BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1 Paduan Intermetalik Definisi Salah satu jenis material yang menjadi perhatian para peneliti adalah material untuk kebutuhan dalam kondisi temperatur tinggi. Dalam lingkungan dengan temperatur tinggi, beberapa sifat material yang khas diperlukan. Sifat-sifat material yang diperlukan untuk penggunaan dalam temperatur tinggi itu diantaranya adalah [7] : 1. Titik lebur tinggi Titik lebur material harus melebihi temperatur operasi 2. Stabilitas struktur mikro Struktur mikro menunjukan sifat-sifat dari paduan logam. Kestabilan struktur mikro menunjukan kestabilan sifrat paduan tersebut 3. Ketahanan lingkungan Ketahanan terhadap lingkungan operasi diperlukan karena beberapa kondisi memerlukan suatu karakter yang spesifik untuk material, mengurangi proses pabrikasi dan perawatan, serta untuk menghemat biaya 4. Ketahanan creep Creep atau perayapan adalah deformasi terus menerus pada beban konstan di bawah tegangan luluhnya. Ketahanan perayapan ini biasanya menjadi hal sangat diperhatikan dalam material untuk penggunaan dalam temperatur tinggi. 5. Ketahanan lelah (fatigue dan thermal fatigue) Diperlukan untuk perlakuan siklik (termal dan mekanik). Bab II Tinjauan Pustaka 5

2 Sebenarnya jenis material yang paling cocok untuk lingkungan dengan temperatur tinggi adalah superalloy atau paduan super. Hanya saja paduan super ini tergolong mahal dari segi proses pembuatan maupun dari material-material yang di tambahkan ke dalam paduan. Keadaan ini menjadi pemicu bagi para peneliti untuk mengembangkan penelitian pada paduan intermetalik. Salah satu cara mendesain paduan agar dapat membentuk senyawa intermetalik adalah dengan mengatur komposisi unsur-unsur pemadu, sehingga kekerasan dan keuletan dari paduan yang diharapkan bisa mencapai kondisi optimalnya masingmasing. Pemaduan Fe-Ni dengan Al akan menghasilkan fasa-fasa intermetalik FeAl, Fe 3 Al, dan NiAl. Paduan Intermetalik memiliki kelebihan yang menyebabkan paduan ini mendapat perhatian lebih oleh para peneliti, diantaranya : 1. Memiliki kekuatan tinggi pada kondisi operasi temperatur tinggi 2. Ketahanan oksidasinya meningkat sejalan dengan peningkatan kadar alumunium. 3. Memiliki struktur kristal order yang menyebabkan paduan ini memiliki ketahanan creep yang tinggi pada temperatur tinggi Analisis Fe, Ni, dan Al Komposisi paduan dipilih berdasarkan pada beberapa kriteria : Fe sebagai logam dasar adalah untuk mengurangi biaya pembuatan paduan karena Fe mempunyai harga yang relatif murah. Penambahan Ni yang mencukupi adalah untuk memastikan komposisi mikrostruktur terdiri dari fasa β dan FCC fasa γ yang rendah difusifitasnya dibanding BCC fasa α. Sedangkan Al untuk memastikan volume fraksi yang besar dari fasa ductile untuk mendapatkan keuletan dan ketangguhan yang cukup. Fasa β, β, dan γ dalam Fe-Ni-Al mempunyai sifat umum yang rendah nilai densitasnya dan mempunyai karakter yang baik untuk pemakaian di temperatur Bab II Tinjauan Pustaka 6

3 tinggi seperti kekuatan, ketahanan oksidasi, dan konduktivitas panas. Paduan Fe- Ni-Al mempunyai potensi untuk mengkombinasikan kekuatan pada temperatur ruang dan ductility-nya serta berpotensi juga untuk penggunaan pada temperatur tinggi dikarenakan fasa Ni 3 Al. Diagram terner Fe-Ni-Al (% berat) ditunjukan pada Gambar II.1 sedangkan untuk diagram terner Fe-Ni-Al (% atom) ditunjukan pada Gambar II.2. Berdasarkan hasil penelitian sebelumnya, struktur mikro yang kemungkinan terlihat melalui mikroskop optik ditunjukan pada Gambar II.3 Gambar II.1 Diagram terner Fe-Ni-Al (% berat) [5] Bab II Tinjauan Pustaka 7

4 Gambar II.2 Diagram terner Fe-Ni-Al (% atom) [5] Gambar II.3 Struktur mikro paduan Fe-Ni-Al [5] Bab II Tinjauan Pustaka 8

5 2.1.3 Paduan Fe-Ni Pengembangan superalloy Fe-Ni didasarkan pada baja tahan karat austenitik. Paduan logam ini memiliki variasi komposisi yang menyediakan beberapa penguatan, seperti penguatan larutan padat (solid solution strengthening), penguatan karena endapan (precipitation strengthening) dan penguatan batas butir (grain boundary strengthening). Unsur-unsur pemadu biasanya ditambahkan pada paduan Fe-Ni untuk memperbaiki sifat-sifat paduan ini. Kromium dan alumunium ditambahkan untuk meningkatakan ketahanan oksidasi, molybdenum dan tungsten untuk meningkatkan kekuatan paduan melalui mekanisme solid-solution strengthening. Titanium dan alumunium ditambahkan untuk membentuk senyawa intermetalik dengan nikel dan memberikan efek penguatan melalui mekanisme precipitation strengthening. Fasa-fasa yang bisa terbentuk pada paduan Fe-Ni ditunjukan melalui diagram fasa biner Fe-Ni pada Gambar II.4 Paduan dasar Fe-Ni dapat dibagi menjadi 4 kelas menurut komposisi dan mekanisme penguatannya, yaitu sebagai berikut [4] : 1. Paduan yang diperkuat oleh endapan γ yang order. Lebih jauh paduan ini dibagi menjadi dua : a. Paduan kaya Fe dengan kandungan Ni yang relatif rendah (sekitar 25%), dan mengandalkan penambahan Ti (<2 wt%) untuk membentuk endapan penguat. b. Paduan kaya Ni (Ni>40wt%) dengan penguatan larutan padat yang cukup tinggi dan fraksi volume endapan penguat yang relatif besar. 2. Paduan kaya ni dengan mengandalkan penguatan fasa kedua γ (Ni 3 Cb) 3. Paduan kaya Fe dari sistem Fe-Ni-Co yang diperkuat oleh γ. Dalam paduan ini unsur penstabil Ferit Cr dikurangi untuk meningkatkan kestabilan austenitnya. Resiko dari pengurangain ini adalah menurunnya ketahanan oksidasi 4. Paduan yang mengandalkan penguatannya pada karbida, ditrida, dan borida Bab II Tinjauan Pustaka 9

6 Gambar II. 4 Diagram fasa Fe-Ni [3] Paduan Fe-Al Paduan Fe dari paduan Fe-Al digunakan cukup luas karena kombinasi yang baik dari sifat-sifat mekanik dan magnetik. Disamping aplikasi sebagai material fungsional paduan Fe-Al juga atraktif untuk diaplikasikan sebagai struktur karena memiliki ketahanan yang lebih tinggi dibandingkan besi, ketahanan korosi yang tinggi dan tidak mahal. Paduan biner Fe-Al dengan kandungan Al yang cukup akan menghasilkan dua fasa order, yaitu DO 3 (Fe 3 Al) dan B2 (FeAl). Fasa Fe 3 Al stabil pada temperatur yang lebih rendah, sedangkan fasa Fe-Al stabil pada temperatur yang lebih tinggi untuk kandungan Al<35%at. Pada temperatur tinggi, paduan Fe-Al akan membentuk larutan padat dengan struktur kristal BCC yang disordered. Besi dan alumunium dapat membentuk senyawa intermetalik dengan sifat yang berbeda-beda yang tergantung terhadap kandungan Al. Dari Bab II Tinjauan Pustaka 10

7 diagram biner Fe-Al pada Gambar II.5, empat fasa yang berbeda akan terbentuk, yaitu [4] : 1. fasa α-fe (A2), larutan padat yang disordered dengan struktur kristal BCC dan Al dapat terlarut sampai dengan konssentrasi 20%at pada temperature kamar 2. fasa γ-fe, larutan padat yang disordered dengan struktur kristal FCC dan Al hanya dapat larut sampai dengan konsentrasi >1,3%at 3. fasa ordered FeAl dengan struktur kristal kubik (B2) mirip seperti CsCl dan pembentukannya berasal dari transformasi α -fe 4. fasa ordered Fe3Al dengan struktur kristal seperti BiF3 (DO 3 ) dan pembentukannya melalui transformasi dari fasa FeAl. Besi aluminide dengan fasa Fe 3 Al dan FeAl cukup menarik untuk dikembangkan menjadi kandidat sebagai material temperatur tinggi. Material ini sangat ekonomis dan mempunyai ketahanan aus yang baik, dan juga memiliki ketahanan oksida, sulfidisasi dan korosi yang sangat baik. Paduan intermetalik Fe 3 Al merupakan material yang menjanjikan untuk digunakan pada temperatur tinggi karena cost yang rendah, ketahanannya meningkat dengan meningkatnya temperatur selama masih dibawah temperatur 600 o C, disamping ketahanan oksidasi dan sulfidisasi yang sangat baik. Namun, karena sifat duktilitasnya yang buruk menyebabkan paduan ini kurang dapat digunakan sebagai material struktur. Masalah ini kemudian diatasi dengan menambahkan Cr, proses termomekanik atau perlakuan permukaan. Perkembangan besar telah dilakukan dalam penelitian tentang paduan intermetalik Fe 3 Al dalam 10 tahun terakhir. Semua yang dilakukan tersebut bertujuan untuk mengembangkan paduan intermetalik Fe 3 Al secara intensif. Bab II Tinjauan Pustaka 11

8 Gambar II.5 Diagram fasa Fe-Al [3] Oksida-oksida yang terbentuk selama proses oksidasi yaitu Fe 2 O 3 / FeAl 2 O 4 /Al 2 O 3. Dengan peningkatan kandungan alumunium dalam paduan akan menyebabkan semakin mudahnya pembentukan lapisan protektif Al 2 O 3 dan akan menyebabkan paduan yang dihasilkan semakin tahan terhadap oksidasi pada temperatur tinggi. Penambahan unsur-unsur lain umumnya bertujuan untuk meningkatkan sifat fisik dari material, seperti kekuatan, ductility, ketahanan terhadap creep ataupun ketahanan terhadap fatigue Paduan Ni-Al Nikel dan paduan logam dasar nikel menjadi sangat penting penggunaannya dalam industri modern karena ketahanannya terhadap kondisi operasi yang dikenakan seperti di dalam lingkungan korosif, temperatur tinggi, tegangan yang berlebih, dan kombinasi dari faktor-faktor tersebut. Ada beberapa alasan yang menyebabkan nikel mempunyai kemampuan tersebut. Nikel murni memiliki sifat Bab II Tinjauan Pustaka 12

