengan sudut 90º diberikan, sebuah FID segera terbentuk. Dengan menggunakan kekuatan radiofrekuensi yang sesuai, akan terjadi transfer NMV bersudut 90 0 kemudian diikuti dengan rephrasing pulse bersudut Spin echo menggunakan eksitasi pulsa dengan sudut 90 0 yang diikuti oleh satu atau lebih rephasing pulsa bersudut 180 0, untuk menghasilkan Spin Echo. Spin echo (SE) sama dengan urutan Gradien echo dengan pengecualian bahwa ada tambahan refocusing pulsa bersudut 180 (seperti terlihat pada Gambar 2.13).

19 Gambar 2.17 Pembentukan Spin Echo Inversion recovery (IR) Inversion recovery (IR) ialah urutan eksitasi SE (Spin Echo) pulsa bersudut 90 dengan tambahan pulsa inversi bersudut 180 yang dimana pulsa RF yang bersudut 180 rephasing dari urutan SE konvensional. Pulsa inversi membalikan magnetisasi longitudinal dari MM zz positif kedalam MM zz arah negatif (seperti terlihat pada Gambar. 2.14). Setelah beberapa relaksasi telah terjadi, pulsa 90 urutan SE diterapkan. Waktu antara pulsa RF yang bersudut 180 dan pulsa RF yang bersudut 90 adalah Time Inversion (TI) (seperti terlihat pada Gambar 2.14).

20 Gambar 2.18 Waktu antara pulsa 180 dan pulsa RF 90 Kontras pada gambar dapat dimanipulasi dengan mengubah waktu inversi. Dengan TI pendek dan pengiriman pulsa eksitasi yang bersudut 90 segera setelah pulsa RF yang bersudut 180 inversi, semua magnetisasi longitudinal negatif membalik atau flip ke bidang transversal. Jika waktu inversi cukup panjang memungkinkan relaksasi penuh, sinyal kembali menjadi lebih kuat. Ketika pulsa pembalik dihapus, vektor magnetisasi mulai relaksasi kembali ke BB 0. Kontras gambar yang dihasilkan sangat tergantung pada panjang TI serta TR dan TE. Kontras dalam gambar terutama tergantung pada besarnya magnet longitudinal yang (seperti pada putaran echo) setelah waktu tunda yang dipilih TI. Kontras didasarkan pada kurva recovery TI setelah inversi pulsa RF yang bersudut 180º. Inverting pulsa RF yang bersudut 180º dapat menghasilkan perbedaan kontras besar antara lemak dan air karena saturasi penuh vektor lemak atau air dapat dicapai dengan memanfaatkan TI yang sesuai Short Time Inversion Recovery (STIR) STIR (Short Time Inversion Recovery) adalah urutan pulsa inversi dengan waktu tertentu sehingga dapat menekan sinyal dari lemak. Urutan pulsa pemulihan inversi merupakan urutan pulsa Spin Echo didahului oleh pulsa RF yang bersudut 180. Sequence STIR membalikkan magnetisasi longitudinal baik lemak dan air dengan pengiriman pulsa RF yang bersudut 180, yang diikuti oleh TI (Time Inversion) beberapa ratus milidetik. Untuk

21 menekan sinyal lemak, TI disesuaikan sedemikian rupa sehingga pulsa RF yang bersudut 90 dipancarkan tepat pada saat ketika lemak melewati nol. TI menekan lemak sekitar msec pada kekuatan bidang magnet 1,5 T dan sekitar 100 msec pada bidang magnet 0,5 T. Gambar 2.19 Grafik Pembobotan STIR STIR merupakan urutan pulsa recovery inversi yang menggunakan TI yang sesuai dengan waktu yang dibutuhkan untuk pulih dari inversi penuh lemak terhadap bidang transversal sehingga tidak ada magnet longitudinal yang sesuai dengan lemak. Ketika pulsa RF yang bersudut 90º bereksitasi diterapkan setelah waktu tunda TI, sinyal dari lemak batal. STIR digunakan untuk mencapai penekanan sinyal lemak dalam gambar TT 1 weighted dan TT 2 weighted. Sebuah TI dari msec mencapai penekanan lemak meskipun nilai ini bervariasi pada kekuatan lapangan magnet yang berbeda. 2.5 Parameter yang mempengaruhi Pembobotan Citra Time Repetition (TR), Time Echo (TE), Flip Angle Time Repetition (TR) merupakan parameter yang mengontrol jumlah magnetisasi longitudinal (MM zz ) yang recoveri sebelum RF pulse berikutnya. TR yang panjang memungkinkan full recovery sehingga lebih banyak yang

22 akan mengalami magnetisasi transversal (MM xxxx ) pada RF pulse berikutnya. TR yang panjang akan meningkatkan Signal Noise Ratio dan TR yang pendek menurunkan Signal Noise Ratio. Sedangkan Time Echo (TE) merupakan parameter yang mengontrol jumlah magnetisasi transversal (MM xxxx ) yang akan Decay sebelum echo itu dicatat. Time Repetition (TR) dan waktu Time Echo (TE) merupakan kunci dari penciptaan kontras citra MRI. Pada Gambar 2.14 menunjukkan simbol yang paling sering digunakan untuk diagram urutan pulsa, termasuk echo dengan penggunaan Spin Echo (SE) dan Gradien Echo (GRE). Hal ini penting untuk mengenali simbol-simbol ini, karena selalu digunakan untuk mewakili TR dan TE. Gambar 2.20 Definisi simbol yang digunakan dalam diagram urutan pulsa. TR adalah waktu (biasanya diukur dalam milidetik) antara penerapan pulsa RF eksitasi dan awal pulsa RF berikutnya. TE (juga biasanya diukur dalam milidetik) adalah waktu antara penerapan pulsa RF dan puncak gema terdeteksi (seperti terlihat pada Gambar 2.16a). Kedua parameter mempengaruhi kontras gambar MR karena memberikan berbagai tingkat kepekaan terhadap perbedaan waktu relaksasi antara berbagai jaringan. Pada TR pendek, perbedaan waktu relaksasi antara lemak dan air dapat dideteksi (magnetisasi longitudinal pulih lebih cepat dari pada lemak dalam air), di TR panjang, tidak dapat dideteksi. Oleh karena itu, TR berhubungan dengan TT 1 (seperti terlihat pada Gambar 2.16b) dan mempengaruhi kontras gambar TT 1 Weighted. Pada TE singkat, perbedaan sinyal TT 2 lemak dan air tidak dapat dideteksi dan penggunaan TE panjang dapat dideteksi. Oleh karena itu, TE

