ANALISIS PENGARUH KECEPATAN ALIRAN UDARA TERHADAP KERUGIAN TEKANAN PADA SALURAN UDARA

Ukuran: px
Mulai penontonan dengan halaman:

Download "ANALISIS PENGARUH KECEPATAN ALIRAN UDARA TERHADAP KERUGIAN TEKANAN PADA SALURAN UDARA"

Transkripsi

1 ANALISIS PENGARUH KECEPATAN ALIRAN UDARA TERHADAP KERUGIAN TEKANAN PADA SALURAN UDARA Nasir kurniawan 1*,Tabah Priangkoso 2, Darmanto 3 1 Jurusan Teknik Mesin, Fakultas Teknik, Universitas Wahid Hasyim Jl. Menoreh Tengah X/22, Sampangan, Semarang Jurusan Teknik Mesin, Fakultas Teknik, Universitas Wahid hasyim Jl. Menoreh Tengah X/22, Sampangan, Semarang Jurusan Teknik Mesin, Fakultas Teknik, Universitas Wahid hasyim Jl. Menoreh Tengah X/22, Sampangan, Semarang * kurniawannasir@yahoo.co.id Abstrak Dalam pendistribusian udara dengan temperatur dan kelembaban yang ideal, khususnya di ruangan yang besar dan tinggi maka diperlukan saluran udara atau ducting. Dalam perencanaan saluran udara atau ducting perlu memperhatikan faktor pengaruh kecepatan udara terhadap kerugian tekaanandengan tersedianya alat peraga praktikum Fenomena Dasar Mesin di laboraturium energi Universitas Wahid Hasyim Semarang serta belum pernah di uji maka pengujian ini akan menganalisa fenomena pengaruh kecepatan aliran udara terhadap kerugian tekanan pada sisi tekan saluran udara atau ducting. Dalam pengujian pengaruh kecepatan aliran udara terhadap kerugian tekanan pada saluran udara ini menggunakan blower sebagai alat bantu pengujian untuk mengalirkan udara pada varisi kecepatan 9,7m/s, 10,5m/s, 10,7m/s, 11,2m/s, 11,6m/s, 11,8m/spengukuran kecepatan aliran udara menggunakan anemometer dan pengaturan variasi kecepatan menggunakan regulator AC untuk mengatur tegangan listrik yang masukk ke motor listrik dan menggunakan manometer air untuk mengukur head tiap tiap segmen. Berdasarkan dari pengujian yang telah dilakukan pada alat praktikum kerugian tekanan aliran udara dalam pipa, maka dapat ditarik kesimpulan bahwa pengaruh kecepatan aliran terhadap koefisien gesek adalah berbanding terbalik karena semakin besar kecepatan aliran yang di timbulkan maka bidang kontak antara pipa dan fluida akan semakin kecil, sehingga akan mengakibatkan faktor gesekan atau koefisien gesek akan semakin kecil dan besarnya koefisein gesek berbanding lurus dengan head loss, maka pengaruh kecepatan aliran terhadap kerugian tekanan adalah berbanding terbalik. Kata kunci: ducting, head loss, koefisien gesek 1. PENDAHULUAN 1.1 Latar Belakang Dalam pendistribusian udara dengan temperatur dan kelembaban yang ideal, khususnya di ruangan yang besar dan tinggi maka diperlukan saluran udara atau ducting. Dalam perencanaan saluran udara atau ducting perlu memperhatikan faktor pengaruh kecepatan udara terhadap kerugian tekaanan. Dengan tersedianya alat peraga praktikum Fenomena Dasar Mesin di laboraturium energi Universitas Wahid Hasyim Semarang serta belum pernah di uji maka penelitian ini akan menganalisa fenomena pengaruh kecepatan aliran udara terhadap kerugian tekanan pada sisi tekan saluran udara atau ducting 1.2. Rumusan Masalah Bagaimana pengaruh kecepatan aliran udara terhadap kerugian tekanan pada saluran udara atau ducting pada sisi tekan 1.3 Batasan Masalah Untuk mendapatkan hasil yang maksimal sesuai dengan tujuan penelitian maka perlu diadakan pembatasan masalah, yaitu : 1. Bahan pipa dari plat baja dengan penampang segi empat dengan dimensi 20 cm x 20 cm dan panjang 200 cm untuk aliran udara, 40 cm x 40 cm untuk tempat kipas 2. Penggerak aliran udara menggunakan kipas elektrik / blower 3. Kecepatan udara pada kecepatan subsonic

2 4. Alat ukur kecepatan aliran udara menggunkan anemometer 5. Alat ukur kerugian tekanan menggunakan tabung U 6. Kondisi lingkungan di abaikan 1.4. Tujuan Tugas Akhir Tujuan dari penelitian ini adalah untuk mengetahui pengaruh kecepatan aliran udara terhadap kerugian tekanan pada sisi tekan saluran udara 2.DASAR TEORI 2.1. Pengenalan Fluida Dan Parameter Fisik Definisi Fluida (zat alir) adalah zat yang dapat mengalir dan memberikan sedikit hambatan terhadap bentuk ketika ditekan, misalnya zat cair dan gas atau udara Fuida dapat digolongkan dalam dua macam.yaitu fluida statis dan fluida dinamis. Fluida atau zat alir dalah bahan yang dapat mengalir dan bentuknya dapat berubah dengan perubahan volume.fluida mempunyai kerapatan yang harganya tertentu pada suhu dan tekanan tertentu jika kerapatan fluida dipengaruhi oleh perubahan tekanan maka fluida itu dapat mampat atau kompresibel. Sebaliknya fluida yang kerapatannya hanya sedikit dipengaruhi oleh perubahan tekanan disebut tidak mampat atau inkompresibel. Contoh fluida kompresibel adalah udara (gas) sedangkan yang inkompresibel adalah air (zat cair). Fluida merupakan suatu zat/bahan yang dalam keadaan setimbang tak dapatmenahangaya atau tegangan geser (shear force). Dapat pula didefinisikan sebagai zat yang dapat mengalir bila ada perbedaan tekanan dan atau tinggi. Suatu sifat dasar fluida nyata, yaitu tahanan terhadap aliran yang diukur sebagai tegangan geser yang terjadi pada bidang geser yang dikenai tegangan tersebut adalah viskositas atau kekentalan/kerapatan zat fluida tersebut. Ketahanan fluida terhadap perubahan bentuk sangat kecil sehingga fluida dapat dengan mudah mengikuti bentuk ruang. Berdasarkan wujudnya, fluida dapat dibedakan menjadi dua bagian yaitu: 1. Fluida gas Merupakan fluida dengan partikel yang renggang dimana gaya tarik antara molekul sejenis relatif lemah dan sangat ringan sehingga dapat melayang dengan bebas serta volumenya tidak menentu. 2. Fluida cair Merupakan fluida dengan partikel yang rapat dimana gaya tarik antara molekul sejenisnya sangat kuat dan mempunyai permukaan bebas serta cenderung untuk mempertahankan volumenya Udara Udara adalah suatu campuran gas yang terdapat pada lapisan yang mengelilingi bumi dan komponen campuran gas tersebut tidak selalu konstan (Fardiaz, 1992). Udara juga merupakan atmosfer yang berada di sekeliling bumi yang fungsinya sangat penting bagi kehidupan manusia di dunia ini. Dalam udara terdapat oksigen untuk bernafas, karbondioksida untuk proses fotosintesis oleh klorofil daun dan ozon untuk menahan sinar ultraviolet. Udara adalah campuran gas yang terdapat pada permukaan bumi. Udara bumi yang kering mengandungi 78% nitrogen, 21% oksigen, dan 1% uap air, karbon dioksida, dan gas-gas lain. Kandungan elemen senyawa gas dan partikel dalam udara akan berubah-ubah dengan ketinggian dari permukaan tanah. Demikian juga massanya, akan berkurang seiring dengan ketinggian. Semakin dekat dengan lapisan troposfer, maka udara semakin tipis, sehingga melewati batas gravitasi bumi, maka udara akan hampa sama sekali. Apabila makhluk hidup bernapas, kandungan oksigen berkurang, sementara kandungan karbon dioksida bertambah. Ketika tumbuhan menjalani sistem fotosintesa, oksigen kembali dibebaskan Aliran Udara Fluida yang mengalir dalam pipa melewati sebuah lokasi disebut dengan daerah aliran masuk (enstrance region). Udara biasanya memasuki pipa dengan kecepatan yang yang hampir sama pada tiap bagian, pada saat udara bergerak melewati pipa, efek viskos menyebabkan tetap menempel pada dinding pipa. Aliran udara secara alami dapat diketahui dalam beberapa macam diantaranya adalah: 1. Udara akan mengalir dari kondisi bertemperatur rendah ke temperatur tinggi/panas. 2. Udara akan lebih banyak mengalir melalui jalur-jalur ventilasi yang 2

