Penyelesaian Penjadwalan Flexible Job Shop Problem dengan menggunakan Real Coded Genetic Algorithm

Ukuran: px
Mulai penontonan dengan halaman:

Download "Penyelesaian Penjadwalan Flexible Job Shop Problem dengan menggunakan Real Coded Genetic Algorithm"

Transkripsi

1 Penyelesaian Penjadwalan Flexible Job Shop Problem dengan menggunakan Real Coded Genetic Algorithm M. C. C. Utomo 1, Wayan Firdaus Mahmudy 2, Marji Program Teknologi Informasi dan Ilmu Komputer, Universitas Brawijaya, Indonesia 1, 2 Kata kunci: Job Shop, FJSP, Flexible Job Shop Problem, Algoritma Genetika, GA, Genetic Algorithm, RCGA, Real Code Genetic Algorithm, Scheduling, Penjadwalan. Abstrak. Menjadwalkan adalah masalah yang cukup sulit jika harus dituntut dalam waktu cepat dan akan menjadi lebih merepotkan lagi jika susunan yang dijadwalkan adalah sesuatu yang tidak pasti dengan banyaknya pilihan yang membutuhkan keputusan yang lebih rumit. Model penjadwalan jobshop merupakan salah satu contoh masalah penjadwalan yang banyak ditemui dalam industri manufaktur. Penyelesaiannya rumit dan solusi terbaik hanya bisa didapatkan dengan mencoba semua kemungkinan. Algoritma genetika adalah salah satu algoritma yang dapat memberikan solusi permasalahan rumit dalam waktu yang bisa diterima secara rasional, sehingga dapat diterapkan untuk masalah Flexible Job Shop. Algoritma Genetika mampu menemukan solusi dengan mencoba menukarkan susunan-susunan yang diberikan dan/atau mencoba mengganti susunan tersebut secara langsung (crossover dan/atau mutation). Prakata Masalah job shop adalah masalah penjadwalan untuk memproduksi permintaan pelanggan dengan waktu secepat mungkin. Sebuah produksi membutuhkan berbagai operasi tergantung permintaannya dan setiap operasi hanya bisa diselesaikan oleh mesin tertentu. Flexible job shop berarti beberapa atau seluruh operasi tersebut bersifat fleksibel yang berarti terdapat mesin lain yang dapat menyelesaikan dengan hasil yang sama baiknya. Tentu saja dengan semakin banyaknya pilihan akan semakin membuat bingung untuk mengambil keputusan dan membutuhkan proses yang lebih rumit daripada job shop biasa [5]. FJSP dalam sistem manufaktur yang sebenarnya seringkali terjadi insiden yang tidak terduga, jika secara teori mungkin menghasilkan jadwal yang optimal atau mendekati optimal namun kinerjanya menjadi buruk ketika diimplementasikan pada pekerjaan yang sebenarnya [4]. Dengan kata lain flexible job shop tidak hanya memutuskan kapan operasi tersebut dilakukan tetapi juga memutuskan dengan mesin mana operasi tersebut dilaksanakan. Objek dalam FJSP umumnya meminimalkan makespan seperti, waktu penyelesaiannya dari semua operasi atau pekerjaan [1]. Optimalisasi Penyelesaian penjadwalan flexible job shop problem dengan menggunakan real code genetic algorithm adalah algoritma yang ditemukan oleh Mahmudi, dkk [1]. Disini akan dilakukan uji coba untuk mengetahui metode yang mampu mendapatkan hasil yang lebih baik. Metode yang akan dibandingkan adalah metode seleksi antara lain roulette wheel selection, binary tournament selection, dan etilist selection serta metode mutasi antara lain reciprocal exchange mutation, insertion mutation, dan invertion mutation. Data yang digunakan adalah MK06 dari

2 Brandimarte [6] dengan parameter sebagai berikut, Population size = 100 Crossover rate = 0.5 Mutation rate = 0.25 Pada uji coba metode seleksi terbaik sementara menggunakan metode reciprocal exchange mutation karena metode tersebut yang paling terkenal dan yang paling sering diimplementasikan. Sedangkan untuk uji coba metode mutasi terbaik menggunakan metode seleksi terbaik yang telah didapatkan. Uji coba dilakukan sebanyak 10 kali dan diambil nilai minimal, rata-rata, dan maksimal. Gambar 1. Grafik hasil uji coba metode seleksi Gambar 2. Grafik hasil uji coba metode mutasi seleksi terbaik adalah binary tournament selection. Pada generasi sekitar 100 dan di bawahnya diketahui bahwa metode seleksi terbaik adalah etilist selection mungkin disebabkan karena metode tersebut mampu membentuk populasi berkualitas dengan cepat tetapi tidak jika dalam waktu yang lama. Metode binary tournament selection mampu memberikan hasil yang terbaik untuk jumlah generasi yang besar mungkin disebabkan karena metode tersebut mampu membentuk populasi yang berkualitas sekaligus mempertahankan individu yang bervariasi di dalam populasi, ini berbeda dengan metode etilist selection di mana hanya individu yang terbaik saja yang diambil. Dari hasil pengamatan tersebut juga didapatkan bahwa populasi yang homogen dan kurang bervariasi pada individunya menyebabkan sulit berkembang dan dapat dilihat dari grafik yang cenderung mendatar. Individu yang terbaik dari setiap generasi tidak disimpan secara eksklusif atau terjamin untuk terpilih semakin membuktikan bahwa metode binary tournament selection mampu membentuk populasi yang semakin berkualitas dalam generasi yang besar, ini berbeda dengan metode yang murni dari etilist selection yang sudah menjamin individu yang terbaik terpilih dari setiap generasinya. Sedangkan pada Gambar 2. dapat diambil kesimpulan bahwa metode reciprocal exchange mutation adalah yang terbaik di samping mudahnya untuk diimplementasikan. Tidak mengherankan memang bahwa metode tersebut yang paling terkenal dan yang paling banyak digunakan. Dari hasil uji coba tersebut didapatkan sebuah grafik seperti pada Gambar 1. dan dapat diambil kesimpulan bahwa metode

3 Population size = 1000 Jumlah generasi = 1000 Gambar 3. Grafik hasil uji coba perbandingan probabilitas crossover dan mutation Setelah mendapatkan metode seleksi dan mutasi terbaik maka selanjutnya mendapatkan perbandingan probabilitas crossover dan mutation terbaik. Total perbandingan adalah 1.0 sehingga didapatkan populasi hingga 2 kali lipat, maka dipilih 0.7:0.3, 0.6:0.4, 0.5:0.5, 0.4:0.6, 0.3:0.7. Dengan menggunakan data yang sama, population size yang sama, jumlah generasi = 300, metode seleksi dan mutasi yang sudah diketahui yang terbaik di atas maka didapatkan hasil uji coba seperti pada Gambar 3. Dari hasil uji coba tersebut dapat diambil kesimpulan bahwa perbandingan probabilitas terbaik antara crossover dan mutation adalah 0.5:0.5. Performalisasi Setelah mengetahui metode seleksi terbaik (binary tournament selection) dan metode mutasi terbaik (reciprocal exchange mutation) serta perbandingan probabilitas antara crossover dan mutation terbaik (0.5:0.5) maka selanjutnya menguji real code genetic algorithm pada flexible job shop problem untuk jumlah generasi dan population size yang besar. Data yang digunakan adalah MK01 sampai MK07 dari Brandimarte yang dapat diunduh (download) dari alamat dengan parameter sebagai berikut, Gambar 4. Grafik hasil uji coba pada data MK01 Gambar 5. Grafik hasil uji coba pada data MK06 Gambar 6. Grafik hasil uji coba pada data MK01 sampai MK07 Uji coba dilakukan sebanyak 10 kali dan diambil nilai rata-rata. Hasil uji coba dapat dilihat pada Gambar 6 dan dengan skala 100 iterasi.

