Data Mining III Asosiasi

Ukuran: px
Mulai penontonan dengan halaman:

Download "Data Mining III Asosiasi"

Transkripsi

1 Data Mining III Asosiasi Mata Kuliah Data Warehouse Universitas Darma Persada Oleh Adam Arif B 2011 Data Mining-Aturan Asosiasi-AAB 1

2 Data Mining - Asosiasi Market basket analysis Tool untuk menemukan pengetahuan berdasarkan hubungan asosiasi dua set data Data Mining-Aturan Asosiasi-AAB 2

3 Data Mining - Asosiasi Bila diberi data transaksi item belanja dari 14 pengunjung pada swalayan UNSADA Data Mining-Aturan Asosiasi-AAB 3

4 Data Mining - asosiasi Informasi apa yang bisa diperoleh dari data tersebut? Pengetahuan apa yang tersimpan dalam data di atas? Data Mining-Aturan Asosiasi-AAB 4

5 Istilah-istilah Data di atas merupakan data historis, data masa lalu data latihan/training data data data pengalaman Algoritma aturan asosiasi akan menggunakan data latihan ini untuk menemukan pengetahuan sesuai dengan definisi data mining Pengetahuan yang dihasilkan adalah mengetahui item-item belanja yang sering dibeli secara bersamaan Data Mining-Aturan Asosiasi-AAB 5

6 Istilah-istilah (lanj) Aturan asosiasi yang berbentuk if.then. atau jika.maka, merupakan pengetahuan yang dihasilkan dari fungsi aturan asosiasi. Item barang yang dibeli atau barang yang menjadi objek kegiatan belanja. Pada swalayan unsada terdapat 7 jenis item yaitu (urut abjad) asparagus, beans, brocolli, corn, green peppers, squash dan tomatoes. Data Mining-Aturan Asosiasi-AAB 6

7 Istilah-istilah (lanj) Himpunan item dilambangkan dengan I merupakan himpunan dari semua jenis item yang akan dibahas. Persamaan himpunan item Persamaan 1: I = {asparagus, beans, brocolli, corn, green peppers, squash, tomatoes} Himpunan item yang dibeli pengunjung ke i disebut transaksi ke i Dilambangkan T i Data Mining-Aturan Asosiasi-AAB 7

8 Istilah-istilah (lanj) Persamaan 2: T 1 = {brocolli, green, peppers, corn} T 2 = {Asparagus, squash, corn} T 14 = {corn, green, peppers, tomatoes, beans, brocolli} Data Mining-Aturan Asosiasi-AAB 8

9 Persamaan 3: Himpunan seluruh transaksi dilambangkan dengan D sehingga persamaan 3 ini menjadi: D = {T1, T2,.., T14} Data Mining-Aturan Asosiasi-AAB 9

10 Istilah-istilah Persamaan 4 implikasi jika A, maka B atau A B A disebut anteseden atau pendahulu B disebut konsekuen atau pengikut Aturan asosiasi yang dihasilkan nanti harus memenuhi dua sifat 1. A maupun B adalah himpunan bagian murni dari I Persamaan 5 yaitu A,B I Data Mining-Aturan Asosiasi-AAB 10

11 Istilah-istilah 2. A dan B adalah dua himpunan yang saling lepas. Sehingga disimbolkan pada persamaan 6: A B = ø Salah satu ukuran kinerja bagi aturan asosiasi A B adalah besaran support (dukungan) yang dilambangkan dengan s(a B). Dan didefinisikan sebagaimana di persamaan 7. Data Mining-Aturan Asosiasi-AAB 11

12 Persamaan 7 Istilah-istilah (lanj) Ukuran kinerja lain bagi aturan asosiasi A B adalah besaran support yang dilambangkan dengan conf (A B ) dan didefinisikan sebagai Persamaan 8 Data Mining-Aturan Asosiasi-AAB 12

13 Persamaan 8 Istilah-istilah (lanj) Jumlah transaksi yang mengandung A B A Jumlah transaksi yang mengandung B Itemset suatu himpunan yang beranggotakan sebagian atau seluruh item yang menjadi anggota I. Data Mining-Aturan Asosiasi-AAB 13

14 Istilah-istilah (lanj) Contoh dari itemset adalah {Asparagus} atau {Asparagus, Bean}, atau {Asparagus, Beans, Squash} Itemset yang beranggotakan k buah item disebut k-itemset. Data Mining-Aturan Asosiasi-AAB 14

15 Istilah-istilah (lanj) 1. Himpunan {Asparagus} adalah suatu itemset. Lebih spesifik lagi 1-itemset karena hanya beranggotakan satu buah item saja 2. Himpunan {Asparagus, Beans} adalah suatu itemset. Lebih spesifik lagi 2-itemset karena hanya beranggotakan dua buah item saja 3. Himpunan {Asparagus, beans, squash} adalah suatu itemset. Lebih spesifik lagi 3-itemset karena beranggotakan tiga buah item saja Data Mining-Aturan Asosiasi-AAB 15

16 Istilah-istilah (lanj) Besaran frekuensi itemset mengukur berapa kali sebuah itemset muncul sebagai bagian atau keseluruhan transaksi yang menjadi anggota daftar transaksi D. Contoh: 1. Frekuensi itemset {asparagus} adalah 6 karena himpunan ini menjadi bagian dari enam transaksi (lihat data transaksi slide 3), yaitu T2, T5, T6, T9, T12 dan T13 Data Mining-Aturan Asosiasi-AAB 16

17 Istilah-istilah (lanj) 2. Frekuensi itemset {asparagus, beans} adalah 5 karena himpunan ini menjadi bagian dari lima transaksi, yaitu T5, T6, T9, T12 dan T13 3. Frekuensi itemset {asparagus, beans, squash} adalah 4 karena himpunan ini menjadi bagian dari empat transaksi (slide 3), yaitu T6, T9, T12 dan T13 Data Mining-Aturan Asosiasi-AAB 17

18 Istilah-istilah (lanj) Itemset sering/frequent itemset suatu itemset yang memiliki frekuensi itemset minimal sebesar bilangan Φ yang ditetapkan. Contoh bila kita tetapkan Φ = 4, maka: 1. Itemset {asparagus, beans, squash} termasuk itemset yang sering karena memiliki frekuensi itemset yang telah melebihi atau minimal sebesar Φ = 4. Data Mining-Aturan Asosiasi-AAB 18

19 Istilah-istilah (lanj) 2. Itemset {squash, tomatoes} tidak termasuk itemset sering karena memiliki frekuensi itemset sebesar 3, artinya masih di bawah nilai Φ yang ditetapkan Itemset sering yang memiliki k buah anggota disebut k-itemset sering. Misalnya itemset {asparagus, beans, squash} termasuk 3 itemset sering karena himpunan ini termasuk itemset sering dan memiliki 3 anggota. Himpunan dari seluruh k-itemset dilambangkan dengan F k. Data Mining-Aturan Asosiasi-AAB 19

20 Istilah-istilah (lanj) Aturan asosiasi secara ringkas digambarkan sbb: 1. Berawal dari data latihan yang tersedia (lihat slide 3) 2. Data latihan diolah dengan menggunakan algoritma atuan asosiasi. 3. Masalah aturan asosiasi berakhir dengan dihasilkannya pengetahuan yang direpresentasikan dalam bentuk diagram yang disebut aturan asosiasi. Data Mining-Aturan Asosiasi-AAB 20

21 Prototip masalah aturan asosiasi dan pengetahuan yang dihasilkan jika membeli asparagus, maka membeli beans Dapat diartikan: Item asparagus mempunyai kecenderungan untuk dibeli bersama-sama dengan item beans, atau Pengunjung toko unsada yang membeli asparagus mempunyai kecenderungan untuk juga membeli beans Dan lain-lain. (misalnya?) Data Mining-Aturan Asosiasi-AAB 21

22 Prototip masalah aturan asosiasi dan pengetahuan yang dihasilkan Dengan adanya prototip,masalah aturan asosiasi kita dapat mengetahui definisi masalah aturan asosiasi Dengan pembahasan interpretasi pengetahuan yang dihasilkan oleh fungsi mayor aturan asosiasi, kita bisa mengetahui cara memaknai pengetahuan yang dihasilkan dari masalah ini. Data Mining-Aturan Asosiasi-AAB 22

23 Algoritma aturan asosiasi Market Basket Analysis (MBA) Hasil pembahasan sebelumnya dapat disimpulkan menjadi: Data historis merupakan data penting sebagai data latihan/training data Data tersebut akan dijadikan input bagi suatu algoritma yang saat ini belum kita ketahui algoritmnya Sebagai keluaran algoritma yang saat ini belum kita ketahui jenisnya, kita akan memperoleh pengetahuan yang secara sederhana dapat direpresentasikan dalam bentuk jika., maka. Data Mining-Aturan Asosiasi-AAB 23