23 berhubungan dengan TT 2 (seperti terlihat pada Gambar 2.16b) dan mempengaruhi kontras gambar TT 2 Weighted. Ketika TR panjang dan TE pendek, perbedaan dalam pemulihan magnetisasi dan peluruhan sinyal antara lemak dan air yang tidak dapat dibedakan (seperti terlihat pada Gambar 2.16b) Oleh karena itu, kontras diamati pada gambar MR dihasilkan adalah terutama karena perbedaan kepadatan proton antara kedua jenis jaringan. Jaringan dengan lebih proton memiliki intensitas sinyal yang lebih tinggi, dan jumlah proton lebih sedikit memiliki intensitas sinyal yang lebih rendah. Gambar 2.21 (a) Skema representasi dari TR dan TE (b) Grafik menunjukkan efek TR pendek dan panjang (kiri) dan pendek dan panjang TE (kanan) pada pemulihan TT 1 dan TT 2 pada peluruhan lemak dan air, TR berhubungan dengan TT 1 dan mempengaruhi pembobotan TT 1 Weighted, sedangkan TE berhubungan dengan TT 2 dan mempengaruhi pembobotan TT 2 Weighted Partial flip angle imaging adalah teknik yang dapat digunakan untuk meminimalkan saturation dan mendapatkan sinyal MR yang memadai meskipun TR yang sangat singkat. Sudut Flip yang lebih kecil tidak membelokkan magnetisasi dengan sudut 90 tetapi hanya beberapa fraksi dari sudut 90 (misalnya 30 ). Secara umum, semakin pendek TR, sudut flip yang lebih kecil diperlukan untuk mencegah saturation yang berlebihan. Sudut Flip memaksimalkan sinyal yang diberikan TR dan TE dikenal sebagai sudut Ernst. Parameter ini dipilih saat melakukan field echo sequence guna menghasilkan kontras gambar yang memuaskan. Flip angle berhubungan dengan jumlah spin pada bidang tranversal (flip angle pendek dihasilkan dari jumlah spin yang sedikit pada bidang tranversal). Pemilihan flip angle

24 bersamaan dengan pemilihan TR, di dalam bergantung pada kekuatan medan dari system operasi. Secara umum, ketika flip angle pendek dipilih, efek TT 2 predominan, image akan tampak dalam TT 2 Weighted sequence sehingga struktur yang berisi cairan akan nampak terang. Memperbesar flip angle akan meningkatkan pengaruh TT 1 dengan cara membiarkan relaxasi komplit pada jaringan dengan TT 1 pendek, sehingga memberi kontribusi terhadap terbentuknya lebih banyak signal pada repetisi sequence berikutnya. Waktu relaksasi pada jaringan ditentukan oleh medan magnet yang terjadi pada saat NMR. Ini dapat dirubah hanya jika medan magnetik juga diubah. Ketika sequence digunakan untuk menghasilkan flip angle khusus seperti yang dilakukan pada gradient echo imaging atau sequence membutuhkan persiapan pulsa, waktu relaksasi akan menjadi fungsi dari sudut tersebut. Sebagai contoh bila flip angle yang dipilih dengan sudut 45 0, vektor tissue akan recover ke bidang magnetisasi longitudinal (TT 1 growth) lebih cepat dibandingkan ketika menggunakan Spin Echo dimana pulsa sequence yang digunakan ialah sudut TR seharusnya diubah untuk mengakomodasi peningkatan waktu relaksasi tersebut. Untuk alasan tersebut, sequence Gradient Echo imaging dapat diilakukan pada waktu yang lebih cepat dari Spin Echo sequence. Citra yang menggunakan partial flip teknologi akan menghasilkan kontras yang mirip dengan image dengan TR sequence (TT 2 Weighted Spin Echo sequence) dengan waktu imaging yang lebih pendek. Gambar 2.22 Hasil citra MRI dengan variasi Filp angel

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Magnetic Resonance Imaging Magnetic Resonance Imaging (MRI) adalah suatu alat diagnostik mutakhir untuk memeriksa dan mendeteksi tubuh dengan menggunakan medan magnet

Lebih terperinci

Magnetic Resonance Image. By Arman

Magnetic Resonance Image. By Arman Magnetic Resonance Image By Arman Magneting Resonance Image Magnetic Resonance Imaging (MRI) merupakan suatu teknik penggambaran penampang tubuh berdasarkan prinsip resonansi magnetic inti atom hidrogen.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA 2.1 Sejarah Magnetik Resonansi Imaging (MRI) Magnetic Resonance Imaging (MRI) digunakan sejak tahun 1971 oleh dr. Raymond Damadian pada hewan untuk membedakan jaringan abnormal

Lebih terperinci

PENGGUNAAN TEKNIK COMPOSING PADA PEMERIKSAAN WHOLE SPINE POTONGAN SAGITAL T2 WEIGHTED PADA MRI 1.5T SKRIPSI SUKARSI TAMBA NIM :

PENGGUNAAN TEKNIK COMPOSING PADA PEMERIKSAAN WHOLE SPINE POTONGAN SAGITAL T2 WEIGHTED PADA MRI 1.5T SKRIPSI SUKARSI TAMBA NIM : PENGGUNAAN TEKNIK COMPOSING PADA PEMERIKSAAN WHOLE SPINE POTONGAN SAGITAL T2 WEIGHTED PADA MRI 1.5T SKRIPSI SUKARSI TAMBA NIM : 130821013 DEPERTEMEN FISIKA JURUSAN FISIKA MEDIK FAKULTAS MATEMATIKADAN ILMU

Lebih terperinci

Magnetic Resonance Imaging

Magnetic Resonance Imaging Magnetic Resonance Imaging Hendrana Tjahjadi Jurusan Teknik Elektro Program Doktoral Universitas Indonesia Abstract Penerapan teknologi canggih dibidang kesehatan digunakan untuk membantu meningkatkan

Lebih terperinci

PENGARUH PERUBAHAN TR TERHADAP NILAI CNR DAN EFISIENSI KONTRAS PADA CITRA MRI HEAD SEQUENCE T1 WEIGHTED IMAGE

PENGARUH PERUBAHAN TR TERHADAP NILAI CNR DAN EFISIENSI KONTRAS PADA CITRA MRI HEAD SEQUENCE T1 WEIGHTED IMAGE Youngster Physics Journal ISSN : 2302-7371 Vol. 4, No. 1, Januari 2015, Hal 93-98 PENGARUH PERUBAHAN TR TERHADAP NILAI CNR DAN EFISIENSI KONTRAS PADA CITRA MRI HEAD SEQUENCE T1 WEIGHTED IMAGE Syamsul Hidayah,

Lebih terperinci

ANALISIS PERBEDAAN CITRA MRI BRAIN PADA SEKUENT1SE DAN T1FLAIR

ANALISIS PERBEDAAN CITRA MRI BRAIN PADA SEKUENT1SE DAN T1FLAIR ANALISIS PERBEDAAN CITRA MRI BRAIN PADA SEKUENT1SE DAN T1FLAIR Nursama Heru Apriantoro, Christianni Jurusan Teknik Radiodiagnostik dan Radioterapi, Politeknik Kesehatan Kemenkes Jakarta 2 Jl. Hang Jebat

Lebih terperinci

LATIHAN UJIAN NASIONAL

LATIHAN UJIAN NASIONAL LATIHAN UJIAN NASIONAL 1. Seorang siswa menghitung luas suatu lempengan logam kecil berbentuk persegi panjang. Siswa tersebut menggunakan mistar untuk mengukur panjang lempengan dan menggunakan jangka

Lebih terperinci

Dalam tubuh manusia posisi momentum inti atom tersebut berserakan arahnya,bila atom tersebut diletakkan dalam medan magnit, maka inti akan terarah

Dalam tubuh manusia posisi momentum inti atom tersebut berserakan arahnya,bila atom tersebut diletakkan dalam medan magnit, maka inti akan terarah PENDAHULUAN MRI adalah Suatu metode untuk mendapatkan gambar dari gelombang Resonansi yang ditimbulkan dari pancaran gelombang elektromagnetik pada suatu benda didalam medan magnit. PRINSIP-PRINSIP MRI