3 memberikan tahanan yang lebih kecil dibandingkan dengan jalur bertahanan yang lebih besar. Sedangkanaliran udara menurut aliranya dapat di bedakan menjadi dua yaitu: a. Aliran Laminer Merupakan aliran dimana fluida dianggap mengalir pada lapisan masing-masing dengan kecepatan konstan.aliran laminer adalah aliran fluida yang bergerak dengan kondisi lapisan-lapisan yang membentuk garis-garis alir dan tidak berpotongan satu sama lain. Alirannya relatief mempunyai kecepatan rendah dan fluidanya bergerak sejajar (laminae) & mempunyai batasan-batasan yang berisi aliran fluida. Aliran laminar adalah aliran fluida tanpa arus turbulent ( pusaran air ). Partikel fluida mengalir atau bergerak dengan bentuk garis lurus dan sejajar.laminar adalah ciri dari arus yang berkecepatan rendah, dan partikel sedimen dalam zona aliran berpindah dengan menggelinding (rolling) ataupun terangkat (saltation).pada laju aliran rendah, aliran laminer tergambar sebagai filamen panjang yang mengalir sepanjang aliran. Aliran laminer mempunyai Bilangan Reynold lebih kecil dari 2300 b. Aliran Turbulen Aliran turbulen adalah aliran fluida yang partikel-partikelnya bergerak secara acak dan tidak stabil dengan kecepatan berfluktuasi yang saling interaksi. Akibat dari hal tersebut garis alir antar partikel fluidanya saling berpotongan. Turbulen mentransport partikel-partikel dengan dua cara; dengan penambahan gaya fluida dan penurunuan tekanan lokal ketika pusaran turbulen bekerja padanya. Keduanya adalah penyebab terjadinya transportasi pasir sepanjang bawah permukaan. Di alam hampir semua mekanisme transport pasir terjadi secara turbulen. Turbulen terutama terjadi di sungai akibat penggerusan sepanjang batas arus air, dan meningkat akibat kekasaran bawah permukaan; sepanjang garis pantai dan laut penyebabnya adalah ombak, tekanan angin permukaan, dan penggerusan arus. Di udara turbulen yang membawa bekas ledakan volkanis ditransport angin. Besarnya gerakan turbulen bervariasi dari mikro hingga makro, yang terakhir tadi sangat mudah dilihat di sungai dengan penampakkan pusaran yang kompleks atau dengan boil yang berbenturan dengan permukaan sungai, secara terus menerus. Aliran turbulen mempunyai bilangan reynold yang lebih besar dari Gambar 1.aliran (munson,et al.,2002) 2.3. Aliran dalam Pipa Pipa adalah saluran tertutup yang biasanya berpenampang lingkaran yang digunakan untuk mengalirkan fluida dengan tampang aliran penuh. Fluida yang di alirkan melalui pipa bisa berupa zat cair atau gas dan tekanan bisa lebih besar atau lebih kecil dari tekanan atmosfer. Apabila zat cair di dalam pipa tidak penuh maka aliran termasuk dalam aliran saluran terbuka atau karena tekanan didalam pipa sama dengan tekanan atmosfer (zat cair di dalam pipa tidak penuh), aliran temasuk dalam pengaliran terbuka. Karena mempunyai permukaan bebas, maka fluida yang dialirkan dalah zat cair. Tekanan dipermukaan zat cair disepanjang saluran terbuka adalah tekanan atmosfer Tekanan Udara Udara memilikimassa meskipun sangat kecil. Akan tetapi dengan jumlah mereka yang sangat banyak massa mereka tidak bisa dianggap ringan,di bumi ada yang namanya gravitasi yang menarik udara ini ke bawah sehingga dikenal namanya berat. Berat udara inilah yang akan menekan permukaan bumi sehingga timbul tekanan udara. Jadi pengertian tekanan udara adalah besarnya berat udara pada satu satuan luas bidang tekan. Besarnya tekanan udara di suatu tempat sangat bergantung pada jumlah udara di atasnya.semakin tinggi suatu tempat maka semakin sedikit jumlah udara di atasnya, semakin sedikit berat udara yang ditahan wilayah tersebut sehingga tekanannya semakin sedikit.berbanding terbalik dengan daerah atau 3

4 dataran rendah, mereka mempunyai tekanan udara yang lebih besar.jadi tekanan udara di suatu wilayah sangat ditentukan oleh ketinggian tempat atau wilayah tersebut dari permukaan air laut Faktor-faktor yang mempengaruhi tekanan udara ada 2 hal yang sangat mempengaruhi tekanan udara yaitu suhu dan tinggi suatu daerah 1. Tinggi Suatu Tempat Seperti yang telah dijelaskan sebelumnya tinggi suatu tempat berbanding terbalik dengan tekanan udara di daerah tersebut Bilangan Reynold Bilangan reynold merupakan bilangan tak berdiamensi yang dapat membedakan suatu aliran itu dinamakan laminer, transisi atau turbulen.perilaku dalam bilangan reynold yang sedang alirannya tidak lagi tenang dan tunak, melainkan menjadi bergolak. Perubahan tersebut disebut transisi, bahwa transisi pada silinder dan bola kira kira pada Re= 3 x 10 5 dimana tampak penurunan yang tajam dan koefisien seretan. Transisi tergantung pada banyak efek,missal kekerasan dinding atau gejolak aliran dilubang masuk. Tetapi parameter yang diutamakan adalah bilangan Reynold (Frank M. White). Persamaan bilangan Reynold 2. Suhu Udara Suhu udara sangat mempengaruhi tekanan udaranya. Ketika suhu tinggi molekul udara akan mengembang dan volume udara menjadi lebih besar. Jika volume di udara di atas suatu tempat adalah tetap maka ketika suhu udara naik, massa udara total akan berkurang, berat udara berkurang, demikian juga dengan tekanan udara. Sebaliknya, ketika suhu rendah makan tekanan udara akan semakin tinggi. Dimana : (2.2) = Bilangan Reynold = Kecepatan aliran fluid = Diameter = viskositas dinamis fluida Tekanan udara di berbagai tempat berbeda-beda terutama tergantung pada tinggi daerah tersebut dari permukaan air laut.perbedaan tekanan udara inilah yang mengakibatkan berbagai fenomena cuaca seperti angin, topan, badai, dan sebagainya. Tekanan didefinisikan sebagai besarnya gaya (F) tiap satuan luas bidang yang dikenainya (A). Apabila suatu zat (padat, cair, dan gas) menerima gaya yang bekerja secara tegak lurus terhadap luas permukaan zat tersebut, maka dapat dirumuskan : P = tekanan (N/m2) F = gaya (N) A = luas penampang (m2) (2.1) 2.6. Kerugian tekanan Kerugian tekanan menyebabkan penurunan tekanan dan oleh sebab itu menyebabkan kerugian energi.kerugian ini harus ditanggulangi oleh penggerakan (misalnya motor listrik) kompresor, yang terlihat dari naiknya biaya energi. Oleh sebab itu harus selalu diusahakan agar kerugian tekanan ini tetap serendah mungkin. Biasanya kerugian tekanan tidak boleh melampaui batas nilai 0,1sampai 0,2 bar. Besar kerugian tekanan dalam saluran antara lain tergantung pada: Panjang saluran Diameter dalam saluran Kecepatan aliran 4

5 2.7. Persamaan Darcy Weisbach Dalam dinamika fluida persamaan darcy weisbach adalah persamaan fenomenologika yang bekaitan dengan head loss atau kehilangan tekanan akibat gesekan sepanjang pipa terhadap kecepatan aliran rata rata. Persamaan ini terbentuk karena kontribusi Hendry Darcy dan Julius Weisbach Persamaan Darcy Weisbach mengandung faktor gesekan tak berdimensi yang dinamai faktor gesekan Darcy dan pada Persamaan Darcy Weisbach head loss dapat di hitung dengan persamaan: (2.3) 3. METODOLOGI PENELITIAN 3.1. Diagram Alir Penelitian mulai Rancangan Percobaan Pengukuran alat dan bahan hf L D V g f : head loss akibat gesekan (m) : panjang pipa (m) : diameter hidroulik dari pipa (m) : kecepatan rata-rata aliran (m/s) : percepatan grafitasi : koefisien gesek Pengaturan variasi kecepatan udara Ukur kecepatan udara menggunakan anemometer Catat perbedaan tinggi air dalam pipa ukur Analisa hasil pengujian selesai Gambar2. Flowchart Metode Penelitian 3.2. Rancangan percobaan Dalam proses penelitian tahap pertama adalah mengetahui variabel tetap yang kita gunakan. Dalam penelitian ini mengambil kecepatan udara sebagai variabel tetap,dengan variasi kecepatan 11,8 m/s, 11,6 m/s, 11,2 m/s, 10,7 m/s, 10,5 m/s dan 9,7 m/s dengan mengatur voltasetegangan listrik pada alat regulator AC 5