24 langkah umum Market Basket Analysis (MBA) 1. Menetapkan besaran Φ (itemset sering), nilai minimum besaran support dan besaran confidence yang diinginkan untuk dipenuhi oleh aturan asosiasi yang ingin dihasilkan 2. Menetapkan semua itemset sering, yaitu itemset yang memiliki frekuensi itemset minimal sebesar bilangan Φ yang telah ditetapkan sebelumnya 3. Dari semua itemset sering, hasilkan aturan asosiasi yang memenuhi nilai minimum support dan confidence (yang telah ditetapkan) Data Mining-Aturan Asosiasi-AAB 24

25 Langkah dalam MBA-1 1. Langkah pertama menetapkan besaran Φ dan nilai minimum support dan confidence, misalnya Φ = 4, maka min (support) = 30% dan min (confidence) = 70% 2. Langkah kedua Menyusun semua itemset sering, yaitu itemset yang memiliki frekuensi itemset minimal sebesar bilangan Φ = 4 yang telah ditetapkan di langkah pertama. Data Mining-Aturan Asosiasi-AAB 25

26 Langkah dalam MBA-2 Kita mulai dari pembahasan setiap 1-itemset sbb: {asparagus}, {beans}, {brocolli}, {corn}, {green peppers}, {squash} dan {tomatoes} adalah 1-itemset sering, karena itemset ini berhasil muncul melebihi Φ kali, atau 4 kali dalam daftar D, sehingga bisa dituliskan sebagai berikut: F 1 ={{asparagus}, {beans}, {brocolli}, {corn}, {green peppers}, {squash} {tomatoes}} Data Mining-Aturan Asosiasi-AAB 26

27 Langkah dalam MBA-2 (lanj) Dilanjutkan dengan 2-itemset 1. {asparagus,beans}, {asparagus,brocoli},{asparagus,corn},{a sparagus, green peppers}, {asparagus, squash}, {asparagus, tomatoes}, {beans, corn},{beans, green peppers}, {beans, squash}, {beans, tomatoes},{brocoli, corn}, {brocoli, green peppers}, {brocoli, squash}, {brocoli, tomatoes}, {corn, green peppers}, {corn, squash}, {corn, squash},{corn, tomatoes}, {green peppers, squash}, {green peppers, tomatoes}, {squash, tomatoes} Data Mining-Aturan Asosiasi-AAB 27

28 Langkah dalam MBA-2 (lanj) 2. Kesimpulan hanya {asparagus, beans}, {asparagus, squash}, {bean, corn}, {bean, squash}, {bean, tomatoes}, {brocolli, greenpepper}, dan {corn, tomatoes} yang merupakan 2-itemset sering sehingga : F 2 = {{asparagus, beans}, {asparagus, squash}, {bean, corn}, {bean, squash}, {bean, tomatoes}, {brocolli, greenpepper}, {corn, tomatoes} } Data Mining-Aturan Asosiasi-AAB 28

29 Langkah dalam MBA-2 (lanj) Untuk meringankan kita dalam mengkaji F3, F4, F5 dan seterusnya, gunakan aturan berikut: jika Z bukan itemset sering, maka Z A pasti bukan itemset sering, untuk setiap A Aturan ini disebut aturan apriori Data Mining-Aturan Asosiasi-AAB 29

30 Langkah dalam MBA-2 (lanj) Penggunaan aturan apriori Bila {asparagus, brocolli} bukan 2-itemset sering, maka menurut aturan apriori: {asparagus, brocoli, corn} merupakan gabungan dari 2-itemset {asparagus, brocolli} yang tidak termasuk kedalam 2-itemset sering, dengan 1-itemset sering {corn},maka {asparagus, brocolli, corn} tidak akan pernah 3-itemset sering. Data Mining-Aturan Asosiasi-AAB 30

31 Langkah dalam MBA-2 (lanj) Penerapan aturan apriori terhadap seluruh anggota F 2 hanya akan memberikan {asparagus, beans, squash} sebagai satu-satunya 3-itemset sering sehingga didapatkan: F3 = {{asparagus, beans, squash}} Selanjutnya akan diperoleh F4=F5=F6=F7= ø Singkatnya akan menghasilkan himpunan itemset sering F 1, F 2, F 3 Data Mining-Aturan Asosiasi-AAB 31

32 Langkah dalam MBA-3 Aturan asosiasi yang memenuhi nilai minimum support dan confidence (yang telah ditetapkan) dari semua itemset sering yang ada akan dibangun A. Dari semua itemset sering s yang ada di F2, F3 dan seterusnya, daftarkan semua himpunan bagian murni yang tak kosong dari s sebutlah ss. Sehingga.. Data Mining-Aturan Asosiasi-AAB 32

33 Langkah dalam MBA-3 (lanj) Sehingga: 1. Untuk s = {asparagus,beans} didapatkan ss = {asparagus} atau ss = {beans} 2. Untuk s = {asparagus,squash} didapatkan ss = {asparagus} atau ss = {squash} 3. Untuk s = {beans,corn} didapatkan ss = {beans} atau ss = {corn} 4. Untuk s = {beans,squash} didapatkan ss = {beans} atau ss = {squash} Data Mining-Aturan Asosiasi-AAB 33

34 Langkah dalam MBA-3 (lanj) 5. Untuk s = {beans,tomatoes} didapatkan ss = {beans} atau ss = {tomatoes} 6. Untuk s = {brocolli, green pepper} didapatkan ss = {brocolli} atau ss = {greenpepper} 7. Untuk s = {corn, tomatoes} didapatkan ss = {corn} atau ss = {tomatoes} 8. Untuk s = {asparagus, beans, squash} didapatkan ss = {asparagus} atau ss = {beans} atau ss = {squash} atau ss = {asparagus, bean}, atau ss = {bean, squash} Data Mining-Aturan Asosiasi-AAB 34

35 Langkah dalam MBA-3 (lanj) B. Bentuk aturan asosiasi yang berpola jika ss, maka (s-ss) atau s (s-ss) Untuk mempermudah, pilihlah aturan yang hanya berkonsekuen sebuah item saja sehingga (s-ss) hanya beranggotakan sebuah item saja. Sehingga masalah toko unsada didapatkan calon aturan asosiasi pada tabel berikut. Data Mining-Aturan Asosiasi-AAB 35

36 Langkah dalam MBA-3 (lanj) keterangan: kolom support = 5/14 asosiasi terbanyak asparagus dan beans per banyaknya transaksi (14) Kolom confidence = 5/6 6 => jumlah banyaknya asparagus 5/10 10 => jumlah banyaknya beans Data Mining-Aturan Asosiasi-AAB 36

37 Langkah dalam MBA-3 (lanj) C. Pilih aturan asosiasi yang memenuhi nilai minimum (support) dan minimum (confidence) saja. Sebelumnya ditentukan batasan min (support) = 30% dan min (confidence) = 70% tampak pada tabel di bawah Data Mining-Aturan Asosiasi-AAB 37

38 Langkah dalam MBA-3 (lanj) Data Mining-Aturan Asosiasi-AAB 38

39 Capeeknya habis ngitung gituan bobok dulu ah Data Mining-Aturan Asosiasi-AAB 39

40 Pengetahuan apa yang bisa diperoleh dari perhitungan tersebut? Jika pelanggan membeli asparagus maka barang berikutnya yang dibeli adalah beans dan atau squash 83.3% Jika pelanggan membeli squash, maka barang berikutnya yang dibeli adalah asparagus 71.4% Jika pelanggan membeli beans, maka barang berikutnya yang dibeli adalah squash 60% Jika pelanggan membeli corn, maka barang berikutnya yang dibeli adalah beans 62.5% Data Mining-Aturan Asosiasi-AAB 40

41 Langkah selanjutnya? Berdasarkan data tersebut bisa dilakukan penataan barang berdasarkan yang banyak dibeli Pemberian discount pada hari tertentu Dll Dll Stok asparagus dan beans diperbanyak sesuai permintaan pembelian salah satu barang Data Mining-Aturan Asosiasi-AAB 41

42 Algoritma lain? Market basket Analysis bukan satu-satunya algoritma untuk mengetahui asosiasi Terdapat algoritma lain untuk keperluan yang sama misalnya: - algoritma Generalized Association Rules - Algoritma Quantitative Association rule - Algoritma Asynchronous Parallel Mining Data Mining-Aturan Asosiasi-AAB 42

43 Pekerjaan Rumah (kumpulkan minggu depan) Saya tinggal di pedesaan. Di desa ku sering ada pertunjukkan sirkus. Tidak setiap hari sirkus ini show di desaku. Saya pernah mengamati kapan saja mereka main ke sini. Dan data pengamatan saya, saya buatkan tabel sebagai berikut Data Mining-Aturan Asosiasi-AAB 43