Lebih terperinci

ADLN - PERPUSTAKAAN UNIVERSITAS AIRLANGGA SKRIPSI DIANA EGA RANI

ADLN - PERPUSTAKAAN UNIVERSITAS AIRLANGGA SKRIPSI DIANA EGA RANI OPTIMALISASI NUMBER OF EXCITATION (NEX) TERHADAP SIGNAL TO-NOISE RATIO (SNR) DAN KECEPATAN WAKTU SCANNING PADA PEMERIKSAAN MRI SKRIPSI DIANA EGA RANI PROGRAM STUDI S-1 FISIKA DEPARTEMEN FISIKA FAKULTAS

Lebih terperinci

SEGMENTASI CITRA MEDIK MRI (MAGNETIC RESONANCE IMAGING) MENGGUNAKAN METODE REGION THRESHOLD

SEGMENTASI CITRA MEDIK MRI (MAGNETIC RESONANCE IMAGING) MENGGUNAKAN METODE REGION THRESHOLD SEGMENTASI CITRA MEDIK MRI (MAGNETIC RESONANCE IMAGING) MENGGUNAKAN METODE REGION THRESHOLD Murinto, Resa Fitria Rahmawati Program Studi Teknik Informatika Fakultas Teknologi Industri Universitas Ahmad

Lebih terperinci

DASAR-DASAR MRI DISUSUN OLEH: HENDRANA TJAHJADI, ST 2007

DASAR-DASAR MRI DISUSUN OLEH: HENDRANA TJAHJADI, ST 2007 DASAR-DASAR MRI DISUSUN OLEH: HENDRANA TJAHJADI, ST 2007 PENDAHULUAN NMRI atau MRI? Magnetic Resonance Imaging (MRI) merupakan teknik pencitraan yang digunakan untuk menghasilkan citra dalam tubuh manusia

Lebih terperinci

ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1996

ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1996 ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1996 BAGIAN KEARSIPAN SMA DWIJA PRAJA PEKALONGAN JALAN SRIWIJAYA NO. 7 TELP (0285) 426185) 1. Kelompok besaran berikut yang merupakan besaran

Lebih terperinci

Tomografi Resonansi Magnetik Inti; Teori Dasar, Pembentukan Gambar dan Instrumentasi Perangkat Kerasnya, oleh Daniel Kartawiguna Hak Cipta 2015 pada

Tomografi Resonansi Magnetik Inti; Teori Dasar, Pembentukan Gambar dan Instrumentasi Perangkat Kerasnya, oleh Daniel Kartawiguna Hak Cipta 2015 pada Tomografi Resonansi Magnetik Inti; Teori Dasar, Pembentukan Gambar dan Instrumentasi Perangkat Kerasnya, oleh Daniel Kartawiguna Hak Cipta 2015 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283

Lebih terperinci

Dasar Fisika Magnetic Resonance Imaging

Dasar Fisika Magnetic Resonance Imaging Dasar Fisika Magnetic Resonance Imaging Supriyanto Ardjo Pawiro Departemen Fisika FMIPA UI, Email: supriyanto.p@sci.ui.ac.id Daftar isi Dasar Fisika MRI Prinsip Resonansi Mekanisme Relaksasi dan Sinyal

Lebih terperinci

PENGARUH PARAMETER TEKNIS TR, TE DAN TI DALAM PEMBOBOTAN T1, T2 DAN FLAIR PENCITRAAN MAGNETIC RESONANCE IMAGING (MRI)

PENGARUH PARAMETER TEKNIS TR, TE DAN TI DALAM PEMBOBOTAN T1, T2 DAN FLAIR PENCITRAAN MAGNETIC RESONANCE IMAGING (MRI) PENGARUH PARAMETER TEKNIS TR, TE DAN TI DALAM PEMBOBOTAN T1, T2 DAN FLAIR PENCITRAAN MAGNETIC RESONANCE IMAGING (MRI) Alaph O.Martua Damanik 1, Muchammad Azam 2, dan Muhammad Nur 2 1). Rumah Sakit Umum

Lebih terperinci

PENGARUH PARAMETER TIME REPETITION (TR) PADA KUALITAS CITRA LUMBAL DENGAN MENGGUNAKAN MRI SKIRIPSI MISKAH NUR

PENGARUH PARAMETER TIME REPETITION (TR) PADA KUALITAS CITRA LUMBAL DENGAN MENGGUNAKAN MRI SKIRIPSI MISKAH NUR 1 PENGARUH PARAMETER TIME REPETITION (TR) PADA KUALITAS CITRA LUMBAL DENGAN MENGGUNAKAN MRI SKIRIPSI MISKAH NUR 120821020 DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA

Lebih terperinci

Medan magnet bumi, Utara geografik D. Utara magnetik I. Timur

Medan magnet bumi, Utara geografik D. Utara magnetik I. Timur Magnetometer. Medan magnet bumi mempunyai arah utara-selatan dan besarnya 45000 gama ( 1 gama = 1 nano Tesla), untuk posisi di katulistiwa. Medan ini disebut juga dengan medan normal. Keberadaan mineral

Lebih terperinci

BAB VII NUCLEAR MAGNETIC RESONANCE (RESONANSI

BAB VII NUCLEAR MAGNETIC RESONANCE (RESONANSI BAB VII NUCLEAR MAGNETIC RESONANCE (RESONANSI INTl MAGNIT) 1. Pendahuluan Pada tahun 1945, dua group saijana fisika Purcell, Tony dan Pound (Harvard University) dan Bloch, Hansen dan Packard (Stanford

Lebih terperinci

KORELASI NILAI TIME REPETITION (TR) DAN TIME ECHO (TE) TERHADAP SIGNAL TO NOISE RATIO (SNR) PADA CITRA MRI

KORELASI NILAI TIME REPETITION (TR) DAN TIME ECHO (TE) TERHADAP SIGNAL TO NOISE RATIO (SNR) PADA CITRA MRI Berkala Fisika ISSN : 1410 9662 Vol. 16, No. 4, Oktober 2013, hal 103-110 KORELASI NILAI TIME REPETITION (TR) DAN TIME ECHO (TE) TERHADAP SIGNAL TO NOISE RATIO (SNR) PADA CITRA MRI Alan Tanjung Aji Prastowo

Lebih terperinci

Gambar 2.1. momen magnet yang berhubungan dengan (a) orbit elektron (b) perputaran elektron terhadap sumbunya [1]

Gambar 2.1. momen magnet yang berhubungan dengan (a) orbit elektron (b) perputaran elektron terhadap sumbunya [1] BAB II TINJAUAN PUSTAKA 2.1. Momen Magnet Sifat magnetik makroskopik dari material adalah akibat dari momen momen magnet yang berkaitan dengan elektron-elektron individual. Setiap elektron dalam atom mempunyai

Lebih terperinci

Daerah radiasi e.m: MHz (75-0,5 m)

Daerah radiasi e.m: MHz (75-0,5 m) NMR = NUCLEAR MAGNETIC RESONANCE = RESONANSI MAGNET INTI PENEMU: PURCELL, DKK (1945-1950), Harvard Univ. BLOCH, DKK, STANFORD. UNIV. Guna: - Gambaran perbedaan sifat magnet berbagai inti. - Dugaan letak

Lebih terperinci

UNIVERSITAS INDONESIA

UNIVERSITAS INDONESIA UNIVERSITAS INDONESIA STUDI ANALISA FENOMENA PROTON SPIN SERTA PENGARUHNYA TERHADAP SINYAL DAN HASIL IMAGE PADA MAGNETIC RESONANCE IMAGING (MRI) DENGAN MENGGUNAKAN SOFTWARE JEMRIS SKRIPSI MARVIN YONATAN

Lebih terperinci

Fisika EBTANAS Tahun 1996

Fisika EBTANAS Tahun 1996 Fisika EBTANAS Tahun 1996 EBTANAS-96-01 Di bawah ini yang merupakan kelompok besaran turunan A. momentum, waktu, kuat arus B. kecepatan, usaha, massa C. energi, usaha, waktu putar D. waktu putar, panjang,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI 2.1. Pengertian Magnetic Resonance Imaging (MRI) Teori tentang pencitraan Magnetic Resonance Imaging (MRI) muncul pertama sekali pada tahun 1938, ketika Isidor Isaac Rabi menemukan

Lebih terperinci

TOPIK 8. Medan Magnetik. Fisika Dasar II TIP, TP, UGM 2009 Ikhsan Setiawan, M.Si.