9 ductile dan tangguh karena bentuk kristalnya FCC, nikel mempunyai ketahanan korosi pada atmosfer normal. Nikel adalah unsur yang serbaguna dan dapat dipadukan dengan banyak logam yang lain. Kelarutan padat yang sempurna antara nikel dan tembaga, kelarutan yang besar dengan besi, sehingga nikel dapat membuat banyak kemungkinan kombinasi paduan. Nikel merupakan logam dasar yang sangat baik untuk membuat paduan spesial. Fasa intermetalik dapat dibentuk antara nikel dengan beberapa pemadu yang akan menghasilkan paduan dengan kekuatan tinggi untuk pemakaian temperatur rendah maupun penggunaan pada temperatur tinggi. Penambahan unsur-unsur pemadu (Al dan Ti) mengakibatkan munculnya fasa γ [Ni(Al,Ti)] yang koheren sehingga dapat memberikan efek penguatan. Tetapi fasa γ dan fasa γ memiliki parameter kisi yang berbeda. Perbedaan ini menghasilkan regangan koheren yang dapat menghalangi pergerakan dislokasi sehingga menghasilkan pengerasan presipitat. Unsur-unsur seperti kromium dan alumunium yang ditambahkan, bertujuan untuk meningkatkan proteksi terhadap hot corrosion dan oksidasi temperatur tinggi. Prinsip utama yang penting yaitu bahwa semua material yang diekspos ke lingkungan temperatur tinggi secara kimia strukturnya dinamis dan tidak stabil. Fasa-fasa yang ada secara tetap bereaksi dan berinteraksi. Fasa-fasa yang dapat muncul berdasarkan diagram fasa biner Ni-Al yang ditunjukan melalui gambar II.6 yaitu matriks γ, endapan γ dan karbida [7]. a. Matrik Austenik (γ) Matriks austenik γ memiliki struktur kristal FCC (face centered cubic), merupakan larutan padat yang terdiri dari Ni sebagai unsur utama dan unsur terlarut. Dari analisa fasa paduan superalloy Ni yang kompleks disimpulkan bahwa unsur-unsur utama pembentuk larutan padat matriks γ adalah Co, Fe, Cr, Mo, W, V, Ti, dan Al. Unsur-unsur ini meningkatkan kekuatan paduan dengan Bab II Tinjauan Pustaka 13

10 cara menghambat pergerakan dislokasi. Penguatan terjadi karena distorsi kisi dan perubahan modulus geser akibat adanya atom-atom terlarut. b. Fasa Gamma Prime (γ ) Endapan senyawa A 3 B FCC (γ ) pada superalloy austenitik merupakan suatu senyawa yang sangat menguntungkan meskipun pada dasarnya kegunannya dibatasi pada matriks nikel tinggi. Pada dasarnya formula endapan γ ialah senyawa Ni 3 Al. Senyawa ini memiliki struktur kristal FCC dimana atom nikel menempati posisi bagian muka atom dan atom Al menempati posisi sudut (corner). Unsur-unsur yang lebih elektronegatif dari Al, seperti titanium, niobium, dan tantalum akan mensubtitusi unsur Al dalam struktur kristal Ni 3 Al. Sebaliknya unsur-unsur yang lebih elektropositif seperti besi, kobalt, akan mensubtitusi nikel. Berdasarkan diagram fasa biner Ni-Al pada Gambar II.6 terdapat dua jenis endapan γ (Ni 3 Al) yang mungkin terbentuk. Pertama, γ primer yang terbentuk melalui transformasi cair-padat baik sepanjang garis liquidus maupun melalui reaksi eutektik. Kedua, γ sekunder yang terbentuk melalui transformasi padat pada temperatur dibawah eutektik. Dalam paduan polikristalin, γ primer umumnya terdistribusi sepanjang dan sekitar batas butir. Sedangkan γ sekunder tersebut tersebar secara homogen didalam matriks dan memiliki distribusi ukuran relatif homogen. c. Karbida Berbagai jenis karbida dengan struktur dan morfologi yang berbeda dapat muncul dalam superalloy nikel tergantung pada komposisi paduannya. Tiga jenis utama karbida yang sering muncul dalam superalloy nikel adalah MC, M 23 C, M 6 C, dimana M mewakili satu atau lebih logam. Perlakuan panas dan kondisi operasi juga dapat mempengaruhi timbulnya karbida karbida tersebut. Bab II Tinjauan Pustaka 14

11 Gambar II.6 Diagram fasa Al-Ni Oksidasi paduan Ni-Al akan menghasilkan oksida oksida yang terbentuk antara lain kerak NiO/NiAl 2 O 4 /Al 2 O Pengaruh Penambahan Al Pada Paduan Fe-Ni Penambahan Al dalam paduan Fe-Ni dimaksudkan untuk pembentukan fasa intermetalik sebagai artikel penguat. Oleh sebab itu, Al mempunyai peranan yang penting dalam pembuatan paduan ini. Akan tetapi, Al dalam paduan ini mempunyai batasan tertentu untuk menghindari paduan menjadi getas. Fasa fasa yang dapat terbentuk dalam paduan Fe-Ni-Al adalah FeAl, NiAl, dan Fe 3 Al yang merupakan fasa intermetalik. FeAl dan NiAl memiliki struktur kristal FCC (face centered cubic) sedangkan Fe 3 Al memiliki struktur BCC (body centered cubic). Selain itu, penambahan Al juga untuk meningkatkan ketahanan oksidasi paduan pada temperatur tinggi melalui pembentukan Al 2 O 3 yang protektif dan stabil. Fasa intermetalik Fe 3 Al dan FeAl dalam paduan intermetalik alumida memiliki sifat Bab II Tinjauan Pustaka 15

12 yang sangat baik pada temperature tinggi. Kedua paduan tersebut mempunyai ketahanan oksida yang baik karena mampu membentuk kerak oksida protektif Al 2 O 3 pada temperature tinggi dan lingkungan yang korosif. Paduan intermetalik ini menunjukan laju korosi sulfidisasi yang lebih rendah daripada paduan dengan bahan dasar besi yang lain (termasuk yang telah di coating) 2.2 Pelelehan Pelelehan adalah proses dimana terjadi perubahan fasa dari padat menjadi cair. Pelelehan biasanya dilakukan untuk merubah bentuk logam dasar. Selain itu juga pelelehan bertujuan untuk menyatukan beberapa unsur menjadi satu paduan. Proses pelelehan memerlukan temperatur tinggi, sehingga suatu unsur bisa melalui titik lelehnya. Tanur adalah tempat untuk mendapatkan kondisi temperatur tinggi dan tempat melakukan tempat pelelehan. Dari sudut pandang termodinamika, pada titik leleh, perubahan energi bebas gibs material adalah nol, karena entalpi dan entropi dari material meningkat. Fenomena pelelehan terjadi ketika energi bebas Gibbs dari cairan menjadi lebih rendah daripada kondisi padat material tersebut. Pada beberapa variasi tekanan, hal ini terjadi pada temperatur spesifik. Persamaannya adalah sebagai berikut : Dari sudut pandang termodinamika, pada perubahan energi bebas Gibbs (ΔG) pada material adalah nol, karena entalpi (H) dan entropi (S) dari material meningkat (ΔH,ΔS > 0). Fenomena pelelehan terjadi ketika energi bebas Gibbs dari kondisi cairan material menjadi lebih rendah daripada kondisi solid ketika solid. Pada tekanan yang bervariasi hal ini terjadi pada temperatur yang spesifik. Hal ini dapat juga terlihat pada : Bab II Tinjauan Pustaka 16

13 Dimana : T = Temperature pada titik leleh ΔS = Perubahan entropi pelelehan ΔH = Perubahan entalpi pelelehan Pada proses pengecoran atau pemaduan, material yang dicor lebih dari satu unsur yaitu dalam keadaan paduan. Perbedaan karakteristik pembekuan paduan berbeda dengan logam murni adalah dalam hal : 1. Pembekuan paduan biasanya berlangsung dalam selang temperatur tertentu 2. Komposisi padatan yang terbentuk pada awal pembekuan berbeda dengan padatan yang terakhir membeku 3. Mungkin terbentuk lebih dari satu fasa padat yang terpisah dari cairan 2.3 Perlakuan Panas Definisi Perlakuan panas atau heat treatment merupakan proses mengubah sifat mekanik (terutama kekerasan, keuletan, dan ketangguhan) dari material (logam) dengan memodifikasi struktur mikro melalui proses pemanasan dan pengaturan laju pendinginan. Pada akhir proses ini terjadi pengubahan struktur mikro tanpa adanya pengubahan komposisi dari material. Penentuan temperatur pemanasan dan laju pendinginan yang diberikan pada logam, sehingga diperoleh sifat mekanik dan struktur mikro yang diinginkan, berpedoman pada diagram fasa. Proses pemanasan dalam laku panas tidak boleh mencapai temperatur melting (garis solidus). Proses perlakuan panas sangat penting untuk dilakukan mengingat fakta hampir semua komponen teknik yang terbuat dari logam memerlukan paling tidak satu Bab II Tinjauan Pustaka 17