6 3.3. Pengukuran Alat dan Bahan Pada rancangan ini pengambilan data bertujuan untuk mengatahui kehilangan tekanan udara yang terjadi pada pipa dengan cara mengukur perbedaan tekanan pada setiap segmen pada pipa udara tersebut. Pipa di bagi menjadi 9(Sembilan) segmen dan setiap segmen diukur tekanan ststisnya sehingga diketahui perubahan dari segmen ke segmen Sifat fisik dasar aliran udara yang dapat dipakai untuk menganalisa aliran udara dalam pipa terutama adalah tekanan, temperature, massa jenis, viskositas, kemudian sifat fisik pipa, antara lain adalah diameter dan kekasaran permukaan aliran fluida dirancang laminer pada kecepatan subsonic Gambar4. Dimensi alat kerugian tekanan aliran udara dalam pipa Air Blower Air Blower ini sebagai alat pembantu untuk memberikan tekanan aliran udara yang melalui pipa, yaitu dihubungkan dengan kipas yang berguna untuk menghisap udara dari saluran masuk. Air Blower yang dipakai adalah: Merk Power Voltase Rpm : Krissbow : 550 Watt : 220 V 240 V : 2900/3000 r/min Gambar 3.Rancangan alat kerugian tekanan aliran udara dalam pipa Alat uji kehilangan tekanan udara di dalam pipa ini untuk mengetahui kehilangan tekanan udara yang mengalir di dalam instalasi pemipaan udara yang disebabkan karena panjangnya pipa yang di gunakan dan kerugian gesek. Aliran udara dapat ditemui pada sistem pemipaan baik pada sistem aliran terbuka maupun aliran tertutup kemudian dikenaldengan sistem tunggal maupun sistem sirkuit.sistem tunggal jika terjadi aliran udara hanya sekali terjadi melewati pipa tersebut, misalnya adalah pada sistem sirkulasi udara ruangan yang menggunakan blower.sedangakan pada system sirkuit terjadi jika aliran uadar tersebut terjadi berulang uang atau bersirkulasi ulang, misalnya pada ruangan yang ber AC Tabung U Gambar 5.Air Blower Untuk mengetahui perbedaan tekanan pada masing - masing segmen penelitian ini menggunakan tabung U atau manometer air 6

7 balik(ac) menjadi sumber tegangan (AC) yang dapat di atur luarannya dengan frekuensi tetap. Gambar 6. Tabung U Spesifikasi tabung U adalah sebagai berikut: Diameter dalam Diameter luar = 7,5mm = 9 mm Pipa menggunakan warna yang bening tujuannya adalah untuk mempermudah dalam pengukuran selisih ketinggian air yang ada didalam pipa tersebut saat ada aliran udara yang mengalir. Untuk mempermudah pengambilan data dalam pengukuran selisih ketinggian air dalan pipa bening maka jarak air dari atas meja di buat dengan ketinggian 10 cm. jarak antar alat ukur/manometer satu dengan yang lainnya adalah 20 cm Regulator Fungsi regulator dalam perancangan ini adalah untuk mengatur tegangan arus yang masuk kedalam motor listrik untuk menghasilkan putaran yang berbeda beda.dengan adanya putaran yang berbeda pada motor maka putaran pada kipas juga berbeda, aliran udara yang masuk ke pipa juga berbeda. Ada dua jenis rangkaian pengaturan tegangan bolak balik(ac REGULATOR), jika ditinjau dari frekuensi luaran yag dihasilkan yaitu: 1. Rangkaian pengaturan tegangan bolak balik dengan hasil luran frekuensi yang tetap seperti sumbernya. 2. Rangkaian pengaturan tegangan bolak balik dengan hasil keluaran frekuensi yang dapat diatur. Rangkaian pertama disebut dengan pengatur tegangan bolak balik (ac regulator), yaitu suatu rangkaian elektronika daya yang dapat mengubah sumber tegangan bolak 7 Gambar 7. Regulator tegangan Rangkaian kedua disebut cyclonverter, yaitu suatu rangkaian elektronika daya yang dapat mengubah sumber tegangan bolak balik menjadi tegangan AC dengan frekuensi yang dapat di atur luarnya.komponen semikonduktor daya yang digunakan umumnya beroperasi sebagai sakelar dan pengatur.jenis sumber tegangan masukan mengacu rangkaian, baik AC regulator maupun cycloconverter, dapat digunakan tegangan bolak balik baik satu fasa maupun tiga fasa.ac regulator dikenal juga dengan nama AVR(Automatic Voltage Regulator), berfungsi untuk menjaga agar tegangan generator tetap konstan dengan kata lain regulator tetap mengeluarkan tegangan yang selalu stabil tidak terpengaruh pada perubahan beban yang selalu berubah ubah, dikarenakan beban sangat mempengaruhi tegangan output Pengaturan variasi kecepatan udara Pada proses penelitian ini dalam pengaturan variasi kecepatan udara menggunakan regulator AC untuk mengatur voltase yang masuk pada motor listris sehingga kecepatan udara yang di hasilkan oleh putaran kipas atau blower dapat di atur Pengukuran kecepatan udara menggunakan anomometer Dalam pengukuran kecepatan udara yang di hasilkan dalam proses penelitian ini penulis menggunakan alat anemometer yang di letakan pada ujung ducting Pencatatan perbedaan tinggi air dalam pipa ukur

8 Tahap selanjutnya dalam proses peneliyian ini adalah mengukur perbedaan tinggi level air pada tabung U disetiap masing masing segmen dengan mengunakan jangka sorong Analisa Hasil Menganalisa hasil pengujian dari alat perancangan kerugian tekanan aliran udara dalam pipa.menentukan kesimpulan dari perancangan alat kerugian tekanan aliran udara dalam pipa. 4. HASIL DAN ANALISA 4.1. Data Hasil Pengujian Pengujian alat analisa kerugian tekanan aliran udara dalam pipa menggunakan beberapa ketentuan antara lain adalah: a. Variasi kecepatan aliran udara yang diambil adalah 11,8 m/s, 11,6 m/s, 11,2 m/s, 10,7 m/s, 10,5 m/s dan 9,7 m/s b. Jarak antar manometer adalah 200mm, 400 mm, 600 mm, 800 mm, 1000 mm, 1200 mm, 1400 mm, 1600 mm, 1800 mm c. Pipa penampang aliran udara adalah persegi dengan dimensi 0,2 m x 0,2 m d. Pengukuran selisih ketinggian air pada manometer menggunakan jangka sorong. e. Pengujian dilakukan pada sisi tekan Hasil yang didapat dari pengujian yang didapatkan di tampilkan dalam tabel dibawah. Tabel. IV.1 Data Head hasil pengujian kecepatan (m/s) 11,8 11,6 11,2 10,7 10,5 9,7 0,2 8,45 8,05 7,85 7,6 7,35 6,95 0,4 8,2 7,8 7,6 7,35 7,1 6,65 0,6 7,8 7,4 7,2 6,95 6,7 6,3 0,8 7,6 7,2 6,95 6,7 6, ,3 6,9 6,6 6,3 6,05 5,5 1,2 7,1 6,7 6,35 6 5,75 5,2 1,4 7,25 6,7 6,55 6,15 5,95 5,35 1,6 6,6 6,2 5,85 5,45 5,15 4,6 1,8 6,4 6 5,6 5,2 4,9 4,3 Gambar IV.1 Gambar Grafik jarak vs Head 4.2 Analisis Grafik Head Dari Gambar IV.1 yang terbentuk maka dapat di analisis hubungan jarak dan head adalah berbanding terbalik semakin jauh jarak segmen semakin kecil head yang di hasilkan, hal ini di pengaruhi oleh faktor gesek disepanjang pipa atau segmen. Hal ini sesuai dengan persamaan darcy weisbach dimana : h : head loss akibat gesekan (m) L : panjang pipa (m) D : diameter hidroulik dari pipa (m) V : kecepatan rata-rata aliran (m/s) g : percepatan grafitasi f : koefisien gesek Dari rumus tersebut nilai ( f )berbanding lurus dengan jarak (L) maka semakin besar nilai jarak (L) nilai koefisien gesek ( f ) juga akan semakin besar dimana akan menurunkan nilai Head (h). Head tertinggi pada segmen 1 pada kecepatan aliran udara 11,8 m/s dengan hasil 8,45 mm dan head terendah pada segmen 9 pada kecepatan aliran udara 9,7 m/s dengan hasil head 4.3 mm 4.3. Data Perhitungan Dari data dan tabel Head vs Jarak maka dapat digunakan untuk menghitung besarnya koefisien gesek di setiap segmen Langkah- langkah perhitungan Variasi kecepatan aliran udara 11.8 m/s 1. Segmen 1 Diketahui : 8

9 Kecepatan Aliran Udara ( v) : 11.8 m/s Kecepatan Aliran Udara rata rata : 5.9 m/s Panjang segmen (L) : 0.2 m Percepatan Gravitasi bumi ( g ) : 9.81 m/s 2 Head loss akibat gesekan (hf ) : 0,00025 m Karena pipa berpenampang persegi maka persamaan d adalah: Gambar IV.2 Grafik kecepatan Vs Koefisien Gesek Maka : Hasil lengkap perhitungan koefisien gesek disajikan pada tabel 2. segmen 9,7 10,5 10,7 11,2 11,6 11,8 0,4 0, , , , , , ,6 0, , , , , , ,8 0, , , , , , , , , , , , ,2 0, , , , , , ,6 0, , , , , , ,8 0, , , , , , , , , , , , Analisis Grafik Koefisien Gesek ( f ) Dari Gambar IV.2 yang terbentuk ketika kita bandingkan dengan bentuk grafik pada diagram moody maka terdapat kesamaan dimana semakin besar nilai kecepatan aliran fluida maka koefisien gesek yang ditimbulkan akan semakin rendah, maka dapat di analisis bahwa pengaruh kecepatan aliran terhadap koefisien gesek adalah berbanding terbalik karena semakin besar kecepatan aliran yang di timbulkan akan bidang kontak antara pipa dan fluida akan semakin kecil, sehingga akan mengakibatkan faktor gesekan atau koefisien gesek akan semakin kecil, hal ini sesuai dengan persamaan darcy weisbach : dimana : hf L D V g f maka : : head loss akibat gesekan (m) : panjang pipa (m) : diameter hidroulik dari pipa (m) : kecepatan rata-rata aliran (m/s) : percepatan grafitasi : koefisien gesek Dari rumus tersebut jika diasumsikan nilai h, L, D, g konstan maka dapat disimpulkan bahwa besarnya koefisien gesek berbanding terbalik dengan kecepatan aliran, semakin besar nilai kecepatan aliran maka nilai koefisien gesek akan semakin kecil. 9