44 Dengan data di atas perkirakan kapan rombongan sirkus tersebut show atau tidak di desa saya. Data Mining-Aturan Asosiasi-AAB 44

45 selamat mengerjakan Data Mining-Aturan Asosiasi-AAB 45

46 referensi Data Mining-Aturan Asosiasi-AAB 46

Aturan assosiatif biasanya dinyatakan dalam bentuk : {roti, mentega} {susu} (support = 40%, confidence = 50%)

Aturan assosiatif biasanya dinyatakan dalam bentuk : {roti, mentega} {susu} (support = 40%, confidence = 50%) ASSOCIATION RULE (ALGORITMA A PRIORI) Algoritma A Priori termasuk jenis aturan asosiasi pada data mining. Selain a priori, yang termasuk pada golongan ini adalah metode generalized rule induction dan algoritma

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Perkembangan dan persaingan dalam dunia bisnis perdagangan serta kemajuan teknologi informasi merupakan suatu hal yang saling terkait, dalam ketatnya persaingan pasar

Lebih terperinci

Assocation Rule. Data Mining

Assocation Rule. Data Mining Assocation Rule Data Mining Association Rule Analisis asosiasi atau association rule mining adalah teknik data mining untuk menemukan aturan assosiatif antara suatu kombinasi item. Aturan yang menyatakan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Perusahaan ritel yang menyediakan berbagai kebutuhan berkembang pesat bukan hanya di kota besar saja tetapi juga di kota-kota kecil. Untuk memperoleh keuntungan yang

Lebih terperinci

BAB IV IMPLEMENTASI DAN PENGUJIAN Bab ini akan membahas mengenai implementasi dari sistem yang telah dibuat. Pengujian akan dilakukan pada setiap menu untuk memastikan bahwa sistem berjalan dan menghasilkan

Lebih terperinci

PENERAPAN ALGORTIMA APRIORI PADA DATA MINING UNTUK MENGELOMPOKKAN BARANG BERDASARKAN KECENDERUNGAN KEMUNCULAN BERSAMA DALAM SATU TRANSAKSI.

PENERAPAN ALGORTIMA APRIORI PADA DATA MINING UNTUK MENGELOMPOKKAN BARANG BERDASARKAN KECENDERUNGAN KEMUNCULAN BERSAMA DALAM SATU TRANSAKSI. PENERAPAN ALGORTIMA APRIORI PADA DATA MINING UNTUK MENGELOMPOKKAN BARANG BERDASARKAN KECENDERUNGAN KEMUNCULAN BERSAMA DALAM SATU TRANSAKSI Abstrak Data Mining is the process of extracting knowledge hidden

Lebih terperinci

IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE

IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer (S.Kom.)

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Saat ini, perkembangan teknologi telah memberikan pengaruh yang sangat besar di dalam kehidupan manusia. Salah satu pengaruh tersebut di bidang informasi yaitu dalam

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Pengantar Komputer

BAB 1 PENDAHULUAN 1.1 Pengantar Komputer BAB 1 PENDAHULUAN 1.1 Pengantar Komputer Saat ini komputer dan piranti pendukungnya telah masuk dalam setiap aspek kehidupan dan pekerjaan. Komputer dimanfaatkan dalam segala bidang dikarenakan komputer

Lebih terperinci

BAB I PENDAHULUAN. Data mining memungkinkan penemuan pola-pola yang menarik, informasi yang

BAB I PENDAHULUAN. Data mining memungkinkan penemuan pola-pola yang menarik, informasi yang 1 BAB I PENDAHULUAN Bab pendahuluan ini membahas tentang latar belakang masalah yaitu fenomena perkembangan data yang terus bertambah tetapi informasi yang dihasilkan monoton, sehingga diperlukan data

Lebih terperinci

..::Data Mining::.. Prediksi

..::Data Mining::.. Prediksi ..::Data Mining::.. Prediksi Mata Kuliah Data warehouse Univ. Darma Persada Oleh: Adam Arif Budiman 2012 Data Mining-Prediksi-Adam AB Prediksi Dalam estimasi kita memperkirakan suatu hal misalnya rata-rata

Lebih terperinci

PENERAPAN ALGORITMA APRIORI UNTUK MENENTUKAN FREKUENSI ITEM SET SEBAGAI STRATEGI PENJUALAN DI TOKO PUTRA MANIS SURAKARTA SKRIPSI

PENERAPAN ALGORITMA APRIORI UNTUK MENENTUKAN FREKUENSI ITEM SET SEBAGAI STRATEGI PENJUALAN DI TOKO PUTRA MANIS SURAKARTA SKRIPSI PENERAPAN ALGORITMA APRIORI UNTUK MENENTUKAN FREKUENSI ITEM SET SEBAGAI STRATEGI PENJUALAN DI TOKO PUTRA MANIS SURAKARTA SKRIPSI Disusun sebagai salah satu syarat menyelesaikan Jenjang Strata I pada Jurusan

Lebih terperinci

Penerapan Data Mining Untuk Analisis Pola Pembelian Produk Pada Clapper Movie Café Menggunakan Metode Association Rule

Penerapan Data Mining Untuk Analisis Pola Pembelian Produk Pada Clapper Movie Café Menggunakan Metode Association Rule Penerapan Data Mining Untuk Analisis Pola Pembelian Produk Pada Clapper Movie Café Menggunakan Metode Association Rule Alffeus Gantari Ganeffo Program Studi Teknik Informatika, Universitas Dian Nuswantoro

Lebih terperinci

ASSOCIATION RULES PADA TEXT MINING

ASSOCIATION RULES PADA TEXT MINING Budi Susanto ASSOCIATION RULES PADA TEXT MINING SUSANTO 1 Tujuan Memahami algoritma Apriori dan FP- Growth Memahami penerapannya pada penambangan dokumen Memamahmi algoritma GSP Memahami penerapannya pada

Lebih terperinci

Jurnal Edik Informatika Penelitian Bidang Komputer Sains dan Pendidikan Informatika V1.i1(52-62)

Jurnal Edik Informatika Penelitian Bidang Komputer Sains dan Pendidikan Informatika V1.i1(52-62) Analisa Pola Peminjaman Buku Perpustakaan Menggun Algoritma Apriori Azwar Anas Program Studi Pendidikan Informatika, STKIP PGRI Sumbar aans_07@yahoo.co.id http://dx.doi.org/10.22202/jei.2014.v1i1.1439

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pengetahuan di dalam database. Data mining adalah proses yang menggunakan

BAB II TINJAUAN PUSTAKA. pengetahuan di dalam database. Data mining adalah proses yang menggunakan 6 BAB II TINJAUAN PUSTAKA 2.1 Pengertian Data Mining Data mining adalah suatu istilah yang digunakan untuk menguraikan penemuan pengetahuan di dalam database. Data mining adalah proses yang menggunakan

Lebih terperinci

PENGGUNAAN MARKET BASKET ANALYSIS DALAM DATA MINING

PENGGUNAAN MARKET BASKET ANALYSIS DALAM DATA MINING PENGGUNAAN MARKET BASKET ANALYSIS DALAM DATA MINING Narwati Dosen Fakultas Teknologi Informasi Abstrak Jumlah data yang sangat besar pada suatu perusahaan atau dalam suatu transaksi bisnis, merupakan suatu

Lebih terperinci

APLIKASI MONITORING KETERSEDIAAN STOK BARANG MINIMARKET DENGAN METODE MARKET BASKET ANALYSIS (MBA)

APLIKASI MONITORING KETERSEDIAAN STOK BARANG MINIMARKET DENGAN METODE MARKET BASKET ANALYSIS (MBA) Seminar Nasional Teknologi Informasi dan Multimedia 2016 APLIKASI MONITORING KETERSEDIAAN STOK BARANG MINIMARKET DENGAN METODE MARKET BASKET ANALYSIS (MBA) Sugiyatno 1), Adhika Pramita Widyasari 2) 1),

Lebih terperinci

JURNAL IMPLEMENTASI DATA MINING UNTUK MEMPREDIKSI HASIL PENJUALAN BARANG PADA TOKO SINAR BARU DENGAN MENGGUNAKAN ALGORITMA APRIORI

JURNAL IMPLEMENTASI DATA MINING UNTUK MEMPREDIKSI HASIL PENJUALAN BARANG PADA TOKO SINAR BARU DENGAN MENGGUNAKAN ALGORITMA APRIORI JURNAL IMPLEMENTASI DATA MINING UNTUK MEMPREDIKSI HASIL PENJUALAN BARANG PADA TOKO SINAR BARU DENGAN MENGGUNAKAN ALGORITMA APRIORI IMPLEMENTATION OF DATA MINING TO PREDICT RESULTS OF SALES GOODS IN THE

Lebih terperinci

ANALISIS KERANJANG BELANJA DENGAN ALGORITMA APRIORI PADA PERUSAHAAN RETAIL

ANALISIS KERANJANG BELANJA DENGAN ALGORITMA APRIORI PADA PERUSAHAAN RETAIL Seminar Nasional Sistem Informasi Indonesia, 2-4 Desember 2013 ANALISIS KERANJANG BELANJA DENGAN ALGORITMA APRIORI PADA PERUSAHAAN RETAIL A.A. Gede Bagus Ariana 1), I Made Dwi Putra Asana 2) 1 STMIK STIKOM

Lebih terperinci

PENERAPAN METODE ASOSIASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI UNTUK MENGETAHUI KOMBINASI ANTAR ITEMSET PADA PONDOK KOPI

PENERAPAN METODE ASOSIASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI UNTUK MENGETAHUI KOMBINASI ANTAR ITEMSET PADA PONDOK KOPI PENERAPAN METODE ASOSIASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI UNTUK MENGETAHUI KOMBINASI ANTAR ITEMSET PADA PONDOK KOPI Fitri Nurchalifatun Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Jl.