14 tahap/siklus perlakuan panas agar agar diperoleh sifat mekanis yang diperlukan. Proses ini biasanya diterapkan mendekati suatu pada tahap akhir dari proses produksi logam. Misalnya adalah barang hasil forging, casting, pressing, dan pabrikasi perlu dilaku panas sebelum dilakukan proses permesinan Tujuan Adapun tujuan dari perlakuan panas ini adalah : 1. Melunakan-yaitu memperbaiki plastisitasnya dengan cara mengatur ukuran, bentuk dan distribusi konstituen mikronya 2. Menghilangkan tegangan sisa-yaitu untuk memungkinkan berlangsungnya relaksasi tegangan tegangan sisa hasil operasi sebelumnya 3. Menghomogenkan yaitu untuk mendapatkan komposisi kimia yang seragam di setiap bagian material melalui difusi unsur-unsur 4. Meningkatkan ketangguhan (toughness)-yaitu meningkatkan kemampuan bahan menyerap energi atau menahan tegangan yang tiba-tiba (impak) dalam selang plastis (atau untuk meningkatkan luas total daerah dibawah kurva tegangan-regangan) 5. Memperkeras yaitu memungkinkan terjadinya gangguan terhadap pergerakan dislokasi pada bidang slip dengan cara memodifikasi struktur mikro (cara : penghalusan ukuran, butiran/grain refinement, quench hardening dan precipitation hardening) 6. Meningkatkan ketahanan gesek (wear resistance)permukaan logam yaitu memperbaiki tahanan gesek permukaan dengan cara mendifusikan unsur-unsur interstisi seperti karbon dan nitrogen pada permukaan baja (carburizing, nitridizing, dan lain-lain) Jenis Tipe-tipe perlakuan panas ada beberapa macam, diantaranya : 1. Annealing Merupakan suatu perlakuan panas pada material dengan cara memanaskannya pada temperature di bawah daerah kestabilan fasa austenit (diatas garis Ac3 Bab II Tinjauan Pustaka 18

15 dan Acm) selama beberapa waktu lalu kemudian didinginkan secara perlahan ke temperature kamar. Struktur mikro yang terbentuk setelah proses annealing terdiri dari ferit perlit. Annealing biasa diterapkan pada material yang mengalami pengerjaan dingin (cold work). Adapun tujuan dari annealing antara lain adalah untuk menghilangkan tegangan sisa, melunakan baja, dan meningkatkan keuletan serta ketangguhan baja. 2. Stress relieving Perlakuan panas stress relief bertujuan untuk menghilangkan tegangan sisa yang terbentuk pada saat proses permesinan, pengerjaan dingin, pengelasan, dan lain-lain. adanya tegangan sisa pada logam dapat mengakibatkan terjadinya distorsi pada logam atau baja. Oleh karena itu, tegangan sisa ini harus dihilangkan atau dikurangi. Caranya adalah dengan memanaskan baja hingga temperatur dibawah temperatur transformasi (Ac1), ditahan selama beberapa waktu, kemudian setelah itu baja didinginkan menuju temperatur kamar. 3. Normalizing Normalizing merupakan proses perlakuan panas yang dilakukan untuk menghasilkan ukuran butiran yang halus dan seragam. Selain itu, pada umumnya baja dinormalisasi untuk menghasilkan struktur mikro ferit dan perlit yang seragam. Perlakuan panas normalizing terdiri atas proses austenisasi pada o F di atas temperatur kritis (garis Ac3 untuk baja hypoeutectoid, Acm untuk baja hypereutectoid) yang diikuti dengan pendinginan udara (air cooling). Lama pemanasan pada temperatur austenisasi adalah sekitar satu jam untuk setiap ketebalan satu inci. 4. Spheroidizing Untuk menghasilkan baja selunak mungkin, maka baja biasanya dipanaskan hingga di atas atau di bawah temperatur eutectoid (sekitar 100 o F) kemudian ditahan selama beberapa waktu. Struktur mikro yang terbentuk terdiri atas sementit yang berbentuk spheroid (spheroid sementite) di dalam matrik ferit, Bab II Tinjauan Pustaka 19

16 untuk menghasilkan struktur sementit yang seragam, maka struktur awal baja biasanya adalah martensit karena karbon terdistribusi lebih seragam di dalam martensit dibandingkan pada perlit 5. Hardening Hardening biasanya dilakukan untuk menghasilkan baja dengan kekerasan dan kekuatan yang baik. Proses hardening akan mengakibatkan perubahan struktur kristal baja dari BCC (body center cubic) menjadi FCC (face center cubic). Perlakuan panas hardening terdiri atas dua tahap utama yaitu austenisasi dan quenching. Austenisasi merupakan pemanasan baja hingga temperatur austenitisasi lalu ditahan selama beberapa menit (biasanya menit). Setelah penahanan pada temperatur austenitisasi baja kemudian didingikan dalam sebuah media pendingin, atau yang lebih dikenal dengan quenching. Struktur mikro yang terbentuk setelah proses hardening biasanya terdiri atas karbida, austenit sisa, dan untempered martensite. 6. Tempering Tempering dibagi menjadi empat tahap berdasarkan temperatur pemanasannya dan apa saja yang terjadi saat itu. Tahap pertama, pemanasan pada temperatur o C. Pada tahap ini terjadi presipitasi fasa karbida dengan karbon tinggi yang disebut karbida E (Fe 2,7 C). Konsekuensinya, karbon pada martensit akan berkurang hingga mendekati 0,3%. Tahap kedua, pemanasan pada temperatur o C. Pada tahap ini terjadi pendekomposisian austenit sisa menjadi bainit, ferit, dan sementit. Namun kadang temperatur tempering tahap dua dapat lebih tinggi karena austenit sisa yang relatif stabil akibat adnya unsur paduan penstabil austenit. Tahap ketiga, pemanasan pada temperatur o C. Pada tahap ini, terjadi pembentukan dan pertumbuhan sementit (Fe 3 C). Karbida E (karbida transisi) dan martensit berubah menjadi sementit dan ferit. Tahap terakhir, tahap keempat, pemanasan pada temperatur o C. Pada tahap ini terjadi pertumbuhan, pengkasaran dan spheroidisasi sementit. Bab II Tinjauan Pustaka 20

17 2.4 Struktur Mikro Pengertian Struktur mikro merupakan struktur yang dapat diamati di bawah mikroskop optik. Meskipun dapat pula diartikan sebagai hasil dari pengamatan menggunakan scanning electron microscope (SEM). Mikroskop optik dapat memperbesar struktur hingga 1500 kali. Untuk dapat mengamati struktur mikro sebuah material oleh mikroskop optik, maka harus dilakukan tahapan-tahapan sebagai berikut : 1. Melakukan pemolesan secara bertahap hingga lebih halus dari 0,5 mikron. Proses ini biasanya dilakukan dengan menggunakan ampelas secara bertahap dimulai dengan grid yang kecil (100) hingga grid yang besar (2000). Dilanjutkan dengan pemolesan oleh mesin poles dibantu dengan larutan pemoles. 2. Etsa Etsa dilakukan setelah memperhalus struktur mikro. Etsa adalah membilas atau mencelupkan permukaan material yang akan diamati ke dalam sebuah larutan kimia yang dibuat sesuai kandungan paduan logamnya. Hal ini dilakukan untuk memunculkan fasa - fasa yang ada dalam struktur mikro Metalografi Metalografi adalah cara untuk melihat struktur mikro dari sebuah paduan. Metalografi juga dilakukan untuk melihat fasa, persen fasa, ukuran butiran, pemeriksaan mikro memberikan informasi karakteristik-karakteristik struktural mikro seperti ukuran butiran, bentuk dan distribusi fasa-fasa kedua dan inklusiinklusi non metalik. Pengetahuan mengenai semua ini memberikan kemungkinan bagi seorang ahli metalurgi untuk dapat memperkirakan dengan pertimbangan ketepatan sifatsifat atau perilaku dari logam ketika digunakan untuk tujuan tujuan tertentu. Struktur mikro dalam batasan tertentu, mampu memberikan sejarah yang hampir lengkap Bab II Tinjauan Pustaka 21

18 dari logam tertentu yang telah mengalami perlakuan mekanik maupun perlllakuan panas. Di industri industri bahan dan metalurgi, analisis struktur mikro digunakan secara luas untuk spesifikasi bahan, kendali mutu bahan, evaluasi proses dan analisis kerusakan logam Fungsi struktur mikro pengamatan struktur mikro dilakukan untuk mengetahui kondisi mikro dari suatu logam. Pengamatan ini biasanya melibatkan batas butir dan fasa-fasa yang ada dalam logam atau paduan tersebut. 2.5 Kekerasan Definisi Kekerasan adalah salah satu karakter material yang memungkinkan material tersebut menahan deformasi plastis. selain itu, kekerasan juga diartikan secara sederhana sebagai ketahanan suatu material terhadap bending, goresan, atau pemotongan. Kekerasan bukanlah karakter intrinsik material yang ditentukan oleh definisi unitunit fundamental seperti massa, panjang, dan waktu. nilai dari sebuah kekerasan adalah hasil dari sebuah prosedur pengukuran yang sudah ditentukan Uji Kekerasan kekerasan dari sebuah material sudah sejak lama diuji dengan menunjukan ketahanan material tersebut terhadap goresan atau pemotongan. misalnya ketika material a bisa menggores material b, sedangkan material b tidak bisa menggores material a maka material a didefinisikan lebih keras daripada material b. Bab II Tinjauan Pustaka 22

19 kekerasan relatif dari suatu material bisa diperoleh melalui referensi dari skala mohs. skala mohs menunjukan urutan atau rangking dari kemampuan suatu material untuk menahan goresan oleh material lainnya. beberapa metode yang mirip untuk mengukur kekerasan relatif suatu material masih banyak digunakan saat ini. Uji untuk mengukur kekerasan relatif seperti yang ditulis diatas, sangat terbatas pada penggunaan praktisnya dan tidak menunjukan hasil yang akurat. selain itu, dengan semakin bervariasinya material sekarang, parameternya menjadi bias. metode yang biasa digunakan untuk mendapatkan nilai kekerasan dengan mengukur kedalaman atau luas area hasil indentation yang membekas oleh sebuah indenter dengan bentuk yang spesifik, dengan kekuatan spefisik dan waktu yang spesifik juga. Ada tiga prinsip standar metode tes untuk menunjukan hubungan antara kekerasan ukuran impression, yaitu brinell, vickers, dan rockwell. Untuk praktik dan alasan kalibrasi, tiap metode ini dibagi atau dibedakan kedalam tiga rentang skala, yang didefinisikan oleh kombinasi beban yang diberikan dan geometri indenter Uji Kekerasan Mikro Uji kekerasan mikro atau microhardness test didefinisikan secara umum sebagai tes kekerasan terhadap material dengan beban yang rendah. selain itu, microhardness berarti kekerasan material tersebut sangat kecil dibandingkan bebannya. Istilah lain untuk microhardness ini adalah microindentation hardness testing. dalam test ini, indenter intan dengan bentuk spesifik ditekan pada permukaan spesimen yang diuji dengan menggunakan ukuran beban yang sudah ditentukan atau diketahui. Ada dua uji kekerasan mikro yang paling umum, uji vickers dan uji knoop. dalam uji microindentation, nilai kekerasan diukur berdasarkan indent yang berbekas atau terbentuk di permukaan spesimen yang di uji. Nilai kekerasan didasarkan Bab II Tinjauan Pustaka 23