TOPIK 8. Medan Magnetik. Fisika Dasar II TIP, TP, UGM 2009 Ikhsan Setiawan, M.Si. TOPIK 8 Medan Magnetik Fisika Dasar II TIP, TP, UGM 2009 Ikhsan Setiawan, M.Si. ikhsan_s@ugm.ac.id Pencetak sidik jari magnetik. Medan Magnetik Medan dan Gaya Megnetik Gaya Magnetik pada Konduktor Berarus

Lebih terperinci

PR ONLINE MATA UJIAN: FISIKA (KODE A07)

PR ONLINE MATA UJIAN: FISIKA (KODE A07) PR ONLINE MATA UJIAN: FISIKA (KODE A07) 1. Gambar di samping ini menunjukkan hasil pengukuran tebal kertas karton dengan menggunakan mikrometer sekrup. Hasil pengukurannya adalah (A) 4,30 mm. (D) 4,18

Lebih terperinci

Fisika Ujian Akhir Nasional Tahun 2003

Fisika Ujian Akhir Nasional Tahun 2003 Fisika Ujian Akhir Nasional Tahun 2003 UAN-03-01 Perhatikan tabel berikut ini! No. Besaran Satuan Dimensi 1 Momentum kg. ms 1 [M] [L] [T] 1 2 Gaya kg. ms 2 [M] [L] [T] 2 3 Daya kg. ms 3 [M] [L] [T] 3 Dari

Lebih terperinci

PERSIAPAN UJIAN AKHIR NASIONAL TAHUN PELAJARAN 2008/2009 LEMBAR SOAL. Mata Pelajaran : Fisika. Kelas/Program : IPA.

PERSIAPAN UJIAN AKHIR NASIONAL TAHUN PELAJARAN 2008/2009 LEMBAR SOAL. Mata Pelajaran : Fisika. Kelas/Program : IPA. PERSIPN UJIN KHIR NSIONL THUN PELJRN 2008/2009 LEMR SOL Mata Pelajaran : Fisika Kelas/Program : IP Waktu : 120 menit PETUNJUK UMUM 1. Tuliskan nomor dan nama nda pada Lembar Jawaban Komputer. 2. Periksa

Lebih terperinci

K13 Revisi Antiremed Kelas 12 Fisika

K13 Revisi Antiremed Kelas 12 Fisika K13 Revisi Antiremed Kelas 12 Fisika Medan Magnet - Latihan Soal Doc. Name: RK13AR12FIS0301 Version: 2016-10 halaman 1 01. Medan magnet dapat ditimbulkan oleh: (1) muatan listrik yang bergerak (2) konduktor

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Magnetic Resonance Imaging Magnetic Resonance Imaging ( MRI ) adalah suatu alat diagnostik muthakhir untuk memeriksa dan mendeteksi tubuh dengan menggunakan medan

Lebih terperinci

ULANGAN AKHIR SEMESTER GANJIL 2015 KELAS XII. Medan Magnet

ULANGAN AKHIR SEMESTER GANJIL 2015 KELAS XII. Medan Magnet ULANGAN AKHIR SEMESTER GANJIL 2015 KELAS XII gaya F. Jika panjang kawat diperpendek setengah kali semula dan kuat arus diperbesar dua kali semula, maka besar gaya yang dialami kawat adalah. Medan Magnet

Lebih terperinci

PREDIKSI UN FISIKA V (m.s -1 ) 20

PREDIKSI UN FISIKA V (m.s -1 ) 20 PREDIKSI UN FISIKA 2013 1. Perhatikan gambar berikut Hasil pengukuran yang bernar adalah. a. 1,23 cm b. 1,23 mm c. 1,52mm d. 1,73 cm e. 1,73 mm* 2. Panjang dan lebar lempeng logam diukur dengan jangka

Lebih terperinci

Mata Pelajaran : FISIKA

Mata Pelajaran : FISIKA Mata Pelajaran : FISIKA Kelas/ Program : XII IPA Waktu : 90 menit Petunjuk Pilihlah jawaban yang dianggap paling benar pada lembar jawaban yang tersedia (LJK)! 1. Hasil pengukuran tebal meja menggunakan

Lebih terperinci

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010 PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 200 Mata Pelajaran : Fisika Kelas : XII IPA Alokasi Waktu : 20 menit

Lebih terperinci

Copyright all right reserved

Copyright  all right reserved Latihan Soal UN SMA / MA 2011 Program IPA Mata Ujian : Fisika Jumlah Soal : 20 1. Gas helium (A r = gram/mol) sebanyak 20 gram dan bersuhu 27 C berada dalam wadah yang volumenya 1,25 liter. Jika tetapan

Lebih terperinci

UNIVERSITAS INDONESIA KONTROL KUALITAS CITRA MRI MENGGUNAKAN SPHERICAL MAGPHAN PHANTOM SKRIPSI ADI ANDHIKA

UNIVERSITAS INDONESIA KONTROL KUALITAS CITRA MRI MENGGUNAKAN SPHERICAL MAGPHAN PHANTOM SKRIPSI ADI ANDHIKA UNIVERSITAS INDONESIA KONTROL KUALITAS CITRA MRI MENGGUNAKAN SPHERICAL MAGPHAN PHANTOM SKRIPSI ADI ANDHIKA 0906601941 FAKULTAS MATEMATIKA & ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA DEPOK JUNI 2012 UNIVERSITAS

Lebih terperinci

Bahan Ajar BAB V. Pengukuran Magnetik Tatap muka : Minggu 11, Minggu 12

Bahan Ajar BAB V. Pengukuran Magnetik Tatap muka : Minggu 11, Minggu 12 Bahan Ajar BAB V. Pengukuran Magnetik Tatap muka : Minggu 11, Minggu 12 1 PENGUKURAN MAGNETIK 1.1. Pendahuluan Medan magnet merupakan fenomena fisika yang berkaitan dengan besaran listrik. Arus listrik

Lebih terperinci

KEMAGNETAN. : Dr. Budi Mulyanti, MSi. Pertemuan ke-8

KEMAGNETAN. : Dr. Budi Mulyanti, MSi. Pertemuan ke-8 MATA KULIAH KODE MK Dosen : FISIKA DASAR II : EL-122 : Dr. Budi Mulyanti, MSi Pertemuan ke-8 CAKUPAN MATERI 1. MAGNET 2. FLUKS MAGNETIK 3. GAYA MAGNET PADA SEBUAH ARUS 4. MUATAN SIRKULASI 5. EFEK HALL