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Pendahuluan 1.2 Latar Belakang Masalah

BAB 1 PENDAHULUAN 1.1 Pendahuluan 1.2 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Pendahuluan Pada jaman modernisasi, teknologi digital mengambil alih dunia dengan terusmenerus berlomba berkreasi tiada henti-hentinya demi tercapainya kemudahan dan kecepatan penyebaran

Lebih terperinci

PENERAPAN ALGORITMA APRIORI DALAM MEMPREDIKSI PERSEDIAAN BUKU PADA PERPUSTAKAAN SMA DWI TUNGGAL TANJUNG MORAWA

PENERAPAN ALGORITMA APRIORI DALAM MEMPREDIKSI PERSEDIAAN BUKU PADA PERPUSTAKAAN SMA DWI TUNGGAL TANJUNG MORAWA PENERAPAN ALGORITMA APRIORI DALAM MEMPREDIKSI PERSEDIAAN BUKU PADA PERPUSTAKAAN SMA DWI TUNGGAL TANJUNG MORAWA Domma Lingga Mahasiswa Program Studi Teknik Informatika STMIK Budidarma Medan Jl. Sisingamangaraja

Lebih terperinci

JURNAL IMPLEMENTASI DATA MINING PADA PEMILIHAN WAHANA PERMAINAN FAVORIT GAME FANTASIA DI KEDIRI MALL

JURNAL IMPLEMENTASI DATA MINING PADA PEMILIHAN WAHANA PERMAINAN FAVORIT GAME FANTASIA DI KEDIRI MALL JURNAL IMPLEMENTASI DATA MINING PADA PEMILIHAN WAHANA PERMAINAN FAVORIT GAME FANTASIA DI KEDIRI MALL IMPLEMENTATION OF DATA MINING ON ELECTION WAHANA GAME FAVORITES GAME FANTASIA IN KEDIRI MALL Oleh: MOCHAMAD

Lebih terperinci

PENERAPAN METODE APRIORI ASOSIASI TERHADAP PENJUALAN PRODUCT COSMETIC UNTUK MENDUKUNG STRATEGI PENJUALAN

PENERAPAN METODE APRIORI ASOSIASI TERHADAP PENJUALAN PRODUCT COSMETIC UNTUK MENDUKUNG STRATEGI PENJUALAN PENERAPAN METODE APRIORI ASOSIASI TERHADAP PENJUALAN PRODUCT COSMETIC UNTUK MENDUKUNG STRATEGI PENJUALAN SKRIPSI Diajukan untuk memenuhi salah satu syarat guna memperoleh gelar Sarjana Komputer (S.Kom)

Lebih terperinci

2.2 Data Mining. Universitas Sumatera Utara

2.2 Data Mining. Universitas Sumatera Utara Basis data adalah kumpulan terintegrasi dari occurences file/table yang merupakan representasi data dari suatu model enterprise. Sistem basisdata sebenarnya tidak lain adalah sistem penyimpanan-record

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perpustakaan merupakan tempat dimana seseorang mendapatkan pengetahuan, informasi atau hiburan dengan jumlah kategori yang bervarian seperti ilmiah, non fiksi, komedi,

Lebih terperinci

DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI

DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI Heroe Santoso 1), I Putu Hariyadi 2), Prayitno 3) 1), 2),3) Teknik Informatika STMIK Bumigora Mataram Jl Ismail Marzuki

Lebih terperinci

Belajar Mudah Algoritma Data Mining : Apriori

Belajar Mudah Algoritma Data Mining : Apriori Belajar Mudah Algoritma Data Mining : Apriori Algoritma apriori merupakan salah satu algoritma klasik data mining. Algoritma apriori digunakan agar komputer dapat mempelajari aturan asosiasi. Tabel 1 di

Lebih terperinci

ANALISA DAN PERANCANGAN APLIKASI ALGORITMA APRIORI UNTUK KORELASI PENJUALAN PRODUK (STUDI KASUS : APOTIK DIORY FARMA)

ANALISA DAN PERANCANGAN APLIKASI ALGORITMA APRIORI UNTUK KORELASI PENJUALAN PRODUK (STUDI KASUS : APOTIK DIORY FARMA) ANALISA DAN PERANCANGAN APLIKASI ALGORITMA APRIORI UNTUK KORELASI PENJUALAN PRODUK (STUDI KASUS : APOTIK DIORY FARMA) Harvei Desmon Hutahaean 1, Bosker Sinaga 2, Anastasya Aritonang Rajagukguk 2 1 Program

Lebih terperinci

1 BAB I 2 PENDAHULUAN

1 BAB I 2 PENDAHULUAN 1 BAB I 2 PENDAHULUAN 1.1 Latar Belakang Data mining merupakan salah satu bidang ilmu yang berupaya untuk menemukan kaidah, pola, model, maupun informasi yang bersifat menarik dari sekumpulan data. Salah

Lebih terperinci

IMPLEMENTASI DATA MINING PADA PENJUALAN PRODUK ELEKTRONIK DENGAN ALGORITMA APRIORI (STUDI KASUS : KREDITPLUS)

IMPLEMENTASI DATA MINING PADA PENJUALAN PRODUK ELEKTRONIK DENGAN ALGORITMA APRIORI (STUDI KASUS : KREDITPLUS) IMPLEMENTASI DATA MINING PADA PENJUALAN PRODUK ELEKTRONIK DENGAN ALGORITMA APRIORI (STUDI KASUS : KREDITPLUS) Dewi Kartika Pane (0911801) Mahasiswa Program Studi Teknik Informatika, STMIK Budidarma Medan

Lebih terperinci

MENGOPTIMALKAN LALU-LINTAS PERBELANJAAN DENGAN MENGATUR DERAJAT KEPENTINGAN ANTAR ETALASE

MENGOPTIMALKAN LALU-LINTAS PERBELANJAAN DENGAN MENGATUR DERAJAT KEPENTINGAN ANTAR ETALASE MENGOPTIMALKAN LALU-LINTAS PERBELANJAAN DENGAN MENGATUR DERAJAT KEPENTINGAN ANTAR ETALASE Hendy Tannady Tan Department of Industrial Engineering, Faculty of Engineering, Universitas Bina Nusantara Jl.