4 Dari hasil uji coba tersebut dapat diambil kesimpulan bahwa pada Gambar 4. mampu mendapatkan hasil yang paling efisien pada generasi ke 600, sedangkan pada Gambar 5. pada generasi ke 1000 meskipun belum mampu mendapatkan hasil yang paling efisien, tetapi dilihat dari pola grafik sepertinya masih memiliki potensi untuk mendapatkan hasil yang lebih optimal apabila menggunakan jumlah generasi dan population size yang lebih besar. Dengan jumlah generasi dan population size yang lebih besar tentu berakibat pada kebutuhan perangkat keras yang lebih tinggi untuk melakukan proses. Perbedaan hasil pada MK01 dan MK06 disebabkan karena kompleksitas di mana MK06 lebih kompleks daripada MK01. Tabel 1. Hasil uji coba pada data MK01 sampai MK07 serta perbandingannya dengan algoritma lain Problem Jobs Macs Ops Mine From reference RCGA RCGA GENACE GA hpso hga MK MK MK MK MK MK MK MK MK MK Pada Tabel 1. adalah Hasil uji coba pada data MK01 sampai MK07 serta perbandingannya dengan algoritma lain dari sumber reference [2] menunjukkan bahwa hasil penelitian ini mampu menandingi RCGA dari referensi untuk data MK01, MK02, MK03, MK05, MK06, MK07 dan tidak pada data MK04. Selain itu hasil penelitian ini juga mampu menandingi pendekatan lain untuk data MK01, MK03, MK05 dan tidak untuk data MK02, MK04, MK06, MK07. Setidaknya Hasil penelitian ini mampu melakukan dengan lebih baik dari pada GENANCE untuk data MK01, MK02, MK04, MK06, MK07 dan hpso untuk data MK04, MK07. metode mutasi yang lebih baik adalah reciprocal exchange mutation. Untuk metode crossover yang cocok dan mudah diimplementasikan hanya satu yaitu onecut point crossover. Perbandingan antara crossover rate dan mutation rate yang mendekati terbaik adalah 0.5:0.5. Sedangkan untuk jumlah generasi yang paling efektif dan efisien adalah relatif tergantung besarnya data yang diproses untuk dibentuk jadwal, waktu untuk memproses data, kerugian tiap makespan, termasuk juga spesifikasi kebutuhan perangkat keras yang digunakan untuk memproses sedangkan besaran populasi mungkin hanyalah masalah spesifikasi komputer yang digunakan. Kesimpulan Untuk real code genetic algorithm, Metode seleksi yang lebih baik adalah binary tournament selection, sedangkan Daftar Pustaka [1] Mahmudy, W. F., R. M. Marian and L. H. S. Luong (2013). "Real coded genetic algorithms for solving

5 flexible job-shop scheduling problem Part I: modeling." Advanced Materials Research 701: [2] Mahmudy, W. F., R. M. Marian and L. H. S. Luong (2013). "Real coded genetic algorithms for solving flexible job-shop scheduling problem Part II: optimization." Advanced Materials Research 701: [3] Mastrolilli, M., Gambardella, L. M., (1999) Effective Neighborhood Functions for the Flexible Job Shop Problem. Switzerland: IDSIA. [4] Pezzella, F., Morganti, G., Ciaschetti, G., (2008). A Genetic Algorithm for the Flexible Job-Shop Scheduling Problem. Elsevier. [5] Al-Hinai, N., Elmekkawy, T. Y., (2012). Solving the Flexible Job Shop Scheduling Problem with Uniform Processing Time Uncertainty. World Academy of Science, Enginering and Technology. [6] P. Brandimarte, Routing and Scheduling in a Flexible Job Shop by Tabu Search, Annals of Operations Research, vol. 41 no. 3 (1993), pp [7] Jansen, K., Mastrolilli, M., Solisoba, R., Approximation Algorithms for Flexible Job Shop Problems. World Scientific Publising. Flattening Search for the Flexible Job Shop Scheduling Problem. Twenty Second International Joint Conference. [9] Thornblad, K., Almgren, T., Patriksson, M., Stromberg, A., Mathematical Optimization of A Flexible Job Shop Problem Including Preventive Maintenance and Availability of Fixtures. [10] Behnke, D., Geiger, M. J., Test Instance for the Flexible Job Shop Scheduling Problem with Work Centers. Hamburg: Helmut- Schmidt-University. [11] Mahmudy, W. F., R. M. Marian and L. H. S. Luong (2012). Solving part type selection and loading problem in flexible manufacturing system using real coded genetic algorithms Part I: modeling. International Conference on Control, Automation and Robotics, Singapore, World Academy of Science, Engineering and Technology. [12] Mahmudy, W. F., R. M. Marian and L. H. S. Luong (2012). Solving part type selection and loading problem in flexible manufacturing system using real coded genetic algorithms Part II: optimization. International Conference on Control, Automation and Robotics, Singapore, World Academy of Science, Engineering and Technology. [8] Oddi, A., Rasconi, R., Cesta, A., Smith, S. F., Iterative Pernyataan Penulis Naskah ini dikirimkan untuk keperluan repository skripsi mahasiswa di Program Teknologi Informasi dan Ilmu Komputer, Universitas Brawijaya dan tidak melalui proses evaluasi oleh reviewer ahli seperti layaknya naskah jurnal ilmiah.

Penyelesaian Penjadwalan Flexible Job Shop Problem Menggunakan Real Coded Genetic Algorithm

Penyelesaian Penjadwalan Flexible Job Shop Problem Menggunakan Real Coded Genetic Algorithm Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 2548-964X Vol. 1, No. 1, Januari 2017, hlm 57-62 http://j-ptiik.ub.ac.id Penyelesaian Penjadwalan Flexible Job Shop Problem Menggunakan

Lebih terperinci

PENERAPAN ALGORITMA GENETIKA UNTUK MEMAKSIMALKAN LABA PRODUKSI JILBAB

PENERAPAN ALGORITMA GENETIKA UNTUK MEMAKSIMALKAN LABA PRODUKSI JILBAB Journal of Environmental Engineering & Sustainable Technology Vol. 02 No. 01, July 2015, Pages 06-11 JEEST http://jeest.ub.ac.id PENERAPAN ALGORITMA GENETIKA UNTUK MEMAKSIMALKAN LABA PRODUKSI JILBAB Samaher

Lebih terperinci

PENERAPAN ALGORITMA GENETIKA UNTUK PENENTUAN BATASAN FUNGSI KENGGOTAAN FUZZY TSUKAMOTO PADA KASUS PERAMALAN PERMINTAAN BARANG

PENERAPAN ALGORITMA GENETIKA UNTUK PENENTUAN BATASAN FUNGSI KENGGOTAAN FUZZY TSUKAMOTO PADA KASUS PERAMALAN PERMINTAAN BARANG Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) Vol. 3, No. 3, September 2016, hlm. 169-173 PENERAPAN ALGORITMA GENETIKA UNTUK PENENTUAN BATASAN FUNGSI KENGGOTAAN FUZZY TSUKAMOTO PADA KASUS PERAMALAN

Lebih terperinci

Optimasi Penjadwalan Mata Pelajaran Menggunakan Algoritma Genetika (Studi Kasus : SMPN 1 Gondang Mojokerto)

Optimasi Penjadwalan Mata Pelajaran Menggunakan Algoritma Genetika (Studi Kasus : SMPN 1 Gondang Mojokerto) Optimasi Penjadwalan Mata Pelajaran Menggunakan Algoritma Genetika (Studi Kasus : SMPN 1 Gondang Mojokerto) Dianita Dwi Permata Sari 1, Wayan Firdaus Mahmudy 2, Dian Eka Ratnawati 3 Teknik Informatika,

Lebih terperinci

PENJADWALAN KAPAL PENYEBERANGAN MENGGUNAKAN ALGORITMA GENETIKA

PENJADWALAN KAPAL PENYEBERANGAN MENGGUNAKAN ALGORITMA GENETIKA Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) Vol. 3, No. 1, Maret 2016, hlm. 48-55 PENJADWALAN KAPAL PENYEBERANGAN MENGGUNAKAN ALGORITMA GENETIKA Ria Febriyana 1, Wayan Firdaus Mahmudy 2 Program

Lebih terperinci

PENYELESAIAN VEHICLE ROUTING PROBLEM WITH TIME WINDOWS (VRPTW) MENGGUNAKAN ALGORITMA GENETIKA HYBRID

PENYELESAIAN VEHICLE ROUTING PROBLEM WITH TIME WINDOWS (VRPTW) MENGGUNAKAN ALGORITMA GENETIKA HYBRID JOURNAL OF ENVIRONMENTAL ENGINEERING & SUSTAINABLE TECHNOLOGY P-ISSN : 2356-3109 PENYELESAIAN VEHICLE ROUTING PROBLEM WITH TIME WINDOWS (VRPTW) MENGGUNAKAN ALGORITMA GENETIKA HYBRID Diah Anggraeni Pitaloka