20 pada area permukaan dari indent itu dibagi oleh beban yang diberikan dan satuannya kgf/mm². Knoop hardness number (KHN) adalah rasio dari beban yang diberikan kepada indenter, P (kgf) terhadap daerah yang diproyeksikan (unrecovered projected area) A (mm 2 ). Skema indentasi knoop ditunjukan pada Gambar II.7 KHN = F/A = P/CL 2 Dimana : F = beban yang diberikan (kgf) A = daerah yang diproyeksikan (unrecovered projected area of the indentation) (mm 2 ) L = panjang diagonal hasil indentasi (mm) C = = konstanta dari indenter terhadap area yang diproyeksikan terhadap nilai dari panjang diagonal Gambar II.7 Skema Indentasi Knoop [11] Nilai dari vickers adalah beban yang diberikan (kgf) dibagi oleh area permukaan dari indentasi (mm 2 ). Pada uji vickers, kedua diagonal diukur dan nilai yang digunakan untuk perhitungan nilai piramida vicker adalah nilai rata-rata diagonal tersebut. Bab II Tinjauan Pustaka 24

21 Sedangkan dalam uji knoop, hanya diagonal yang paling panjang yang diukur, dan kekerasan knoop diukur berdasarkan area yang ditargetkan oleh indent dibagi oleh beban yang diberikan. satuannya juga kgf/mm². Skema indentasi vickers ini ditunjukan pada gambar II.8 Gambar II.8 Skema Indentasi Vickers [11] Dimana : F= Beban dalam kgf d = Rata-rata jarak dua diagonal, d1 dan d2 dalam mm HV = Nilai kekerasan vickers Prosedur uji mikroindentasi vickers sama dengan uji makroindentasi vickers dengan menggunakan piramida yang sama. Uji knoop menggunakan piramid yang diperpanjang untuk indent sampel material. piramida yang dipanjangkan akan menghasilkan impression yang dangkal, sehingga akan sangat menguntungkan dalam mengukur kekerasan sebuah material yang brittle atau komponen yang tipis. Indenter knoop dan vickers diharuskan untuk di poles dulu di permukaannya agar menghasilkan hasil yang akurat. Bab II Tinjauan Pustaka 25

BAB IV PEMBAHASAN. BAB IV Pembahasan 69

BAB IV PEMBAHASAN. BAB IV Pembahasan 69 BAB IV PEMBAHASAN 4.1 ANALISA STRUKTUR MIKRO BAJA SETELAH HARDENING DAN TEMPERING Struktur mikro yang dihasilkan setelah proses hardening akan menentukan sifat-sifat mekanis baja perkakas, terutama kekerasan

Lebih terperinci

Heat Treatment Pada Logam. Posted on 13 Januari 2013 by Andar Kusuma. Proses Perlakuan Panas Pada Baja

Heat Treatment Pada Logam. Posted on 13 Januari 2013 by Andar Kusuma. Proses Perlakuan Panas Pada Baja Heat Treatment Pada Logam Posted on 13 Januari 2013 by Andar Kusuma Proses Perlakuan Panas Pada Baja Proses perlakuan panas adalah suatu proses mengubah sifat logam dengan cara mengubah struktur mikro

Lebih terperinci

4.1 ANALISA STRUKTUR MIKRO

4.1 ANALISA STRUKTUR MIKRO BAB IV PEMBAHASAN Percobaan perlakuan panas dan uji kekerasan paduan Fe-Ni-10%Al, Fe-Ni- 20%Al, Fe-Ni-30%Al dilakukan pada temperatur 900 o C dan 1000 o C dengan lama waktu pemanasan 24 jam dan 48 jam.

Lebih terperinci

HEAT TREATMENT. Pembentukan struktur martensit terjadi melalui proses pendinginan cepat (quench) dari fasa austenit (struktur FCC Face Centered Cubic)

HEAT TREATMENT. Pembentukan struktur martensit terjadi melalui proses pendinginan cepat (quench) dari fasa austenit (struktur FCC Face Centered Cubic) HEAT TREATMENT Perlakuan panas (heat treatment) ialah suatu perlakuan pada material yang melibatkan pemanasan dan pendinginan dalam suatu siklus tertentu. Tujuan umum perlakuan panas ini ialah untuk meningkatkan

Lebih terperinci

MATERIAL TEKNIK DIAGRAM FASE

MATERIAL TEKNIK DIAGRAM FASE MATERIAL TEKNIK DIAGRAM FASE Pengertian Diagram fasa Pengertian Diagram fasa Adalah diagram yang menampilkan hubungan antara temperatur dimana terjadi perubahan fasa selama proses pendinginan dan pemanasan

Lebih terperinci

HASIL DAN PEMBAHASAN. dengan menggunakan kamera yang dihubungkan dengan komputer.

HASIL DAN PEMBAHASAN. dengan menggunakan kamera yang dihubungkan dengan komputer. 10 dengan menggunakan kamera yang dihubungkan dengan komputer. HASIL DAN PEMBAHASAN Hasil sintesis paduan CoCrMo Pada proses preparasi telah dihasilkan empat sampel serbuk paduan CoCrMo dengan komposisi

Lebih terperinci

BAB 1. PERLAKUAN PANAS

BAB 1. PERLAKUAN PANAS BAB PERLAKUAN PANAS Kompetensi Sub Kompetensi : Menguasai prosedur dan trampil dalam proses perlakuan panas pada material logam. : Menguasai cara proses pengerasan, dan pelunakan material baja karbon.

Lebih terperinci

BAB III PERCOBAAN DAN HASIL PERCOBAAN

BAB III PERCOBAAN DAN HASIL PERCOBAAN BAB III PERCOBAAN DAN HASIL PERCOBAAN Untuk mengetahui pengaruh perlakuan panas pada kondisi struktur mikro dan sifat kekerasan pada paduan Fe-Ni-Al dengan beberapa variasi komposisi, dilakukan serangkaian

Lebih terperinci

BAB V DIAGRAM FASE ISTILAH-ISTILAH

BAB V DIAGRAM FASE ISTILAH-ISTILAH BAB V DIAGRAM FASE ISTILAH-ISTILAH Komponen : adalah logam murni atau senyawa yang menyusun suatu logam paduan. Contoh : Cu - Zn (perunggu), komponennya adalah Cu dan Zn Solid solution (larutan padat)

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Metalurgi merupakan ilmu yang mempelajari pengenai pemanfaatan dan pembuatan logam dari mulai bijih sampai dengan pemasaran. Begitu banyaknya proses dan alur yang harus

Lebih terperinci

MATERIAL TEKNIK 5 IWAN PONGO,ST,MT

MATERIAL TEKNIK 5 IWAN PONGO,ST,MT MATERIAL TEKNIK 5 IWAN PONGO,ST,MT STRUKTUR LOGAM DAPAT BERUBAH KARENA : KOMPOSISI KIMIA (PADUAN) REKRISTALISASI DAN PEMBESARAN BUTIRAN (GRAIN GROWTH) TRANSFORMASI FASA PERUBAHAN STRUKTUR MENIMBULKAN PERUBAHAN

Lebih terperinci

Kategori unsur paduan baja. Tabel periodik unsur PENGARUH UNSUR PADUAN PADA BAJA PADUAN DAN SUPER ALLOY

Kategori unsur paduan baja. Tabel periodik unsur PENGARUH UNSUR PADUAN PADA BAJA PADUAN DAN SUPER ALLOY PENGARUH UNSUR PADUAN PADA BAJA PADUAN DAN SUPER ALLOY Dr.-Ing. Bambang Suharno Dr. Ir. Sri Harjanto PENGARUH UNSUR PADUAN PADA BAJA PADUAN DAN SUPER ALLOY 1. DASAR BAJA 2. UNSUR PADUAN 3. STRENGTHENING

Lebih terperinci

BAB VII PROSES THERMAL LOGAM PADUAN

BAB VII PROSES THERMAL LOGAM PADUAN BAB VII PROSES THERMAL LOGAM PADUAN Annealing adalah : sebuah perlakukan panas dimana material dipanaskan pada temperatur tertentu dan waktu tertentu dan kemudian dengan perlahan didinginkan. Annealing

Lebih terperinci

BAB VII PROSES THERMAL LOGAM PADUAN

BAB VII PROSES THERMAL LOGAM PADUAN BAB VII PROSES THERMAL LOGAM PADUAN Annealing adalah : sebuah perlakukan panas dimana material dipanaskan pada temperatur tertentu dan waktu tertentu dan kemudian dengan perlahan didinginkan. Annealing

Lebih terperinci

Perlakuan panas (Heat Treatment)

Perlakuan panas (Heat Treatment) Perlakuan panas (Heat Treatment) Pertemuan Ke-6 PERLAKUAN PANAS PADA BAJA (Sistem Besi-Karbon) Nurun Nayiroh, M.Si Sifat mekanik tidak hanya tergantung pada komposisi kimia suatu paduan, tetapi juga tergantung

Lebih terperinci

BAB I PENDAHULUAN. BAB I Pendahuluan 1

BAB I PENDAHULUAN. BAB I Pendahuluan 1 BAB I PENDAHULUAN 1.1 LATAR BELAKANG Baja perkakas (tool steel) merupakan baja yang biasa digunakan untuk aplikasi pemotongan (cutting tools) dan pembentukan (forming). Selain itu baja perkakas juga banyak

Lebih terperinci

PENGARUH PROSES PERLAKUAN PANAS TERHADAP KEKERASAN DAN STRUKTUR MIKRO BAJA AISI 310S

PENGARUH PROSES PERLAKUAN PANAS TERHADAP KEKERASAN DAN STRUKTUR MIKRO BAJA AISI 310S PENGARUH PROSES PERLAKUAN PANAS TERHADAP KEKERASAN DAN STRUKTUR MIKRO BAJA AISI 310S Mahasiswa Edwin Setiawan Susanto Dosen Pembimbing Ir. Rochman Rochiem, M. Sc. Hariyati Purwaningsih, S.Si, M.Si. 1 Latar

Lebih terperinci

Proses Annealing terdiri dari beberapa tipe yang diterapkan untuk mencapai sifat-sifat tertentu sebagai berikut :

Proses Annealing terdiri dari beberapa tipe yang diterapkan untuk mencapai sifat-sifat tertentu sebagai berikut : PERLAKUAN PANAS Perlakuan panasadalah suatu metode yang digunakan untuk mengubah sifat logam dengan cara mengubah struktur mikro melalui proses pemanasan dan pengaturan kecepatan pendinginan dengan atau

Lebih terperinci

07: DIAGRAM BESI BESI KARBIDA

07: DIAGRAM BESI BESI KARBIDA 07: DIAGRAM BESI BESI KARBIDA 7.1. Diagram Besi Karbon Kegunaan baja sangat bergantung dari pada sifat sifat baja yang sangat bervariasi yang diperoleh dari pemaduan dan penerapan proses perlakuan panas.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. PERLAKUAN PANAS 2.1.1 Pengertian Perlakuan panas dilakukan untuk merubah karakteristik tertentu dari logam dan paduan sehingga lebih sesuai dengan penggunaannya di lapangan.