Lebih terperinci

Implementasi Data Mining Algoritme Apriori Pada Sistem Penjualan Kusuma Shop

Implementasi Data Mining Algoritme Apriori Pada Sistem Penjualan Kusuma Shop Implementasi Data Mining Algoritme Apriori Pada Sistem Penjualan Kusuma Shop Lutfi Mukaromah 1, Kusumaningtyas 2, Apriliani Galih Saputri 3, Harleni Vionita 4, Rendi Susilo 5,Tri Astuti 6, Lusi Dwi Oktaviana

Lebih terperinci

BAB I PENDAHULUAN. Teknologi Informasi sekarang ini telah digunakan hampir di semua aspek

BAB I PENDAHULUAN. Teknologi Informasi sekarang ini telah digunakan hampir di semua aspek BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Teknologi Informasi sekarang ini telah digunakan hampir di semua aspek kehidupan, contohnya dalam sebuah perusahaan ritel. Dengan sistem yang telah terkomputerisasi,

Lebih terperinci

IMPLEMENTASI DATA MINING TERHADAP PENYUSUNAN LAYOUT MAKANAN PADA RUMAH MAKAN PADANG MURAH MERIAH

IMPLEMENTASI DATA MINING TERHADAP PENYUSUNAN LAYOUT MAKANAN PADA RUMAH MAKAN PADANG MURAH MERIAH IMPLEMENTASI DATA MINING TERHADAP PENYUSUNAN LAYOUT MAKANAN PADA RUMAH MAKAN PADANG MURAH MERIAH Oliver Zakaria 1), Kusrini 2) 1) Teknik Informatika STMIK AMIKOM Yogyakarta Jl. Ring Road Utara Condong

Lebih terperinci

Pengembangan Aplikasi Market Basket Analysis Menggunakan Algoritma Generalized Sequential Pattern pada Supermarket

Pengembangan Aplikasi Market Basket Analysis Menggunakan Algoritma Generalized Sequential Pattern pada Supermarket Pengembangan Aplikasi Market Basket Analysis Menggunakan Algoritma Generalized Sequential Pattern pada Supermarket Gunawan 1), Alex Xandra Albert Sim 2), Fandi Halim 3), M. Hawari Simanullang 4), M. Firkhan

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang Bab 1 Pendahuluan BAB 1 PENDAHULUAN 1.1. Latar Belakang Pada era globalisasi saat ini, perkembangan teknologi tidak dapat dihindarkan dalam kehidupan manusia. Perkembangan teknologi yang ada, memiliki

Lebih terperinci

ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE

ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE Diki Arisandi 1, Nofriandi 2 Jurusan Teknik Informatika, FakultTeknik,Universitas Abdurrab

Lebih terperinci

ANALISA POLA DATA HASIL PEMBANGUNAN KABUPATEN MALANG MENGGUNAKAN METODE ASSOCIATION RULE

ANALISA POLA DATA HASIL PEMBANGUNAN KABUPATEN MALANG MENGGUNAKAN METODE ASSOCIATION RULE ANALISA POLA DATA HASIL PEMBANGUNAN KABUPATEN MALANG MENGGUNAKAN METODE ASSOCIATION RULE Dewi Sibagariang 1), Karina Auliasari 2) 1.2) Jurusan Teknik Informatika, Institut Teknologi Nasional Malang Jalan

Lebih terperinci

6 SISTEM EVALUASI 6.1 Data Responden Evaluasi Elemen Desain Kursi Rotan 6.2 Pengembangan Sistem Evaluasi Elemen Desain Kursi Rotan

6 SISTEM EVALUASI 6.1 Data Responden Evaluasi Elemen Desain Kursi Rotan 6.2 Pengembangan Sistem Evaluasi Elemen Desain Kursi Rotan 6 SISTEM EVALUASI Sistem evaluasi bertujuan untuk memperoleh pengetahuan antara kata Kansei dengan elemen desain yang menunjukkan kata tersebut. Pengetahuan tersebut diperoleh dari responden dengan menggunakan

Lebih terperinci

BAB I PENDAHULUAN. yang cepat dan besar di Asia (Kartiwi, 2006). Pertumbuhan e-commerce yang

BAB I PENDAHULUAN. yang cepat dan besar di Asia (Kartiwi, 2006). Pertumbuhan e-commerce yang BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia adalah salah satu negara dengan pertumbuhan pasar e-commerce yang cepat dan besar di Asia (Kartiwi, 2006). Pertumbuhan e-commerce yang besar tersebut membuat

Lebih terperinci

BAB 2 LANDASAN TEORI. Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun.

BAB 2 LANDASAN TEORI. Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun. BAB 2 LANDASAN TEORI Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun. 2.1. Data Mining Data mining adalah suatu istilah yang digunakan

Lebih terperinci

PENCARIAN ATURAN ASOSIASI MENGGUNAKAN ALGORITMA APRIORI SEBAGAI BAHAN REKOMENDASI STRATEGI PEMASARAN PADA TOKO ACIICA

PENCARIAN ATURAN ASOSIASI MENGGUNAKAN ALGORITMA APRIORI SEBAGAI BAHAN REKOMENDASI STRATEGI PEMASARAN PADA TOKO ACIICA PENCARIAN ATURAN ASOSIASI MENGGUNAKAN ALGORITMA APRIORI SEBAGAI BAHAN REKOMENDASI STRATEGI PEMASARAN PADA TOKO ACIICA SKRIPSI Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer

Lebih terperinci

BAB I PENDAHULUAN I-1

BAB I PENDAHULUAN I-1 BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan Banyaknya persaingan dalam dunia bisnis khususnya dalam industri penjualan, menuntut para pengembang untuk menemukan suatu strategi yang dapat meningkatkan

Lebih terperinci

SISTEM SISTEM REKOMENDASI BIDANG MINAT MAHASISWA MENGGUNAKAN METODE ASSOCIATION RULE DAN ALGORITMA APRIORI

SISTEM SISTEM REKOMENDASI BIDANG MINAT MAHASISWA MENGGUNAKAN METODE ASSOCIATION RULE DAN ALGORITMA APRIORI SISTEM SISTEM REKOMENDASI BIDANG MINAT MAHASISWA MENGGUNAKAN METODE ASSOCIATION RULE DAN ALGORITMA APRIORI Nama Mahasiswa : NUCIFERA DIAHPANGASTUTI NRP : 505 00 070 Jurusan : Teknik Informatika FTIF-ITS

Lebih terperinci

IMPLEMENTASI DATA MINING PADA PENJUALAN TIKET PESAWAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus: Jumbo Travel Medan)

IMPLEMENTASI DATA MINING PADA PENJUALAN TIKET PESAWAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus: Jumbo Travel Medan) IMPLEMENTASI DATA MINING PADA PENJUALAN TIKET PESAWAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus: Jumbo Travel Medan) Sri Rahayu Siregar ( 0911882) Mahasiswa Program Studi Teknik Informatika, STMIK Budidarma

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada tinjauan pustaka ini akan dibahas tentang konsep dasar dan teori-teori yang mendukung pembahasan yang berhubungan dengan sistem yang akan dibuat. 2.1 Basis Data (Database) Database

Lebih terperinci

APLIKASI DATA MINING MARKET BASKET ANALYSIS PENJUALAN SUKU CADANG SEPEDA MOTOR MENGGUNAKAN METODE ASSOCIATION RULES PADA PT. SEJAHTERA MOTOR GEMILANG

APLIKASI DATA MINING MARKET BASKET ANALYSIS PENJUALAN SUKU CADANG SEPEDA MOTOR MENGGUNAKAN METODE ASSOCIATION RULES PADA PT. SEJAHTERA MOTOR GEMILANG APLIKASI DATA MINING MARKET BASKET ANALYSIS PENJUALAN SUKU CADANG SEPEDA MOTOR MENGGUNAKAN METODE ASSOCIATION RULES PADA PT. SEJAHTERA MOTOR GEMILANG EKA FITRIA WULANSARI Program Studi Teknik Informatika,

Lebih terperinci

Cross-Selling: Perangkat Utama Customer Relationship Managem. Meningkatkan Loyalitas Pelanggan

Cross-Selling: Perangkat Utama Customer Relationship Managem. Meningkatkan Loyalitas Pelanggan Cross-Selling: Perangkat Utama Customer Relationship Management (CRM) Untuk Meningkatkan Loyalitas Pelanggan Seminar Kenaikan Jabatan at Department of Information Systems, Faculty of Computer Science,

Lebih terperinci

ABSTRACT Market basket analysis is a way to know the shopping habits of people in one place on goods purchased. Market basket analysis to produce an a

ABSTRACT Market basket analysis is a way to know the shopping habits of people in one place on goods purchased. Market basket analysis to produce an a ANALISIS KERANJANG PASAR MENGGUNAKAN ALGORTIMA PREDICTIVE APRIORI UNTUK MENEMUKAN ATURAN ASOSIASI DI APOTEK SEHAT JAYA NINDITYA KHARISMA, METTY MUSTIKASARI Undergraduate Program, Information Systems Gunadarma

Lebih terperinci

JURNAL IMPLEMENTASI DATA MINING PADA TRANSAKSI PENJUALAN BIBIT BUAH DENGAN ALGORITMA APRIORI (STUDI KASUS: UD BUAH ASRI)

JURNAL IMPLEMENTASI DATA MINING PADA TRANSAKSI PENJUALAN BIBIT BUAH DENGAN ALGORITMA APRIORI (STUDI KASUS: UD BUAH ASRI) JURNAL IMPLEMENTASI DATA MINING PADA TRANSAKSI PENJUALAN BIBIT BUAH DENGAN ALGORITMA APRIORI (STUDI KASUS: UD BUAH ASRI) IMPLEMENTATION DATA MINING OF SALES TRANSACTION FRUIT SEEDLING WITH ALGORITHM APRIORI

Lebih terperinci

BAB III METODE PENELITIAN. desaign dan coding program. Dibutuhkan waktu selama kurang lebih 8 bulan