Lebih terperinci

Jenis dan Sifat Gelombang

Jenis dan Sifat Gelombang Jenis dan Sifat Gelombang Gelombang Transversal, Gelombang Longitudinal, Gelombang Permukaan Gelombang Transversal Gelombang transversal merupakan gelombang yang arah pergerakan partikel pada medium (arah

Lebih terperinci

1. Hasil pengukuran yang ditunjukkan oleh alat ukur dibawah ini adalah.

1. Hasil pengukuran yang ditunjukkan oleh alat ukur dibawah ini adalah. 1. Hasil pengukuran yang ditunjukkan oleh alat ukur dibawah ini adalah. 1 A. 5, 22 mm B. 5, 72 mm C. 6, 22 mm D. 6, 70 mm E. 6,72 mm 5 25 20 2. Dua buah vektor masing-masing 5 N dan 12 N. Resultan kedua

Lebih terperinci

LATIHAN UAS 2012 LISTRIK STATIS

LATIHAN UAS 2012 LISTRIK STATIS Muatan Diskrit LATIHAN UAS 2012 LISTRIK STATIS 1. Dua buah bola bermuatan sama (2 C) diletakkan terpisah sejauh 2 cm. Gaya yang dialami oleh muatan 1 C yang diletakkan di tengah-tengah kedua muatan adalah...

Lebih terperinci

2.11. Magnetic Resonance Imaging Magnet RF Coil Prinsip Dari MRI Aplikasi MRI

2.11. Magnetic Resonance Imaging Magnet RF Coil Prinsip Dari MRI Aplikasi MRI ABSTRAK Seiring dengan perkembangan teknologi dalam bidang kedokteran, misalkan penggunaan sinar X dan CT scan untuk mendeteksi kelainan pada organ tubuh manusia. Alat deteksi yang terbaru adalah MRI (Magnetic

Lebih terperinci

BAB 10 GELOMBANG BUNYI DALAM ZAT PADAT ISOTROPIK

BAB 10 GELOMBANG BUNYI DALAM ZAT PADAT ISOTROPIK BAB 10 GELOMBANG BUNYI DALAM ZAT PADAT ISOTROPIK Sepertinya bunyi dalam padatan hanya berperan kecil dibandingkan bunyi dalam zat alir, terutama, di udara. Kesan ini mungkin timbul karena kita tidak dapat

Lebih terperinci

BAB III WAVEGUIDE. Gambar 3.1 bumbung gelombang persegi dan lingkaran

BAB III WAVEGUIDE. Gambar 3.1 bumbung gelombang persegi dan lingkaran 11 BAB III WAVEGUIDE 3.1 Bumbung Gelombang Persegi (waveguide) Bumbung gelombang merupakan pipa yang terbuat dari konduktor sempurna dan di dalamnya kosong atau di isi dielektrik, seluruhnya atau sebagian.

Lebih terperinci

Latihan Soal UAS Fisika Panas dan Gelombang

Latihan Soal UAS Fisika Panas dan Gelombang Latihan Soal UAS Fisika Panas dan Gelombang 1. Grafik antara tekanan gas y yang massanya tertentu pada volume tetap sebagai fungsi dari suhu mutlak x adalah... a. d. b. e. c. Menurut Hukum Gay Lussac menyatakan

Lebih terperinci

1. Di bawah ini adalah pengukuran panjang benda dengan menggunakan jangka sorong. Hasil pengukuran ini sebaiknya dilaporkan sebagai...

1. Di bawah ini adalah pengukuran panjang benda dengan menggunakan jangka sorong. Hasil pengukuran ini sebaiknya dilaporkan sebagai... 1. Di bawah ini adalah pengukuran panjang benda dengan menggunakan jangka sorong. Hasil pengukuran ini sebaiknya dilaporkan sebagai... A. (0, ± 0,01) cm B. (0, ± 0,01) cm. (0,5 ± 0,005) cm D. (0,0 ± 0,005)

Lebih terperinci

Inti Atom dan Penyusunnya. Sulistyani, M.Si.

Inti Atom dan Penyusunnya. Sulistyani, M.Si. Inti Atom dan Penyusunnya Sulistyani, M.Si. Email: sulistyani@uny.ac.id Eksperimen Marsden dan Geiger Pendahuluan Teori tentang atom pertama kali dikemukakan oleh Dalton bahwa atom bagian terkecil dari

Lebih terperinci

SOAL LATIHAN PEMBINAAN JARAK JAUH IPhO 2017 PEKAN VIII

SOAL LATIHAN PEMBINAAN JARAK JAUH IPhO 2017 PEKAN VIII SOAL LATIHAN PEMBINAAN JARAK JAUH IPhO 2017 PEKAN VIII 1. Tumbukan dan peluruhan partikel relativistik Bagian A. Proton dan antiproton Sebuah antiproton dengan energi kinetik = 1,00 GeV menabrak proton

Lebih terperinci

UN SMA IPA Fisika 2015

UN SMA IPA Fisika 2015 UN SMA IPA Fisika 2015 Latihan Soal - Persiapan UN SMA Doc. Name: UNSMAIPA2015FIS999 Doc. Version : 2015-10 halaman 1 01. Gambar berikut adalah pengukuran waktu dari pemenang lomba balap motor dengan menggunakan

Lebih terperinci

PAKET SOAL 1.c LATIHAN SOAL UJIAN NASIONAL TAHUN PELAJARAN 2011/2012

PAKET SOAL 1.c LATIHAN SOAL UJIAN NASIONAL TAHUN PELAJARAN 2011/2012 UJI COBA MATA PELAJARAN KELAS/PROGRAM ISIKA SMA www.rizky-catatanku.blogspot.com PAKET SOAL 1.c LATIHAN SOAL UJIAN NASIONAL TAHUN PELAJARAN 2011/2012 : FISIKA : XII (Dua belas )/IPA HARI/TANGGAL :.2012

Lebih terperinci

Antiremed Kelas 12 Fisika

Antiremed Kelas 12 Fisika Antiremed Kelas 12 Fisika Persiapan UAS 1 Doc. Name: AR12FIS01UAS Version: 2016-09 halaman 1 01. Sebuah bola lampu yang berdaya 120 watt meradiasikan gelombang elektromagnetik ke segala arah dengan sama

Lebih terperinci

SANGAT RAHASIA. 30 o. DOKUMEN ASaFN 2. h = R

SANGAT RAHASIA. 30 o. DOKUMEN ASaFN 2. h = R DOKUMEN ASaFN. Sebuah uang logam diukur ketebalannya dengan menggunakan jangka sorong dan hasilnya terlihat seperti pada gambar dibawah. Ketebalan uang tersebut adalah... A. 0,0 cm B. 0, cm C. 0, cm D.

