Data Mining III Asosiasi

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Data Mining III Asosiasi"

Transkripsi

1 Data Mining III Asosiasi Mata Kuliah Data Warehouse Universitas Darma Persada Oleh Adam Arif B 2011 Data Mining-Aturan Asosiasi-AAB 1

2 Data Mining - Asosiasi Market basket analysis Tool untuk menemukan pengetahuan berdasarkan hubungan asosiasi dua set data Data Mining-Aturan Asosiasi-AAB 2

3 Data Mining - Asosiasi Bila diberi data transaksi item belanja dari 14 pengunjung pada swalayan UNSADA Data Mining-Aturan Asosiasi-AAB 3

4 Data Mining - asosiasi Informasi apa yang bisa diperoleh dari data tersebut? Pengetahuan apa yang tersimpan dalam data di atas? Data Mining-Aturan Asosiasi-AAB 4

5 Istilah-istilah Data di atas merupakan data historis, data masa lalu data latihan/training data data data pengalaman Algoritma aturan asosiasi akan menggunakan data latihan ini untuk menemukan pengetahuan sesuai dengan definisi data mining Pengetahuan yang dihasilkan adalah mengetahui item-item belanja yang sering dibeli secara bersamaan Data Mining-Aturan Asosiasi-AAB 5

6 Istilah-istilah (lanj) Aturan asosiasi yang berbentuk if.then. atau jika.maka, merupakan pengetahuan yang dihasilkan dari fungsi aturan asosiasi. Item barang yang dibeli atau barang yang menjadi objek kegiatan belanja. Pada swalayan unsada terdapat 7 jenis item yaitu (urut abjad) asparagus, beans, brocolli, corn, green peppers, squash dan tomatoes. Data Mining-Aturan Asosiasi-AAB 6

7 Istilah-istilah (lanj) Himpunan item dilambangkan dengan I merupakan himpunan dari semua jenis item yang akan dibahas. Persamaan himpunan item Persamaan 1: I = {asparagus, beans, brocolli, corn, green peppers, squash, tomatoes} Himpunan item yang dibeli pengunjung ke i disebut transaksi ke i Dilambangkan T i Data Mining-Aturan Asosiasi-AAB 7

8 Istilah-istilah (lanj) Persamaan 2: T 1 = {brocolli, green, peppers, corn} T 2 = {Asparagus, squash, corn} T 14 = {corn, green, peppers, tomatoes, beans, brocolli} Data Mining-Aturan Asosiasi-AAB 8

9 Persamaan 3: Himpunan seluruh transaksi dilambangkan dengan D sehingga persamaan 3 ini menjadi: D = {T1, T2,.., T14} Data Mining-Aturan Asosiasi-AAB 9

10 Istilah-istilah Persamaan 4 implikasi jika A, maka B atau A B A disebut anteseden atau pendahulu B disebut konsekuen atau pengikut Aturan asosiasi yang dihasilkan nanti harus memenuhi dua sifat 1. A maupun B adalah himpunan bagian murni dari I Persamaan 5 yaitu A,B I Data Mining-Aturan Asosiasi-AAB 10

11 Istilah-istilah 2. A dan B adalah dua himpunan yang saling lepas. Sehingga disimbolkan pada persamaan 6: A B = ø Salah satu ukuran kinerja bagi aturan asosiasi A B adalah besaran support (dukungan) yang dilambangkan dengan s(a B). Dan didefinisikan sebagaimana di persamaan 7. Data Mining-Aturan Asosiasi-AAB 11

12 Persamaan 7 Istilah-istilah (lanj) Ukuran kinerja lain bagi aturan asosiasi A B adalah besaran support yang dilambangkan dengan conf (A B ) dan didefinisikan sebagai Persamaan 8 Data Mining-Aturan Asosiasi-AAB 12

13 Persamaan 8 Istilah-istilah (lanj) Jumlah transaksi yang mengandung A B A Jumlah transaksi yang mengandung B Itemset suatu himpunan yang beranggotakan sebagian atau seluruh item yang menjadi anggota I. Data Mining-Aturan Asosiasi-AAB 13

14 Istilah-istilah (lanj) Contoh dari itemset adalah {Asparagus} atau {Asparagus, Bean}, atau {Asparagus, Beans, Squash} Itemset yang beranggotakan k buah item disebut k-itemset. Data Mining-Aturan Asosiasi-AAB 14

15 Istilah-istilah (lanj) 1. Himpunan {Asparagus} adalah suatu itemset. Lebih spesifik lagi 1-itemset karena hanya beranggotakan satu buah item saja 2. Himpunan {Asparagus, Beans} adalah suatu itemset. Lebih spesifik lagi 2-itemset karena hanya beranggotakan dua buah item saja 3. Himpunan {Asparagus, beans, squash} adalah suatu itemset. Lebih spesifik lagi 3-itemset karena beranggotakan tiga buah item saja Data Mining-Aturan Asosiasi-AAB 15

16 Istilah-istilah (lanj) Besaran frekuensi itemset mengukur berapa kali sebuah itemset muncul sebagai bagian atau keseluruhan transaksi yang menjadi anggota daftar transaksi D. Contoh: 1. Frekuensi itemset {asparagus} adalah 6 karena himpunan ini menjadi bagian dari enam transaksi (lihat data transaksi slide 3), yaitu T2, T5, T6, T9, T12 dan T13 Data Mining-Aturan Asosiasi-AAB 16

17 Istilah-istilah (lanj) 2. Frekuensi itemset {asparagus, beans} adalah 5 karena himpunan ini menjadi bagian dari lima transaksi, yaitu T5, T6, T9, T12 dan T13 3. Frekuensi itemset {asparagus, beans, squash} adalah 4 karena himpunan ini menjadi bagian dari empat transaksi (slide 3), yaitu T6, T9, T12 dan T13 Data Mining-Aturan Asosiasi-AAB 17

18 Istilah-istilah (lanj) Itemset sering/frequent itemset suatu itemset yang memiliki frekuensi itemset minimal sebesar bilangan Φ yang ditetapkan. Contoh bila kita tetapkan Φ = 4, maka: 1. Itemset {asparagus, beans, squash} termasuk itemset yang sering karena memiliki frekuensi itemset yang telah melebihi atau minimal sebesar Φ = 4. Data Mining-Aturan Asosiasi-AAB 18

19 Istilah-istilah (lanj) 2. Itemset {squash, tomatoes} tidak termasuk itemset sering karena memiliki frekuensi itemset sebesar 3, artinya masih di bawah nilai Φ yang ditetapkan Itemset sering yang memiliki k buah anggota disebut k-itemset sering. Misalnya itemset {asparagus, beans, squash} termasuk 3 itemset sering karena himpunan ini termasuk itemset sering dan memiliki 3 anggota. Himpunan dari seluruh k-itemset dilambangkan dengan F k. Data Mining-Aturan Asosiasi-AAB 19

20 Istilah-istilah (lanj) Aturan asosiasi secara ringkas digambarkan sbb: 1. Berawal dari data latihan yang tersedia (lihat slide 3) 2. Data latihan diolah dengan menggunakan algoritma atuan asosiasi. 3. Masalah aturan asosiasi berakhir dengan dihasilkannya pengetahuan yang direpresentasikan dalam bentuk diagram yang disebut aturan asosiasi. Data Mining-Aturan Asosiasi-AAB 20

21 Prototip masalah aturan asosiasi dan pengetahuan yang dihasilkan jika membeli asparagus, maka membeli beans Dapat diartikan: Item asparagus mempunyai kecenderungan untuk dibeli bersama-sama dengan item beans, atau Pengunjung toko unsada yang membeli asparagus mempunyai kecenderungan untuk juga membeli beans Dan lain-lain. (misalnya?) Data Mining-Aturan Asosiasi-AAB 21

22 Prototip masalah aturan asosiasi dan pengetahuan yang dihasilkan Dengan adanya prototip,masalah aturan asosiasi kita dapat mengetahui definisi masalah aturan asosiasi Dengan pembahasan interpretasi pengetahuan yang dihasilkan oleh fungsi mayor aturan asosiasi, kita bisa mengetahui cara memaknai pengetahuan yang dihasilkan dari masalah ini. Data Mining-Aturan Asosiasi-AAB 22