BAB III METODE PENELITIAN. desaign dan coding program. Dibutuhkan waktu selama kurang lebih 8 bulan 19 BAB III METODE PENELITIAN 3.1 Waktu dan Tempat Dalam penelitian ini memerlukan waktu yang cukup lama, yaitu dalam membuat desaign dan coding program. Dibutuhkan waktu selama kurang lebih 8 bulan untuk

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Objek Penelitian Pada Penelitian ini objek yang akan di ambil adalah sebuah swalayan Indomaret Indraprasta Semarang, dengan mengambil data transaksi penjualan barang

Lebih terperinci

ANALISIS KETERKAITAN DATA TRANSAKSI PENJUALAN BUKU MENGGUNAKAN ALGORITMA APRIORI DAN ALGORITMA CENTROID LINKAGE HIERARCHICAL METHOD (CLHM)

ANALISIS KETERKAITAN DATA TRANSAKSI PENJUALAN BUKU MENGGUNAKAN ALGORITMA APRIORI DAN ALGORITMA CENTROID LINKAGE HIERARCHICAL METHOD (CLHM) ANALISIS KETERKAITAN DATA TRANSAKSI PENJUALAN BUKU MENGGUNAKAN ALGORITMA APRIORI DAN ALGORITMA CENTROID LINKAGE HIERARCHICAL METHOD (CLHM) Nurani 1, Hamdan Gani 2 1 nurani_nanni@yahoo.com, 2 hamdan.gani.inbox@gmail.com

Lebih terperinci

BAB I PENDAHULUAN. sisanya 21 persen berada di pulau lain (Djumenda, 2016).

BAB I PENDAHULUAN. sisanya 21 persen berada di pulau lain (Djumenda, 2016). BAB I PENDAHULUAN 1.1 Latar Belakang Jumlah toko di Indonesia merupakan yang terbesar kedua di dunia. Jumlah toko tradisional dan modern di Indonesia mencapai 2,5 juta toko. Untuk penyebaran toko, mayoritas

Lebih terperinci

APLIKASI DATA MINING UNTUK PEMODELAN PEMBELIAN BARANG DENGAN MENGGUNAKAN ALGORITMA APRIORI TUGAS AKHIR

APLIKASI DATA MINING UNTUK PEMODELAN PEMBELIAN BARANG DENGAN MENGGUNAKAN ALGORITMA APRIORI TUGAS AKHIR APLIKASI DATA MINING UNTUK PEMODELAN PEMBELIAN BARANG DENGAN MENGGUNAKAN ALGORITMA APRIORI TUGAS AKHIR Oleh : ALMON JUNIOR SIMANJUNTAK 0734010089 PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI

Lebih terperinci

PENERAPAN ASSOCIATION RULE MINING PADA DATA NOMOR UNIK PENDIDIK DAN TENAGA KEPENDIDIKAN

PENERAPAN ASSOCIATION RULE MINING PADA DATA NOMOR UNIK PENDIDIK DAN TENAGA KEPENDIDIKAN PENERAPAN ASSOCIATION RULE MINING PADA DATA NOMOR UNIK PENDIDIK DAN TENAGA KEPENDIDIKAN A M I UNTUK R U D D PENETAPAN I N POLA SERTFIKASI GURU Program Pascasarjana rusan Teknik Elektro Program Studi Telematika

Lebih terperinci

IMPLEMENTASI ALGORITMA APRIORI PADA APOTEK RMC DALAM MENENTUKAN PERSEDIAAN OBAT

IMPLEMENTASI ALGORITMA APRIORI PADA APOTEK RMC DALAM MENENTUKAN PERSEDIAAN OBAT IMPLEMENTASI ALGORITMA APRIORI PADA APOTEK RMC DALAM MENENTUKAN PERSEDIAAN OBAT Gusti Ahmad Syaripudin Teknik Informatika STMIK El-Rahma Yogyakarta e-mail: first234boy@gmail.com Abstract In daily activities,

Lebih terperinci

Kata kunci: aplikasi data mining, Association Rule, Apriori, genre lagu, Radio

Kata kunci: aplikasi data mining, Association Rule, Apriori, genre lagu, Radio Aplikasi Data Mining Perhitungan Frekuensi Data Pemutaran lagu dengan metode Association Rule Menggunakan Algoritma Apriori (studi kasus Radio Republik Indonesia ( RRI ) Semarang) Hendra Andhyka Program

Lebih terperinci

PENERAPAN ASSOCIATION RULE DENGAN ALGORITMA APRIORI PADA TRANSAKSI PENJUALAN DI MINIMARKET SKRIPSI. Diajukan Untuk Memenuhi Sebagian Syarat Guna

PENERAPAN ASSOCIATION RULE DENGAN ALGORITMA APRIORI PADA TRANSAKSI PENJUALAN DI MINIMARKET SKRIPSI. Diajukan Untuk Memenuhi Sebagian Syarat Guna PENERAPAN ASSOCIATION RULE DENGAN ALGORITMA APRIORI PADA TRANSAKSI PENJUALAN DI MINIMARKET SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer (S.Kom) Pada Program Studi

Lebih terperinci

IMPLEMENTASI DATA MINING MARKET BASKET ANALYSIS MENGGUNAKAN ALGORITMA APRIORI UNTUK AKUISISI DATA DARI TWITTER

IMPLEMENTASI DATA MINING MARKET BASKET ANALYSIS MENGGUNAKAN ALGORITMA APRIORI UNTUK AKUISISI DATA DARI TWITTER IMPLEMENTASI DATA MINING MARKET BASKET ANALYSIS MENGGUNAKAN ALGORITMA APRIORI UNTUK AKUISISI DATA DARI TWITTER Nama NPM Fakultas Jurusan Pembimbing :Victorio Sudarmadi Puika : 5A411208 : Teknologi Industri

Lebih terperinci

IMPLEMENTASI DATA MINING ALGORITME APRIORI PADA PENJUALAN SUKU CADANG MOTOR DELTA MOTOR

IMPLEMENTASI DATA MINING ALGORITME APRIORI PADA PENJUALAN SUKU CADANG MOTOR DELTA MOTOR IMPLEMENTASI DATA MINING ALGORITME APRIORI PADA PENJUALAN SUKU CADANG MOTOR DELTA MOTOR Sigit Bahtiar Aji Saputra 1, Reva Dwiana 2, Wahyu Dewi Nur Oktaviani 3, Royana Dwi Isnaeni 4, Tri Astuti 5, Nurfaizah

Lebih terperinci

IMPLEMENTASI DATA MINING ALGORITMA APRIORI PADA PENJUALAN SPAREPART MOTOR DI AHAS PUTRA MOTOR

IMPLEMENTASI DATA MINING ALGORITMA APRIORI PADA PENJUALAN SPAREPART MOTOR DI AHAS PUTRA MOTOR IMPLEMENTASI DATA MINING ALGORITMA APRIORI PADA PENJUALAN SPAREPART MOTOR DI AHAS PUTRA MOTOR SKRIPSI Diajukan Untuk Penulisan Skripsi Guna Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer

Lebih terperinci

Mining Association Rules dalam Basis Data yang Besar

Mining Association Rules dalam Basis Data yang Besar Mining Association Rules dalam Basis Data yang Besar S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha Agenda Pendahuluan Association Rule Mining Market Basket Analysis Konsep

Lebih terperinci

BAB 1 PENDAHULUAN. retail di Indonesia pada semester I 2010 telah mencapai Rp 40 triliun. Omzet perusahaan

BAB 1 PENDAHULUAN. retail di Indonesia pada semester I 2010 telah mencapai Rp 40 triliun. Omzet perusahaan BAB 1 PENDAHULUAN 1.1 Latar Belakang Bisnis retail berkembang pesat di Indonesia dalam beberapa tahun ini. Kita dapat menjumpainya di kota-kota besar maupun kota-kota kecil. Menurut ketua umum Asosiasi

Lebih terperinci

Pembentukan Temporal Association Rules Menggunakan Algoritma Apriori (Studi Kasus:Toko Batik Diyan Solo)

Pembentukan Temporal Association Rules Menggunakan Algoritma Apriori (Studi Kasus:Toko Batik Diyan Solo) IJCCS, Vol.10, No.1, January 2016, pp.71~80 ISSN: 1978-1520 71 Pembentukan Temporal Association Rules Menggunakan Algoritma Apriori (Studi Kasus:Toko Batik Diyan Solo) Annisa Mauliani * 1, Sri Hartati

Lebih terperinci

IMPLEMENTASI ALGORITMA APRIORI UNTUK MENENTUKAN PAKET PEMBELIAN (STUDI KASUS : RD SWALAYAN) SKRIPSI

IMPLEMENTASI ALGORITMA APRIORI UNTUK MENENTUKAN PAKET PEMBELIAN (STUDI KASUS : RD SWALAYAN) SKRIPSI IMPLEMENTASI ALGORITMA APRIORI UNTUK MENENTUKAN PAKET PEMBELIAN (STUDI KASUS : RD SWALAYAN) SKRIPSI Diajukan Untuk Penulisan Skripsi Guna Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer (S.Kom.)