Lebih terperinci

RADIOKIMIA Pendahuluan Struktur Inti

RADIOKIMIA Pendahuluan Struktur Inti LABORATORIUM KIMIA FISIK Departemen Kimia Fakultas MIPA Universitas Gadjah Mada (UGM) RADIOKIMIA Pendahuluan Struktur Inti Drs. Iqmal Tahir, M.Si., Departemen Kimia Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

Antiremed Kelas 12 Fisika

Antiremed Kelas 12 Fisika Antiremed Kelas 12 Fisika Persiapan UAS Doc. Name: K13AR12FIS01UAS Version: 2015-11 halaman 1 01. Seorang pendengar A berada di antara suatu sumber bunyi S yang menghasilkan bunyi berfrekuensi f dan tembok

Lebih terperinci

A. 100 N B. 200 N C. 250 N D. 400 N E. 500 N

A. 100 N B. 200 N C. 250 N D. 400 N E. 500 N 1. Sebuah lempeng besi tipis, tebalnya diukur dengan menggunakan mikrometer skrup. Skala bacaan hasil pengukurannya ditunjukkan pada gambar berikut. Hasilnya adalah... A. 3,11 mm B. 3,15 mm C. 3,61 mm

Lebih terperinci

UN SMA IPA 2009 Fisika

UN SMA IPA 2009 Fisika UN SMA IPA 009 isika Kode Soal P88 Doc. Version : 0-06 halaman 0. itria melakukan perjalanan napak tilas dimulai dari titik A ke titik B : 600 m arah utara; ke titik C 400 m arah barat; ke titik D 00 m

Lebih terperinci

Implementasi Intensity Transfer Function(ITF) Untuk Peningkatan Intensitas Citra Medis Hasil Pemeriksaan MRI

Implementasi Intensity Transfer Function(ITF) Untuk Peningkatan Intensitas Citra Medis Hasil Pemeriksaan MRI Implementasi Intensity Transfer Function(ITF) Untuk Peningkatan Intensitas Citra Medis Hasil Pemeriksaan MRI 1 Desti Riminarsih dan 2 Cut Maisyarah Karyati 1 Pusat Studi Komputasi Matematika(PSKM), Universitas

Lebih terperinci

D. 85 N E. 100 N. Kunci : E Penyelesaian : Kita jabarkan ketiga Vektor ke sumbu X dan dan sumbu Y, lihat gambar di bawah ini :

D. 85 N E. 100 N. Kunci : E Penyelesaian : Kita jabarkan ketiga Vektor ke sumbu X dan dan sumbu Y, lihat gambar di bawah ini : 1. Tiga buah vektor gaya masing-masing F 1 = 30 N, F 2 = 70 N, dan F 3 = 30 N, disusun seperti pada gambar di atas. Besar resultan ketiga vektor tersebut adalah... A. 0 N B. 70 N C. 85 N D. 85 N E. 100

Lebih terperinci

SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1

SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1 SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1 1. Terhadap koordinat x horizontal dan y vertikal, sebuah benda yang bergerak mengikuti gerak peluru mempunyai komponen-komponen

Lebih terperinci

SOAL UN FISIKA DAN PENYELESAIANNYA 2007

SOAL UN FISIKA DAN PENYELESAIANNYA 2007 1. Suatu segi empat setelah diukur dengan menggunakan alat yang berbeda panjang 0,42 cm, lebar 0,5 cm. Maka luas segi empat tersebut dengan penulisan angka penting 2. adalah... A. 0,41 B. 0,21 C. 0,20

Lebih terperinci

UM UGM 2017 Fisika. Soal

UM UGM 2017 Fisika. Soal UM UGM 07 Fisika Soal Doc. Name: UMUGM07FIS999 Version: 07- Halaman 0. Pada planet A yang berbentuk bola dibuat terowongan lurus dari permukaan planet A yang menembus pusat planet dan berujung di permukaan

Lebih terperinci

DAN RANGKAIAN AC A B A. Gambar 4.1 Berbagai bentuk isyarat penting pada sistem elektronika

DAN RANGKAIAN AC A B A. Gambar 4.1 Berbagai bentuk isyarat penting pada sistem elektronika + 4 KAPASITOR, INDUKTOR DAN RANGKAIAN A 4. Bentuk Gelombang lsyarat (signal) Isyarat adalah merupakan informasi dalam bentuk perubahan arus atau tegangan. Perubahan bentuk isyarat terhadap fungsi waktu

Lebih terperinci

LATIHAN FISIKA DASAR 2012 LISTRIK STATIS

LATIHAN FISIKA DASAR 2012 LISTRIK STATIS Muatan Diskrit LATIHAN FISIKA DASAR 2012 LISTRIK STATIS 1. Ada empat buah muatan titik yaitu Q 1, Q 2, Q 3 dan Q 4. Jika Q 1 menarik Q 2, Q 1 menolak Q 3 dan Q 3 menarik Q 4 sedangkan Q 4 bermuatan negatif,

Lebih terperinci

Experiment indonesian (Indonesia) Loncatan manik-manik - Sebuah model transisi fase dan ketidak-stabilan (10 poin)

Experiment indonesian (Indonesia) Loncatan manik-manik - Sebuah model transisi fase dan ketidak-stabilan (10 poin) Q2-1 Loncatan manik-manik - Sebuah model transisi fase dan ketidak-stabilan (10 poin) Sebelum mengerjakan soal ini, kalian baca lebih dahulu Petunjuk Umum pada amplop yang terpisah. Pendahuluan Transisi

Lebih terperinci

Fisika Umum (MA-301) Topik hari ini Getaran, Gelombang dan Bunyi

Fisika Umum (MA-301) Topik hari ini Getaran, Gelombang dan Bunyi Fisika Umum (MA-301) Topik hari ini Getaran, Gelombang dan Bunyi Getaran dan Gelombang Getaran/Osilasi Gerak Harmonik Sederhana Gelombang Gelombang : Gangguan yang merambat Jika seutas tali yang diregangkan

Lebih terperinci

drimbajoe.wordpress.com 1

drimbajoe.wordpress.com 1 1. Hasil pengukuran panjang dan lebar sebidang tanah berbentuk empat persegi panjang adalah 15,35 m dan 12,5 m. Luas tanah menurut aturan angka penting adalah... m 2 A. 191,875 B. 191,9 C. 191,88 D. 192

Lebih terperinci

2. Sebuah partikel bergerak lurus ke timur sejauh 3 cm kemudian belok ke utara dengan sudut 37 o dari arah timur sejauh 5 cm. Jika sin 37 o = 3 5

2. Sebuah partikel bergerak lurus ke timur sejauh 3 cm kemudian belok ke utara dengan sudut 37 o dari arah timur sejauh 5 cm. Jika sin 37 o = 3 5 1 1. Hasil pengukuran diameter suatu benda menggunakan jangka sorong ditunjukkan oleh gambar berikut. Diameter minimum benda sebesar. A. 9,775 cm B. 9,778 cm C. 9,782 cm D. 9,785 cm E. 9,788 cm 2. Sebuah

Lebih terperinci

PEMERINTAH KOTA PADANG DINAS PENDIDIKAN UJIAN SEKOLAH (USEK) KOTA PADANG TAHUN PELAJARAN 2014/2015

PEMERINTAH KOTA PADANG DINAS PENDIDIKAN UJIAN SEKOLAH (USEK) KOTA PADANG TAHUN PELAJARAN 2014/2015 PEMERINTAH KOTA PADANG DINAS PENDIDIKAN UJIAN SEKOLAH (USEK) KOTA PADANG TAHUN PELAJARAN 204/205 Mata Pelajaran : FISIKA Satuan Pendidikan : SMA/MA Kelas / Program : XII / IPA Paket : 0 Hari / Tanggal