Lebih terperinci

Sistem Besi-Karbon. Sistem Besi-Karbon 19/03/2015. Sistem Besi-Karbon. Nurun Nayiroh, M.Si. DIAGRAM FASA BESI BESI CARBIDA (Fe Fe 3 C)

Sistem Besi-Karbon. Sistem Besi-Karbon 19/03/2015. Sistem Besi-Karbon. Nurun Nayiroh, M.Si. DIAGRAM FASA BESI BESI CARBIDA (Fe Fe 3 C) MK: TRANSFORMASI FASA Pertemuan Ke-6 Sistem Besi-Karbon Nurun Nayiroh, M.Si Sistem Besi-Karbon Besi dengan campuran karbon adalah bahan yang paling banyak digunakan diantaranya adalah baja. Kegunaan baja

Lebih terperinci

Gambar 2.1. Proses pengelasan Plug weld (Martin, 2007)

Gambar 2.1. Proses pengelasan Plug weld (Martin, 2007) BAB II DASAR TEORI 2.1 TINJAUAN PUSTAKA Proses pengelasan semakin berkembang seiring pertumbuhan industri, khususnya di bidang konstruksi. Banyak metode pengelasan yang dikembangkan untuk mengatasi permasalahan

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA 1.1. Baja Baja merupakan bahan dasar vital untuk industri. Semua segmen kehidupan, mulai dari peralatan dapur, transportasi, generator, sampai kerangka gedung dan jembatan menggunakan

Lebih terperinci

BAB IV PEMBAHASAN Data Pengujian Pengujian Kekerasan.

BAB IV PEMBAHASAN Data Pengujian Pengujian Kekerasan. BAB IV PEMBAHASAN 4.1. Data Pengujian. 4.1.1. Pengujian Kekerasan. Pengujian ini dilakukan dengan menggunakan metoda Rockwell C, pengujian kekerasan pada material liner dilakukan dengan cara penekanan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Klasifikasi Logam Logam cor diklasifikasikan menurut kandungan karbon yang terkandung di dalamnya yaitu kelompok baja dan besi cor. Logam cor yang memiliki persentase karbon

Lebih terperinci

PROSES PENGERASAN (HARDENNING)

PROSES PENGERASAN (HARDENNING) PROSES PENGERASAN (HARDENNING) Proses pengerasan atau hardening adalah suatu proses perlakuan panas yang dilakukan untuk menghasilkan suatu benda kerja yang keras, proses ini dilakukan pada temperatur

Lebih terperinci

KARAKTERISASI PADUAN AlFeNiMg HASIL PELEBURAN DENGAN ARC FURNACE TERHADAP KEKERASAN

KARAKTERISASI PADUAN AlFeNiMg HASIL PELEBURAN DENGAN ARC FURNACE TERHADAP KEKERASAN No.06 / Tahun III Oktober 2010 ISSN 1979-2409 KARAKTERISASI PADUAN AlFeNiMg HASIL PELEBURAN DENGAN ARC FURNACE TERHADAP KEKERASAN Martoyo, Ahmad Paid, M.Suryadiman Pusat Teknologi Bahan Bakar Nuklir -

Lebih terperinci

ANALISA PERUBAHAN DIMENSI BAJA AISI 1045 SETELAH PROSES PERLAKUAN PANAS (HEAT TREATMENT)

ANALISA PERUBAHAN DIMENSI BAJA AISI 1045 SETELAH PROSES PERLAKUAN PANAS (HEAT TREATMENT) ANALISA PERUBAHAN DIMENSI BAJA AISI 1045 SETELAH PROSES PERLAKUAN PANAS (HEAT TREATMENT) Sasi Kirono,Eri Diniardi, Isgihardi Prasetyo Jurusan Mesin, Universitas Muhammadiyah Jakarta Abstrak. Salah satu

Lebih terperinci

BAB IV HASIL PENELITIAN dan PEMBAHASAN

BAB IV HASIL PENELITIAN dan PEMBAHASAN BAB IV HASIL PENELITIAN dan PEMBAHASAN 4.1. KARAKTERISTIK SERBUK 4.1.1. Serbuk Fe-50at.%Al Gambar 4.1. Hasil Uji XRD serbuk Fe-50at.%Al Berdasarkan gambar di atas, dapat diketahui bahwa secara keseluruhan

Lebih terperinci

Diagram Fasa. Latar Belakang Taufiqurrahman 1 LOGAM. Pemaduan logam

Diagram Fasa. Latar Belakang Taufiqurrahman 1 LOGAM. Pemaduan logam Diagram Fasa Latar Belakang Umumnya logam tidak berdiri sendiri (tidak dalam keadaan murni Kemurnian Sifat Pemaduan logam akan memperbaiki sifat logam, a.l.: kekuatan, keuletan, kekerasan, ketahanan korosi,

Lebih terperinci

PERLAKUAN PANAS (HEAT TREATMENT)

PERLAKUAN PANAS (HEAT TREATMENT) HEAT TREATMENT PERLAKUAN PANAS (HEAT TREATMENT) Proses laku-panas atau Heat Treatment kombinasi dari operasi pemanasan dan pendinginan dengan kecepatan tertentu yang dilakukan terhadap logam atau paduan

Lebih terperinci

BAB III PERCOBAAN DAN HASIL PERCOBAAN

BAB III PERCOBAAN DAN HASIL PERCOBAAN BAB III PERCOBAAN DAN HASIL PERCOBAAN Percobaan ini dilakukan untuk mendapatkan data energi impak dan kekerasan pada baja AISI H13 yang diberi perlakuan panas hardening dan tempering. Berdasarkan data

Lebih terperinci

Pengaruh Unsur-unsur Paduan Pada Proses Temper:

Pengaruh Unsur-unsur Paduan Pada Proses Temper: PROSES TEMPER Proses temper adalah proses memanaskan kembali baja yang sudah dikeraskan dengan tujuan untuk memperoleh kombinasi antara kekuatan, duktilitas dan ketangguhan yang tinggi. Proses temper terdiri

Lebih terperinci

BAB 4 HASIL PENELITIAN

BAB 4 HASIL PENELITIAN BAB 4 HASIL PENELITIAN 4.1. Pengujian Komposisi Kimia Untuk mengetahui komposisi kimia dari sampel yang dibuat dengan uji spectro dihasilkan komposisi seperti berikut : Tabel 4.1. Komposisi Kimia Sampel

Lebih terperinci

BAB IV HASIL PENELITIAN

BAB IV HASIL PENELITIAN BAB IV HASIL PENELITIAN Pada penelitian ini, baja HSLA 0,029% Nb dan baja karbon rendah digunakan sebagai benda uji. Benda uji dipanaskan ulang pada temperatur 1200 O C secara isothermal selama satu jam.

Lebih terperinci

ANALISA PENGARUH TEMPERATUR TEMPERING TERHADAP STRUKTUR MIKRO DAN SIFAT MEKANIK PADA BAJA AAR-M201 GRADE E

ANALISA PENGARUH TEMPERATUR TEMPERING TERHADAP STRUKTUR MIKRO DAN SIFAT MEKANIK PADA BAJA AAR-M201 GRADE E ANALISA PENGARUH TEMPERATUR TEMPERING TERHADAP STRUKTUR MIKRO DAN SIFAT MEKANIK PADA BAJA AAR-M201 GRADE E Mochammad Ghulam Isaq Khan 2711100089 Dosen Pembimbing Ir. Rochman Rochiem, M.Sc. Wikan Jatimurti

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. A. Deskripsi Data

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. A. Deskripsi Data BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Deskripsi Data Penelitian ini merupakan eksperimen untuk mengetahui pengaruh temperatur media pendingin pasca pengelasan terhadap laju korosi dan struktur mikro.

Lebih terperinci

ANALISIS PROSES TEMPERING PADA BAJA DENGAN KANDUNGAN KARBON 0,46% HASILSPRAY QUENCH

ANALISIS PROSES TEMPERING PADA BAJA DENGAN KANDUNGAN KARBON 0,46% HASILSPRAY QUENCH ANALISIS PROSES TEMPERING PADA BAJA DENGAN KANDUNGAN KARBON 0,46% HASILSPRAY QUENCH Sumidi, Helmy Purwanto 1, S.M. Bondan Respati 2 Program StudiTeknik Mesin Fakultas Teknik Universitas Wahid Hasyim Semarang

Lebih terperinci

PROSES QUENCHING DAN TEMPERING PADA SCMnCr2 UNTUK MEMENUHI STANDAR JIS G 5111

PROSES QUENCHING DAN TEMPERING PADA SCMnCr2 UNTUK MEMENUHI STANDAR JIS G 5111 PROSES QUENCHING DAN TEMPERING PADA SCMnCr2 UNTUK MEMENUHI STANDAR JIS G 5111 Agung Setyo Darmawan Teknik Mesin Universitas Muhammadiyah Surakarta Jl. A. Yani Tromol Pos I Pabelan Kartasura agungsetyod@yahoo.com

Lebih terperinci

UNIVERSITAS MERCU BUANA

UNIVERSITAS MERCU BUANA BAB II DASAR TEORI 2.1. Perlakuan Panas Perlakuan panas didefinisikan sebagai kombinasi operasi pemanasan dan pendinginan terhadap logam atau paduan dalam keadaan padat dengan waktu tertentu, yang dimaksud

Lebih terperinci

PENGARUH PERLAKUAN TEMPERING TERHADAP KEKERASAN DAN KEKUATAN IMPAK BAJA JIS G 4051 S15C SEBAGAI BAHAN KONSTRUKSI. Purnomo *)