23 Algoritma aturan asosiasi Market Basket Analysis (MBA) Hasil pembahasan sebelumnya dapat disimpulkan menjadi: Data historis merupakan data penting sebagai data latihan/training data Data tersebut akan dijadikan input bagi suatu algoritma yang saat ini belum kita ketahui algoritmnya Sebagai keluaran algoritma yang saat ini belum kita ketahui jenisnya, kita akan memperoleh pengetahuan yang secara sederhana dapat direpresentasikan dalam bentuk jika., maka. Data Mining-Aturan Asosiasi-AAB 23

24 langkah umum Market Basket Analysis (MBA) 1. Menetapkan besaran Φ (itemset sering), nilai minimum besaran support dan besaran confidence yang diinginkan untuk dipenuhi oleh aturan asosiasi yang ingin dihasilkan 2. Menetapkan semua itemset sering, yaitu itemset yang memiliki frekuensi itemset minimal sebesar bilangan Φ yang telah ditetapkan sebelumnya 3. Dari semua itemset sering, hasilkan aturan asosiasi yang memenuhi nilai minimum support dan confidence (yang telah ditetapkan) Data Mining-Aturan Asosiasi-AAB 24

25 Langkah dalam MBA-1 1. Langkah pertama menetapkan besaran Φ dan nilai minimum support dan confidence, misalnya Φ = 4, maka min (support) = 30% dan min (confidence) = 70% 2. Langkah kedua Menyusun semua itemset sering, yaitu itemset yang memiliki frekuensi itemset minimal sebesar bilangan Φ = 4 yang telah ditetapkan di langkah pertama. Data Mining-Aturan Asosiasi-AAB 25

26 Langkah dalam MBA-2 Kita mulai dari pembahasan setiap 1-itemset sbb: {asparagus}, {beans}, {brocolli}, {corn}, {green peppers}, {squash} dan {tomatoes} adalah 1-itemset sering, karena itemset ini berhasil muncul melebihi Φ kali, atau 4 kali dalam daftar D, sehingga bisa dituliskan sebagai berikut: F 1 ={{asparagus}, {beans}, {brocolli}, {corn}, {green peppers}, {squash} {tomatoes}} Data Mining-Aturan Asosiasi-AAB 26

27 Langkah dalam MBA-2 (lanj) Dilanjutkan dengan 2-itemset 1. {asparagus,beans}, {asparagus,brocoli},{asparagus,corn},{a sparagus, green peppers}, {asparagus, squash}, {asparagus, tomatoes}, {beans, corn},{beans, green peppers}, {beans, squash}, {beans, tomatoes},{brocoli, corn}, {brocoli, green peppers}, {brocoli, squash}, {brocoli, tomatoes}, {corn, green peppers}, {corn, squash}, {corn, squash},{corn, tomatoes}, {green peppers, squash}, {green peppers, tomatoes}, {squash, tomatoes} Data Mining-Aturan Asosiasi-AAB 27

28 Langkah dalam MBA-2 (lanj) 2. Kesimpulan hanya {asparagus, beans}, {asparagus, squash}, {bean, corn}, {bean, squash}, {bean, tomatoes}, {brocolli, greenpepper}, dan {corn, tomatoes} yang merupakan 2-itemset sering sehingga : F 2 = {{asparagus, beans}, {asparagus, squash}, {bean, corn}, {bean, squash}, {bean, tomatoes}, {brocolli, greenpepper}, {corn, tomatoes} } Data Mining-Aturan Asosiasi-AAB 28

29 Langkah dalam MBA-2 (lanj) Untuk meringankan kita dalam mengkaji F3, F4, F5 dan seterusnya, gunakan aturan berikut: jika Z bukan itemset sering, maka Z A pasti bukan itemset sering, untuk setiap A Aturan ini disebut aturan apriori Data Mining-Aturan Asosiasi-AAB 29

30 Langkah dalam MBA-2 (lanj) Penggunaan aturan apriori Bila {asparagus, brocolli} bukan 2-itemset sering, maka menurut aturan apriori: {asparagus, brocoli, corn} merupakan gabungan dari 2-itemset {asparagus, brocolli} yang tidak termasuk kedalam 2-itemset sering, dengan 1-itemset sering {corn},maka {asparagus, brocolli, corn} tidak akan pernah 3-itemset sering. Data Mining-Aturan Asosiasi-AAB 30

31 Langkah dalam MBA-2 (lanj) Penerapan aturan apriori terhadap seluruh anggota F 2 hanya akan memberikan {asparagus, beans, squash} sebagai satu-satunya 3-itemset sering sehingga didapatkan: F3 = {{asparagus, beans, squash}} Selanjutnya akan diperoleh F4=F5=F6=F7= ø Singkatnya akan menghasilkan himpunan itemset sering F 1, F 2, F 3 Data Mining-Aturan Asosiasi-AAB 31

32 Langkah dalam MBA-3 Aturan asosiasi yang memenuhi nilai minimum support dan confidence (yang telah ditetapkan) dari semua itemset sering yang ada akan dibangun A. Dari semua itemset sering s yang ada di F2, F3 dan seterusnya, daftarkan semua himpunan bagian murni yang tak kosong dari s sebutlah ss. Sehingga.. Data Mining-Aturan Asosiasi-AAB 32

33 Langkah dalam MBA-3 (lanj) Sehingga: 1. Untuk s = {asparagus,beans} didapatkan ss = {asparagus} atau ss = {beans} 2. Untuk s = {asparagus,squash} didapatkan ss = {asparagus} atau ss = {squash} 3. Untuk s = {beans,corn} didapatkan ss = {beans} atau ss = {corn} 4. Untuk s = {beans,squash} didapatkan ss = {beans} atau ss = {squash} Data Mining-Aturan Asosiasi-AAB 33

34 Langkah dalam MBA-3 (lanj) 5. Untuk s = {beans,tomatoes} didapatkan ss = {beans} atau ss = {tomatoes} 6. Untuk s = {brocolli, green pepper} didapatkan ss = {brocolli} atau ss = {greenpepper} 7. Untuk s = {corn, tomatoes} didapatkan ss = {corn} atau ss = {tomatoes} 8. Untuk s = {asparagus, beans, squash} didapatkan ss = {asparagus} atau ss = {beans} atau ss = {squash} atau ss = {asparagus, bean}, atau ss = {bean, squash} Data Mining-Aturan Asosiasi-AAB 34

35 Langkah dalam MBA-3 (lanj) B. Bentuk aturan asosiasi yang berpola jika ss, maka (s-ss) atau s (s-ss) Untuk mempermudah, pilihlah aturan yang hanya berkonsekuen sebuah item saja sehingga (s-ss) hanya beranggotakan sebuah item saja. Sehingga masalah toko unsada didapatkan calon aturan asosiasi pada tabel berikut. Data Mining-Aturan Asosiasi-AAB 35

36 Langkah dalam MBA-3 (lanj) keterangan: kolom support = 5/14 asosiasi terbanyak asparagus dan beans per banyaknya transaksi (14) Kolom confidence = 5/6 6 => jumlah banyaknya asparagus 5/10 10 => jumlah banyaknya beans Data Mining-Aturan Asosiasi-AAB 36

37 Langkah dalam MBA-3 (lanj) C. Pilih aturan asosiasi yang memenuhi nilai minimum (support) dan minimum (confidence) saja. Sebelumnya ditentukan batasan min (support) = 30% dan min (confidence) = 70% tampak pada tabel di bawah Data Mining-Aturan Asosiasi-AAB 37

38 Langkah dalam MBA-3 (lanj) Data Mining-Aturan Asosiasi-AAB 38

39 Capeeknya habis ngitung gituan bobok dulu ah Data Mining-Aturan Asosiasi-AAB 39

40 Pengetahuan apa yang bisa diperoleh dari perhitungan tersebut? Jika pelanggan membeli asparagus maka barang berikutnya yang dibeli adalah beans dan atau squash 83.3% Jika pelanggan membeli squash, maka barang berikutnya yang dibeli adalah asparagus 71.4% Jika pelanggan membeli beans, maka barang berikutnya yang dibeli adalah squash 60% Jika pelanggan membeli corn, maka barang berikutnya yang dibeli adalah beans 62.5% Data Mining-Aturan Asosiasi-AAB 40