Lebih terperinci

Penentuan Portofolio Saham Optimal Menggunakan Algoritma Genetika

Penentuan Portofolio Saham Optimal Menggunakan Algoritma Genetika Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 2548-964X Vol. 1, No. 1, Januari 2017, hlm. 63-68 http://j-ptiik.ub.ac.id Penentuan Portofolio Saham Optimal Menggunakan Algoritma Genetika

Lebih terperinci

Penerapan Algoritma Genetika Traveling Salesman Problem with Time Window: Studi Kasus Rute Antar Jemput Laundry

Penerapan Algoritma Genetika Traveling Salesman Problem with Time Window: Studi Kasus Rute Antar Jemput Laundry Suprayogi, Penerapan Algoritma Genetika Traveling Salesman Problem with Time Window: Studi Kasus Rute Antar Jemput Laundry 121 Penerapan Algoritma Genetika Traveling Salesman Problem with Time Window:

Lebih terperinci

Implementasi Algoritma Genetika Untuk Penjadwalan Customer Service (Studi Kasus: Biro Perjalanan Kangoroo)

Implementasi Algoritma Genetika Untuk Penjadwalan Customer Service (Studi Kasus: Biro Perjalanan Kangoroo) Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 2548-964X Vol., No. 6, Juni 207, hlm. 456-465 http://j-ptiik.ub.ac.id Implementasi Algoritma Genetika Untuk Penjadwalan Customer Service

Lebih terperinci

Improved Particle Swarm Optimization untuk Menyelesaikan Permasalahan Part Type Selection dan Machine Loading pada Flexible Manufacturing System (FMS)

Improved Particle Swarm Optimization untuk Menyelesaikan Permasalahan Part Type Selection dan Machine Loading pada Flexible Manufacturing System (FMS) Improved Particle Swarm Optimization untuk Menyelesaikan Permasalahan Part Type Selection dan Machine Loading pada Flexible Manufacturing System (FMS) Wayan Firdaus Mahmudy Program Teknologi Informasi

Lebih terperinci

OPTIMASI PERSEDIAAN BAJU MENGGUNAKAN ALGORITMA GENETIKA

OPTIMASI PERSEDIAAN BAJU MENGGUNAKAN ALGORITMA GENETIKA OPTIMASI PERSEDIAAN BAJU MENGGUNAKAN ALGORITMA GENETIKA andra Aditya 1), Wayan Firdaus Mahmudy 2) 1) Program Studi Teknik Informatika, Fakultas Ilmu Komputer Malang Jl. Veteran, Malang 65145, Indonesia

Lebih terperinci

OPTIMASI TRAVELLING SALESMAN PROBLEM WITH TIME WINDOWS (TSP-TW) PADA PENJADWALAN PAKET RUTE WISATA DI PULAU BALI MENGGUNAKAN ALGORITMA GENETIKA

OPTIMASI TRAVELLING SALESMAN PROBLEM WITH TIME WINDOWS (TSP-TW) PADA PENJADWALAN PAKET RUTE WISATA DI PULAU BALI MENGGUNAKAN ALGORITMA GENETIKA Seminar Nasional Sistem Informasi Indonesia, 2-3 November 2015 OPTIMASI TRAVELLING SALESMAN PROBLEM WITH TIME WINDOWS (TSP-TW) PADA PENJADWALAN PAKET RUTE WISATA DI PULAU BALI MENGGUNAKAN ALGORITMA GENETIKA

Lebih terperinci

OPTIMASI VEHICLE ROUTING PROBLEM WITH TIME WINDOWS PADA DISTRIBUSI KATERING MENGGUNAKAN ALGORITMA GENETIKA

OPTIMASI VEHICLE ROUTING PROBLEM WITH TIME WINDOWS PADA DISTRIBUSI KATERING MENGGUNAKAN ALGORITMA GENETIKA Seminar Nasional Sistem Informasi Indonesia, 2-3 November 2015 OPTIMASI VEHICLE ROUTING PROBLEM WITH TIME WINDOWS PADA DISTRIBUSI KATERING MENGGUNAKAN ALGORITMA GENETIKA Dwi Cahya Astriya Nugraha 1), Wayan

Lebih terperinci

PEMBOBOTAN PENILAIAN UJIAN PILIHAN GANDA MENGGUNAKAN ALGORITMA GENETIKA

PEMBOBOTAN PENILAIAN UJIAN PILIHAN GANDA MENGGUNAKAN ALGORITMA GENETIKA PEMBOBOTAN PENILAIAN UJIAN PILIHAN GANDA MENGGUNAKAN ALGORITMA GENETIKA Ida Wahyuni 1, Wayan Firdaus Mahmudy 2 1,2 Program Studi Magister Ilmu Komputer, Fakultas Ilmu Komputer, Universitas Brawijaya Jl.

Lebih terperinci

OPTIMASI JADWAL MENGAJAR ASISTEN LABORATORIUM MENGGUNAKAN ALGORITMA GENETIKA

OPTIMASI JADWAL MENGAJAR ASISTEN LABORATORIUM MENGGUNAKAN ALGORITMA GENETIKA OPTIMASI JADWAL MENGAJAR ASISTEN LABORATORIUM MENGGUNAKAN ALGORITMA GENETIKA Indana Zulfa 1, Wayan Firdaus Mahmudy 2, Budi Darma Setiawan 3 Teknik Informatika, Program Teknologi Informasi dan Ilmu Komputer,

Lebih terperinci

OPTIMASI PENJADWALAN PERAWAT MENGGUNAKAN ALGORITMA GENETIKA

OPTIMASI PENJADWALAN PERAWAT MENGGUNAKAN ALGORITMA GENETIKA OPTIMASI PENJADWALAN PERAWAT MENGGUNAKAN ALGORITMA GENETIKA Rifqy Rosyidah Ilmi 1, Wayan Firdaus Mahmudy 2, Dian Eka Ratnawati 2 1 Mahasiswa, 2 Dosen Pembimbing Informatika, Fakultas Ilmu Komputer, Universitas

Lebih terperinci

Algoritma Evolusi Optimasi Masalah Kombinatorial

Algoritma Evolusi Optimasi Masalah Kombinatorial Algoritma Evolusi Optimasi Masalah Kombinatorial Imam Cholissodin imam.cholissodin@gmail.com Pokok Bahasan 1. Travelling Salesman Problem (TSP) 2. Flow-Shop Scheduling Problem (FSP) 3. Two-Stage Assembly

Lebih terperinci

Penerapan Algoritma Genetika untuk Penjadwalan Asisten Praktikum

Penerapan Algoritma Genetika untuk Penjadwalan Asisten Praktikum Penerapan Algoritma Genetika untuk Penjadwalan Asisten Praktikum Okky Cintia Devi 1, Wayan Fidaus Mahmudy 2, Budi Darma Setiawan 3 Teknik Informatika, Program Teknologi Informasi dan Ilmu Komputer, Universitas

Lebih terperinci

Optimasi Pemilihan Pekerja Bangunan Proyek Pada PT. Citra Anggun Pratama Menggunakan Algoritma Genetika

Optimasi Pemilihan Pekerja Bangunan Proyek Pada PT. Citra Anggun Pratama Menggunakan Algoritma Genetika Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 2548-964X Vol. 1, No. 2, Februari 2017, hlm. 80-84 http://j-ptiik.ub.ac.id Optimasi Pemilihan Pekerja Bangunan Proyek Pada PT. Citra Anggun

Lebih terperinci

Penjadwalan Job Shop pada Empat Mesin Identik dengan Menggunakan Metode Shortest Processing Time dan Genetic Algorithm

Penjadwalan Job Shop pada Empat Mesin Identik dengan Menggunakan Metode Shortest Processing Time dan Genetic Algorithm Jurnal Telematika, vol.9 no.1, Institut Teknologi Harapan Bangsa, Bandung ISSN: 1858-251 Penjadwalan Job Shop pada Empat Mesin Identik dengan Menggunakan Metode Shortest Processing Time dan Genetic Algorithm