10 5. PENUTUP 5.1. Kesimpulan Berdasarkan dari pengujian yang telah dilakukan pada alat praktikum kerugian tekanan aliran udara dalam pipa, maka dapat ditarik kesimpulanbahwa pengaruh kecepatan aliran terhadap koefisien gesek adalah berbanding terbalik karena semakin besar kecepatan aliran yang di timbulkan maka bidang kontak antara pipa dan fluida akan semakin kecil, sehingga akan mengakibatkan faktor gesekan atau koefisien gesek akansemakin kecil dan besarnya koefisein gesek berbanding lurus dengan head loss, maka pengaruh kecepatan aliran terhadap kerugian tekanan adalah berbanding terbalik. 6. DAFTAR PUSTAKA Giancoli, D.C., 2001, Fisika jilid 1, Erlangga, Jakarta Holman, J.P., Gajda Jr, W.J., 1985, Metode Pengukuran Teknik, Erlangga, Jakarta Halliday,D., 1996, Fisika 2, Erlangga, Jakarta Indrajit,D., 2009, Mudah dan Aktif Belajar Fisika, Grafindo Media Pratama, Bandung Koestoer, R.A., 2005, Pengukuran Teknik, Departemen Teknik Mesin Fakultas Teknik Universitas Indonesia, Jakarta Khurmi, R.S., Gupta, J.K., 1982, A Text Book Machine Design, Eurasia Publising House, New Delhi Munson, B.R., Young, D.F.,Okhiisi, T.H, 2003, Mekanika Fluida, Erlangga, Jakarta Olson, R.M., Wright, S.J., 1993, Dasar Dasar Mekanika Fluida Teknik edisi kelima, PT Gramedia Pustaka Utama, Jakarta Soedrajat, S., 1983, Mekanika Fluida dan Hidrolika, Nova, Bandung Sularso, 1997, Dasar Perencanaan dan Pemilihan Elemen Mesin, PT Pradnya Paramita, Jakarta Sularso.,Tahara,H., 2006, Pompa dan Kompresor,Pemilihan Pemakaian, dan Pemeliharaan, PT Pradnya Paramita, Jakarta 10

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Definisi Fluida Aliran fluida atau zat cair (termasuk uap air dan gas) dibedakan dari benda padat karena kemampuannya untuk mengalir. Fluida lebih mudah mengalir karena ikatan molekul

Lebih terperinci

Momentum, Vol. 13, No. 1, April 2017, Hal ISSN ANALISIS PENGARUH LAJU ALIRAN UDARA TERHADAP KERUGIAN TEKANAN PADA SALURAN UDARA

Momentum, Vol. 13, No. 1, April 2017, Hal ISSN ANALISIS PENGARUH LAJU ALIRAN UDARA TERHADAP KERUGIAN TEKANAN PADA SALURAN UDARA Momentum, Vol. 13, No. 1, April 2017, Hal. 57-61 ISSN 0216-7395 ANALISIS PENGARUH LAJU ALIRAN UDARA TERHADAP KERUGIAN TEKANAN PADA SALURAN UDARA Tabah Priangkoso*, Nasir Kurniawan dan Darmanto Jurusan

Lebih terperinci

KEHILANGAN HEAD ALIRAN AKIBAT PERUBAHAN PENAMPANG PIPA PVC DIAMETER 12,7 MM (0,5 INCHI) DAN 19,05 MM (0,75 INCHI).

KEHILANGAN HEAD ALIRAN AKIBAT PERUBAHAN PENAMPANG PIPA PVC DIAMETER 12,7 MM (0,5 INCHI) DAN 19,05 MM (0,75 INCHI). KEHILANGAN HEAD ALIRAN AKIBAT PERUBAHAN PENAMPANG PIPA PVC DIAMETER 12,7 MM (0,5 INCHI) DAN 19,05 MM (0,75 INCHI). Tugas Akhir, Jurusan Teknik Mesin, Fakultas Teknologi Industri Universitas Gunadarma,,2013

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Hukum Kekekalan Massa Hukum kekekalan massa atau dikenal juga sebagai hukum Lomonosov- Lavoiser adalah suatu hukum yang menyatakan massa dari suatu sistem tertutup akan konstan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI II-1 BAB II LANDASAN TEORI 2.1 Pengairan Tanah Pertambakan Pada daerah perbukitan di Atmasnawi Kecamatan Gunung Sindur., terdapat banyak sekali tambak ikan air tawar yang tidak dapat memelihara ikan pada

Lebih terperinci

BAB III PERALATAN DAN PROSEDUR PENGUJIAN

BAB III PERALATAN DAN PROSEDUR PENGUJIAN BAB III PERALATAN DAN PROSEDUR PENGUJIAN 3.1 PERANCANGAN ALAT PENGUJIAN Desain yang digunakan pada penelitian ini berupa alat sederhana. Alat yang di desain untuk mensirkulasikan fluida dari tanki penampungan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. Tekanan Atmosfer Tekanan atmosfer adalah tekanan yang ditimbulkan oleh bobot udara di atas suatu titik di permukaan bumi. Pada permukaan laut, atmosfer akan menyangga kolom air

Lebih terperinci

2 yang mempunyai posisi vertikal sama akan mempunyai tekanan yang sama. Laju Aliran Volume Laju aliran volume disebut juga debit aliran (Q) yaitu juml

2 yang mempunyai posisi vertikal sama akan mempunyai tekanan yang sama. Laju Aliran Volume Laju aliran volume disebut juga debit aliran (Q) yaitu juml KERUGIAN JATUH TEKAN (PRESSURE DROP) PIPA MULUS ACRYLIC Ø 10MM Muhammmad Haikal Jurusan Teknik Mesin Universitas Gunadarma ABSTRAK Kerugian jatuh tekanan (pressure drop) memiliki kaitan dengan koefisien

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

PERANCANGAN INTALASI ALAT TEST PENYEMPROTAN INJEKTOR MOBIL TOYOTA AVANZA 1.3 G (1300 cc) ENGINE TIPE K3-VE DENGAN KAPASITAS 40 LITER/JAM

PERANCANGAN INTALASI ALAT TEST PENYEMPROTAN INJEKTOR MOBIL TOYOTA AVANZA 1.3 G (1300 cc) ENGINE TIPE K3-VE DENGAN KAPASITAS 40 LITER/JAM JURNAL TEKNOLOGI & INDUSTRI Vol. 3 No. 1; Juni 2014 ISSN 2087-6920 PERANCANGAN INTALASI ALAT TEST PENYEMPROTAN INJEKTOR MOBIL TOYOTA AVANZA 1.3 G (1300 cc) ENGINE TIPE K3-VE DENGAN KAPASITAS 40 LITER/JAM

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Fluida

BAB II DASAR TEORI. 2.1 Definisi Fluida BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antarmolekul

Lebih terperinci

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3 BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

PENGARUH VARIASI VOLUME TABUNG TEKAN TERHADAP EFISIENSI PADA POMPA HIDRAM

PENGARUH VARIASI VOLUME TABUNG TEKAN TERHADAP EFISIENSI PADA POMPA HIDRAM NASKAH PUBLIKASI PENGARUH VARIASI VOLUME TABUNG TEKAN TERHADAP EFISIENSI PADA POMPA HIDRAM Naskah Publikasi ini disusun guna memenuhi Tugas Akhir pada Jurusan Teknik Mesin Fakultas Teknik Universitas Muhammadiyah

Lebih terperinci

REYNOLDS NUMBER K E L O M P O K 4

REYNOLDS NUMBER K E L O M P O K 4 REYNOLDS NUMBER K E L O M P O K 4 P A R A M I T A V E G A A. T R I S N A W A T I Y U L I N D R A E K A D E F I A N A M U F T I R I Z K A F A D I L L A H S I T I R U K A Y A H FAKULTAS PERIKANAN DAN ILMU

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi fluida

BAB II DASAR TEORI. 2.1 Definisi fluida BAB II DASAR TEORI 2.1 Definisi fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

BAB IV PENGOLAHAN DATA DAN ANALISA DATA

BAB IV PENGOLAHAN DATA DAN ANALISA DATA BAB IV PENGOLAHAN DATA DAN ANALISA DATA.1 PERHITUNGAN DATA Dari percobaan yang telah dilakukan, didapatkan data mentah berupa temperatur kerja fluida pada saat pengujian, perbedaan head tekanan, dan waktu

Lebih terperinci

Rumus bilangan Reynolds umumnya diberikan sebagai berikut:

Rumus bilangan Reynolds umumnya diberikan sebagai berikut: Dalam mekanika fluida, bilangan Reynolds adalah rasio antara gaya inersia (vsρ) terhadap gaya viskos (μ/l) yang mengkuantifikasikan hubungan kedua gaya tersebut dengan suatu kondisi aliran tertentu. Bilangan

Lebih terperinci

2 a) Viskositas dinamik Viskositas dinamik adalah perbandingan tegangan geser dengan laju perubahannya, besar nilai viskositas dinamik tergantung dari

2 a) Viskositas dinamik Viskositas dinamik adalah perbandingan tegangan geser dengan laju perubahannya, besar nilai viskositas dinamik tergantung dari VARIASI JARAK NOZEL TERHADAP PERUAHAN PUTARAN TURIN PELTON Rizki Hario Wicaksono, ST Jurusan Teknik Mesin Universitas Gunadarma ASTRAK Efek jarak nozel terhadap sudu turbin dapat menghasilkan energi terbaik.