41 Langkah selanjutnya? Berdasarkan data tersebut bisa dilakukan penataan barang berdasarkan yang banyak dibeli Pemberian discount pada hari tertentu Dll Dll Stok asparagus dan beans diperbanyak sesuai permintaan pembelian salah satu barang Data Mining-Aturan Asosiasi-AAB 41

42 Algoritma lain? Market basket Analysis bukan satu-satunya algoritma untuk mengetahui asosiasi Terdapat algoritma lain untuk keperluan yang sama misalnya: - algoritma Generalized Association Rules - Algoritma Quantitative Association rule - Algoritma Asynchronous Parallel Mining Data Mining-Aturan Asosiasi-AAB 42

43 Pekerjaan Rumah (kumpulkan minggu depan) Saya tinggal di pedesaan. Di desa ku sering ada pertunjukkan sirkus. Tidak setiap hari sirkus ini show di desaku. Saya pernah mengamati kapan saja mereka main ke sini. Dan data pengamatan saya, saya buatkan tabel sebagai berikut Data Mining-Aturan Asosiasi-AAB 43

44 Dengan data di atas perkirakan kapan rombongan sirkus tersebut show atau tidak di desa saya. Data Mining-Aturan Asosiasi-AAB 44

45 selamat mengerjakan Data Mining-Aturan Asosiasi-AAB 45

46 referensi Data Mining-Aturan Asosiasi-AAB 46

Data Mining - Asosiasi. Market basket analysis Tool untuk menemukan pengetahuan. Istilah-istilah

Data Mining - Asosiasi. Market basket analysis Tool untuk menemukan pengetahuan. Istilah-istilah Data Mining III Market Basket Case Analysis Data Mining - Asosiasi Market basket analysis Tool untuk menemukan pengetahuan berdasarkan hubungan asosiasi dua set data Data Mining - Asosiasi Bila diberi

Lebih terperinci

Aturan assosiatif biasanya dinyatakan dalam bentuk : {roti, mentega} {susu} (support = 40%, confidence = 50%)

Aturan assosiatif biasanya dinyatakan dalam bentuk : {roti, mentega} {susu} (support = 40%, confidence = 50%) ASSOCIATION RULE (ALGORITMA A PRIORI) Algoritma A Priori termasuk jenis aturan asosiasi pada data mining. Selain a priori, yang termasuk pada golongan ini adalah metode generalized rule induction dan algoritma

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Perkembangan dan persaingan dalam dunia bisnis perdagangan serta kemajuan teknologi informasi merupakan suatu hal yang saling terkait, dalam ketatnya persaingan pasar

Lebih terperinci

Assocation Rule. Data Mining

Assocation Rule. Data Mining Assocation Rule Data Mining Association Rule Analisis asosiasi atau association rule mining adalah teknik data mining untuk menemukan aturan assosiatif antara suatu kombinasi item. Aturan yang menyatakan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI. yang akan diteliti. Pemanfaatan algoritma apriori sudah cukup banyak digunakan, antara lain

BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI. yang akan diteliti. Pemanfaatan algoritma apriori sudah cukup banyak digunakan, antara lain BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tinjauan Pustaka Penelitian ini menggunakan beberapa sumber pustaka yang berhubungan dengan kasus yang akan diteliti. Pemanfaatan algoritma apriori sudah cukup

Lebih terperinci

Metodologi Algoritma A Priori. Metodologi dasar algoritma a priori analisis asosiasi terbagi menjadi dua tahap :

Metodologi Algoritma A Priori. Metodologi dasar algoritma a priori analisis asosiasi terbagi menjadi dua tahap : Metodologi Algoritma A Priori 1 Kusrini, 2 Emha Taufiq Luthfi 1 Jurusan Sistem Informasi, 2 Jurusan Teknik Informatika 1, 2 STMIK AMIKOM Yogykakarta 1,2 Jl. Ringroad Utara Condong Catur Sleman Yogyakarta

Lebih terperinci

BAB I PENDAHULUAN. Keberadaan minimarket di kota-kota besar sangat dibutuhkan bagi. masyarakat khususnya di daerah perumahan. Bagi sebagian besar

BAB I PENDAHULUAN. Keberadaan minimarket di kota-kota besar sangat dibutuhkan bagi. masyarakat khususnya di daerah perumahan. Bagi sebagian besar BAB I PENDAHULUAN 1.1 LATAR BELAKANG Keberadaan minimarket di kota-kota besar sangat dibutuhkan bagi masyarakat khususnya di daerah perumahan. Bagi sebagian besar masyarakat kota, mereka lebih cenderung

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Perusahaan ritel yang menyediakan berbagai kebutuhan berkembang pesat bukan hanya di kota besar saja tetapi juga di kota-kota kecil. Untuk memperoleh keuntungan yang

Lebih terperinci

BAB IV IMPLEMENTASI DAN PENGUJIAN Bab ini akan membahas mengenai implementasi dari sistem yang telah dibuat. Pengujian akan dilakukan pada setiap menu untuk memastikan bahwa sistem berjalan dan menghasilkan

Lebih terperinci

PENERAPAN ALGORTIMA APRIORI PADA DATA MINING UNTUK MENGELOMPOKKAN BARANG BERDASARKAN KECENDERUNGAN KEMUNCULAN BERSAMA DALAM SATU TRANSAKSI.

PENERAPAN ALGORTIMA APRIORI PADA DATA MINING UNTUK MENGELOMPOKKAN BARANG BERDASARKAN KECENDERUNGAN KEMUNCULAN BERSAMA DALAM SATU TRANSAKSI. PENERAPAN ALGORTIMA APRIORI PADA DATA MINING UNTUK MENGELOMPOKKAN BARANG BERDASARKAN KECENDERUNGAN KEMUNCULAN BERSAMA DALAM SATU TRANSAKSI Abstrak Data Mining is the process of extracting knowledge hidden

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Data mining adalah proses mencari pola atau informasi menarik dalam data terpilih dengan menggunakan teknik atau metode tertentu (Sensuse dan Gunadi, 2012). Pola-pola

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam periode enam tahun terakhir (tahun 2007 2012), jumlah gerai ritel modern di Indonesia mengalami pertumbuhan rata-rata 17,57% per tahun. Pada tahun 2007, jumlah

Lebih terperinci

IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE

IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer (S.Kom.)

Lebih terperinci

BAB I PENDAHULUAN. frekuensi tinggi antar himpunan itemset yang disebut fungsi Association

BAB I PENDAHULUAN. frekuensi tinggi antar himpunan itemset yang disebut fungsi Association 1 BAB I PENDAHULUAN 1.1 Latar Belakang Belakangan ini data mining telah diimplementasikan keberbagai bidang, diantaranya dalam bidang bisnis atau perdangangan, dan telekomunikasi. Data Mining diartikan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah Identifikasi Masalah Masalah Umum

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah Identifikasi Masalah Masalah Umum BAB I PENDAHULUAN 1.1 Latar Belakang Masalah 1.1.1 Identifikasi Masalah 1.1.1.1. Masalah Umum Situasi kondisi perekonomian yang ada pada saat ini menunjukkan adanya perkembangan dunia usaha semakin pesat

Lebih terperinci

PENERAPAN ALGORITMA APRIORI DALAM MENENTUKAN STRATEGI PENJUALAN MAKANAN RINGAN (Studi Kasus: Toko Pak Herry Templek - Gadungan)

PENERAPAN ALGORITMA APRIORI DALAM MENENTUKAN STRATEGI PENJUALAN MAKANAN RINGAN (Studi Kasus: Toko Pak Herry Templek - Gadungan) PENERAPAN ALGORITMA APRIORI DALAM MENENTUKAN STRATEGI PENJUALAN MAKANAN RINGAN (Studi Kasus: Toko Pak Herry Templek - Gadungan) SKRIPSI Diajukan Untuk Memenuhi Sebagai Syarat Guna Memperoleh Gelar Sarjana

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Saat ini, perkembangan teknologi telah memberikan pengaruh yang sangat besar di dalam kehidupan manusia. Salah satu pengaruh tersebut di bidang informasi yaitu dalam