Lebih terperinci

OPTIMASI PART TYPE SELECTION AND MACHINE LOADING PROBLEMS PADA FMS MENGGUNAKAN METODE PARTICLE SWARM OPTIMIZATION

OPTIMASI PART TYPE SELECTION AND MACHINE LOADING PROBLEMS PADA FMS MENGGUNAKAN METODE PARTICLE SWARM OPTIMIZATION OPTIMASI PART TYPE SELECTION AND MACHINE LOADING PROBLEMS PADA FMS MENGGUNAKAN METODE PARTICLE SWARM OPTIMIZATION Wayan Firdaus Mahmudy Program Studi Ilmu Komputer, Program Teknologi Informasi dan Ilmu

Lebih terperinci

PEMODELAN REGRESI NON LINEAR MENGGUNAKAN ALGORITMA GENETIKA UNTUK PREDIKSI KEBUTUHAN AIR PDAM KOTA MALANG

PEMODELAN REGRESI NON LINEAR MENGGUNAKAN ALGORITMA GENETIKA UNTUK PREDIKSI KEBUTUHAN AIR PDAM KOTA MALANG Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) Vol. 3, No. 1, Maret 2016, hlm. 59-65 PEMODELAN REGRESI NON LINEAR MENGGUNAKAN ALGORITMA GENETIKA UNTUK PREDIKSI KEBUTUHAN AIR PDAM KOTA MALANG Vitara

Lebih terperinci

ANALISIS PENGATURAN INDIVIDU CROSSOVER DAN MUTASI ALGORITMA GENETIKA STUDI KASUS TRAVELLING SALESMAN PROBLEM

ANALISIS PENGATURAN INDIVIDU CROSSOVER DAN MUTASI ALGORITMA GENETIKA STUDI KASUS TRAVELLING SALESMAN PROBLEM ANALISIS PENGATURAN INDIVIDU CROSSOVER DAN MUTASI ALGORITMA GENETIKA STUDI KASUS TRAVELLING SALESMAN PROBLEM Sean Coonery Sumarta* 1 1 Program Studi Teknik Informatika, Universitas Atma Jaya Makassar,

Lebih terperinci

OPTIMASI FUZZY INFERENCE SYSTEM SUGENO DENGAN ALGORITMA HILL CLIMBING UNTUK PENENTUAN HARGA JUAL RUMAH

OPTIMASI FUZZY INFERENCE SYSTEM SUGENO DENGAN ALGORITMA HILL CLIMBING UNTUK PENENTUAN HARGA JUAL RUMAH Journal of Environmental Engineering & Sustainable Technology JEEST http://jeest.ub.ac.id OPTIMASI FUZZY INFERENCE SYSTEM SUGENO DENGAN ALGORITMA HILL CLIMBING UNTUK PENENTUAN HARGA JUAL RUMAH Arinda Hapsari

Lebih terperinci

IMPLEMENTASI ALGORITMA GENETIKA PADA OPTIMASI BIAYA PEMENUHAN KEBUTUHAN GIZI

IMPLEMENTASI ALGORITMA GENETIKA PADA OPTIMASI BIAYA PEMENUHAN KEBUTUHAN GIZI IMPLEMENTASI ALGORITMA GENETIKA PADA OPTIMASI BIAYA PEMENUHAN KEBUTUHAN GIZI Monica Intan Pratiwi 1, Wayan Fidaus Mahmudy, Candra Dewi Teknik Informatika, Program Teknologi Informasi dan Ilmu Komputer,

Lebih terperinci

Optimalisasi Pengantaran Barang dalam Perdagangan Online Menggunakan Algoritma Genetika

Optimalisasi Pengantaran Barang dalam Perdagangan Online Menggunakan Algoritma Genetika Optimalisasi Pengantaran Barang dalam Perdagangan Online Menggunakan Algoritma Genetika Rozak Arief Pratama 1, Esmeralda C. Djamal, Agus Komarudin Jurusan Informatika, Fakultas MIPA Universitas Jenderal

Lebih terperinci

Penerapan Algoritma Genetika untuk Optimasi Vehicle Routing Problem with Time Window (VRPTW) Studi Kasus Air Minum Kemasan

Penerapan Algoritma Genetika untuk Optimasi Vehicle Routing Problem with Time Window (VRPTW) Studi Kasus Air Minum Kemasan Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 2548-964X Vol. 1, No. 2, Februari 2017, hlm. 100-107 http://j-ptiik.ub.ac.id Penerapan Algoritma Genetika untuk Optimasi Vehicle Routing

Lebih terperinci

Optimasi distribusi barang dengan algoritma genetika

Optimasi distribusi barang dengan algoritma genetika Optimasi distribusi barang dengan algoritma genetika Yasmin Ghassani Panharesi 1, Wayan Firdaus Mahmudy 2 Informatika, Fakultas Ilmu Komputer, Universitas Brawijaya Email : yasminghassani@gmail.com 1,

Lebih terperinci

OPTIMASI VEHICLE ROUTING PROBLEM WITH TIME WINDOW (VRPTW) MENGGUNAKAN ALGORITMA GENETIKA PADA DISTRIBUSI BARANG

OPTIMASI VEHICLE ROUTING PROBLEM WITH TIME WINDOW (VRPTW) MENGGUNAKAN ALGORITMA GENETIKA PADA DISTRIBUSI BARANG OPTIMASI VEHICLE ROUTING PROBLEM WITH TIME WINDOW (VRPTW) MENGGUNAKAN ALGORITMA GENETIKA PADA DISTRIBUSI BARANG Meitasari Winardi Saputri 1, Wayan Fidaus Mahmudy, Dian Eka Ratnawati Teknik Informatika,

Lebih terperinci

Penerapan Algoritma Genetika dalam Job Shop Scheduling Problem

Penerapan Algoritma Genetika dalam Job Shop Scheduling Problem Penerapan Algoritma Genetika dalam Job Shop Scheduling Problem Haris Sriwindono Program Studi Ilmu Komputer Universitas Sanata Dharma Paingan, Maguwoharjo, Depok Sleman Yogyakarta, Telp. 0274-883037 haris@staff.usd.ac.id

Lebih terperinci

PEMBENTUKAN MODEL REGRESI HARGA SAHAM MENGGUNAKAN ALGORITMA GENETIKA

PEMBENTUKAN MODEL REGRESI HARGA SAHAM MENGGUNAKAN ALGORITMA GENETIKA PEMBENTUKAN MODEL REGRESI HARGA SAHAM MENGGUNAKAN ALGORITMA GENETIKA Asyrofa Rahmi 1, Wayan Firdaus Mahmudy 1, Program Studi Magister Ilmu Komputer, Fakultas Ilmu Komputer, Universitas Brawijaya Jl. Veteran

Lebih terperinci

Algoritma Evolusi Real-Coded GA (RCGA)

Algoritma Evolusi Real-Coded GA (RCGA) Algoritma Evolusi Real-Coded GA (RCGA) Imam Cholissodin imam.cholissodin@gmail.com Pokok Bahasan 1. Siklus RCGA 2. Alternatif Operator Reproduksi pada Pengkodean Real 3. Alternatif Operator Seleksi 4.

Lebih terperinci

KNSI OPTIMASI PART TYPE SELECTION AND MACHINE LOADING PROBLEMS PADA FMS MENGGUNAKAN METODE PARTICLE SWARM OPTIMIZATION

KNSI OPTIMASI PART TYPE SELECTION AND MACHINE LOADING PROBLEMS PADA FMS MENGGUNAKAN METODE PARTICLE SWARM OPTIMIZATION KNSI014-340 OPTIMASI PART TYPE SELECTION AND MACHINE LOADING PROBLEMS PADA FMS MENGGUNAKAN METODE PARTICLE SWARM OPTIMIZATION Wayan Firdaus Mahmudy Program Studi Ilmu Komputer, Program Teknologi Informasi

Lebih terperinci

OPTIMISASI PEMBENTUKAN SEL DIINTEGRASIKAN DENGAN PENEMPATAN MESIN DAN PENJADWALAN DI DALAM SELULAR MANUFAKTUR MENGGUNAKAN ALGORITMA GENETIKA