Lebih terperinci

BAHAN AJAR 4. Medan Magnet MATERI FISIKA SMA KELAS XII

BAHAN AJAR 4. Medan Magnet MATERI FISIKA SMA KELAS XII BAHAN AJAR 4 Medan Magnet MATERI FISIKA SMA KELAS XII GAYA LORENTZ Pada percobaan oersted telah dibuktikan pengaruh arus listrik terhadap kutub magnet, bagaimana pengaruh kutub magnet terhadap arus listrik

Lebih terperinci

Fisika Dasar II Listrik, Magnet, Gelombang dan Fisika Modern

Fisika Dasar II Listrik, Magnet, Gelombang dan Fisika Modern Fisika Dasar II Listrik, Magnet, Gelombang dan Fisika Modern Pokok ahasan Medan Magnetik Abdul Waris Rizal Kurniadi Noitrian Sparisoma Viridi Topik Pengantar Gaya Magnetik Gaya Lorentz ubble Chamber Velocity

Lebih terperinci

D. 30 newton E. 70 newton. D. momentum E. percepatan

D. 30 newton E. 70 newton. D. momentum E. percepatan 1. Sebuah benda dengan massa 5 kg yang diikat dengan tali, berputar dalam suatu bidang vertikal. Lintasan dalam bidang itu adalah suatu lingkaran dengan jari-jari 1,5 m Jika kecepatan sudut tetap 2 rad/s,

Lebih terperinci

Fisika EBTANAS Tahun 1998

Fisika EBTANAS Tahun 1998 Fisika EBTANAS Tahun 1998 EBTANAS-98-01 Pada ganbar di samping, komponen vektor gaya F menurut sumbu x adalah A. 1 3 F y B. 1 F F 1 F C. 30 o D. 1 F 0 x E. 1 3 F EBTANAS-98-0 Benda jatuh bebas adalah benda

Lebih terperinci

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah.

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. 1 D49 1. Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. Hasil pengukuran adalah. A. 4,18 cm B. 4,13 cm C. 3,88 cm D. 3,81 cm E. 3,78 cm 2. Ayu melakukan

Lebih terperinci

ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1994

ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1994 ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1994 BAGIAN KEARSIPAN SMA DWIJA PRAJA PEKALONGAN JALAN SRIWIJAYA NO. 7 TELP (0285) 426185) 1. Dua buah bola A dan B dengan massa m A = 3 kg;

Lebih terperinci

Fisika EBTANAS Tahun 1994

Fisika EBTANAS Tahun 1994 Fisika EBTANAS Tahun 1994 EBTANAS-94-01 Diantara kelompok besaran di bawah ini yang hanya terdiri dari besaran turunan saja adalah A. kuat arus, massa, gaya B. suhu, massa, volume C. waktu, momentum, percepatan

Lebih terperinci

Transmisi Signal Wireless. Pertemuan IV

Transmisi Signal Wireless. Pertemuan IV Transmisi Signal Wireless Pertemuan IV 1. Panjang Gelombang (Wavelength) Adalah jarak antar 1 ujung puncak gelombang dengan puncak lainnya secara horizontal. Gelombang adalah sinyal sinus. Sinyal ini awalnya

Lebih terperinci

Fisika UMPTN Tahun 1986

Fisika UMPTN Tahun 1986 Fisika UMPTN Tahun 986 UMPTN-86-0 Sebuah benda dengan massa kg yang diikat dengan tali, berputar dalam suatu bidang vertikal. Lintasan dalam bidang itu adalah suatu lingkaran dengan jari-jari, m. Jika

Lebih terperinci

4. Sebuah sistem benda terdiri atas balok A dan B seperti gambar. Pilihlah jawaban yang benar!

4. Sebuah sistem benda terdiri atas balok A dan B seperti gambar. Pilihlah jawaban yang benar! Pilihlah Jawaban yang Paling Tepat! Pilihlah jawaban yang benar!. Sebuah pelat logam diukur menggunakan mikrometer sekrup. Hasilnya ditampilkan pada gambar berikut. Tebal pelat logam... mm. 0,08 0.,0 C.,8

Lebih terperinci

UPAYA PENINGKATAN KUALITAS CITRA MRI DENGAN PEMBERIAN MEDIA KONTRAS

UPAYA PENINGKATAN KUALITAS CITRA MRI DENGAN PEMBERIAN MEDIA KONTRAS Berkala Fisika ISSN : 1410-9662 Vol. 16, No. 1, Januari 2013, hal 9-14 UPAYA PENINGKATAN KUALITAS CITRA MRI DENGAN PEMBERIAN MEDIA KONTRAS Suhardi 1, Wahyu Setia Budi 2 dan Choirul Anam 2 1 Instalasi Radiologi,

Lebih terperinci

Pertanyaan Final (rebutan)

Pertanyaan Final (rebutan) Pertanyaan Final (rebutan) 1. Seseorang menjatuhkan diri dari atas atap sebuah gedung bertingkat yang cukup tinggi sambil menggenggam sebuah pensil. Setelah jatuh selama 2 sekon orang itu terkejut karena

Lebih terperinci

FISIKA MODERN. Pertemuan Ke-7. Nurun Nayiroh, M.Si.

FISIKA MODERN. Pertemuan Ke-7. Nurun Nayiroh, M.Si. FISIKA MODERN Pertemuan Ke-7 Nurun Nayiroh, M.Si. Efek Zeeman Gerakan orbital elektron Percobaan Stern-Gerlach Spin elektron Pieter Zeeman (1896) melakukan suatu percobaan untuk mengukur interaksi antara

Lebih terperinci

D. -5 m/s dan 15 m/s E. -25 m/s dan 10 m/s. tumbukan lenting sempurna berarti e = 1 Ditanyakan kecepatan akhir setelah tumbukan?

D. -5 m/s dan 15 m/s E. -25 m/s dan 10 m/s. tumbukan lenting sempurna berarti e = 1 Ditanyakan kecepatan akhir setelah tumbukan? 1. Dua buah benda dengan massa sama, kecepatan masing-masing 10 m/s dan 20 m/s. Kedua benda dari arah berlawanan, bertumbukan lenting sempurna. Kecepatan masing-masing benda setelah tumbukan adalah...

Lebih terperinci

BAB II LANDASAN TEORI. Resistansi atau tahanan didefinisikan sebagai pelawan arus yang

BAB II LANDASAN TEORI. Resistansi atau tahanan didefinisikan sebagai pelawan arus yang BAB II LANDASAN TEORI Pada bab ini penulis menjelaskan kerangka teori yang digunakan dalam tugas akhir ini. Dimulai dengan definisi listrik dan elektromagnetik dasar, kemudian beralih ke daya nirkabel

Lebih terperinci

SNMPTN 2011 FISIKA. Kode Soal Gerakan sebuah mobil digambarkan oleh grafik kecepatan waktu berikut ini.