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Pengantar Komputer

BAB 1 PENDAHULUAN 1.1 Pengantar Komputer BAB 1 PENDAHULUAN 1.1 Pengantar Komputer Saat ini komputer dan piranti pendukungnya telah masuk dalam setiap aspek kehidupan dan pekerjaan. Komputer dimanfaatkan dalam segala bidang dikarenakan komputer

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah 1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pada dasarnya orang suka berbelanja, dan orang-orang berbelanja untuk memenuhi kebutuhan atau hanya ingin membeli sesuatu barang yang diinginkan. Dalam sebuah

Lebih terperinci

BAB I PENDAHULUAN. Data mining memungkinkan penemuan pola-pola yang menarik, informasi yang

BAB I PENDAHULUAN. Data mining memungkinkan penemuan pola-pola yang menarik, informasi yang 1 BAB I PENDAHULUAN Bab pendahuluan ini membahas tentang latar belakang masalah yaitu fenomena perkembangan data yang terus bertambah tetapi informasi yang dihasilkan monoton, sehingga diperlukan data

Lebih terperinci

PENERAPAN ALGORITMA APRIORI UNTUK MENENTUKAN FREKUENSI ITEM SET SEBAGAI STRATEGI PENJUALAN DI TOKO PUTRA MANIS SURAKARTA SKRIPSI

PENERAPAN ALGORITMA APRIORI UNTUK MENENTUKAN FREKUENSI ITEM SET SEBAGAI STRATEGI PENJUALAN DI TOKO PUTRA MANIS SURAKARTA SKRIPSI PENERAPAN ALGORITMA APRIORI UNTUK MENENTUKAN FREKUENSI ITEM SET SEBAGAI STRATEGI PENJUALAN DI TOKO PUTRA MANIS SURAKARTA SKRIPSI Disusun sebagai salah satu syarat menyelesaikan Jenjang Strata I pada Jurusan

Lebih terperinci

..::Data Mining::.. Prediksi

..::Data Mining::.. Prediksi ..::Data Mining::.. Prediksi Mata Kuliah Data warehouse Univ. Darma Persada Oleh: Adam Arif Budiman 2012 Data Mining-Prediksi-Adam AB Prediksi Dalam estimasi kita memperkirakan suatu hal misalnya rata-rata

Lebih terperinci

Penerapan Data Mining Untuk Analisis Pola Pembelian Produk Pada Clapper Movie Café Menggunakan Metode Association Rule

Penerapan Data Mining Untuk Analisis Pola Pembelian Produk Pada Clapper Movie Café Menggunakan Metode Association Rule Penerapan Data Mining Untuk Analisis Pola Pembelian Produk Pada Clapper Movie Café Menggunakan Metode Association Rule Alffeus Gantari Ganeffo Program Studi Teknik Informatika, Universitas Dian Nuswantoro

Lebih terperinci

ASSOCIATION RULES PADA TEXT MINING

ASSOCIATION RULES PADA TEXT MINING Budi Susanto ASSOCIATION RULES PADA TEXT MINING SUSANTO 1 Tujuan Memahami algoritma Apriori dan FP- Growth Memahami penerapannya pada penambangan dokumen Memamahmi algoritma GSP Memahami penerapannya pada

Lebih terperinci

Jurnal Edik Informatika Penelitian Bidang Komputer Sains dan Pendidikan Informatika V1.i1(52-62)

Jurnal Edik Informatika Penelitian Bidang Komputer Sains dan Pendidikan Informatika V1.i1(52-62) Analisa Pola Peminjaman Buku Perpustakaan Menggun Algoritma Apriori Azwar Anas Program Studi Pendidikan Informatika, STKIP PGRI Sumbar aans_07@yahoo.co.id http://dx.doi.org/10.22202/jei.2014.v1i1.1439

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pengetahuan di dalam database. Data mining adalah proses yang menggunakan

BAB II TINJAUAN PUSTAKA. pengetahuan di dalam database. Data mining adalah proses yang menggunakan 6 BAB II TINJAUAN PUSTAKA 2.1 Pengertian Data Mining Data mining adalah suatu istilah yang digunakan untuk menguraikan penemuan pengetahuan di dalam database. Data mining adalah proses yang menggunakan

Lebih terperinci

PENGGUNAAN MARKET BASKET ANALYSIS DALAM DATA MINING

PENGGUNAAN MARKET BASKET ANALYSIS DALAM DATA MINING PENGGUNAAN MARKET BASKET ANALYSIS DALAM DATA MINING Narwati Dosen Fakultas Teknologi Informasi Abstrak Jumlah data yang sangat besar pada suatu perusahaan atau dalam suatu transaksi bisnis, merupakan suatu

Lebih terperinci

APLIKASI MONITORING KETERSEDIAAN STOK BARANG MINIMARKET DENGAN METODE MARKET BASKET ANALYSIS (MBA)

APLIKASI MONITORING KETERSEDIAAN STOK BARANG MINIMARKET DENGAN METODE MARKET BASKET ANALYSIS (MBA) Seminar Nasional Teknologi Informasi dan Multimedia 2016 APLIKASI MONITORING KETERSEDIAAN STOK BARANG MINIMARKET DENGAN METODE MARKET BASKET ANALYSIS (MBA) Sugiyatno 1), Adhika Pramita Widyasari 2) 1),

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Turban mendefinisikan Decision Support System sebagai sekumpulan

BAB II TINJAUAN PUSTAKA. Turban mendefinisikan Decision Support System sebagai sekumpulan BAB II TINJAUAN PUSTAKA 2.1 Decision Support System Turban mendefinisikan Decision Support System sebagai sekumpulan prosedur berbasis model untuk data pemrosesan dan penilaian guna membantu para pengambilan

Lebih terperinci

JURNAL IMPLEMENTASI DATA MINING UNTUK MEMPREDIKSI HASIL PENJUALAN BARANG PADA TOKO SINAR BARU DENGAN MENGGUNAKAN ALGORITMA APRIORI

JURNAL IMPLEMENTASI DATA MINING UNTUK MEMPREDIKSI HASIL PENJUALAN BARANG PADA TOKO SINAR BARU DENGAN MENGGUNAKAN ALGORITMA APRIORI JURNAL IMPLEMENTASI DATA MINING UNTUK MEMPREDIKSI HASIL PENJUALAN BARANG PADA TOKO SINAR BARU DENGAN MENGGUNAKAN ALGORITMA APRIORI IMPLEMENTATION OF DATA MINING TO PREDICT RESULTS OF SALES GOODS IN THE

Lebih terperinci

ANALISIS KERANJANG BELANJA DENGAN ALGORITMA APRIORI PADA PERUSAHAAN RETAIL

ANALISIS KERANJANG BELANJA DENGAN ALGORITMA APRIORI PADA PERUSAHAAN RETAIL Seminar Nasional Sistem Informasi Indonesia, 2-4 Desember 2013 ANALISIS KERANJANG BELANJA DENGAN ALGORITMA APRIORI PADA PERUSAHAAN RETAIL A.A. Gede Bagus Ariana 1), I Made Dwi Putra Asana 2) 1 STMIK STIKOM

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Pendahuluan 1.2 Latar Belakang Masalah

BAB 1 PENDAHULUAN 1.1 Pendahuluan 1.2 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Pendahuluan Pada jaman modernisasi, teknologi digital mengambil alih dunia dengan terusmenerus berlomba berkreasi tiada henti-hentinya demi tercapainya kemudahan dan kecepatan penyebaran

Lebih terperinci

PENERAPAN METODE ASOSIASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI UNTUK MENGETAHUI KOMBINASI ANTAR ITEMSET PADA PONDOK KOPI

PENERAPAN METODE ASOSIASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI UNTUK MENGETAHUI KOMBINASI ANTAR ITEMSET PADA PONDOK KOPI PENERAPAN METODE ASOSIASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI UNTUK MENGETAHUI KOMBINASI ANTAR ITEMSET PADA PONDOK KOPI Fitri Nurchalifatun Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Jl.