OPTIMISASI PEMBENTUKAN SEL DIINTEGRASIKAN DENGAN PENEMPATAN MESIN DAN PENJADWALAN DI DALAM SELULAR MANUFAKTUR MENGGUNAKAN ALGORITMA GENETIKA OPTIMISASI PEMBENTUKAN SEL DIINTEGRASIKAN DENGAN PENEMPATAN MESIN DAN PENJADWALAN DI DALAM SELULAR MANUFAKTUR MENGGUNAKAN ALGORITMA GENETIKA Oleh : Moh Khoiron 1209 100 705 Dosen pembimbing : Dr. Imam

Lebih terperinci

Modul Matakuliah Algoritma Evolusi oleh

Modul Matakuliah Algoritma Evolusi oleh Modul Matakuliah Algoritma Evolusi oleh Wayan Firdaus Mahmudy Program Teknologi Informasi dan Ilmu Komputer (PTIIK) Universitas Brawijaya September 2013 Kata Pengantar Buku ini disusun untuk mengisi kelangkaan

Lebih terperinci

OPTIMASI DISTRIBUSI PUPUK MENGGUNAKAN EVOLUTION STRATEGIES

OPTIMASI DISTRIBUSI PUPUK MENGGUNAKAN EVOLUTION STRATEGIES Journal of Environmental Engineering & Sustainable Technology Vol. 02 No. 02, November 2015, Pages 89-96 JEEST http://jeest.ub.ac.id OPTIMASI DISTRIBUSI PUPUK MENGGUNAKAN EVOLUTION STRATEGIES Fauziatul

Lebih terperinci

Penjadwalan Dinas Pegawai Menggunakan Algoritma Genetika Pada PT Kereta Api Indonesia (KAI) Daerah Operasi 7 Stasiun Besar Kediri

Penjadwalan Dinas Pegawai Menggunakan Algoritma Genetika Pada PT Kereta Api Indonesia (KAI) Daerah Operasi 7 Stasiun Besar Kediri Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 2548-964X Vol. 2, No. 11, November 2018, hlm. 4371-4376 http://j-ptiik.ub.ac.id Penjadwalan Dinas Pegawai Menggunakan Algoritma Genetika

Lebih terperinci

Lingkup Metode Optimasi

Lingkup Metode Optimasi Algoritma Genetika Lingkup Metode Optimasi Analitik Linier Non Linier Single Variabel Multi Variabel Dgn Kendala Tanpa Kendala Numerik Fibonacci Evolusi Complex Combinasi Intelijen/ Evolusi Fuzzy Logic

Lebih terperinci

PENJADWALAN MESIN BERTIPE JOB SHOP UNTUK MEMINIMALKAN MAKESPAN DENGAN METODE ALGORITMA GENETIKA (STUDI KASUS PT X)

PENJADWALAN MESIN BERTIPE JOB SHOP UNTUK MEMINIMALKAN MAKESPAN DENGAN METODE ALGORITMA GENETIKA (STUDI KASUS PT X) PENJADWALAN MESIN BERTIPE JOB SHOP UNTUK MEMINIMALKAN MAKESPAN DENGAN METODE ALGORITMA GENETIKA (STUDI KASUS PT X) Ria Krisnanti 1, Andi Sudiarso 2 1 Jurusan Teknik Mesin dan Industri, Fakultas Teknik,

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Konsep Umum Optimasi Optimasi merupakan suatu cara untuk menghasilkan suatu bentuk struktur yang aman dalam segi perencanaan dan menghasilkan struktur yang

Lebih terperinci

SKRIPSI HYBRID ALGORITMA CAT SWARM OPTIMIZATION (CSO) DAN TABU SEARCH (TS) UNTUK PENYELESAIAN PERMUTATION FLOWSHOP SCHEDULING PROBLEM (PFSP)

SKRIPSI HYBRID ALGORITMA CAT SWARM OPTIMIZATION (CSO) DAN TABU SEARCH (TS) UNTUK PENYELESAIAN PERMUTATION FLOWSHOP SCHEDULING PROBLEM (PFSP) SKRIPSI HYBRID ALGORITMA CAT SWARM OPTIMIZATION (CSO) DAN TABU SEARCH (TS) UNTUK PENYELESAIAN PERMUTATION FLOWSHOP SCHEDULING PROBLEM (PFSP) QORIMA EMILA PUSPARANI PROGRAM STUDI S1 MATEMATIKA DEPARTEMEN

Lebih terperinci

PENERAPAN ALGORITMA GENETIKA UNTUK TRAVELING SALESMAN PROBLEM DENGAN MENGGUNAKAN METODE ORDER CROSSOVER DAN INSERTION MUTATION

PENERAPAN ALGORITMA GENETIKA UNTUK TRAVELING SALESMAN PROBLEM DENGAN MENGGUNAKAN METODE ORDER CROSSOVER DAN INSERTION MUTATION PENERAPAN ALGORITMA GENETIKA UNTUK TRAVELING SALESMAN PROBLEM DENGAN MENGGUNAKAN METODE ORDER CROSSOVER DAN INSERTION MUTATION Samuel Lukas 1, Toni Anwar 1, Willi Yuliani 2 1) Dosen Teknik Informatika,

Lebih terperinci

PENERAPAN ALGORITMA GENETIKA UNTUK PERMASALAHAN OPTIMASI DISTRIBUSI BARANG DUA TAHAP

PENERAPAN ALGORITMA GENETIKA UNTUK PERMASALAHAN OPTIMASI DISTRIBUSI BARANG DUA TAHAP PENERAPAN ALGORITMA GENETIKA UNTUK PERMASALAHAN OPTIMASI DISTRIBUSI BARANG DUA TAHAP Riska Sulistiyorini ), Wayan Firdaus Mahmudy ), Program Studi Teknik Informatika Program Teknologi Informasi dan Ilmu

Lebih terperinci

ABSTRAK. Job shop scheduling problem merupakan salah satu masalah. penjadwalan yang memiliki kendala urutan pemrosesan tugas.

ABSTRAK. Job shop scheduling problem merupakan salah satu masalah. penjadwalan yang memiliki kendala urutan pemrosesan tugas. ABSTRAK Job shop scheduling problem merupakan salah satu masalah penjadwalan yang memiliki kendala urutan pemrosesan tugas. Pada skripsi ini, metode yang akan digunakan untuk menyelesaikan job shop scheduling

Lebih terperinci

Implementasi Genetic Algorithm Dan Artificial Neural Network Untuk Deteksi Dini Jenis Attention Deficit Hyperactivity Disorder

Implementasi Genetic Algorithm Dan Artificial Neural Network Untuk Deteksi Dini Jenis Attention Deficit Hyperactivity Disorder Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 2548-964X Vol. 2, No. 2, Februari 2018, hlm. 688-694 http://j-ptiik.ub.ac.id Implementasi Genetic Algorithm Dan Artificial Neural Network

Lebih terperinci

Algoritma Evolusi Dasar-Dasar Algoritma Genetika

Algoritma Evolusi Dasar-Dasar Algoritma Genetika Algoritma Evolusi Dasar-Dasar Algoritma Genetika Imam Cholissodin imam.cholissodin@gmail.com Pokok Bahasan 1. Pengantar 2. Struktur Algoritma Genetika 3. Studi Kasus: Maksimasi Fungsi Sederhana 4. Studi

Lebih terperinci

Optimasi Penjadwalan Ujian Menggunakan Algoritma Genetika

Optimasi Penjadwalan Ujian Menggunakan Algoritma Genetika Optimasi Penjadwalan Ujian Menggunakan Algoritma Genetika Nia Kurnia Mawaddah Wayan Firdaus Mahmudy, (wayanfm@ub.ac.id) Jurusan Matematika, FMIPA Universitas Brawijaya, Malang 65145 Abstrak Penjadwalan

Lebih terperinci

IMPLEMENTASI ALGORITMA GENETIKA UNTUK PENCARIAN RUTE PALING OPTIMUM

IMPLEMENTASI ALGORITMA GENETIKA UNTUK PENCARIAN RUTE PALING OPTIMUM IMPLEMENTASI ALGORITMA GENETIKA UNTUK PENCARIAN RUTE PALING OPTIMUM Anies Hannawati, Thiang, Eleazar Fakultas Teknologi Industri, Jurusan Teknik Elektro, Universitas Kristen Petra Jl. Siwalankerto 121-131,