Lebih terperinci

ANALISIS KERANJANG BELANJA PADA DATA TRANSAKSI PENJUALAN (STUDI KASUS TOSERBA YOGYA BANJAR) SKRIPSI. Oleh TRI LESTARI H

ANALISIS KERANJANG BELANJA PADA DATA TRANSAKSI PENJUALAN (STUDI KASUS TOSERBA YOGYA BANJAR) SKRIPSI. Oleh TRI LESTARI H ANALISIS KERANJANG BELANJA PADA DATA TRANSAKSI PENJUALAN (STUDI KASUS TOSERBA YOGYA BANJAR) SKRIPSI Oleh TRI LESTARI H24052006 DEPARTEMEN MANAJEMEN FAKULTAS EKONOMI DAN MANAJEMEN INSTITUT PERTANIAN BOGOR

Lebih terperinci

Association Rule. Ali Ridho Barakbah

Association Rule. Ali Ridho Barakbah Association Rule Ali Ridho Barakbah Assocation rule? Mencari suatu kaidah keterhubungan dari data Diusulkan oleh Agrawal, Imielinski, and Swami (1993) Contoh Dalam suatu supermarket kita ingin mengetahui

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1.1 Data Mining Data mining adalah proses yang menggunakan teknik statistik, matematika, kecerdasan buatan, dan machine learning untuk mengekstrasi dan mengidentifikasi informasi

Lebih terperinci

Pola Kompetensi Mahasiswa Program Studi Informatika Menggunakan FP-Growth

Pola Kompetensi Mahasiswa Program Studi Informatika Menggunakan FP-Growth Pola Kompetensi Mahasiswa Program Studi Informatika Menggunakan FP-Growth Fitrah Rumaisa, S.T., M.Kom Prodi Teknik Informatika, Fakultas Teknik, Universitas Widyatama E-Mail: fitrah.rumaisa@widyatama.ac.id

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pada bab ini dilakukan pendefinisian permasalahan dari penelitian yang akan dilakukan. Dalam Cross Industry Standard Process for Data Mining[3], tahapan ini

Lebih terperinci

BAB III METODE PENELITIAN. Metode penelitian merupakan suatu prosedur beserta tahapan-tahapan yang

BAB III METODE PENELITIAN. Metode penelitian merupakan suatu prosedur beserta tahapan-tahapan yang BAB III METODE PENELITIAN Metode penelitian merupakan suatu prosedur beserta tahapan-tahapan yang tersusun secara jelas dan sistematis guna menyelesaikan suatu permasalahan yang sedang diteliti dengan

Lebih terperinci

MERANCANG SISTEM APLIKASI RULE PENGETAHUAN MENGGUNAKAN ALGORITMA APRIORI PADA TRANSAKSI SWALAYAN HARYS PERDANA NGANJUK SKRIPSI

MERANCANG SISTEM APLIKASI RULE PENGETAHUAN MENGGUNAKAN ALGORITMA APRIORI PADA TRANSAKSI SWALAYAN HARYS PERDANA NGANJUK SKRIPSI MERANCANG SISTEM APLIKASI RULE PENGETAHUAN MENGGUNAKAN ALGORITMA APRIORI PADA TRANSAKSI SWALAYAN HARYS PERDANA NGANJUK SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Islam adalah agama yang memiliki dua pegangan yang sangat terpercaya, yaitu Al-Qur an dan Hadis. Hadis merupakan sumber ajaran dan hukum Islam kedua setelah dan

Lebih terperinci

MATERI PRAKTIKUM PRAKTIKUM 4 ANALISA AR-MBA (ASSOCIATION RULE - MARKET BASKET ANALYSIS)

MATERI PRAKTIKUM PRAKTIKUM 4 ANALISA AR-MBA (ASSOCIATION RULE - MARKET BASKET ANALYSIS) PRAKTIKUM 4 ANALISA AR-MBA (ASSOCIATION RULE - MARKET BASKET ANALYSIS) Tujuan Praktikum 1. Mahasiswa dapat mengetahui salah satu metode asosiasi dalam data mining. 2. Memberikan pemahaman mengenai prosedurmarket

Lebih terperinci

ANALISIS ASSOCIATION RULES ALGORITMA APRIORI PENJUALAN KAOS TRAVELLING

ANALISIS ASSOCIATION RULES ALGORITMA APRIORI PENJUALAN KAOS TRAVELLING ANALISIS ASSOCIATION RULES ALGORITMA APRIORI PENJUALAN KAOS TRAVELLING Kanthi Wulandari Mahasiswa Program Studi Statistika Universitas Islam Indonesia kanthiwuland@gmail.com Asriyanti Ali Mahasiswa Program

Lebih terperinci

METODE PENELITIAN. Tahapan pengembangan sistem PSP (Penetapan Strategi Penjualan) 1.0 seperti pada Gambar 2 di bawah ini. Mulai

METODE PENELITIAN. Tahapan pengembangan sistem PSP (Penetapan Strategi Penjualan) 1.0 seperti pada Gambar 2 di bawah ini. Mulai III. METODE PENELITIAN 3.1 Kerangka Kerja Penelitian Tahapan pengembangan sistem PSP (Penetapan Strategi Penjualan) 1.0 seperti pada Gambar 2 di bawah ini. Mulai Analisis Sistem, keluaran: - Deskripsi

Lebih terperinci

BAB I PENDAHULUAN. Inventori (stock barang) merupakan permasalahan operasional yang sering

BAB I PENDAHULUAN. Inventori (stock barang) merupakan permasalahan operasional yang sering BAB I PENDAHULUAN 1.1 Latar Belakang Inventori (stock barang) merupakan permasalahan operasional yang sering dihadapi oleh swalayan. Inventori bisa berupa jumlah barang yang diletakkan di etalase swalayan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Data Mining Menurut Turban dalam bukunya yang berjudul Decision Support Systems and Intelligent Systems, data mining adalah suatu istilah yang digunakan untuk menguraikan penemuan

Lebih terperinci

PENDAHULUAN TINJAUAN PUSTAKA

PENDAHULUAN TINJAUAN PUSTAKA Latar Belakang PENDAHULUAN Begitu banyaknya fungsionalitas dalam penggalian data terkadang membuat kita harus memilih secara seksama. Pemilihan fungsionalitas yang tepat dalam melakukan suatu penggalian

Lebih terperinci

BAB 3 ANALISIS HIPOTESIS

BAB 3 ANALISIS HIPOTESIS BAB 3 ANALISIS HIPOTESIS Pada bagian ini dibahas mengenai analisis hipotesis sequential pattern dapat dimanfaatkan sebagai node ordering dalam mengkonstruksi struktur BN. Analisis dimulai dengan melakukan

Lebih terperinci

SISTEM PENDUKUNG KEPUTUSAN PENJUALAN BARANG MENGGUNAKAN ALGORITMA APRIORI NASKAH PUBLIKASI. diajukan oleh Dirga S Chaniago

SISTEM PENDUKUNG KEPUTUSAN PENJUALAN BARANG MENGGUNAKAN ALGORITMA APRIORI NASKAH PUBLIKASI. diajukan oleh Dirga S Chaniago SISTEM PENDUKUNG KEPUTUSAN PENJUALAN BARANG MENGGUNAKAN ALGORITMA APRIORI NASKAH PUBLIKASI diajukan oleh Dirga S Chaniago 13.11.6854 kepada FAKULTAS ILMU KOMPUTER UNIVERSITAS AMIKOM YOGYAKARTA YOGYAKARTA

Lebih terperinci

ANALISIS DAN IMPLEMENTASI DATA MINING DENGAN CONTINUOUS ASSOCIATION RULE MINING ALGORITHM (CARMA) UNTUK REKOMENDASI MATA KULIAH PADA PERWALIAN

ANALISIS DAN IMPLEMENTASI DATA MINING DENGAN CONTINUOUS ASSOCIATION RULE MINING ALGORITHM (CARMA) UNTUK REKOMENDASI MATA KULIAH PADA PERWALIAN ANALISIS DAN IMPLEMENTASI DATA MINING DENGAN CONTINUOUS ASSOCIATION RULE MINING ALGORITHM (CARMA) UNTUK REKOMENDASI MATA KULIAH PADA PERWALIAN Dwiaji Nuraryudha 1, Shaufiah 2, Hetti Hidayati 3 1,2,3 Fakultas

Lebih terperinci

JURNAL IPTEKS TERAPAN Research of Applied Science and Education V10.i2 (81-85)