PENGARUH PERLAKUAN TEMPERING TERHADAP KEKERASAN DAN KEKUATAN IMPAK BAJA JIS G 4051 S15C SEBAGAI BAHAN KONSTRUKSI. Purnomo *) PENGARUH PERLAKUAN TEMPERING TERHADAP KEKERASAN DAN KEKUATAN IMPAK BAJA JIS G 4051 S15C SEBAGAI BAHAN KONSTRUKSI Purnomo *) Abstrak Baja karbon rendah JIS G 4051 S 15 C banyak digunakan untuk bagian-bagian

Lebih terperinci

PENINGKATAN KEKAKUAN PEGAS DAUN DENGAN CARA QUENCHING

PENINGKATAN KEKAKUAN PEGAS DAUN DENGAN CARA QUENCHING PENINGKATAN KEKAKUAN PEGAS DAUN DENGAN CARA QUENCHING Pramuko Ilmu Purboputro Teknik Mesin Universitas Muhammadiyah Surakarta Jl. A. Yani Tromol Pos I Surakarta Pramuko_ip@ums.ac.id ABSTRAK Tujuan penelitian

Lebih terperinci

METODE PENINGKATAN TEGANGAN TARIK DAN KEKERASAN PADA BAJA KARBON RENDAH MELALUI BAJA FASA GANDA

METODE PENINGKATAN TEGANGAN TARIK DAN KEKERASAN PADA BAJA KARBON RENDAH MELALUI BAJA FASA GANDA METODE PENINGKATAN TEGANGAN TARIK DAN KEKERASAN PADA BAJA KARBON RENDAH MELALUI BAJA FASA GANDA Ahmad Supriyadi & Sri Mulyati Jurusan Teknik Mesin Politeknik Negeri Semarang Jl. Prof. H. Sudarto, SH.,

Lebih terperinci

PENGARUH MEDIA PENDINGIN PADA PROSES HARDENING MATERIAL BAJA S45C

PENGARUH MEDIA PENDINGIN PADA PROSES HARDENING MATERIAL BAJA S45C PENGARUH MEDIA PENDINGIN PADA PROSES HARDENING MATERIAL BAJA S45C Syaifudin Yuri, Sofyan Djamil dan M. Sobrom Yamin Lubis Program Studi Teknik Mesin, Fakultas Teknik Universitas Tarumanagara, Jakarta e-mail:

Lebih terperinci

BAB I PENDAHULUAN. Universitas Sumatera Utara

BAB I PENDAHULUAN. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakang Seiring dengan perkembangan teknologi dibidang konstruksi, pengelasan merupakan bagian yang tidak terpisahkan dari pertumbuhan dan peningkatan industri, karena mempunyai

Lebih terperinci

I. TINJAUAN PUSTAKA. unsur paduan terhadap baja, proses pemanasan baja, tempering, martensit, pembentukan

I. TINJAUAN PUSTAKA. unsur paduan terhadap baja, proses pemanasan baja, tempering, martensit, pembentukan I. TINJAUAN PUSTAKA Teori yang akan dibahas pada tinjauan pustaka ini adalah tentang klasifikasi baja, pengaruh unsur paduan terhadap baja, proses pemanasan baja, tempering, martensit, pembentukan martensit,

Lebih terperinci

FERIT, PERLIT, SEMENTIT, MARTENSIT, DAN BAINIT

FERIT, PERLIT, SEMENTIT, MARTENSIT, DAN BAINIT TUGAS PENGETAHUAN BAHAN ALAT DAN MESIN FERIT, PERLIT, SEMENTIT, MARTENSIT, DAN BAINIT Oleh: RENDY FRANATA (1014071009) TIA YULIAWATI (1014071052) JURUSAN TEKNIK PERTANIAN FAKULTAS PERTANIAN UNIVERSITAS

Lebih terperinci

Proses perlakuan panas diklasifikasikan menjadi 3: 1. Thermal Yaitu proses perlakuan panas yang hanya memanfaatkan kombinasi panas dalam mencapai

Proses perlakuan panas diklasifikasikan menjadi 3: 1. Thermal Yaitu proses perlakuan panas yang hanya memanfaatkan kombinasi panas dalam mencapai Heat Treatment atau proses perlakuan panas adalah proses pemanasan yang diikuti proses pendinginan selama waktu tertentu dan bila perlu dilanjutkan dengan pemanasan serta pendinginan ulang. Perlakuan panas

Lebih terperinci

PENGARUH VARIASI WAKTU TAHAN PADA PROSES NORMALIZING TERHADAP SIFAT MEKANIK DAN STRUKTUR MIKRO BAJA AISI 310S PADA PRESSURE VESSEL

PENGARUH VARIASI WAKTU TAHAN PADA PROSES NORMALIZING TERHADAP SIFAT MEKANIK DAN STRUKTUR MIKRO BAJA AISI 310S PADA PRESSURE VESSEL PENGARUH VARIASI WAKTU TAHAN PADA PROSES NORMALIZING TERHADAP SIFAT MEKANIK DAN STRUKTUR MIKRO BAJA AISI 310S PADA PRESSURE VESSEL Mahasiswa Febrino Ferdiansyah Dosen Pembimbing Ir. Rochman Rochiem, M.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Bahan-bahan logam Baja adalah paduan antara besi dengan karbon (Fe-C) yang mengandung karbon maksimal 2,0 % dengan sedikit unsur silikon (Si), Mangan (Mn), Phospor (P), dan

Lebih terperinci

PENGARUH PREHEAT TERHADAP STRUKTUR MIKRO DAN KEKUATAN TARIK LAS LOGAM TAK SEJENIS BAJA TAHAN KARAT AUSTENITIK AISI 304 DAN BAJA KARBON A36

PENGARUH PREHEAT TERHADAP STRUKTUR MIKRO DAN KEKUATAN TARIK LAS LOGAM TAK SEJENIS BAJA TAHAN KARAT AUSTENITIK AISI 304 DAN BAJA KARBON A36 PENGARUH PREHEAT TERHADAP STRUKTUR MIKRO DAN KEKUATAN TARIK LAS LOGAM TAK SEJENIS BAJA TAHAN KARAT AUSTENITIK AISI 304 DAN BAJA KARBON A36 Saifudin 1, Mochammad Noer Ilman 2 Jurusan Teknik Mesin dan Industri,

Lebih terperinci

Audio/Video. Metode Evaluasi dan Penilaian. Web. Soal-Tugas. a. Writing exam.skor: 0-100(PAN)

Audio/Video. Metode Evaluasi dan Penilaian. Web. Soal-Tugas. a. Writing exam.skor: 0-100(PAN) Media Ajar Pertemuan ke Tujuan Ajar/Keluaran/Indikator Topik (pokok, sub pokok bahasan, alokasi waktu) Teks Presentasi Gambar Audio/Video Soal-Tugas Web Metode Evaluasi dan Penilaian Metode Ajar (STAR)

Lebih terperinci

Baja adalah sebuah paduan dari besi karbon dan unsur lainnya dimana kadar karbonnya jarang melebihi 2%(menurut euronom)

Baja adalah sebuah paduan dari besi karbon dan unsur lainnya dimana kadar karbonnya jarang melebihi 2%(menurut euronom) BAJA Baja adalah sebuah paduan dari besi karbon dan unsur lainnya dimana kadar karbonnya jarang melebihi 2%(menurut euronom) Baja merupakan paduan yang terdiri dari besi,karbon dan unsur lainnya. Baja

Lebih terperinci

Karakterisasi Material Bucket Teeth Excavator 2016

Karakterisasi Material Bucket Teeth Excavator 2016 BAB IV PENGOLAHAN DATA 4.1 Data dan Analisa Metalografi Pengambilan gambar atau foto baik makro dan mikro pada Bucket Teeth Excavator dilakukan pada tiga dua titik pengujian, yaitu bagian depan spesimen

Lebih terperinci

BAB IV DATA DAN ANALISA

BAB IV DATA DAN ANALISA BAB IV DATA DAN ANALISA Pengelasan plug welding pada material tak sejenis antara logam tak sejenis antara baja tahan karat 304L dan baja karbon SS400 dilakukan untuk mengetahui pengaruh arus pengelasan

Lebih terperinci

PRAKTIKUM JOMINY HARDENABILITY TEST

PRAKTIKUM JOMINY HARDENABILITY TEST Sub Modul Praktikum PRAKTIKUM JOMINY HARDENABILITY TEST Tim Penyusun Herdi Susanto, ST, MT NIDN :0122098102 Joli Supardi, ST, MT NIDN :0112077801 Mata Kuliah FTM 011 Metalurgi Fisik + Praktikum JURUSAN

Lebih terperinci

DUPLEX STAINLESS STEEL

DUPLEX STAINLESS STEEL DUPLEX STAINLESS STEEL Oleh: Mohamad Sidiqi Pendahuluan Stainless Steel (SS) adalah baja dengan sifat ketahanan korosi yang sangat tinggi di berbagai kondisi lingkungan, khususnya pada atmosfer ambient

Lebih terperinci

09: DIAGRAM TTT DAN CCT

09: DIAGRAM TTT DAN CCT 09: DIAGRAM TTT DAN CCT 9.1. Diagram TTT Maksud utama dari proses perlakuan panas terhadap baja adalah agar diperoleh struktur yang diinginkan supaya cocok dengan penggunaan yang direncanakan. Struktur

Lebih terperinci

BAB VI TRANSFORMASI FASE PADA LOGAM

BAB VI TRANSFORMASI FASE PADA LOGAM BAB VI TRANSFORMASI FASE PADA LOGAM Sebagian besar transformasi bahan padat tidak terjadi terus menerus sebab ada hambatan yang menghalangi jalannya reaksi dan bergantung terhadap waktu. Contoh : umumnya

Lebih terperinci

TUGAS PENGETAHUAN BAHAN HEAT TREATMENT

TUGAS PENGETAHUAN BAHAN HEAT TREATMENT TUGAS PENGETAHUAN BAHAN HEAT TREATMENT Oleh : Nama : Ika Utami Wahyu Ningsih No. Pokok : 4410215036 Jurusan : Teknik Industri FAKULTAS TEKNIK UNIVERSITAS PANCASILA HEAT TREATMENT Heat Treatment atau Perlakuan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI II.1. BAJA PADUAN RENDAH KEKUATAN TINGGI (HSLA) Baja HSLA adalah baja karbon rendah dengan paduan mikro dibawah 1% yang memiliki sifat mekanis yang baik antara lain: kekuatan, ketangguhan,