Lebih terperinci

SIMULASI A TRIA MESI DALAM PE GOLAHA PERTA IA DE GA METODE JOB SHOP SCHEDULLI G PROBLEM

SIMULASI A TRIA MESI DALAM PE GOLAHA PERTA IA DE GA METODE JOB SHOP SCHEDULLI G PROBLEM Prosiding Seminar Nasional SPMIPA 2006 SIMULASI A TRIA MESI DALAM PE GOLAHA PERTA IA DE GA METODE JOB SHOP SCHEDULLI G PROBLEM Satriyo Adhy, Edy Suharto Program Studi Ilmu Komputer Jurusan Matematika Fakultas

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada Bab II dijelaskan landasan teori yang digunakan untuk mendukung tugas akhir ini. Subbab 2.1 membahas teori SP secara umum, kemudian Subbab 2.2 lebih khusus membahas PFSP. Pada

Lebih terperinci

Optimasi Fungsi Tanpa Kendala Menggunakan Algoritma Genetika Dengan Kromosom Biner dan Perbaikan Kromosom Hill-Climbing

Optimasi Fungsi Tanpa Kendala Menggunakan Algoritma Genetika Dengan Kromosom Biner dan Perbaikan Kromosom Hill-Climbing Optimasi Fungsi Tanpa Kendala Menggunakan Algoritma Genetika Dengan Kromosom Biner dan Perbaikan Kromosom Hill-Climbing Wayan Firdaus Mahmudy, (wayanfm@ub.ac.id) Program Studi Ilmu Komputer, Universitas

Lebih terperinci

OPTIMASI RUTE ANTAR JEMPUT LAUNDRY DENGAN TIME WINDOWS (TSPTW) MENGGUNAKAN ALGORITMA GENETIKA

OPTIMASI RUTE ANTAR JEMPUT LAUNDRY DENGAN TIME WINDOWS (TSPTW) MENGGUNAKAN ALGORITMA GENETIKA OPTIMASI RUTE ANTAR JEMPUT LAUNDRY DENGAN TIME WINDOWS (TSPTW) MENGGUNAKAN ALGORITMA GENETIKA Dwi Aries Suprayogi, Wayan Firdaus Mahmudy, Muhammad Tanzil Furqon Teknik Informatika, Program Teknologi Informasi

Lebih terperinci

ABSTRAK. Universitas Kristen Maranatha

ABSTRAK. Universitas Kristen Maranatha ABSTRAK Perusahaan X merupakan salah satu perusahaan manufaktur yang memproduksi berbagai macam produk berbahan baku besi dan stainless steel. Produk yang dihasilkan seperti cabinet, trolley, pagar, tangki

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Travelling Salesman Problem (TSP) Travelling Salesmen Problem (TSP) termasuk ke dalam kelas NP hard yang pada umumnya menggunakan pendekatan heuristik untuk mencari solusinya.

Lebih terperinci

Optimasi Persediaan Barang Dalam Produksi Jilbab Menggunakan Algoritma Genetika

Optimasi Persediaan Barang Dalam Produksi Jilbab Menggunakan Algoritma Genetika Optimasi Persediaan Barang Dalam Produksi Jilbab Menggunakan Algoritma Genetika Maretta Dwi Tika Ramuna 1), Wayan Firdaus Mahmudy 2) Program Studi Informatika / Ilmu Komputer Program Teknologi Informasi

Lebih terperinci

OPTIMASI PEMILIHAN ANTIHIPERTENSI MENGGUNAKAN ALGORITMA GENETIKA

OPTIMASI PEMILIHAN ANTIHIPERTENSI MENGGUNAKAN ALGORITMA GENETIKA Prosiding Seminar Nasional Teknologi dan Rekayasa Informasi Tahun 2016 Peran Teknologi dan Rekayasa Informasi dalam Implementasi Geostrategi Indonesia Malang, 18 Oktober 2016 OPTIMASI PEMILIHAN ANTIHIPERTENSI

Lebih terperinci

Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: X

Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: X Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: -X Vol., No., Maret 0, hlm. - http://j-ptiik.ub.ac.id Optimasi Penjadwalan Asisten Praktikum pada Laboratorium Pembelajaran Menggunakan

Lebih terperinci

PEMAKAIAN ALGORITMA GENETIK UNTUK PENJADWALAN JOB SHOP DINAMIS NON DETERMINISTIK

PEMAKAIAN ALGORITMA GENETIK UNTUK PENJADWALAN JOB SHOP DINAMIS NON DETERMINISTIK PEMAKAIAN ALGORITMA GENETIK UNTUK PENJADWALAN JOB SHOP DINAMIS (Nico Saputro, et al.) PEMAKAIAN ALGORITMA GENETIK UNTUK PENJADWALAN JOB SHOP DINAMIS NON DETERMINISTIK Nico Saputro, Yento Jurusan Ilmu Komputer

Lebih terperinci

Analisis Operator Crossover pada Permasalahan Permainan Puzzle

Analisis Operator Crossover pada Permasalahan Permainan Puzzle Analisis Operator Crossover pada Permasalahan Permainan Puzzle Kun Siwi Trilestari [1], Ade Andri Hendriadi [2] Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Singaperbanga Karawang

Lebih terperinci

Denny Hermawanto

Denny Hermawanto Algoritma Genetika dan Contoh Aplikasinya Denny Hermawanto d_3_nny@yahoo.com http://dennyhermawanto.webhop.org Lisensi Dokumen: Seluruh dokumen di IlmuKomputer.Com dapat digunakan, dimodifikasi dan disebarkan

Lebih terperinci

Algoritma Genetika Ganda (AGG) untuk Capacitated Vehicle Routing Problem (CVRP)

Algoritma Genetika Ganda (AGG) untuk Capacitated Vehicle Routing Problem (CVRP) SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2015 T 6 Algoritma Genetika Ganda (AGG) untuk Capacitated Vehicle Routing Problem (CVRP) Daryono Budi Utomo, Mohammad Isa Irawan, Muhammad Luthfi

Lebih terperinci

PENERAPAN EVOLUTIONARY ALGORITHM PADA PENJADWALAN PRODUKSI (Studi Kasus di PT Brother Silver Product Indonesia)

PENERAPAN EVOLUTIONARY ALGORITHM PADA PENJADWALAN PRODUKSI (Studi Kasus di PT Brother Silver Product Indonesia) PENERAPAN EVOLUTIONARY ALGORITHM PADA PENJADWALAN PRODUKSI (Studi Kasus di PT Brother Silver Product Indonesia) I Gede Agus Widyadana Dosen Fakultas Teknologi Industri, Jurusan Teknik Industri Universitas

Lebih terperinci

ABSTRAK. Universitas Kristen Maranatha

ABSTRAK. Universitas Kristen Maranatha ABSTRAK Dalam beberapa tahun terakhir ini, peranan algoritma genetika terutama untuk masalah optimisasi, berkembang dengan pesat. Masalah optimisasi ini beraneka ragam tergantung dari bidangnya. Dalam

Lebih terperinci

PERBANDINGAN KINERJA ALGORITMA GENETIKA DAN SIMULATED ANNEALING UNTUK MASALAH MULTIPLE OBJECTIVE PADA PENJADWALAN FLOWSHOP

PERBANDINGAN KINERJA ALGORITMA GENETIKA DAN SIMULATED ANNEALING UNTUK MASALAH MULTIPLE OBJECTIVE PADA PENJADWALAN FLOWSHOP JURNAL TEKNIK INDUSTRI VOL. 4, NO. 1, JUNI 2002: 26-35 PERBANDINGAN KINERJA ALGORITMA GENETIKA DAN SIMULATED ANNEALING UNTUK MASALAH MULTIPLE OBJECTIVE PADA PENJADWALAN FLOWSHOP I Gede Agus Widyadana Dosen

Lebih terperinci

USULAN PENERAPAN PENJADWALAN DENGAN MENGGUNAKAN METODE ALGORITMA GENETIKA DI PD BLESSING

USULAN PENERAPAN PENJADWALAN DENGAN MENGGUNAKAN METODE ALGORITMA GENETIKA DI PD BLESSING USULAN PENERAPAN PENJADWALAN DENGAN MENGGUNAKAN METODE ALGORITMA GENETIKA DI PD BLESSING Santoso 1*, Eldad Dufan Sopater Subito 2 1,2 Jurusan Teknik Industri, Fakultas Teknik, Universitas Kristen Maranatha