JURNAL IPTEKS TERAPAN Research of Applied Science and Education V10.i2 (81-85) IMPLEMENTASI ALGORITMA APRIORI DALAM MENENTUKAN PROGRAM STUDI YANG DIAMBIL MAHASISWA Ahmad Fikri Fajri Sistem Informasi, STMIK Jayanusa, Padang, Sumatera Barat, Kode Pos : 25116 email: fajri.bayang@gmail.com

Lebih terperinci

JURNAL IMPLEMENTASI DATA MINING PADA PERSEWAAN ALAT PESTA MENGGUNAKAN METODE APRIORI

JURNAL IMPLEMENTASI DATA MINING PADA PERSEWAAN ALAT PESTA MENGGUNAKAN METODE APRIORI JURNAL IMPLEMENTASI DATA MINING PADA PERSEWAAN ALAT PESTA MENGGUNAKAN METODE APRIORI IMPLEMENTATION OF DATA MINING IN THE RENTAL PARTY TOOLS USING A APRIORI Oleh: RIZHA FRANSTIKA WICAKSANA 12.1.03.02.0322

Lebih terperinci

JURNAL TEKNOLOGI INFORMASI & PENDIDIKAN ISSN : VOL. 5 NO. 2 SEPTEMBER 2012

JURNAL TEKNOLOGI INFORMASI & PENDIDIKAN ISSN : VOL. 5 NO. 2 SEPTEMBER 2012 IMPLEMENTASI DATA MINING DENGAN METODE MARKET BASKET ANALYSIS Julius Santony 1 ABSTRACT Information is seen as something very important and very valuable, because it controls the information will easily

Lebih terperinci

PENGEMBANGAN APLIKASI FUZZY TEMPORAL ASSOCIATION RULE MINING (STUDI KASUS : DATA TRANSAKSI PASAR SWALAYAN ) HANDAYANI RETNO SUMINAR

PENGEMBANGAN APLIKASI FUZZY TEMPORAL ASSOCIATION RULE MINING (STUDI KASUS : DATA TRANSAKSI PASAR SWALAYAN ) HANDAYANI RETNO SUMINAR PENGEMBANGAN APLIKASI FUZZY TEMPORAL ASSOCIATION RULE MINING (STUDI KASUS : DATA TRANSAKSI PASAR SWALAYAN ) HANDAYANI RETNO SUMINAR DEPARTEMEN ILMU KOMPUTER FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

Lebih terperinci

RANCANG BANGUN SISTEM PENGAMBILAN KEPUTUSAN UNTUK PREDIKSI PEMBELIAN BARANG PADA DISTRIBUTOR LUKCY JAYA MOTOR BERBASIS WEB MENGGUNAKAN METODE APRIORI

RANCANG BANGUN SISTEM PENGAMBILAN KEPUTUSAN UNTUK PREDIKSI PEMBELIAN BARANG PADA DISTRIBUTOR LUKCY JAYA MOTOR BERBASIS WEB MENGGUNAKAN METODE APRIORI RANCANG BANGUN SISTEM PENGAMBILAN KEPUTUSAN UNTUK PREDIKSI PEMBELIAN BARANG PADA DISTRIBUTOR LUKCY JAYA MOTOR BERBASIS WEB MENGGUNAKAN METODE APRIORI Candra Irawan Amak Yunus 1 Sistem Informasi, Universitas

Lebih terperinci

PENERAPAN DATA MINING DALAM ANALISIS KEJADIAN TANAH LONGSOR DI INDONESIA DENGAN MENGGUNAKAN ASSOCIATION RULE ALGORITMA APRIORI

PENERAPAN DATA MINING DALAM ANALISIS KEJADIAN TANAH LONGSOR DI INDONESIA DENGAN MENGGUNAKAN ASSOCIATION RULE ALGORITMA APRIORI PENERAPAN DATA MINING DALAM ANALISIS KEJADIAN TANAH LONGSOR DI INDONESIA DENGAN MENGGUNAKAN ASSOCIATION RULE ALGORITMA APRIORI Dewi Setianingsih, RB Fajriya Hakim Program Studi Statistika Fakultas Matematika

Lebih terperinci

oleh: Ibnu Sani Wijaya, S.Kom Dosen Tetap Sekolah Tinggi Ilmu Komputer Dinamika Bangsa

oleh: Ibnu Sani Wijaya, S.Kom Dosen Tetap Sekolah Tinggi Ilmu Komputer Dinamika Bangsa Aplikasi Data Mining dengan Konsep Fuzzy c-covering untuk Analisa Market Basket pada pasar swalayan oleh: Ibnu Sani Wijaya, S.Kom ABSTRAK Dosen Tetap Sekolah Tinggi Ilmu Komputer Dinamika Bangsa Sebagai

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Apriori merupakan salah satu algoritma yang terkenal dalam mencari frequent pattern dari database transaksi[8]. Prinsip dari algortima Apriori ini adalah jika sebuah

Lebih terperinci

Penerapan Data Mining Association Rule Menggunakan Algoritma Apriori Untuk Meningkatkan Penjualan dan Memberikan Rekomendasi Pemasaran Produk Speedy

Penerapan Data Mining Association Rule Menggunakan Algoritma Apriori Untuk Meningkatkan Penjualan dan Memberikan Rekomendasi Pemasaran Produk Speedy Penerapan Data Mining Association Rule Menggunakan Algoritma Apriori Untuk Meningkatkan Penjualan dan Memberikan Rekomendasi Pemasaran Produk Speedy (Studi Kasus di PT. Telkom Cabang Wonogiri ) Moch. Yusuf

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) PENERAPAN IMPROVED APRIORI PADA APLIKASI DATA MINING DI PERUSAHAAN KALVIN SOCKS PRODUCTION

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) PENERAPAN IMPROVED APRIORI PADA APLIKASI DATA MINING DI PERUSAHAAN KALVIN SOCKS PRODUCTION Vol. 5, No., Maret 26, ISSN : 289-9 5 PENERAPAN IMPROVED APRIORI PADA APLIKASI DATA MINING DI PERUSAHAAN KALVIN SOCKS PRODUCTION Yepi Septiana, Dian Dharmayanti2 Teknik Informatika - Universitas Komputer

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Teori Dasar / Umum 2.1.1 Definisi Database Menurut Connolly (2005, p15), database adalah kumpulan data yang berelasi secara logikal, dan sebuah deskripsi data tersebut, yang

Lebih terperinci

ANALISIS ALGORITMA APRIORI UNTUK REKOMENDASI PENEMPATAN BUKU PADA PERPUSTAKAAN

ANALISIS ALGORITMA APRIORI UNTUK REKOMENDASI PENEMPATAN BUKU PADA PERPUSTAKAAN 1 ANALISIS ALGORITMA APRIORI UNTUK REKOMENDASI PENEMPATAN BUKU PADA PERPUSTAKAAN 1 Uma Mazida, 2 Ricardus Anggi Pramunendar, M.Cs Program Studi Teknik Informatika S1 Fakultas Ilmu Komputer Universitas

Lebih terperinci

IMPLEMENTASI ALGORITMA APRIORI UNTUK MENEMUKAN FREQUENT ITEMSET DALAM KERANJANG BELANJA

IMPLEMENTASI ALGORITMA APRIORI UNTUK MENEMUKAN FREQUENT ITEMSET DALAM KERANJANG BELANJA Teknologi Elektro, Vol. 15, No.2, Juli - Desember 2016 27 IMPLEMENTASI ALGORITMA APRIORI UNTUK MENEMUKAN FREQUENT ITEMSET DALAM KERANJANG BELANJA Adie Wahyudi Oktavia Gama 1, I Ketut Gede Darma Putra 2,

Lebih terperinci

ANALISA POLA DATA PENYAKIT RUMAH SAKIT DENGAN MENERAPKAN METODE ASSOCIATION RULE MENGGUNAKAN ALGORITMA APRIORI

ANALISA POLA DATA PENYAKIT RUMAH SAKIT DENGAN MENERAPKAN METODE ASSOCIATION RULE MENGGUNAKAN ALGORITMA APRIORI Seminar Nasional Informatika ANALISA POLA DATA PENYAKIT RUMAH SAKIT DENGAN MENERAPKAN METODE ASSOCIATION RULE MENGGUNAKAN ALGORITMA APRIORI Harris Kurniawan, Fujiati, Alfa Saleh STMIK Potensi Utama Jl.

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 40 BAB III METODOLOGI PENELITIAN 3.1 DESAIN PENELITIAN Dalam melakukan penelitian, dibutuhkan desain penelitian agar penelitian yang dilakukan dapat berjalan dengan baik. Berikut ini merupakan desain penelitian

Lebih terperinci