Lebih terperinci

Aliran Turbulen (Turbulent Flow)

Aliran Turbulen (Turbulent Flow) Aliran Turbulen (Turbulent Flow) A. Laminer dan Turbulen Laminer adalah aliran fluida yang ditunjukkan dengan gerak partikelpartikel fluidanya sejajar dan garis-garis arusnya halus. Dalam aliran laminer,

Lebih terperinci

Tegangan Permukaan. Fenomena Permukaan FLUIDA 2 TEP-FTP UB. Beberapa topik tegangan permukaan

Tegangan Permukaan. Fenomena Permukaan FLUIDA 2 TEP-FTP UB. Beberapa topik tegangan permukaan Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas Beberapa topik tegangan permukaan Fenomena permukaan sangat mempengaruhi : Penetrasi melalui membran

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan

Lebih terperinci

PERANCANGAN ALAT PRAKTIKUM PENGUJIAN HEADLOSS ALIRAN FLUIDA TAK TERMAMPATKAN. Dwi Ermadi 1*,Darmanto 1

PERANCANGAN ALAT PRAKTIKUM PENGUJIAN HEADLOSS ALIRAN FLUIDA TAK TERMAMPATKAN. Dwi Ermadi 1*,Darmanto 1 PERANCANGAN ALAT PRAKTIKUM PENGUJIAN HEADLOSS ALIRAN FLUIDA TAK TERMAMPATKAN Dwi Ermadi 1*,Darmanto 1 1 Jurusan Teknik Mesin, Fakultas Teknik, Universitas Wahid Hasyim Semarang Jl. Menoreh Tengah X/22,

Lebih terperinci

Analisa Pengaruh Variasi Volume Tabung Udara Dan Variasi Beban Katup Limbah Terhadap Performa Pompa Hidram

Analisa Pengaruh Variasi Volume Tabung Udara Dan Variasi Beban Katup Limbah Terhadap Performa Pompa Hidram Analisa Pengaruh Variasi Volume Tabung Udara Dan Variasi Beban Katup Limbah Terhadap Performa Pompa Hidram Andrea Sebastian Ginting 1, M. Syahril Gultom 2 1,2 Departemen Teknik Mesin, Fakultas Teknik,

Lebih terperinci

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa ALIRAN STEDY MELALUI SISTEM PIPA Persamaan kontinuitas Persamaan Bernoulli

Lebih terperinci

KAJIAN EKSPERIMEN COOLING WATER DENGAN SISTEM FAN

KAJIAN EKSPERIMEN COOLING WATER DENGAN SISTEM FAN KAJIAN EKSPERIMEN COOLING WATER DENGAN SISTEM FAN Nama : Arief Wibowo NPM : 21411117 Jurusan : Teknik Mesin Fakultas : Teknologi Industri Pembimbing : Dr. Rr. Sri Poernomo Sari, ST., MT. Latar Belakang

Lebih terperinci

Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas

Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya Beberapa topik tegangan permukaan

Lebih terperinci

ANALISIS DEBIT FLUIDA PADA PIPA ELBOW 90 DENGAN VARIASI DIAMETER PIPA

ANALISIS DEBIT FLUIDA PADA PIPA ELBOW 90 DENGAN VARIASI DIAMETER PIPA 48 ANALISIS DEBIT FLUIDA PADA PIPA ELBOW 90 DENGAN VARIASI DIAMETER PIPA Sandi Setya Wibowo 1), Kun Suharno 2), Sri Widodo 3) 1 Jurusan Teknik Mesin, Fakultas Teknik, Universitas Tidar email:sandisetya354@gmail.com

Lebih terperinci

Analisa Rugi Aliran (Head Losses) pada Belokan Pipa PVC

Analisa Rugi Aliran (Head Losses) pada Belokan Pipa PVC Seminar Nasional Peranan Ipteks Menuju Industri Masa Depan (PIMIMD-4) Institut Teknologi Padang (ITP), Padang, 27 Juli 2017 ISBN: 978-602-70570-5-0 http://eproceeding.itp.ac.id/index.php/pimimd2017 Analisa

Lebih terperinci

Laporan Praktikum Operasi Teknik Kimia I Efflux Time BAB I PENDAHULUAN

Laporan Praktikum Operasi Teknik Kimia I Efflux Time BAB I PENDAHULUAN Page 1 BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan efflux time dalam dunia industri banyak dijumpai pada pemindahan fluida dari suatu tempat ke tempat yang lain dengan pipa tertutup serta tangki sebagai

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Kecepatan dan Kapasitas Aliran Fluida Setiap fluida yang mengalir dalam sebuah pipa harus memasuki pipa pada suatu lokasi. Daerah aliran di dekat lokasi fluida memasuki pipa tersebut

Lebih terperinci

PERTEMUAN III HIDROSTATISTIKA

PERTEMUAN III HIDROSTATISTIKA PERTEMUAN III HIDROSTATISTIKA Pengenalan Statika Fluida (Hidrostatik) Hidrostatika adalah ilmu yang mempelajari perilaku zat cair dalam keadaan diam. Konsep Tekanan Tekanan : jumlah gaya tiap satuan luas

Lebih terperinci

Vol 9 No. 2 Oktober 2014

Vol 9 No. 2 Oktober 2014 VARIASI TINGGI PIPA HISAP PADA POMPA TERHADAP PERUBAHAN KAPASITAS ALIRAN(APLIKASI PADA PENAMPUNGAN EMBER TUMPAH WATERBOOM ) Budi Johan, Agus wibowo2, Irfan Santoso Mahasiswa, Progdi Teknik Mesin Universitas

Lebih terperinci

Panduan Praktikum 2012

Panduan Praktikum 2012 Percobaan 4 HEAD LOSS (KEHILANGAN ENERGI PADA PIPA LURUS) A. Tujuan Percobaan: 1. Mengukur kerugian tekanan (Pv). Mengukur Head Loss (hv) B. Alat-alat yang digunakan 1. Fluid Friction Demonstrator. Stopwatch

Lebih terperinci

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI 3 BAB II LANDASAN TEORI II.1. Tinjauan Pustaka II.1.1.Fluida Fluida dipergunakan untuk menyebut zat yang mudah berubah bentuk tergantung pada wadah yang ditempati. Termasuk di dalam definisi ini adalah

Lebih terperinci

BAB FLUIDA. 7.1 Massa Jenis, Tekanan, dan Tekanan Hidrostatis

BAB FLUIDA. 7.1 Massa Jenis, Tekanan, dan Tekanan Hidrostatis 1 BAB FLUIDA 7.1 Massa Jenis, Tekanan, dan Tekanan Hidrostatis Massa Jenis Fluida adalah zat yang dapat mengalir dan memberikan sedikit hambatan terhadap perubahan bentuk ketika ditekan. Yang termasuk

Lebih terperinci

Losses in Bends and Fittings (Kerugian energi pada belokan dan sambungan)

Losses in Bends and Fittings (Kerugian energi pada belokan dan sambungan) Panduan Praktikum Fenomena Dasar 010 A. Tujuan Percobaan: Percobaan 5 Losses in Bends and Fittings (Kerugian energi pada belokan dan sambungan) 1. Mengamati kerugian tekanan aliran melalui elbow dan sambungan.