Lebih terperinci

IMPLEMENTASI ALGORITMA GENETIKA PADA PENJADWALAN PERKULIAHAN

IMPLEMENTASI ALGORITMA GENETIKA PADA PENJADWALAN PERKULIAHAN IMPLEMENTASI ALGORITMA GENETIKA PADA PENJADWALAN PERKULIAHAN Uning Lestari 2, Naniek Widyastuti 3, Desti Arghina Listyaningrum 1 1,2,3 Teknik Informatika, Fakultas Teknologi Industri, IST AKPRIND Yogyakarta

Lebih terperinci

Penerapan Algoritma Genetika Untuk Vehicle Routing Problem with Time Window (VRPTW) Pada Kasus Optimasi Distribusi Beras Bersubsidi

Penerapan Algoritma Genetika Untuk Vehicle Routing Problem with Time Window (VRPTW) Pada Kasus Optimasi Distribusi Beras Bersubsidi Penerapan Algoritma Genetika Untuk Vehicle Routing Problem with Time Window (VRPTW) Pada Kasus Optimasi Distribusi Beras Bersubsidi Farah Bahtera Putri 1, Wayan Fidaus Mahmudy, Dian Eka Ratnawati Teknik

Lebih terperinci

PENERAPAN ALGORITMA CODEQ UNTUK MENYELESAIKAN PERMASALAHAN JOB SHOP SCHEDULING

PENERAPAN ALGORITMA CODEQ UNTUK MENYELESAIKAN PERMASALAHAN JOB SHOP SCHEDULING PENERAPAN ALGORITMA CODEQ UNTUK MENYELESAIKAN PERMASALAHAN JOB SHOP SCHEDULING Dosen Pembimbing: 1. Yudha Prasetyawan, S.T. M.Eng 2. Ir. Budi Santosa, M.S., Ph.D. Oleh: M Bisyrul Jawwad 2507100069 Pendahuluan

Lebih terperinci

PENJADWALAN PRODUKSI MENGGUNAKAN PENDEKATAN ALGORITMA GENETIKA DI PT PERTANI (PERSERO) CABANG D.I. YOGYAKARTA

PENJADWALAN PRODUKSI MENGGUNAKAN PENDEKATAN ALGORITMA GENETIKA DI PT PERTANI (PERSERO) CABANG D.I. YOGYAKARTA PENJADWALAN PRODUKSI MENGGUNAKAN PENDEKATAN ALGORITMA GENETIKA DI PT PERTANI (PERSERO) CABANG D.I. YOGYAKARTA Alex Alfandianto, Yohanes Anton Nugroho, Widya Setiafindari Program Studi Teknik Industri Universitas

Lebih terperinci

PENGEMBANGAN ALGORITMA DIFFERENTIAL EVOLUTION UNTUK PENJADWALAN FLOW SHOP MULTI OBYEKTIF DENGAN BANYAK MESIN ABSTRAK

PENGEMBANGAN ALGORITMA DIFFERENTIAL EVOLUTION UNTUK PENJADWALAN FLOW SHOP MULTI OBYEKTIF DENGAN BANYAK MESIN ABSTRAK PENGEMBANGAN ALGORITMA DIFFERENTIAL EVOLUTION UNTUK PENJADWALAN FLOW SHOP MULTI OBYEKTIF DENGAN BANYAK MESIN Rudi Nurdiansyah Jurusan Teknik Industri, Fakultas Teknologi Industri, Institut Teknologi Sepuluh

Lebih terperinci

Penerapan Adaptive Genetic Algorithm dengan Fuzzy Logic Controller pada Capacitated Vehicle Routing Problem

Penerapan Adaptive Genetic Algorithm dengan Fuzzy Logic Controller pada Capacitated Vehicle Routing Problem Penerapan Adaptive Genetic Algorithm dengan Fuzzy Logic Controller pada Capacitated Vehicle Routing Problem Tri Kusnandi Fazarudin 1, Rasyid Kurniawan 2, Mahmud Dwi Sulistiyo 3 1,2 Prodi S1 Teknik Informatika,

Lebih terperinci

OPTIMASI PENJADWALAN PENGERJAAN SOFTWARE PADA SOFTWARE HOUSE DENGAN FLOW-SHOP PROBLEM MENGGUNAKAN ARTIFICIAL BEE COLONY

OPTIMASI PENJADWALAN PENGERJAAN SOFTWARE PADA SOFTWARE HOUSE DENGAN FLOW-SHOP PROBLEM MENGGUNAKAN ARTIFICIAL BEE COLONY Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) p-issn: 2355-7699 Vol. 3, No. 4, Desember 2016, hlm. 259-264 e-issn: 2528-6579 OPTIMASI PENJADWALAN PENGERJAAN SOFTWARE PADA SOFTWARE HOUSE DENGAN FLOW-SHOP

Lebih terperinci

Penerapan Algoritma Genetika untuk Optimasi Vehicle Routing Problem with Time Window (VRPTW) Studi Kasus Air Minum Kemasan

Penerapan Algoritma Genetika untuk Optimasi Vehicle Routing Problem with Time Window (VRPTW) Studi Kasus Air Minum Kemasan Penerapan Algoritma Genetika untuk Optimasi Vehicle Routing Problem with Time Window (VRPTW) Studi Kasus Air Minum Kemasan Dita Sundarnigsih 1, Wayan Firdaus Mahmudy, Sutrisno Teknik Informatika, Program

Lebih terperinci

Pencarian Rute Optimum Menggunakan Algoritma Genetika

Pencarian Rute Optimum Menggunakan Algoritma Genetika Jurnal Teknik Elektro Vol. 2, No. 2, September 2002: 78-83 Pencarian Rute Optimum Menggunakan Algoritma Genetika Anies Hannawati, Thiang, Eleazar Fakultas Teknologi Industri, Jurusan Teknik Elektro, Universitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka (Samuel, Toni & Willi 2005) dalam penelitian yang berjudul Penerapan Algoritma Genetika untuk Traveling Salesman Problem Dengan Menggunakan Metode Order Crossover

Lebih terperinci

PENERAPAN ALGORITMA GENETIKA UNTUK MENENTUKAN BIAYA MINIMAL DISTRIBUSI BARANG TIGA TAHAP PT. SEMEN TONASA

PENERAPAN ALGORITMA GENETIKA UNTUK MENENTUKAN BIAYA MINIMAL DISTRIBUSI BARANG TIGA TAHAP PT. SEMEN TONASA PENERAPAN ALGORITMA GENETIKA UNTUK MENENTUKAN BIAYA MINIMAL DISTRIBUSI BARANG TIGA TAHAP PT. SEMEN TONASA Andi Baharuddin 1, Aidawayati Rangkuti 2, Armin Lawi 3 Program Studi Matematika, Jurusan Matematika,

Lebih terperinci

PENGGUNAAN ALGORITMA GENETIKA PADA PENJADWALAN PRODUKSI DI PT DNP INDONESIA PULO GADUNG

PENGGUNAAN ALGORITMA GENETIKA PADA PENJADWALAN PRODUKSI DI PT DNP INDONESIA PULO GADUNG PENGGUNAAN ALGORITMA GENETIKA PADA PENJADWALAN PRODUKSI DI PT DNP INDONESIA PULO GADUNG Suriadi AS, Ulil Hamida, N. Anna Irvani STMI Jakarta, Kementerian Perindustrian RI ABSTRAK Permasalahan yang terjadi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Penjadwalan dan Penjadwalan Flow shop Menurut Kumar (2011), jadwal merupakan rencana sistematis yang umumnya menceritakan hal-hal yang akan dikerjakan. Menurut Pinedo (2005),

Lebih terperinci

PERFORMANCE ALGORITMA GENETIKA (GA) PADA PENJADWALAN MATA PELAJARAN

PERFORMANCE ALGORITMA GENETIKA (GA) PADA PENJADWALAN MATA PELAJARAN PERFORMANCE ALGORITMA GENETIKA (GA) PADA PENJADWALAN MATA PELAJARAN Eva Desiana, M.Kom Pascasarjana Teknik Informatika Universitas Sumatera Utara, SMP Negeri 5 Pematangsianta Jl. Universitas Medan, Jl.