Lebih terperinci

PENGGALIAN KAIDAH MULTILEVEL ASSOCIATION RULE DARI DATA MART SWALAYAN ASGAP

PENGGALIAN KAIDAH MULTILEVEL ASSOCIATION RULE DARI DATA MART SWALAYAN ASGAP PENGGALIAN KAIDAH MULTILEVEL ASSOCIATION RULE DARI DATA MART SWALAYAN ASGAP Teguh Pradana 1) 1) Program Studi/Prodi Teknik Informatika, STMIK Yadika, email: INTI_PERSADA_SOFTWARE@yahoo.co.id Abstrak: Perkembangan

Lebih terperinci

PENERAPAN ALGORITMA APRIORI DALAM MEMPREDIKSI PERSEDIAAN BUKU PADA PERPUSTAKAAN SMA DWI TUNGGAL TANJUNG MORAWA

PENERAPAN ALGORITMA APRIORI DALAM MEMPREDIKSI PERSEDIAAN BUKU PADA PERPUSTAKAAN SMA DWI TUNGGAL TANJUNG MORAWA PENERAPAN ALGORITMA APRIORI DALAM MEMPREDIKSI PERSEDIAAN BUKU PADA PERPUSTAKAAN SMA DWI TUNGGAL TANJUNG MORAWA Domma Lingga Mahasiswa Program Studi Teknik Informatika STMIK Budidarma Medan Jl. Sisingamangaraja

Lebih terperinci

BAB 3 LANDASAN TEORI

BAB 3 LANDASAN TEORI BAB 3 LANDASAN TEORI 3.1 M-Commerce M-commerce (mobile commerce) merupakan bagian dari e-commerce, mencakup semua transaksi e-commerce dan dilakukan menggunakan mobile device (Mirzaie & Asadollahi, 2011).

Lebih terperinci

JURNAL IMPLEMENTASI DATA MINING PADA PEMILIHAN WAHANA PERMAINAN FAVORIT GAME FANTASIA DI KEDIRI MALL

JURNAL IMPLEMENTASI DATA MINING PADA PEMILIHAN WAHANA PERMAINAN FAVORIT GAME FANTASIA DI KEDIRI MALL JURNAL IMPLEMENTASI DATA MINING PADA PEMILIHAN WAHANA PERMAINAN FAVORIT GAME FANTASIA DI KEDIRI MALL IMPLEMENTATION OF DATA MINING ON ELECTION WAHANA GAME FAVORITES GAME FANTASIA IN KEDIRI MALL Oleh: MOCHAMAD

Lebih terperinci

STRATEGI PENJUALAN PAKAN UNGGAS PADA TOKO PAKAN PEKSI KEDIRI DENGAN MEMBANGUN SISTEM PENDUKUNG KEPUTUSAN MENGGUNAKAN ALGORITMA APRIORI

STRATEGI PENJUALAN PAKAN UNGGAS PADA TOKO PAKAN PEKSI KEDIRI DENGAN MEMBANGUN SISTEM PENDUKUNG KEPUTUSAN MENGGUNAKAN ALGORITMA APRIORI STRATEGI PENJUALAN PAKAN UNGGAS PADA TOKO PAKAN PEKSI KEDIRI DENGAN MEMBANGUN SISTEM PENDUKUNG KEPUTUSAN MENGGUNAKAN ALGORITMA APRIORI ARTIKEL SKRIPSI Diajukan Guna Memenuhi Salah Satu Syarat Memperoleh

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN

BAB III ANALISIS DAN PERANCANGAN BAB III ANALISIS DAN PERANCANGAN III.1 Analisis Permasalahan Keputusan selama ini yang dilakukan oleh Toko Buku Sembilan Wali Medan untuk menentukan buku apa saja yang paling potensial dijual berdasarkan

Lebih terperinci

ASSOCIATION RULES PADA TEXT MINING

ASSOCIATION RULES PADA TEXT MINING Text dan Web Mining - FTI UKDW - BUDI SUSANTO 1 ASSOCIATION RULES PADA TEXT MINING Budi Susanto versi 1.2 Text dan Web Mining - FTI UKDW - BUDI SUSANTO 2 Tujuan Memahami algoritma Apriori dan FP-Growth

Lebih terperinci

PENERAPAN METODE APRIORI ASOSIASI TERHADAP PENJUALAN PRODUCT COSMETIC UNTUK MENDUKUNG STRATEGI PENJUALAN

PENERAPAN METODE APRIORI ASOSIASI TERHADAP PENJUALAN PRODUCT COSMETIC UNTUK MENDUKUNG STRATEGI PENJUALAN PENERAPAN METODE APRIORI ASOSIASI TERHADAP PENJUALAN PRODUCT COSMETIC UNTUK MENDUKUNG STRATEGI PENJUALAN SKRIPSI Diajukan untuk memenuhi salah satu syarat guna memperoleh gelar Sarjana Komputer (S.Kom)

Lebih terperinci

ANALISA PENERAPAN DATAMINING PADA PENJUALAN PRODUK OLI MESIN SEPEDA MOTOR DENGAN ALGORITMA APRIORI

ANALISA PENERAPAN DATAMINING PADA PENJUALAN PRODUK OLI MESIN SEPEDA MOTOR DENGAN ALGORITMA APRIORI ANALISA PENERAPAN DATAMINING PADA PENJUALAN PRODUK OLI MESIN SEPEDA MOTOR DENGAN ALGORITMA APRIORI Siti Sundari Program Studi Teknik Informatika, Sekolah Tinggi Teknik Harapan Medan Jalan Hm. Joni No 70

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN

BAB III ANALISIS DAN PERANCANGAN BAB III ANALISIS DAN PERANCANGAN III.1. Analisis Sistem Analisis sistem yang berjalan pada perusahaan PT. Perintis Perkasa dikelola dengan menggunakan software TDMS (Toyota Dealer Management System). TDMS

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Pelaku bisnis saat ini dituntut selalu inovatif untuk dapat bersaing dengan kompetitor. Bisnis retail seperti Apotek merupakan bisnis dengan persaingan yang sangat

Lebih terperinci

BAB III METODE PENELITIAN. A. Tempat dan Waktu. 1. Tempat Penelitian. a. Assalam hypermarket merupakan salah satu pusat perbelanjaan di

BAB III METODE PENELITIAN. A. Tempat dan Waktu. 1. Tempat Penelitian. a. Assalam hypermarket merupakan salah satu pusat perbelanjaan di BAB III METODE PENELITIAN A. Tempat dan Waktu 1. Tempat Penelitian Tempat penelitian merupakan suatu sumber untuk mendapatkan data yang dibutuhkan mengenai masalah yang akan diteliti. Data untuk penelitian

Lebih terperinci

BAB IV HASIL DAN UJICOBA. Penerapan Data Mining Market Basket Analysis Terhadap Data Penjualan Produk

BAB IV HASIL DAN UJICOBA. Penerapan Data Mining Market Basket Analysis Terhadap Data Penjualan Produk BAB IV HASIL DAN UJICOBA IV.1. Tampilan Hasil Berikut ini dijelaskan mengenai tampilan hasil dari perancangan Penerapan Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Elektronik Dengan

Lebih terperinci

2.2 Data Mining. Universitas Sumatera Utara

2.2 Data Mining. Universitas Sumatera Utara Basis data adalah kumpulan terintegrasi dari occurences file/table yang merupakan representasi data dari suatu model enterprise. Sistem basisdata sebenarnya tidak lain adalah sistem penyimpanan-record

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Perkembangan teknologi komputasi dan media penyimpanan telah memungkinkan manusia untuk mengumpulkan dan menyimpan data dari berbagai sumber dengan jumlah yang

Lebih terperinci

DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI

DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI Heroe Santoso 1), I Putu Hariyadi 2), Prayitno 3) 1), 2),3) Teknik Informatika STMIK Bumigora Mataram Jl Ismail Marzuki

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perpustakaan merupakan tempat dimana seseorang mendapatkan pengetahuan, informasi atau hiburan dengan jumlah kategori yang bervarian seperti ilmiah, non fiksi, komedi,

Lebih terperinci

Belajar Mudah Algoritma Data Mining : Apriori

Belajar Mudah Algoritma Data Mining : Apriori Belajar Mudah Algoritma Data Mining : Apriori Algoritma apriori merupakan salah satu algoritma klasik data mining. Algoritma apriori digunakan agar komputer dapat mempelajari aturan asosiasi. Tabel 1 di

Lebih terperinci

1 BAB I 2 PENDAHULUAN

1 BAB I 2 PENDAHULUAN 1 BAB I 2 PENDAHULUAN 1.1 Latar Belakang Data mining merupakan salah satu bidang ilmu yang berupaya untuk menemukan kaidah, pola, model, maupun informasi yang bersifat menarik dari sekumpulan data. Salah