Lebih terperinci

BAB IV PENGUKURAN KEHILANGAN ENERGI AKIBAT BELOKAN DAN KATUP (MINOR LOSSES)

BAB IV PENGUKURAN KEHILANGAN ENERGI AKIBAT BELOKAN DAN KATUP (MINOR LOSSES) BAB IV PENGUKURAN KEHILANGAN ENERGI AKIBAT BELOKAN DAN KATUP (MINOR LOSSES) 4.1 Pendahuluan Kerugian tekan (headloss) adalah salah satu kerugian yang tidak dapat dihindari pada suatu aliran fluida yang

Lebih terperinci

PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM

PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM Franciscus Manuel Sitompul 1,Mulfi Hazwi 2 Email:manuel_fransiskus@yahoo.co.id 1,2, Departemen

Lebih terperinci

FISIKA STATIKA FLUIDA SMK PERGURUAN CIKINI

FISIKA STATIKA FLUIDA SMK PERGURUAN CIKINI FISIKA STATIKA FLUIDA SMK PERGURUAN CIKINI MASSA JENIS Massa jenis atau kerapatan suatu zat didefinisikan sebagai perbandingan massa dengan olum zat tersebut m V ρ = massa jenis zat (kg/m 3 ) m = massa

Lebih terperinci

BAB IV PENGOLAHAN DATA DAN ANALISA DATA

BAB IV PENGOLAHAN DATA DAN ANALISA DATA BAB IV PENGOLAHAN DATA DAN ANALISA DATA 4.1 DATA Selama penelitian berlangsung, penulis mengumpulkan data-data yang mendukung penelitian serta pengolahan data selanjutnya. Beberapa data yang telah terkumpul

Lebih terperinci

STUDI EKSPERIMENTAL PENGUKURAN HEAD LOSSES MAYOR (PIPA PVC DIAMETER ¾ ) DAN HEAD LOSSES MINOR (BELOKAN KNEE 90 DIAMETER ¾ ) PADA SISTEM INSTALASI PIPA

STUDI EKSPERIMENTAL PENGUKURAN HEAD LOSSES MAYOR (PIPA PVC DIAMETER ¾ ) DAN HEAD LOSSES MINOR (BELOKAN KNEE 90 DIAMETER ¾ ) PADA SISTEM INSTALASI PIPA Vol. 1, No., Mei 010 ISSN : 085-8817 STUDI EKSPERIMENTAL PENGUKURAN HEAD LOSSES MAYOR (PIPA PVC DIAMETER ¾ ) DAN HEAD LOSSES MINOR (BELOKAN KNEE 90 DIAMETER ¾ ) PADA SISTEM INSTALASI PIPA Helmizar Dosen

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Pompa Pompa adalah peralatan mekanis yang digunakan untuk menaikkan cairan dari dataran rendah ke dataran tinggi atau untuk mengalirkan cairan dari daerah bertekanan

Lebih terperinci

PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P

PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P ANGGAPAN YANG DIGUNAKAN ZAT CAIR ADALAH IDEAL ZAT CAIR ADALAH HOMOGEN DAN TIDAK TERMAMPATKAN ALIRAN KONTINYU DAN SEPANJANG GARIS ARUS GAYA YANG BEKERJA HANYA

Lebih terperinci

BAB III PROSES PERANCANGAN, PERAKITAN, PENGUJIAN DAN PERHITUNGAN POMPA SENTRIFUGAL UNTUK AIR MANCUR

BAB III PROSES PERANCANGAN, PERAKITAN, PENGUJIAN DAN PERHITUNGAN POMPA SENTRIFUGAL UNTUK AIR MANCUR Jansen A.Sirait / 4130610019 BAB III PROSES PERANCANGAN, PERAKITAN, PENGUJIAN DAN PERHITUNGAN POMPA SENTRIFUGAL UNTUK AIR MANCUR 3.1. Bagian Yang Dirancang, Dirakit, Diuji dan Perhitungan Pompa Pada proses

Lebih terperinci

BAB I PENDAHULUAN. 1 Universitas Indonesia. Analisa aliran berkembang..., Iwan Yudi Karyono, FT UI, 2008

BAB I PENDAHULUAN. 1 Universitas Indonesia. Analisa aliran berkembang..., Iwan Yudi Karyono, FT UI, 2008 BAB I PENDAHULUAN 1.1 LATAR BELAKANG Suatu sistem transfer fluida dari suatu tempat ke tempat lain biasanya terdiri dari pipa,valve,sambungan (elbow,tee,shock dll ) dan pompa. Jadi pipa memiliki peranan

Lebih terperinci

JUDUL TUGAS AKHIR ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI

JUDUL TUGAS AKHIR  ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI JUDUL TUGAS AKHIR http://www.gunadarma.ac.id/ ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI ABSTRAKSI Alat uji kehilangan tekanan didalam sistem perpipaan dibuat dengan menggunakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Radiator Radiator memegang peranan penting dalam mesin otomotif (misal mobil). Radiator berfungsi untuk mendinginkan mesin. Pembakaran bahan bakar dalam silinder mesin menyalurkan

Lebih terperinci

FIsika KTSP & K-13 FLUIDA STATIS. K e l a s. A. Fluida

FIsika KTSP & K-13 FLUIDA STATIS. K e l a s. A. Fluida KTSP & K-13 FIsika K e l a s XI FLUID STTIS Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi fluida statis.. Memahami sifat-sifat fluida

Lebih terperinci

8. FLUIDA. Materi Kuliah. Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya

8. FLUIDA. Materi Kuliah. Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya 8. FLUIDA Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya Tegangan Permukaan Viskositas Fluida Mengalir Kontinuitas Persamaan Bernouli Materi Kuliah 1 Tegangan Permukaan Gaya tarik

Lebih terperinci

BAB II LANDASAN TEORI. bisa mengalami perubahan bentuk secara kontinyu atau terus-menerus bila terkena

BAB II LANDASAN TEORI. bisa mengalami perubahan bentuk secara kontinyu atau terus-menerus bila terkena BAB II LANDASAN TEORI 2.1 Mekanika Fluida Mekanika fluida adalah subdisiplin dari mekanika kontinyu yang mempelajari tentang fluida (dapat berupa cairan dan gas). Fluida sendiri merupakan zat yang bisa

Lebih terperinci

Analisis Aliran Fluida Terhadap Fitting Serta Satuan Panjang Pipa. Nisa Aina Fauziah, Novita Elvianti, dan Verananda Kusuma Ariyanto

Analisis Aliran Fluida Terhadap Fitting Serta Satuan Panjang Pipa. Nisa Aina Fauziah, Novita Elvianti, dan Verananda Kusuma Ariyanto Analisis Aliran Fluida Terhadap Fitting Serta Satuan Panjang Pipa Nisa Aina Fauziah, Novita Elvianti, dan Verananda Kusuma Ariyanto Jurusan teknik kimia fakultas teknik universitas Sultan Ageng Tirtayasa

Lebih terperinci

Aliran pada Saluran Tertutup (Pipa)

Aliran pada Saluran Tertutup (Pipa) Aliran pada Saluran Tertutup (Pipa) Pipa adalah saluran tertutup yang biasanya berpenampang lingkaran yang digunakan untuk mengalirkan fluida dengan tampang aliran penuh (Triatmojo 1996 : 25). Fluida yang

Lebih terperinci

PENGARUH KECEPATAN SUDUT TERHADAP EFISIENSI POMPA SENTRIFUGAL JENIS TUNGGAL

PENGARUH KECEPATAN SUDUT TERHADAP EFISIENSI POMPA SENTRIFUGAL JENIS TUNGGAL TURBO Vol. 4 No. 2. 2015 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/ummojs/index.php/turbo PENGARUH KECEPATAN SUDUT TERHADAP EFISIENSI

Lebih terperinci

FLUIDA. Staf Pengajar Fisika Departemen Fisika FMIPA Universitas Indonesia

FLUIDA. Staf Pengajar Fisika Departemen Fisika FMIPA Universitas Indonesia FLUIDA Staf Pengajar Fisika Departemen Fisika FMIPA Universitas Indonesia FLUIDA Fluida merupakan sesuatu yang dapat mengalir sehingga sering disebut sebagai zat alir. Fasa zat cair dan gas termasuk ke

Lebih terperinci

PENGARUH DEBIT ALIRAN TERHADAP HEAD LOSSES PADA VARIASI JENIS BELOKAN PIPA

PENGARUH DEBIT ALIRAN TERHADAP HEAD LOSSES PADA VARIASI JENIS BELOKAN PIPA PENGARUH DEBIT ALIRAN TERHADAP HEAD LOSSES PADA VARIASI JENIS BELOKAN PIPA Syofyan Anwar Syahputra 1, Aspan Panjaitan 2 1 Program Studi Teknik Pendingin dan Tata Udara, Politeknik Tanjungbalai Sei Raja

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1. KLASIFIKASI FLUIDA Fluida dapat diklasifikasikan menjadi beberapa bagian, tetapi secara garis besar fluida dapat diklasifikasikan menjadi dua bagian yaitu :.1.1 Fluida Newtonian

Lebih terperinci

MODUL II VISKOSITAS. Pada modul ini akan dijelaskan pendahuluan, tinjauan pustaka, metodologi praktikum, dan lembar kerja praktikum.

MODUL II VISKOSITAS. Pada modul ini akan dijelaskan pendahuluan, tinjauan pustaka, metodologi praktikum, dan lembar kerja praktikum. MODUL II VISKOSITAS Pada modul ini akan dijelaskan pendahuluan, tinjauan pustaka, metodologi praktikum, dan lembar kerja praktikum. I. PENDAHULUAN Pada bab ini akan dijelaskan mengenai latar belakang praktikum

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Pengaruh Elemen Meteorologi Untuk Irigasi. tanah dalam rangkaian proses siklus hidrologi.