Lebih terperinci

KERANGKA KONSEP PENELITIAN PENGARUH NITROCARBURIZING TERHADAP LAJU KOROSI, KEKERASAN DAN STRUKTUR MIKRO PADA MATERIAL DUPLEX STAINLESS STEEL

KERANGKA KONSEP PENELITIAN PENGARUH NITROCARBURIZING TERHADAP LAJU KOROSI, KEKERASAN DAN STRUKTUR MIKRO PADA MATERIAL DUPLEX STAINLESS STEEL KERANGKA KONSEP PENELITIAN PENGARUH NITROCARBURIZING TERHADAP LAJU KOROSI, KEKERASAN DAN STRUKTUR MIKRO PADA MATERIAL DUPLEX STAINLESS STEEL A. Kerangka Konsep Baja stainless merupakan baja paduan yang

Lebih terperinci

ANALISIS STRUKTUR MIKRO DAN SIFAT MEKANIK BAJA MANGAN AUSTENITIK HASIL PROSES PERLAKUAN PANAS

ANALISIS STRUKTUR MIKRO DAN SIFAT MEKANIK BAJA MANGAN AUSTENITIK HASIL PROSES PERLAKUAN PANAS ANALISIS STRUKTUR MIKRO DAN SIFAT MEKANIK BAJA MANGAN AUSTENITIK HASIL PROSES PERLAKUAN PANAS Oleh: Abrianto Akuan Abstrak Nilai kekerasan tertinggi dari baja mangan austenitik hasil proses perlakuan panas

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Pisau pemanen sawit dapat diklasifikasikan menjadi 2 macam yaitu pisau

BAB II TINJAUAN PUSTAKA. Pisau pemanen sawit dapat diklasifikasikan menjadi 2 macam yaitu pisau 7 BAB II TINJAUAN PUSTAKA 2.1 Klasifikasi Pisau Pemanen Sawit Pisau pemanen sawit dapat diklasifikasikan menjadi 2 macam yaitu pisau dodos dan pisau egrek. Penggunaan alat ini tergantung dari umur atau

Lebih terperinci

PENGARUH MEDIA PENDINGIN PADA PROSES HARDENING TERHADAP STRUKTURMIKRO BAJA MANGAN HADFIELD AISI 3401 PT SEMEN GRESIK

PENGARUH MEDIA PENDINGIN PADA PROSES HARDENING TERHADAP STRUKTURMIKRO BAJA MANGAN HADFIELD AISI 3401 PT SEMEN GRESIK TUGAS AKHIR MM09 1381- PENGARUH MEDIA PENDINGIN PADA PROSES HARDENING TERHADAP STRUKTURMIKRO BAJA MANGAN HADFIELD AISI 3401 PT SEMEN GRESIK MOHAMMAD ISMANHADI S. 2708100051 Yuli Setyorini, ST, M.Phil LATAR

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Kemajuan teknologi dan ilmu pengetahuan saat ini semakin pesat, hal ini sejalan dengan kemajuan industri yang semakin banyak dan kompleks. Perkembangan teknologi

Lebih terperinci

II. TINJAUAN PUSTAKA. unsur dasar dan karbon sebagai unsur paduan utamanya. Kandungan karbon

II. TINJAUAN PUSTAKA. unsur dasar dan karbon sebagai unsur paduan utamanya. Kandungan karbon 5 II. TINJAUAN PUSTAKA 2.1 Klasifikasi Baja Baja adalah logam paduan antara besi (Fe) dan karbon (C), dimana besi sebagai unsur dasar dan karbon sebagai unsur paduan utamanya. Kandungan karbon dalam baja

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Diagram Alir Penelitian Proses karakterisasi material Bantalan Luncur dengan menggunakan metode pengujian merusak. Proses penelitian ini dapat dilihat dari diagram alir berikut

Lebih terperinci

PENGARUH WAKTU PENAHANAN TERHADAP SIFAT FISIS DAN MEKANIS PADA PROSES PENGKARBONAN PADAT BAJA MILD STEEL

PENGARUH WAKTU PENAHANAN TERHADAP SIFAT FISIS DAN MEKANIS PADA PROSES PENGKARBONAN PADAT BAJA MILD STEEL PENGARUH WAKTU PENAHANAN TERHADAP SIFAT FISIS DAN MEKANIS PADA PROSES PENGKARBONAN PADAT BAJA MILD STEEL Pramuko I. Purboputro Teknik Mesin Universitas Muhammadiyah Surakarta Jl.A. Yani Tromol Pos 1 Pabelan

Lebih terperinci

BAB I PENDAHULUAN. perlu dapat perhatian khusus baik dari segi kualitas maupun kuantitasnya karena

BAB I PENDAHULUAN. perlu dapat perhatian khusus baik dari segi kualitas maupun kuantitasnya karena BAB I PENDAHULUAN 1.1. Latar Belakang Pada bidang metalurgi, terutama mengenai pengolahan baja karbon rendah ini perlu dapat perhatian khusus baik dari segi kualitas maupun kuantitasnya karena erat dengan

Lebih terperinci

BAB II STUDI LITERATUR

BAB II STUDI LITERATUR BAB II STUDI LITERATUR 2.1 Mekanisme Penguatan pada Material Logam Mekanisme penguatan pada material logam merupakan hubungan antara pergerakan dislokasi dan sifat mekanik dari logam. Kemampuan suatu material

Lebih terperinci

Karakterisasi Material Sprocket

Karakterisasi Material Sprocket BAB IV DATA DAN ANALISA 4.1 Pengamatan Metalografi 4.1.1 Pengamatan Struktur Makro Pengujian ini untuk melihat secara keseluruhan objek yang akan dimetalografi, agar diketahui kondisi benda uji sebelum

Lebih terperinci

ANALISA PENGARUH TEMPERATUR PADA PROSES TEMPERING TERHADAP SIFAT MEKANIS DAN STRUKTUR MIKRO BAJA AISI 4340

ANALISA PENGARUH TEMPERATUR PADA PROSES TEMPERING TERHADAP SIFAT MEKANIS DAN STRUKTUR MIKRO BAJA AISI 4340 ANALISA PENGARUH TEMPERATUR PADA PROSES TEMPERING TERHADAP SIFAT MEKANIS DAN STRUKTUR MIKRO BAJA AISI 30 Sasi Kirono, Eri Diniardi, Seno Ardian Jurusan Mesin, Universitas Muhammadiyah Jakarta Abstrak.

Lebih terperinci

PENGARUH VARIASI TEMPERATUR PADA PROSES HARDENING TERHADAP KEKERASAN, STRUKTUR MICRO BAJA AISI DENGAN MEDIA PENDINGIN Oleh: DEDI SUPRIANTO

PENGARUH VARIASI TEMPERATUR PADA PROSES HARDENING TERHADAP KEKERASAN, STRUKTUR MICRO BAJA AISI DENGAN MEDIA PENDINGIN Oleh: DEDI SUPRIANTO PENGARUH VARIASI TEMPERATUR PADA PROSES HARDENING TERHADAP KEKERASAN, STRUKTUR MICRO BAJA AISI 1025 DENGAN MEDIA PENDINGIN Oleh: DEDI SUPRIANTO JurusanTeknikMesin, Sekolah Tinggi Tekhnik Harapan Medan

Lebih terperinci

PROSES THERMAL LOGAM

PROSES THERMAL LOGAM 1 PROSES THERMAL LOGAM TIN107 Material Teknik Fungsi Proses Thermal 2 Annealing Mempersiapkan material logam sebagai produk setengah jadi agar layak diproses berikutnya. Hardening Mempersiapkan material

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Logam mempunyai peranan penting dalam kehidupan manusia, hampir semua kebutuhan manusia tidak lepas dari unsur logam. Karena alat-alat yang digunakan manusia terbuat

Lebih terperinci

BAB IV ANALISA DAN PEMBAHASAN. Pembuatan spesimen dilakukan dengan proses pengecoran metode die

BAB IV ANALISA DAN PEMBAHASAN. Pembuatan spesimen dilakukan dengan proses pengecoran metode die BAB IV ANALISA DAN PEMBAHASAN 4.1 Proses Pengecoran Hasil penelitian tentang pembuatan poros berulir (Screw) berbahan dasar 30% Aluminium bekas dan 70% piston bekas dengan penambahan unsur 2,5% TiB. Pembuatan

Lebih terperinci

BAB I PENDAHULUAN. alat-alat perkakas, alat-alat pertanian, komponen-komponen otomotif, kebutuhan

BAB I PENDAHULUAN. alat-alat perkakas, alat-alat pertanian, komponen-komponen otomotif, kebutuhan 1.1. Latar Belakang BAB I PENDAHULUAN Seiring dengan perkembangan zaman dan teknologi, banyak kalangan dunia industri yang menggunakan logam sebagai bahan utama operasional atau sebagai bahan baku produksinya.

Lebih terperinci

Background 12/03/2015. Ayat al-qur an tentang alloy (Al-kahfi:95&96) Pertemuan Ke-2 DIAGRAM FASA. By: Nurun Nayiroh, M.Si

Background 12/03/2015. Ayat al-qur an tentang alloy (Al-kahfi:95&96) Pertemuan Ke-2 DIAGRAM FASA. By: Nurun Nayiroh, M.Si Background Pertemuan Ke-2 DIAGRAM FASA Umumnya logam tidak berdiri sendiri (tidak dalam keadaan murni) Kemurnian Sifat Pemaduan logam akan memperbaiki sifat logam, a.l.: kekuatan, keuletan, kekerasan,

Lebih terperinci

II. TINJAUAN PUSTAKA. Penambahan karbon yang disebut carburizing atau karburasi, dilakukan dengan

II. TINJAUAN PUSTAKA. Penambahan karbon yang disebut carburizing atau karburasi, dilakukan dengan II. TINJAUAN PUSTAKA A. Definisi Carburizing Penambahan karbon yang disebut carburizing atau karburasi, dilakukan dengan cara memanaskan pada temperatur yang cukup tinggi yaitu pada temperatur austenit

Lebih terperinci

PROSES NORMALIZING DAN TEMPERING PADA SCMnCr2 UNTUK MEMENUHI STANDAR JIS G 5111

PROSES NORMALIZING DAN TEMPERING PADA SCMnCr2 UNTUK MEMENUHI STANDAR JIS G 5111 PROSES NORMALIZING DAN TEMPERING PADA SCMnCr2 UNTUK MEMENUHI STANDAR JIS G 5111 Agung Setyo Darmawan, Masyrukan, Riski Ariyandi Teknik Mesin Universitas Muhammadiyah Surakarta Jl. A. Yani Tromol Pos I