Lebih terperinci

ANALISA DAN PERANCANGAN APLIKASI ALGORITMA APRIORI UNTUK KORELASI PENJUALAN PRODUK (STUDI KASUS : APOTIK DIORY FARMA)

ANALISA DAN PERANCANGAN APLIKASI ALGORITMA APRIORI UNTUK KORELASI PENJUALAN PRODUK (STUDI KASUS : APOTIK DIORY FARMA) ANALISA DAN PERANCANGAN APLIKASI ALGORITMA APRIORI UNTUK KORELASI PENJUALAN PRODUK (STUDI KASUS : APOTIK DIORY FARMA) Harvei Desmon Hutahaean 1, Bosker Sinaga 2, Anastasya Aritonang Rajagukguk 2 1 Program

Lebih terperinci

PENERAPAN ALGORITMA APRIORI ASSOCIATION RULE UNTUK ANALISA NILAI MAHASISWA DI UNIVERSITAS GUNADARMA

PENERAPAN ALGORITMA APRIORI ASSOCIATION RULE UNTUK ANALISA NILAI MAHASISWA DI UNIVERSITAS GUNADARMA PENERAPAN ALGORITMA APRIORI ASSOCIATION RULE UNTUK ANALISA NILAI MAHASISWA DI UNIVERSITAS GUNADARMA Margi Cahyanti 1), Maulana Mujahidin 2), Ericks Rachmat Swedia 3) 1) Sistem Informasi Universitas Gunadarma

Lebih terperinci

2.1 Penelitian Terkait

2.1 Penelitian Terkait BAB II TINJAUAN PUSTAKA 2.1 Penelitian Terkait Penelitian yang dilakukan oleh Dinda Setiawati Devi dengan menggunakan metode Apriori untuk analisa keranjang pasar untuk 100 data transaksi dan 55 jenis

Lebih terperinci

BAB I PENDAHULUAN. Toko central menjual berbagai macam aksesoris hp untuk masyarakat yang

BAB I PENDAHULUAN. Toko central menjual berbagai macam aksesoris hp untuk masyarakat yang BAB I PENDAHULUAN I.1. Latar Belakang Toko central menjual berbagai macam aksesoris hp untuk masyarakat yang akan membeli. Toko central menyediakan aksesoris hp sesuai dengan banyaknya permintaan dari

Lebih terperinci

IMPLEMENTASI DATA MINING PADA PENJUALAN PRODUK ELEKTRONIK DENGAN ALGORITMA APRIORI (STUDI KASUS : KREDITPLUS)

IMPLEMENTASI DATA MINING PADA PENJUALAN PRODUK ELEKTRONIK DENGAN ALGORITMA APRIORI (STUDI KASUS : KREDITPLUS) IMPLEMENTASI DATA MINING PADA PENJUALAN PRODUK ELEKTRONIK DENGAN ALGORITMA APRIORI (STUDI KASUS : KREDITPLUS) Dewi Kartika Pane (0911801) Mahasiswa Program Studi Teknik Informatika, STMIK Budidarma Medan

Lebih terperinci

BAB I PENDAHULUAN. yakni teknik mesin, teknik elektro dan teknik informatika. Namun bagi para calon

BAB I PENDAHULUAN. yakni teknik mesin, teknik elektro dan teknik informatika. Namun bagi para calon BAB I PENDAHULUAN I.1. Latar Belakang Sekolah Tinggi Teknologi Sinar Husni (STT. Sinar Husni) memiliki mahasiswa yang mayoritasnya adalah para pekerja, oleh karena itu banyak para pekerja yang melanjutkan

Lebih terperinci

Timor Setiyaningsih, Nur Syamsiah Teknik Informatika Universitas Darma Persada. Abstrak

Timor Setiyaningsih, Nur Syamsiah Teknik Informatika Universitas Darma Persada. Abstrak DATA MINING MELIHAT POLA HUBUNGAN NILAI TES MASUK MAHASISWA TERHADAP DATA KELULUSAN MAHASISWA UNTUK MEMBANTU PERGURUAN TINGGI DALAM MENGAMBIL KEBIJAKAN DALAM RANGKA PENINGKATAN MUTU PERGURUAN TINGGI Timor

Lebih terperinci

MENGOPTIMALKAN LALU-LINTAS PERBELANJAAN DENGAN MENGATUR DERAJAT KEPENTINGAN ANTAR ETALASE

MENGOPTIMALKAN LALU-LINTAS PERBELANJAAN DENGAN MENGATUR DERAJAT KEPENTINGAN ANTAR ETALASE MENGOPTIMALKAN LALU-LINTAS PERBELANJAAN DENGAN MENGATUR DERAJAT KEPENTINGAN ANTAR ETALASE Hendy Tannady Tan Department of Industrial Engineering, Faculty of Engineering, Universitas Bina Nusantara Jl.

Lebih terperinci

Implementasi Data Mining Algoritme Apriori Pada Sistem Penjualan Kusuma Shop

Implementasi Data Mining Algoritme Apriori Pada Sistem Penjualan Kusuma Shop Implementasi Data Mining Algoritme Apriori Pada Sistem Penjualan Kusuma Shop Lutfi Mukaromah 1, Kusumaningtyas 2, Apriliani Galih Saputri 3, Harleni Vionita 4, Rendi Susilo 5,Tri Astuti 6, Lusi Dwi Oktaviana

Lebih terperinci

ANALISA DATA PENJUALAN OBAT DENGAN MENGGUNAKAN ALGORITMA APRIORI PADA RUMAH SAKIT UMUM DAERAH H. ABDUL MANAN SIMATUPANG KISARAN

ANALISA DATA PENJUALAN OBAT DENGAN MENGGUNAKAN ALGORITMA APRIORI PADA RUMAH SAKIT UMUM DAERAH H. ABDUL MANAN SIMATUPANG KISARAN ANALISA DATA PENJUALAN OBAT DENGAN MENGGUNAKAN ALGORITMA APRIORI PADA RUMAH SAKIT UMUM DAERAH H. ABDUL MANAN SIMATUPANG KISARAN Chintia Oktavia Simbolon (0911456) Mahasiswa Program Studi Teknik Informatika,

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Berbagai penemuan terbaru di dalam pengumpulan dan penyimpanan data telah memungkinkan berbagai organisasi untuk mengumpulkan berbagai data (data pembelian, data nasabah,

Lebih terperinci

BAB V KESIMPULAN DAN SARAN. keranjang belanja (Market basket analysis) dalam penerapan cross selling pada

BAB V KESIMPULAN DAN SARAN. keranjang belanja (Market basket analysis) dalam penerapan cross selling pada BAB V KESIMPULAN DAN SARAN 5.1. Kesimpulan Kesimpulan yang dapat diambil dari rancang bangun sistem analisis keranjang belanja (Market basket analysis) dalam penerapan cross selling pada Apotek K24 Kalibutuh

Lebih terperinci

BAB I PENDAHULUAN. Teknologi Informasi sekarang ini telah digunakan hampir di semua aspek

BAB I PENDAHULUAN. Teknologi Informasi sekarang ini telah digunakan hampir di semua aspek BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Teknologi Informasi sekarang ini telah digunakan hampir di semua aspek kehidupan, contohnya dalam sebuah perusahaan ritel. Dengan sistem yang telah terkomputerisasi,

Lebih terperinci

Pengembangan Aplikasi Market Basket Analysis Menggunakan Algoritma Generalized Sequential Pattern pada Supermarket

Pengembangan Aplikasi Market Basket Analysis Menggunakan Algoritma Generalized Sequential Pattern pada Supermarket Pengembangan Aplikasi Market Basket Analysis Menggunakan Algoritma Generalized Sequential Pattern pada Supermarket Gunawan 1), Alex Xandra Albert Sim 2), Fandi Halim 3), M. Hawari Simanullang 4), M. Firkhan

Lebih terperinci

6 SISTEM EVALUASI 6.1 Data Responden Evaluasi Elemen Desain Kursi Rotan 6.2 Pengembangan Sistem Evaluasi Elemen Desain Kursi Rotan

6 SISTEM EVALUASI 6.1 Data Responden Evaluasi Elemen Desain Kursi Rotan 6.2 Pengembangan Sistem Evaluasi Elemen Desain Kursi Rotan 6 SISTEM EVALUASI Sistem evaluasi bertujuan untuk memperoleh pengetahuan antara kata Kansei dengan elemen desain yang menunjukkan kata tersebut. Pengetahuan tersebut diperoleh dari responden dengan menggunakan

Lebih terperinci

BAB I PENDAHULUAN. dalam suatu sistem basis data melalui aplikasi sistem informasi manajemen. Dari

BAB I PENDAHULUAN. dalam suatu sistem basis data melalui aplikasi sistem informasi manajemen. Dari BAB I PENDAHULUAN I.1. Latar Belakang Persaingan yang semakin ketat dalam penjualan menuntut para pebisnis untuk menemukan suatu strategi yang dapat meningkatkan penjualan dan pemasaran produk yang dijual,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA DAFTAR ISI LEMBAR PENGESAHAN... i SURAT PERNYATAAN... ii ABSTRACT... iii ABSTRAKSI... iv KATA PENGANTAR... v DAFTAR ISTILAH... vii DAFTAR ISI... ix DAFTAR TABEL... xii DAFTAR GAMBAR... xiv DAFTAR SIMBOL...