BAB II TINJAUAN PUSTAKA. 2.1 Pengaruh Elemen Meteorologi Untuk Irigasi. tanah dalam rangkaian proses siklus hidrologi. BAB II TINJAUAN PUSTAKA 2.1 Pengaruh Elemen Meteorologi Untuk Irigasi Sosrodarsono, (1978) dalam perencanaan saluran irigasi harus memperhatikan beberapa aspek yang mempengaruhi proses irigasi diantaranya

Lebih terperinci

BAB II ALIRAN FLUIDA DALAM PIPA. beberapa sifat yang dapat digunakan untuk mengetahui berbagai parameter pada

BAB II ALIRAN FLUIDA DALAM PIPA. beberapa sifat yang dapat digunakan untuk mengetahui berbagai parameter pada BAB II ALIRAN FLUIDA DALAM PIPA.1 Sifat-Sifat Fluida Fluida merupakan suatu zat yang berupa cairan dan gas. Fluida memiliki beberapa sifat yang dapat digunakan untuk mengetahui berbagai parameter pada

Lebih terperinci

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA MODUL KULIAH : MEKANIKA FLUIDA DAN SKS : 3 HIROLIKA Oleh : Acep Hidayat,ST,MT. Jurusan Teknik Perencanaan Fakultas Teknik Perencanaan dan Desain Universitas Mercu Buana Jakarta 2011 MODUL 12 HUKUM KONTINUITAS

Lebih terperinci

BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA

BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA Untuk mendapatkan koefisien gesek dari saluran pipa berpenampang persegi, nilai penurunan tekanan (pressure loss), kekasaran pipa dan beberapa variabel

Lebih terperinci

BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER

BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER 4.1 Perhitungan Blower Untuk mengetahui jenis blower yang digunakan dapat dihitung pada penjelasan dibawah ini : Parameter yang diketahui : Q = Kapasitas

Lebih terperinci

FLUIDA DINAMIS. GARIS ALIR ( Fluida yang mengalir) ada 2

FLUIDA DINAMIS. GARIS ALIR ( Fluida yang mengalir) ada 2 DINAMIKA FLUIDA FLUIDA DINAMIS SIFAT UMUM GAS IDEAL Aliran fluida dapat merupakan aliran tunak (STEADY ) dan tak tunak (non STEADY) Aliran fluida dapat termanpatkan (compressibel) dan tak termanfatkan

Lebih terperinci

Nama : Zainal Abidin NPM : Jurusan : Teknik Mesin Fakultas : Teknologi Industri Pembimbing : Dr. Sri Poernomo Sari, ST., MT.

Nama : Zainal Abidin NPM : Jurusan : Teknik Mesin Fakultas : Teknologi Industri Pembimbing : Dr. Sri Poernomo Sari, ST., MT. ANALISIS EFISIENSI POMPA DAN HEAD LOSS PADA MESIN COOLING WATER SISTEM FAN Nama : Zainal Abidin NPM : 27411717 Jurusan : Teknik Mesin Fakultas : Teknologi Industri Pembimbing : Dr. Sri Poernomo Sari, ST.,

Lebih terperinci

Gambar 3-15 Selang output Gambar 3-16 Skema penelitian dengan sudut pipa masuk Gambar 3-17 Skema penelitian dengan sudut pipa masuk

Gambar 3-15 Selang output Gambar 3-16 Skema penelitian dengan sudut pipa masuk Gambar 3-17 Skema penelitian dengan sudut pipa masuk DAFTAR ISI Halaman Judul... i Lembar Pengesahan Dosen Pembimbing... ii Lembar Pengesahan Dosen Penguji... iii Halaman Persembahan... iv Halaman Motto... v Kata Pengantar... vi Abstrak... ix Abstract...

Lebih terperinci

PENGARUH DIAMETER NOZEL UDARA PADA SISTEM JET

PENGARUH DIAMETER NOZEL UDARA PADA SISTEM JET i Saat ini begitu banyak perusahaan teknologi dalam pembuatan satu barang. Salah satunya adalah alat penyemprotan nyamuk. Alat penyemprotan nyamuk ini terdiri dari beberapa komponen yang terdiri dari pompa,

Lebih terperinci

MEKANIKA FLUIDA. Ferianto Raharjo - Fisika Dasar - Mekanika Fluida

MEKANIKA FLUIDA. Ferianto Raharjo - Fisika Dasar - Mekanika Fluida MEKANIKA FLUIDA Zat dibedakan dalam 3 keadaan dasar (fase), yaitu:. Fase padat, zat mempertahankan suatu bentuk dan ukuran yang tetap, sekalipun suatu gaya yang besar dikerjakan pada benda padat. 2. Fase

Lebih terperinci

9. Dari gambar berikut, turunkan suatu rumus yang dikenal dengan rumus Darcy.

9. Dari gambar berikut, turunkan suatu rumus yang dikenal dengan rumus Darcy. SOAL HIDRO 1. Saluran drainase berbentuk empat persegi panjang dengan kemiringan dasar saluran 0,015, mempunyai kedalaman air 0,45 meter dan lebar dasar saluran 0,50 meter, koefisien kekasaran Manning

Lebih terperinci

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial BAB II TINJAUAN PUSTAKA 2.1. Mesin-Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Ray Posdam J Sihombing 1, Syahril Gultom 2 1,2 Departemen

Lebih terperinci

Oleh: STAVINI BELIA

Oleh: STAVINI BELIA FLUIDA DINAMIS Oleh: STAVINI BELIA 14175034 TUJUAN PEMBELAJARAN 1. Siswa dapat menjelaskan prinsip kontinuitas dan prinsip bernaulli pada fluida dinamik dalam kehidupan seharihari. 2. Siswa dapat menganalisis

Lebih terperinci

BAB II KAJIAN PUSTAKA DAN DASAR TEORI

BAB II KAJIAN PUSTAKA DAN DASAR TEORI BAB II KAJIAN PUSTAKA DAN DASAR TEORI 2.1 Kajian Pustaka Ristiyanto (2003) menyelidiki tentang visualisasi aliran dan penurunan tekanan setiap pola aliran dalam perbedaan variasi kecepatan cairan dan kecepatan

Lebih terperinci

Analisa Pengaruh Penambahan Rambut dan Serat Pisang Terhadap Nilai Minor Losses pada Pipa Spiral Lengkung

Analisa Pengaruh Penambahan Rambut dan Serat Pisang Terhadap Nilai Minor Losses pada Pipa Spiral Lengkung Analisa Pengaruh Penambahan Rambut dan Serat Pisang Terhadap Nilai Minor Losses pada Pipa Spiral Lengkung Frans Enriko Siregar dan Andhika Bramida H. Departemen Teknik Mesin, FT UI, Kampus UI Depok 16424

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN BAB IV ANALISA DAN PERHITUNGAN 4.1. Hot Water Heater Pemanasan bahan bakar dibagi menjadi dua cara, pemanasan yang di ambil dari Sistem pendinginan mesin yaitu radiator, panasnya di ambil dari saluran

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pompa adalah suatu alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan tersebut. Kenaikan tekanan cairan tersebut

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. MESIN-MESIN FLUIDA Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1. TINJAUAN PUSTAKA Potato peeler atau alat pengupas kulit kentang adalah alat bantu yang digunakan untuk mengupas kulit kentang, alat pengupas kulit kentang yang

Lebih terperinci

PENGARUH REYNOLD NUMBER ( RE ) TERHADAP HEAD LOSSES PADA VARIASI JENIS BELOKAN PIPA ( BERJARI JARI DAN PATAH )

PENGARUH REYNOLD NUMBER ( RE ) TERHADAP HEAD LOSSES PADA VARIASI JENIS BELOKAN PIPA ( BERJARI JARI DAN PATAH ) PENGARUH REYNOLD NUMBER ( RE ) TERHADAP HEAD LOSSES PADA VARIASI JENIS BELOKAN PIPA ( BERJARI JARI DAN PATAH ) Mustakim 1), Abd. Syakura 2) Program Studi Teknik Pendingin dan Tata Udara, Politeknik Tanjungbalai.

Lebih terperinci

PENGARUH KECEPATAN UDARA TERHADAP TEMPERATUR BOLA BASAH, TEMPERATUR BOLA KERING PADA MENARA PENDINGIN

PENGARUH KECEPATAN UDARA TERHADAP TEMPERATUR BOLA BASAH, TEMPERATUR BOLA KERING PADA MENARA PENDINGIN PENGARUH KECEPATAN UDARA. PENGARUH KECEPATAN UDARA TERHADAP TEMPERATUR BOLA BASAH, TEMPERATUR BOLA KERING PADA MENARA PENDINGIN A. Walujodjati * Abstrak Penelitian menggunakan Unit Aliran Udara (duct yang

Lebih terperinci

SNMPTN 2011 FISIKA. Kode Soal Gerakan sebuah mobil digambarkan oleh grafik kecepatan waktu berikut ini.

SNMPTN 2011 FISIKA. Kode Soal Gerakan sebuah mobil digambarkan oleh grafik kecepatan waktu berikut ini. SNMPTN 2011 FISIKA Kode Soal 999 Doc. Name: SNMPTN2011FIS999 Version: 2012-10 halaman 1 01. Gerakan sebuah mobil digambarkan oleh grafik kecepatan waktu berikut ini. Percepatan ketika mobil bergerak semakin

Lebih terperinci

ANALISIS MOMEN LENTUR MATERIAL BAJA KONSTRUKSI DENGAN VARIASI MOMEN INERSIA DAN BEBAN TEKAN

ANALISIS MOMEN LENTUR MATERIAL BAJA KONSTRUKSI DENGAN VARIASI MOMEN INERSIA DAN BEBAN TEKAN ANALISIS MOMEN LENTUR MATERIAL BAJA KONSTRUKSI DENGAN VARIASI MOMEN INERSIA DAN BEBAN TEKAN Darmanto*, M.Nursalim, dan Imam Syafaat Jurusan Teknik Mesin, Fakultas Teknik, Universitas Wahid Hasyim Semarang

Lebih terperinci

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah.