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Baja Baja adalah besi karbon campuran logam yang dapat berisi konsentrasi dari element campuran lainnya, ada ribuan campuran logam lainnya yang mempunyai perlakuan bahan dan

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang Masalah

BAB I PENDAHULUAN A. Latar Belakang Masalah 1 BAB I PENDAHULUAN A. Latar Belakang Masalah Perkembangan ilmu pengetahuan dan teknologi saat ini telah merambah pada berbagai aspek kehidupan manusia, tidak terkecuali di dunia industri manufacture (rancang

Lebih terperinci

ANALISIS PENINGKATKAN KUALITAS SPROKET SEPEDA MOTOR BUATAN LOKAL DENGAN METODE KARBURASI

ANALISIS PENINGKATKAN KUALITAS SPROKET SEPEDA MOTOR BUATAN LOKAL DENGAN METODE KARBURASI ANALISIS PENINGKATKAN KUALITAS SPROKET SEPEDA MOTOR BUATAN LOKAL DENGAN METODE KARBURASI Abdul Karim Jurusan Teknik Mesin Politeknik Negeri Bandung E-mail : karimabdul57@gmail.com Abstrak Proses karburasi

Lebih terperinci

LAPORAN TUGAS AKHIR PENELITIAN TENTANG SIFAT-SIFAT KEKUATAN TARIK, KEKERASAN, KOMPOSISI KIMIA DAN STRUKTUR MIKRO DARI TALI SERAT BAJA BUATAN KOREA

LAPORAN TUGAS AKHIR PENELITIAN TENTANG SIFAT-SIFAT KEKUATAN TARIK, KEKERASAN, KOMPOSISI KIMIA DAN STRUKTUR MIKRO DARI TALI SERAT BAJA BUATAN KOREA LAPORAN TUGAS AKHIR PENELITIAN TENTANG SIFAT-SIFAT KEKUATAN TARIK, KEKERASAN, KOMPOSISI KIMIA DAN STRUKTUR MIKRO DARI TALI SERAT BAJA BUATAN KOREA Laporan Tugas Akhir Ini Diajukan Sebagai Salah Satu Syarat

Lebih terperinci

Laporan Praktikum Struktur dan Sifat Material 2013

Laporan Praktikum Struktur dan Sifat Material 2013 BAB IV UJI JOMINY (JOMINY TEST) 4.1 PENDAHULUAN 4.1.1 Latar Belakang Pada dunia engineering, penggunaan bahan yang spesifik pada aplikasi tertentu sangatlah krusial. Salah satu metode yang sering diaplikasi

Lebih terperinci

Kekuatan tarik komposisi paduan Fe-C eutectoid dapat bervariasi antara MPa tergantung pada proses perlakuan panas yang diterapkan.

Kekuatan tarik komposisi paduan Fe-C eutectoid dapat bervariasi antara MPa tergantung pada proses perlakuan panas yang diterapkan. Fasa Transformasi Pendahuluan Kekuatan tarik komposisi paduan Fe-C eutectoid dapat bervariasi antara 700-2000 MPa tergantung pada proses perlakuan panas yang diterapkan. Sifat mekanis yang diinginkan dari

Lebih terperinci

BAB II TINJAUAN PUSTAKA. (C), serta unsur-unsur lain, seperti : Mn, Si, Ni, Cr, V dan lain sebagainya yang

BAB II TINJAUAN PUSTAKA. (C), serta unsur-unsur lain, seperti : Mn, Si, Ni, Cr, V dan lain sebagainya yang BAB II TINJAUAN PUSTAKA 2.1 Baja Baja merupakan paduan yang terdiri dari unsur utama besi (Fe) dan karbon (C), serta unsur-unsur lain, seperti : Mn, Si, Ni, Cr, V dan lain sebagainya yang tersusun dalam

Lebih terperinci

BAB I PENDAHULUAN. Dalam bidang material baja karbon sedang AISI 4140 merupakan low alloy steel

BAB I PENDAHULUAN. Dalam bidang material baja karbon sedang AISI 4140 merupakan low alloy steel BAB I PENDAHULUAN 1.1 Latar Belakang Dalam bidang material baja karbon sedang AISI 4140 merupakan low alloy steel atau baja yang memiliki kandungan 0,38-0,43% C, 0,75-1,00% Mn, 0,15-0,30% Si, 0,80-1,10%

Lebih terperinci

MODUL 9 PROSES PERLAKUAN PANAS (HEAT TREATMENT)

MODUL 9 PROSES PERLAKUAN PANAS (HEAT TREATMENT) MODUL 9 PROSES PERLAKUAN PANAS (HEAT TREATMENT) Materi ini membahas tentang proses perlakuan panas pada baja. Tujuan instruksional khusus yang ingin dicapai adalah (1) Menjelaskan defenisi dari proses

Lebih terperinci

II. LANDASAN TEORI. Dalam penggunaannya, logam yang digunakan akan mengalami gaya luar atau

II. LANDASAN TEORI. Dalam penggunaannya, logam yang digunakan akan mengalami gaya luar atau 6 II. LANDASAN TEORI 2.1 Sifat-Sifat Logam Dalam penggunaannya, logam yang digunakan akan mengalami gaya luar atau pembebanan. Setiap logam mempunyai daya tahan terhadap pembebanan yang berbeda-beda, perbedaan

Lebih terperinci

11. Logam-logam Ferous Diagram fasa besi dan carbon :

11. Logam-logam Ferous Diagram fasa besi dan carbon : 11. Logam-logam Ferous Diagram fasa besi dan carbon : Material Teknik Suatu diagram yang menunjukkan fasa dari besi, besi dan paduan carbon berdasarkan hubungannya antara komposisi dan temperatur. Titik

Lebih terperinci

pendinginan). Material Teknik Universitas Darma Persada - Jakarta

pendinginan). Material Teknik Universitas Darma Persada - Jakarta BAB V DIAGRAM FASE Komponen : adalah logam murni atau senyawa yang menyusun suatu logam paduan. Contoh : Cu - Zn (perunggu) komponennya adalah Cu dan Zn Solid solution (larutan padat) : terdiri dari beberapa

Lebih terperinci

BAB I PENDAHULUAN. Biomaterial adalah substansi atau kombinasi beberapa subtansi, sintetis atau

BAB I PENDAHULUAN. Biomaterial adalah substansi atau kombinasi beberapa subtansi, sintetis atau BAB I PENDAHULUAN 1.1 Latar Belakang Biomaterial adalah substansi atau kombinasi beberapa subtansi, sintetis atau alami, yang dapat digunakan untuk setiap periode waktu, secara keseluruhan atau sebagai

Lebih terperinci

LAPORAN PRESENTASI TENTANG DIAGRAM TTT. Oleh: RICKY RISMAWAN : DADAN SYAEHUDIN :022834

LAPORAN PRESENTASI TENTANG DIAGRAM TTT. Oleh: RICKY RISMAWAN : DADAN SYAEHUDIN :022834 LAPORAN PRESENTASI TENTANG DIAGRAM TTT Oleh: RICKY RISMAWAN : 020571 DADAN SYAEHUDIN :022834 JURUSAN PENDIDIKAN TEKNIK MESIN FAKULTAS PENDIDIKAN TEKNOLOGI DAN KEJURUAN UNIVERSITAS PENDIDIKAN INDONESIA

Lebih terperinci

Alasan pengujian. Jenis Pengujian merusak (destructive test) pada las. Pengujian merusak (DT) pada las 08/01/2012

Alasan pengujian. Jenis Pengujian merusak (destructive test) pada las. Pengujian merusak (DT) pada las 08/01/2012 08/01/2012 MATERI KE II Pengujian merusak (DT) pada las Pengujian g j merusak (Destructive Test) dibagi dalam 2 bagian: Pengujian di bengkel las. Pengujian skala laboratorium. penyusun: Heri Wibowo, MT

Lebih terperinci

BAB III TINJAUAN PUSTAKA

BAB III TINJAUAN PUSTAKA 15 BAB III TINJAUAN PUSTAKA 3.1 PENDAHULUAN Zirconium (zircaloy) material yang sering digunakan dalam industri nuklir. Dalam reaktor nuklir, zircaloy diperlukan sebagai pelindung bahan bakar dari pendingin,

Lebih terperinci

II TINJAUAN PUSTAKA. menghasilkan sifat-sifat logam yang diinginkan. Perubahan sifat logam akibat

II TINJAUAN PUSTAKA. menghasilkan sifat-sifat logam yang diinginkan. Perubahan sifat logam akibat II TINJAUAN PUSTAKA A. Heat Treatment Proses perlakuan panas (Heat Treatment) adalah suatu proses mengubah sifat logam dengan cara mengubah struktur mikro melalui proses pemanasan dan pengaturan kecepatan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Panen adalah pemotongan tandan buah dari pohon sampai dengan. faktor penting dalam pencapain produktivitas.

BAB II TINJAUAN PUSTAKA. Panen adalah pemotongan tandan buah dari pohon sampai dengan. faktor penting dalam pencapain produktivitas. BAB II TINJAUAN PUSTAKA 2.1 Proses Panen Kelapa Sawit Panen adalah pemotongan tandan buah dari pohon sampai dengan pengangkutan ke pabrik yang meliputi kegiatan pemotongan tandan buah matang, pengutipan

Lebih terperinci

PENGARUH TEMPERATUR DAN WAKTU TAHAN TEMPERING TERHADAP KEKERASAN, STRUKTUR MIKRO DAN LAJU KOROSI PADA BAJA TAHAN KARAT MARTENSITIK 13Cr3Mo3Ni

PENGARUH TEMPERATUR DAN WAKTU TAHAN TEMPERING TERHADAP KEKERASAN, STRUKTUR MIKRO DAN LAJU KOROSI PADA BAJA TAHAN KARAT MARTENSITIK 13Cr3Mo3Ni PENGARUH TEMPERATUR DAN WAKTU TAHAN TEMPERING TERHADAP KEKERASAN, STRUKTUR MIKRO DAN LAJU KOROSI PADA BAJA TAHAN KARAT MARTENSITIK 13Cr3Mo3Ni 1) Hadi Perdana, 2) Andinnie Juniarsih, ST., MT. dan 3) Dr.

Lebih terperinci