Lebih terperinci

BAB III ANALISIS DAN DESAIN SISTEM

BAB III ANALISIS DAN DESAIN SISTEM BAB III ANALISIS DAN DESAIN SISTEM III.1. Analisis Masalah Toko central menjual berbagai macam aksesoris hp untuk masyarakat yang akan membeli. Toko central menyediakan aksesoris hp sesuai dengan banyaknya

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang Bab 1 Pendahuluan BAB 1 PENDAHULUAN 1.1. Latar Belakang Pada era globalisasi saat ini, perkembangan teknologi tidak dapat dihindarkan dalam kehidupan manusia. Perkembangan teknologi yang ada, memiliki

Lebih terperinci

ANALISA POLA DATA HASIL PEMBANGUNAN KABUPATEN MALANG MENGGUNAKAN METODE ASSOCIATION RULE

ANALISA POLA DATA HASIL PEMBANGUNAN KABUPATEN MALANG MENGGUNAKAN METODE ASSOCIATION RULE ANALISA POLA DATA HASIL PEMBANGUNAN KABUPATEN MALANG MENGGUNAKAN METODE ASSOCIATION RULE Dewi Sibagariang 1), Karina Auliasari 2) 1.2) Jurusan Teknik Informatika, Institut Teknologi Nasional Malang Jalan

Lebih terperinci

ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE

ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE Diki Arisandi 1, Nofriandi 2 Jurusan Teknik Informatika, FakultTeknik,Universitas Abdurrab

Lebih terperinci

BAB III ANALISIS DAN DESAIN SISTEM

BAB III ANALISIS DAN DESAIN SISTEM BAB III ANALISIS DAN DESAIN SISTEM III.1. Analisis Masalah Kebutuhan akan teori dalam dunia pendidikan sangat besar. Teori banyak di tulis ke dalam sebuah buku maupun jurnal. Pada universitas potensi utama,

Lebih terperinci

PENCARIAN ATURAN ASOSIASI MENGGUNAKAN ALGORITMA APRIORI SEBAGAI BAHAN REKOMENDASI STRATEGI PEMASARAN PADA TOKO ACIICA

PENCARIAN ATURAN ASOSIASI MENGGUNAKAN ALGORITMA APRIORI SEBAGAI BAHAN REKOMENDASI STRATEGI PEMASARAN PADA TOKO ACIICA PENCARIAN ATURAN ASOSIASI MENGGUNAKAN ALGORITMA APRIORI SEBAGAI BAHAN REKOMENDASI STRATEGI PEMASARAN PADA TOKO ACIICA SKRIPSI Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer

Lebih terperinci

BAB I PENDAHULUAN. yang cepat dan besar di Asia (Kartiwi, 2006). Pertumbuhan e-commerce yang

BAB I PENDAHULUAN. yang cepat dan besar di Asia (Kartiwi, 2006). Pertumbuhan e-commerce yang BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia adalah salah satu negara dengan pertumbuhan pasar e-commerce yang cepat dan besar di Asia (Kartiwi, 2006). Pertumbuhan e-commerce yang besar tersebut membuat

Lebih terperinci

BAB 2 LANDASAN TEORI. Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun.

BAB 2 LANDASAN TEORI. Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun. BAB 2 LANDASAN TEORI Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun. 2.1. Data Mining Data mining adalah suatu istilah yang digunakan

Lebih terperinci

BAB I PENDAHULUAN I-1

BAB I PENDAHULUAN I-1 BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan Banyaknya persaingan dalam dunia bisnis khususnya dalam industri penjualan, menuntut para pengembang untuk menemukan suatu strategi yang dapat meningkatkan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan dunia perdagangan di Indonesia, khususnya pada industri grosir dan retail semakin ramai dan menuntut adanya inovasi tinggi. Ritel merupakan mata rantai

Lebih terperinci

BAB III ANALISA DAN DESAIN SISTEM

BAB III ANALISA DAN DESAIN SISTEM 36 BAB III ANALISA DAN DESAIN SISTEM Tahapan ini merupakan tahapan utama dalam penelitian, dalam tahapan pengembangan sistem metode yang akan dipakai adalah Rapid Application Development dan tahapan Data

Lebih terperinci

SISTEM SISTEM REKOMENDASI BIDANG MINAT MAHASISWA MENGGUNAKAN METODE ASSOCIATION RULE DAN ALGORITMA APRIORI

SISTEM SISTEM REKOMENDASI BIDANG MINAT MAHASISWA MENGGUNAKAN METODE ASSOCIATION RULE DAN ALGORITMA APRIORI SISTEM SISTEM REKOMENDASI BIDANG MINAT MAHASISWA MENGGUNAKAN METODE ASSOCIATION RULE DAN ALGORITMA APRIORI Nama Mahasiswa : NUCIFERA DIAHPANGASTUTI NRP : 505 00 070 Jurusan : Teknik Informatika FTIF-ITS

Lebih terperinci

ANALISA ALGORITMA APRIORI UNTUK MENENTUKAN MEREK PAKAIAN YANG PALING DIMINATI PADA MODE FASHION GROUP MEDAN

ANALISA ALGORITMA APRIORI UNTUK MENENTUKAN MEREK PAKAIAN YANG PALING DIMINATI PADA MODE FASHION GROUP MEDAN ANALISA ALGORITMA APRIORI UNTUK MENENTUKAN MEREK PAKAIAN YANG PALING DIMINATI PADA MODE FASHION GROUP MEDAN Eka Novita Sari (0911010) Mahasiswa Program Studi Teknik Informatika STMIK Budidarma Medan Jl.

Lebih terperinci

BAB III ANALISIS DAN DESAIN SISTEM

BAB III ANALISIS DAN DESAIN SISTEM BAB III ANALISIS DAN DESAIN SISTEM III.1. Analisis Masalah Banyaknya permintaan pasar terhadap produk coca-cola membuat PT. Coca-Cola harus menyediakan jumlah produksi yang sesuai dengan permintaan pasar.

Lebih terperinci

IMPLEMENTASI DATA MINING TERHADAP PENYUSUNAN LAYOUT MAKANAN PADA RUMAH MAKAN PADANG MURAH MERIAH

IMPLEMENTASI DATA MINING TERHADAP PENYUSUNAN LAYOUT MAKANAN PADA RUMAH MAKAN PADANG MURAH MERIAH IMPLEMENTASI DATA MINING TERHADAP PENYUSUNAN LAYOUT MAKANAN PADA RUMAH MAKAN PADANG MURAH MERIAH Oliver Zakaria 1), Kusrini 2) 1) Teknik Informatika STMIK AMIKOM Yogyakarta Jl. Ring Road Utara Condong

Lebih terperinci

ABSTRAKSI Analisis keranjang pasar merupakan suatu cara untuk mengetahui kebiasaan berbelanja masyarakat disuatau tempat terhadap barang yang dibeli.