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. 1 D49 1. Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. Hasil pengukuran adalah. A. 4,18 cm B. 4,13 cm C. 3,88 cm D. 3,81 cm E. 3,78 cm 2. Ayu melakukan

Lebih terperinci

PENGUJIAN PERFORMANCE MOTOR LISTRIK AC 3 FASA DENGAN DAYA 3 HP MENGGUNAKAN PEMBEBANAN GENERATOR LISTRIK

PENGUJIAN PERFORMANCE MOTOR LISTRIK AC 3 FASA DENGAN DAYA 3 HP MENGGUNAKAN PEMBEBANAN GENERATOR LISTRIK PENGUJIAN PERFORMANCE MOTOR LISTRIK AC 3 FASA DENGAN DAYA 3 HP MENGGUNAKAN PEMBEBANAN GENERATOR LISTRIK Zainal Abidin, Tabah Priangkoso *, Darmanto Jurusan Teknik Mesin Fakultas Teknik Universitas Wahid

Lebih terperinci

BAB III SISTEM PENGUJIAN

BAB III SISTEM PENGUJIAN BAB III SISTEM PENGUJIAN 3.1 KONDISI BATAS (BOUNDARY CONDITION) Sebelum memulai penelitian, terlebih dahulu ditentukan kondisi batas yang akan digunakan. Diasumsikan kondisi smoke yang mengalir pada gradien

Lebih terperinci

HUKUM STOKES. sekon (Pa.s). Fluida memiliki sifat-sifat sebagai berikut.

HUKUM STOKES. sekon (Pa.s). Fluida memiliki sifat-sifat sebagai berikut. HUKUM STOKES I. Pendahuluan Viskositas dan Hukum Stokes - Viskositas (kekentalan) fluida menyatakan besarnya gesekan yang dialami oleh suatu fluida saat mengalir. Makin besar viskositas suatu fluida, makin

Lebih terperinci

MODUL PRAKTIKUM MEKANIKA FLUIDA

MODUL PRAKTIKUM MEKANIKA FLUIDA MODUL PRAKTIKUM MEKANIKA FLUIDA LABORATORIUM TEKNIK SUMBERDAYA ALAM dan LINGKUNGAN JURUSAN KETEKNIKAN PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN UNIVERSITAS BRAWIJAYA MALANG 2013 MATERI I KALIBRASI SEKAT UKUR

Lebih terperinci

Analisa Pengaruh Variasi Sudut Sambungan Belokan Terhadap Head Losses Aliran Pipa

Analisa Pengaruh Variasi Sudut Sambungan Belokan Terhadap Head Losses Aliran Pipa Analisa Pengaruh Variasi Sudut Sambungan Belokan Terhadap Head Losses Aliran Pipa Zainudin*, I Made Adi Sayoga*, I Made Nuarsa* Jurusan Teknik Mesin, Fakultas Teknik, Universitas Mataram Jalan Majapahit

Lebih terperinci

B. FLUIDA DINAMIS. Fluida 149

B. FLUIDA DINAMIS. Fluida 149 B. FLUIDA DINAMIS Fluida dinamis adalah fluida yang mengalami perpindahan bagianbagiannya. Pokok-pokok bahasan yang berkaitan dengan fluida bergerak, antara lain, viskositas, persamaan kontinuitas, hukum

Lebih terperinci

MEKANIKA FLUIDA A. Statika Fluida

MEKANIKA FLUIDA A. Statika Fluida MEKANIKA FLUIDA Fluida atau zat alir adalah zat yang dapat mengalir. Zat cair dan gas adalah fluida, jelas bahwa bukan benda tegar, sebab jarak antara dua partikel di dalam fluida tidaklah tetap. Molekul-molekul

Lebih terperinci

BAB III LANDASAN TEORI. 3.1 Sistem Kerja Pompa Torak Menggunakan Tenaga Angin. sebagai penggerak mekanik melalui unit transmisi mekanik.

BAB III LANDASAN TEORI. 3.1 Sistem Kerja Pompa Torak Menggunakan Tenaga Angin. sebagai penggerak mekanik melalui unit transmisi mekanik. BAB III LANDASAN TEORI 3.1 Sistem Kerja Pompa Torak Menggunakan Tenaga Angin Pompa air dengan menggunakan tenaga angin merupakan sistem konversi energi untuk mengubah energi angin menjadi putaran rotor

Lebih terperinci

ALIRAN FLUIDA. Kode Mata Kuliah : Oleh MARYUDI, S.T., M.T., Ph.D Irma Atika Sari, S.T., M.Eng

ALIRAN FLUIDA. Kode Mata Kuliah : Oleh MARYUDI, S.T., M.T., Ph.D Irma Atika Sari, S.T., M.Eng ALIRAN FLUIDA Kode Mata Kuliah : 2035530 Bobot : 3 SKS Oleh MARYUDI, S.T., M.T., Ph.D Irma Atika Sari, S.T., M.Eng Apa yang kalian lihat?? Definisi Fluida Definisi yang lebih tepat untuk membedakan zat

Lebih terperinci

MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA

MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA 13321070 4 Konsep Dasar Mekanika Fluida Fluida adalah zat yang berdeformasi terus menerus selama dipengaruhi oleh suatutegangan geser.mekanika fluida disiplin ilmu

Lebih terperinci

UJI EKSPERIMENTAL PENGARUH PERUBAHAN TEMPERATUR LORONG UDARA TERHADAP KOEFISIEN PERPINDAHAN PANAS KONVEKSI PELAT DATAR

UJI EKSPERIMENTAL PENGARUH PERUBAHAN TEMPERATUR LORONG UDARA TERHADAP KOEFISIEN PERPINDAHAN PANAS KONVEKSI PELAT DATAR UJI EKSPERIMENTAL PENGARUH PERUBAHAN TEMPERATUR LORONG UDARA TERHADAP KOEFISIEN PERPINDAHAN PANAS KONVEKSI PELAT DATAR Jotho *) ABSTRAK Perpindahan panas dapat berlangsung melalui salah satu dari tiga

Lebih terperinci

III PEMBAHASAN. (3.3) disubstitusikan ke dalam sistem koordinat silinder yang ditinjau pada persamaan (2.4), maka diperoleh

III PEMBAHASAN. (3.3) disubstitusikan ke dalam sistem koordinat silinder yang ditinjau pada persamaan (2.4), maka diperoleh III PEMBAHASAN Pada bagian ini akan dibahas penggunaan metode perturbasi homotopi untuk menyelesaikan suatu masalah taklinear. Metode ini digunakan untuk menyelesaikan model Sisko dalam masalah aliran

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pengertian dan Prinsip Dasar Alat uji Bending 2.1.1. Definisi Alat Uji Bending Alat uji bending adalah alat yang digunakan untuk melakukan pengujian kekuatan lengkung (bending)

Lebih terperinci

Analisa Pengaruh Penambahan Serat Bambu dan Serat Kelapa Terhadap Nilai Minor Losses pada Pipa Spiral Lengkung

Analisa Pengaruh Penambahan Serat Bambu dan Serat Kelapa Terhadap Nilai Minor Losses pada Pipa Spiral Lengkung Analisa Pengaruh Penambahan Serat Bambu dan Serat Kelapa Terhadap Nilai Minor Losses pada Pipa Spiral Lengkung Andhika Bramida H. Departemen Teknik Mesin, FT UI, Kampus UI Depok 16424 Indonesia andhika.bramida@ui.ac.id

Lebih terperinci

Rumus Minimal. Debit Q = V/t Q = Av

Rumus Minimal. Debit Q = V/t Q = Av Contoh Soal dan tentang Fluida Dinamis, Materi Fisika kelas 2 SMA. Mencakup debit, persamaan kontinuitas, Hukum Bernoulli dan Toricelli dan gaya angkat pada sayap pesawat. Rumus Minimal Debit Q = V/t Q

Lebih terperinci

KOEFISIEN GESEK PADA RANGKAIAN PIPA DENGAN VARIASI DIAMETER DAN KEKASARAN PIPA

KOEFISIEN GESEK PADA RANGKAIAN PIPA DENGAN VARIASI DIAMETER DAN KEKASARAN PIPA KOEFISIEN GESEK PADA RANGKAIAN PIPA DENGAN ARIASI DIAMETER DAN KEKASARAN PIPA Yanuar, Didit Fakultas Teknologi Industri, Jurusan Teknik Mesin Universitas Gunadarma Depok Abstraksi Penelitian ini dilakukan

Lebih terperinci

YAYASAN WIDYA BHAKTI SEKOLAH MENENGAH ATAS SANTA ANGELA TERAKREDITASI A

YAYASAN WIDYA BHAKTI SEKOLAH MENENGAH ATAS SANTA ANGELA TERAKREDITASI A YAYASAN WIDYA BHAKTI SEKOLAH MENENGAH ATAS SANTA ANGELA TERAKREDITASI A Jl. Merdeka No. 24 Bandung 022. 4214714 Fax. 022. 4222587 http//: www.smasantaangela.sch.id, e-mail : smaangela@yahoo.co.id MODUL

Lebih terperinci