SNMPTN 2011 FISIKA. Kode Soal Gerakan sebuah mobil digambarkan oleh grafik kecepatan waktu berikut ini. SNMPTN 2011 FISIKA Kode Soal 999 Doc. Name: SNMPTN2011FIS999 Version: 2012-10 halaman 1 01. Gerakan sebuah mobil digambarkan oleh grafik kecepatan waktu berikut ini. Percepatan ketika mobil bergerak semakin

Lebih terperinci

2 BAB II TINJAUAN PUSTAKA

2 BAB II TINJAUAN PUSTAKA 2 BAB II TINJAUAN PUSTAKA 2.1 Sistem Distribusi Listrik Bagian dari sistem tenaga listrik yang paling dekat dengan pelanggan adalah sistem distribusi. Sistem distribusi juga merupakan bagian yang paling

Lebih terperinci

ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1995

ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1995 ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1995 BAGIAN KEARSIPAN SMA DWIJA PRAJA PEKALONGAN JALAN SRIWIJAYA NO. 7 TELP (0285) 426185) 1. Sebuah pita diukur, ternyata lebarnya 12,3 mm

Lebih terperinci

3. Dari grafik di samping, pada saat t = 5 sekon, percepatannya adalah. a. 32 m/s 2 b. 28 m/s 2 c. 20 m/s 2 d. 12 m/s 2 e. 4 m/s 2

3. Dari grafik di samping, pada saat t = 5 sekon, percepatannya adalah. a. 32 m/s 2 b. 28 m/s 2 c. 20 m/s 2 d. 12 m/s 2 e. 4 m/s 2 1 5 6 0 5 Pengukuran dengan jangka sorong ditunjuk- kan seperti gambar di atas Hasil pengukuran dan banyaknya angka penting adalah a 5,04 cm dan 3 angka penting b 5,4 cm dan angka penting c 5,40 cm dan

Lebih terperinci

UJIAN SEKOLAH 2016 PAKET A. 1. Hasil pengukuran diameter dalam sebuah botol dengan menggunakan jangka sorong ditunjukkan pada gambar berikut!

UJIAN SEKOLAH 2016 PAKET A. 1. Hasil pengukuran diameter dalam sebuah botol dengan menggunakan jangka sorong ditunjukkan pada gambar berikut! SOAL UJIAN SEKOLAH 2016 PAKET A 1. Hasil pengukuran diameter dalam sebuah botol dengan menggunakan jangka sorong ditunjukkan pada gambar berikut! 2 cm 3 cm 0 5 10 Dari gambar dapat disimpulkan bahwa diameter

Lebih terperinci

Antiremed Kelas 12 Fisika

Antiremed Kelas 12 Fisika Antiremed Kelas 12 Fisika Persiapan UAS 2 Doc. Name: AR12FIS02UAS Version : 2016-09 halaman 1 01. Batas ambang frekuensi dari seng untuk efek fotolistrik adalah di daerah sinar ultraviolet. Manakah peristiwa

Lebih terperinci

Materi Pendalaman 03 GELOMBANG ELEKTROMAGNETIK =================================================

Materi Pendalaman 03 GELOMBANG ELEKTROMAGNETIK ================================================= Materi Pendalaman 03 GELOMBANG ELEKTROMAGNETIK ================================================= Bila dalam kawat PQ terjadi perubahan-perubahan tegangan baik besar maupun arahnya, maka dalam kawat PQ

Lebih terperinci

Kunci dan pembahasan soal ini bisa dilihat di dengan memasukkan kode 5976 ke menu search. Copyright 2017 Zenius Education

Kunci dan pembahasan soal ini bisa dilihat di  dengan memasukkan kode 5976 ke menu search. Copyright 2017 Zenius Education 01. Batas ambang frekuensi dari seng untuk efek fotolistrik adalah di daerah sinar ultraviolet. Manakah peristiwa yang akan terjadi jika sinar-x ditembakkan ke permukaan logam seng? (A) tidak ada elektron

Lebih terperinci

e. muatan listrik menghasilkan medan listrik dari... a. Faraday d. Lenz b. Maxwell e. Hertz c. Biot-Savart

e. muatan listrik menghasilkan medan listrik dari... a. Faraday d. Lenz b. Maxwell e. Hertz c. Biot-Savart 1. Hipotesis tentang gejala kelistrikan dan ke-magnetan yang disusun Maxwell ialah... a. perubahan medan listrik akan menghasilkan medan magnet b. di sekitar muatan listrik terdapatat medan listrik c.

Lebih terperinci

GELOMBANG ELEKTROMAGNETIK. Oleh: DHELLA MARDHELA NIM: 15B08052

GELOMBANG ELEKTROMAGNETIK. Oleh: DHELLA MARDHELA NIM: 15B08052 GELOMBANG ELEKTROMAGNETIK Oleh: DHELLA MARDHELA NIM: 15B08052 Apa itu Gelombang? Gelombang adalah getaran yang merambat Apakah dalam perambatannya perlu medium/zat perantara? Tidak harus! Berdasarkan ada/tidak

Lebih terperinci

BAB 20. KEMAGNETAN Magnet dan Medan Magnet Hubungan Arus Listrik dan Medan Magnet

BAB 20. KEMAGNETAN Magnet dan Medan Magnet Hubungan Arus Listrik dan Medan Magnet DAFTAR ISI DAFTAR ISI...1 BAB 20. KEMAGNETAN...2 20.1 Magnet dan Medan Magnet...2 20.2 Hubungan Arus Listrik dan Medan Magnet...2 20.3 Gaya Magnet...4 20.4 Hukum Ampere...9 20.5 Efek Hall...13 20.6 Quis

Lebih terperinci

V. Medan Magnet. Ditemukan sebuah kota di Asia Kecil (bernama Magnesia) lebih dahulu dari listrik

V. Medan Magnet. Ditemukan sebuah kota di Asia Kecil (bernama Magnesia) lebih dahulu dari listrik V. Medan Magnet Ditemukan sebuah kota di Asia Kecil (bernama Magnesia) lebih dahulu dari listrik Di tempat tersebut ada batu-batu yang saling tarik menarik. Magnet besar Bumi [sudah dari dahulu dimanfaatkan

Lebih terperinci

SOAL UN FISIKA DAN PENYELESAIANNYA 2005

SOAL UN FISIKA DAN PENYELESAIANNYA 2005 2. 1. Seorang siswa melakukan percobaan di laboratorium, melakukan pengukuran pelat tipis dengan menggunakan jangka sorong. Dari hasil pengukuran diperoleh panjang 2,23 cm dan lebar 36 cm, maka luas pelat

Lebih terperinci

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - MEDAN MAGNET - MEDAN MAGNET

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - MEDAN MAGNET - MEDAN MAGNET LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR Diberikan Tanggal :. Dikumpulkan Tanggal : Nama : Kelas/No : / Medan Magnet - - MEDAN MAGNET - MEDAN MAGNET A. Medan Magnet 1. Medan Magnet oleh arus listrik

Lebih terperinci

1. Hasil pengukuran ketebalan plat logam dengan menggunakan mikrometer sekrup sebesar 2,92 mm. Gambar dibawah ini yang menunjukkan hasil pengukuran

1. Hasil pengukuran ketebalan plat logam dengan menggunakan mikrometer sekrup sebesar 2,92 mm. Gambar dibawah ini yang menunjukkan hasil pengukuran 1. Hasil pengukuran ketebalan plat logam dengan menggunakan mikrometer sekrup sebesar 2,92 mm. Gambar dibawah ini yang menunjukkan hasil pengukuran tersebut adalah.... A B. C D E 2. Sebuah perahu menyeberangi

Lebih terperinci

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Fisika Tahun Ajaran 2017/2018. Departemen Fisika - Wardaya College

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Fisika Tahun Ajaran 2017/2018. Departemen Fisika - Wardaya College Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Fisika Tahun Ajaran 2017/2018-1. Hambatan listrik adalah salah satu jenis besaran turunan yang memiliki satuan Ohm. Satuan hambatan jika

Lebih terperinci