ABSTRAKSI Analisis keranjang pasar merupakan suatu cara untuk mengetahui kebiasaan berbelanja masyarakat disuatau tempat terhadap barang yang dibeli. ANALISIS KERANJANG PASAR MENGGUNAKAN ALGORTIMA PREDICTIVE APRIORI UNTUK MENEMUKAN ATURAN ASOSIASI DI APOTEK SEHAT JAYA 1.NINDITYA KHARISMA ninditya@student.gunadarma.ac.id 2.METTY MUSTIKASARI metty@staff.gunadarma.ac.id

Lebih terperinci

IMPLEMENTASI DATA MINING PADA PENJUALAN TIKET PESAWAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus: Jumbo Travel Medan)

IMPLEMENTASI DATA MINING PADA PENJUALAN TIKET PESAWAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus: Jumbo Travel Medan) IMPLEMENTASI DATA MINING PADA PENJUALAN TIKET PESAWAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus: Jumbo Travel Medan) Sri Rahayu Siregar ( 0911882) Mahasiswa Program Studi Teknik Informatika, STMIK Budidarma

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Tingginya tingkat kompetisi pada dunia bisnis terutama dalam penjualan dan pemasaran produk, membuat manajer perusahaan untuk menciptakan strategi yang mampu

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA 2.1 Sistem Informasi Manajemen Mcleod R dan Schell G, (2004) membagi sumber daya menjadi dua bagian yaitu sumberdaya fisikal dan sumberdaya konseptual. Sumber daya fisikal terdiri

Lebih terperinci

APLIKASI DATA MINING MARKET BASKET ANALYSIS PENJUALAN SUKU CADANG SEPEDA MOTOR MENGGUNAKAN METODE ASSOCIATION RULES PADA PT. SEJAHTERA MOTOR GEMILANG

APLIKASI DATA MINING MARKET BASKET ANALYSIS PENJUALAN SUKU CADANG SEPEDA MOTOR MENGGUNAKAN METODE ASSOCIATION RULES PADA PT. SEJAHTERA MOTOR GEMILANG APLIKASI DATA MINING MARKET BASKET ANALYSIS PENJUALAN SUKU CADANG SEPEDA MOTOR MENGGUNAKAN METODE ASSOCIATION RULES PADA PT. SEJAHTERA MOTOR GEMILANG EKA FITRIA WULANSARI Program Studi Teknik Informatika,

Lebih terperinci

Analisis Aturan Asosiasi Data Transaksi Supermarket Menggunakan Algoritma Apriori

Analisis Aturan Asosiasi Data Transaksi Supermarket Menggunakan Algoritma Apriori Analisis Aturan Asosiasi Data Transaksi Supermarket Menggunakan Algoritma Apriori Ginanjar Abdurrahman 1) 1) Jurusan Teknik Informatika, Fakultas Teknik, Universitas Muhammadiyah Jember Jl. Karimata No.

Lebih terperinci

ABSTRACT Market basket analysis is a way to know the shopping habits of people in one place on goods purchased. Market basket analysis to produce an a

ABSTRACT Market basket analysis is a way to know the shopping habits of people in one place on goods purchased. Market basket analysis to produce an a ANALISIS KERANJANG PASAR MENGGUNAKAN ALGORTIMA PREDICTIVE APRIORI UNTUK MENEMUKAN ATURAN ASOSIASI DI APOTEK SEHAT JAYA NINDITYA KHARISMA, METTY MUSTIKASARI Undergraduate Program, Information Systems Gunadarma

Lebih terperinci

BAB I PENDAHULUAN. mahasiswa yang seringkali meminjam buku harus mencari sendiri dirak rak

BAB I PENDAHULUAN. mahasiswa yang seringkali meminjam buku harus mencari sendiri dirak rak BAB I PENDAHULUAN I.1 Latar Belakang Perpustakaan merupakan salah satu fasilitas penyedia informasi,sumber ilmu pengetahuan,dan sarana penunjang proses kegiatan belajar bagi pengguna untuk mendapatkan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada tinjauan pustaka ini akan dibahas tentang konsep dasar dan teori-teori yang mendukung pembahasan yang berhubungan dengan sistem yang akan dibuat. 2.1 Basis Data (Database) Database

Lebih terperinci

PENERAPAN ALGORITMA APRIORI DALAM POLA PEMINJAMAN BUKU (STUDI KASUS : PERPUSTAKAAN STIKES PRIMA JAMBI)

PENERAPAN ALGORITMA APRIORI DALAM POLA PEMINJAMAN BUKU (STUDI KASUS : PERPUSTAKAAN STIKES PRIMA JAMBI) ) PENERAPAN ALGORITMA APRIORI DALAM POLA PEMINJAMAN BUKU (STUDI KASUS : PERPUSTAKAAN ) APRIORI ALGORITHM APPLICATION IN LENDING BOOK PATTERN (CASE STUDY: LIBRARY ) Rico, Brestina Gultom STIKes Prima Jambi

Lebih terperinci

APLIKASI DATA MINING UNTUK POLA PERMINTAAN DARAH DI UDD ( UNIT DONOR DARAH ) PMI KOTA SURABAYA MENGGUNAKAN METODE APRIORI

APLIKASI DATA MINING UNTUK POLA PERMINTAAN DARAH DI UDD ( UNIT DONOR DARAH ) PMI KOTA SURABAYA MENGGUNAKAN METODE APRIORI APLIKASI DATA MINING UNTUK POLA PERMINTAAN DARAH DI UDD ( UNIT DONOR DARAH ) PMI KOTA SURABAYA MENGGUNAKAN METODE APRIORI Budanis Dwi Meilani, dan Dermawan Cahyo Utomo Jurusan Teknik Informatika, Fakultas

Lebih terperinci

Cross-Selling: Perangkat Utama Customer Relationship Managem. Meningkatkan Loyalitas Pelanggan

Cross-Selling: Perangkat Utama Customer Relationship Managem. Meningkatkan Loyalitas Pelanggan Cross-Selling: Perangkat Utama Customer Relationship Management (CRM) Untuk Meningkatkan Loyalitas Pelanggan Seminar Kenaikan Jabatan at Department of Information Systems, Faculty of Computer Science,

Lebih terperinci

IMPLEMENTASI ALGORITMA APRIORI DALAM MENENTUKAN PERSEDIAAN OBAT

IMPLEMENTASI ALGORITMA APRIORI DALAM MENENTUKAN PERSEDIAAN OBAT IMPLEMENTASI ALGORITMA APRIORI DALAM MENENTUKAN PERSEDIAAN OBAT Gusti Ahmad Syaripudin 1), Edi Faizal 2) 1) Teknik Informatika STMIK El Rahma Yogyakarta 1) Jl. Sisingamangaraja No. 76, Karangkajen, Brontokusuman,

Lebih terperinci

A Decision Support Tool For Association Analysis

A Decision Support Tool For Association Analysis A Decision Support Tool For Association Analysis Rina Sibuea 1, Frans Juanda Simanjuntak 2, Sulastry Napitupulu 3, Daniel Elison Daya 4 Program Studi Manajemen Informatika, Politeknik Informatika Del Jl.Sisingamangaraja,

Lebih terperinci

JURNAL IMPLEMENTASI DATA MINING PADA TRANSAKSI PENJUALAN BIBIT BUAH DENGAN ALGORITMA APRIORI (STUDI KASUS: UD BUAH ASRI)

JURNAL IMPLEMENTASI DATA MINING PADA TRANSAKSI PENJUALAN BIBIT BUAH DENGAN ALGORITMA APRIORI (STUDI KASUS: UD BUAH ASRI) JURNAL IMPLEMENTASI DATA MINING PADA TRANSAKSI PENJUALAN BIBIT BUAH DENGAN ALGORITMA APRIORI (STUDI KASUS: UD BUAH ASRI) IMPLEMENTATION DATA MINING OF SALES TRANSACTION FRUIT SEEDLING WITH ALGORITHM APRIORI

Lebih terperinci

BAB I PENDAHULUAN. baik. Maka para pengelola harus mencermati pola-pola pembelian yang dilakukan

BAB I PENDAHULUAN. baik. Maka para pengelola harus mencermati pola-pola pembelian yang dilakukan BAB I PENDAHULUAN I.1. Latar Belakang Jumlah pasar swalayan yang terus berkembang membuat para pengelolaswalayan juga dituntut untuk menerapkan strategi pemasaran yang lebih baik. Maka para pengelola harus

Lebih terperinci