Lebih terperinci

SWARM GENETIC ALGORITHM, SUATU HIBRIDA DARI ALGORITMA GENETIKA DAN PARTICLE SWARM OPTIMIZATION. Taufan Mahardhika 1

SWARM GENETIC ALGORITHM, SUATU HIBRIDA DARI ALGORITMA GENETIKA DAN PARTICLE SWARM OPTIMIZATION. Taufan Mahardhika 1 SWARM GENETIC ALGORITHM, SUATU HIBRIDA DARI ALGORITMA GENETIKA DAN PARTICLE SWARM OPTIMIZATION Taufan Mahardhika 1 1 Prodi S1 Kimia, Sekolah Tinggi Analis Bakti Asih 1 taufansensei@yahoo.com Abstrak Swarm

Lebih terperinci

Penjadwalan dan Penentuan Rute Kendaraan pada Industri Bahan Kimia Menggunakan Kombinasi Algoritma Genetika dan Algoritma Pencarian Tabu

Penjadwalan dan Penentuan Rute Kendaraan pada Industri Bahan Kimia Menggunakan Kombinasi Algoritma Genetika dan Algoritma Pencarian Tabu JURNAL TEKNIK POMITS Vol. 1, No. 1, (2012) 1-7 1 Penjadwalan dan Penentuan Rute Kendaraan pada Industri Bahan Kimia Menggunakan Kombinasi Genetika dan Pencarian Tabu Maya Sagita Walalangi, Arif Djunaidy

Lebih terperinci

Penerapan Genetic Algorithm Untuk Optimasi Peningkatan Laba Persediaan Produksi Pakaian

Penerapan Genetic Algorithm Untuk Optimasi Peningkatan Laba Persediaan Produksi Pakaian Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 2548-964X Vol. 2, No. 6, Juni 218, hlm. 2168-2172 http://j-ptiik.ub.ac.id Penerapan Genetic Algorithm Untuk Optimasi Peningkatan Laba Persediaan

Lebih terperinci

Optimasi Multi Travelling Salesman Problem (M-TSP) Menggunakan Algoritma Genetika

Optimasi Multi Travelling Salesman Problem (M-TSP) Menggunakan Algoritma Genetika Optimasi Multi Travelling Salesman Problem (M-TSP) Menggunakan Algoritma Genetika Wayan Firdaus Mahmudy (wayanfm@ub.ac.id) Program Studi Ilmu Komputer, Universitas Brawijaya, Malang, Indonesia Abstrak.

Lebih terperinci

Peramalan Kebutuhan Beban Sistem Tenaga Listrik Menggunakan Algoritma Genetika

Peramalan Kebutuhan Beban Sistem Tenaga Listrik Menggunakan Algoritma Genetika Peramalan Kebutuhan Beban Sistem Tenaga Listrik Menggunakan Algoritma Genetika M. Syafrizal, Luh Kesuma Wardhani, M. Irsyad Jurusan Teknik Informatika - Universitas Islam Negeri Sultan Syarif Kasim Riau

Lebih terperinci

PENYELESAIAN PERMUTATION FLOW SHOP SCHEDULING PROBLEM MENGGUNAKAN ALGORITMA MEMETIKA DAN GRASP Nola Marina, M.Si Universitas Gunadarma

PENYELESAIAN PERMUTATION FLOW SHOP SCHEDULING PROBLEM MENGGUNAKAN ALGORITMA MEMETIKA DAN GRASP Nola Marina, M.Si Universitas Gunadarma PENYELESAIAN PERMUTATION FLOW SHOP SCHEDULING PROBLEM MENGGUNAKAN ALGORITMA MEMETIKA DAN GRASP Nola Marina, M.Si Universitas Gunadarma nola.marina@staff.gunadarma.ac.id Abstrak. Permutation Flowshop Scheduling

Lebih terperinci

PENJADWALAN OPERASIONAL PEMBANGKIT BERBASIS ALGORITMA GENETIK PADA SISTEM PEMBANGKIT SUMATERA BAGIAN TENGAH

PENJADWALAN OPERASIONAL PEMBANGKIT BERBASIS ALGORITMA GENETIK PADA SISTEM PEMBANGKIT SUMATERA BAGIAN TENGAH Penjadwalan Operasional Pembangkit Berbasis Algoritma Genetik (Dwi Ana dkk) PENJADWALAN OPERASIONAL PEMBANGKIT BERBASIS ALGORITMA GENETIK PADA SISTEM PEMBANGKIT SUMATERA BAGIAN TENGAH Rahmanul Ikhsan 1,

Lebih terperinci

OPTIMASI PENJADWALAN CERDAS MENGGUNAKAN ALGORITMA MEMETIKA

OPTIMASI PENJADWALAN CERDAS MENGGUNAKAN ALGORITMA MEMETIKA OPTIMASI PENJADWALAN CERDAS MENGGUNAKAN ALGORITMA MEMETIKA Muhammad Arief Nugroho 1, Galih Hermawan, S.Kom., M.T. 2 1, 2 Universitas Komputer Indonesia Jl. Dipatiukur No. 112-116, Bandung 40132 E-mail

Lebih terperinci

ABSTRAK. v Universitas Kristen Maranatha

ABSTRAK. v Universitas Kristen Maranatha ABSTRAK PD BLESSING adalah sebuah perusahaan di Kota Bandung yang memproduksi pakaian bayi (Jumper). Perusahaan memproduksi barang sesuai dengan pesanan konsumen (job order). Pesanan dari konsumen dikumpulkan

Lebih terperinci

MODEL PENYELESAIAN JOB SHOP SCHEDULING PROBLEM MENGGUNAKAN METODE LOCAL SEARCH ALGORITHM DENGAN CROSS OVER

MODEL PENYELESAIAN JOB SHOP SCHEDULING PROBLEM MENGGUNAKAN METODE LOCAL SEARCH ALGORITHM DENGAN CROSS OVER MODEL PENYELESAIAN JOB SHOP SCHEDULING PROBLEM MENGGUNAKAN METODE LOCAL SEARCH ALGORITHM DENGAN CROSS OVER Amiluddin Zahri Dosen Universtas Bina Darma Jalan Ahmad Yani No.3 Palembang Sur-el: amiluddin@binadarma.ac.id

Lebih terperinci

BAB II LANDASAN TEORI. Evolutionary Algorithm merupakan terminologi umum yang menjadi payung

BAB II LANDASAN TEORI. Evolutionary Algorithm merupakan terminologi umum yang menjadi payung BAB II LANDASAN TEORI 2.1 Algoritma Genetika Evolutionary Algorithm merupakan terminologi umum yang menjadi payung bagi empat istilah : algoritma genetika (genetic algorithm), pemrograman genetika (genetic

Lebih terperinci

BAB I PENDAHULUAN. lebih efektif dan efisien karena akan melewati rute yang minimal jaraknya,

BAB I PENDAHULUAN. lebih efektif dan efisien karena akan melewati rute yang minimal jaraknya, BAB I PENDAHULUAN A. Latar Belakang Distribusi merupakan proses penyaluran produk dari produsen sampai ke tangan masyarakat atau konsumen. Kemudahan konsumen dalam mendapatkan produk yang diinginkan menjadi

Lebih terperinci

Lampiran Lampiran

Lampiran Lampiran DAFTAR ISI PERNYATAAN KEASLIAN SKRIPSI... i ABSTRAK... ii ABSTRACT... iii KATA PENGANTAR... iv DAFTAR ISI... vi DAFTAR TABEL... ix DAFTAR TABEL LAMPIRAN... xi DAFTAR GAMBAR... xii BAB I PENDAHULUAN...

Lebih terperinci

PENGARUH ELISTM DALAM PENYELESAIAN PERMASALAHAN PENJADWALAN MESIN DENGAN MENGGUNAKAN ALGORITMA BEREVOLUSI

PENGARUH ELISTM DALAM PENYELESAIAN PERMASALAHAN PENJADWALAN MESIN DENGAN MENGGUNAKAN ALGORITMA BEREVOLUSI PENGARUH ELISTM DALAM PENYELESAIAN PERMASALAHAN PENJADWALAN MESIN DENGAN MENGGUNAKAN ALGORITMA BEREVOLUSI Sri Yulianti, Nurmaulidar, dan Taufiq Abdul Gani Jurusan Matematika, FMIPA Center for Computational

Lebih terperinci

ALGORITMA GENETIKA; Teori dan Aplikasi Edisi 2, oleh Dr. Eng. Admi Syarif Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-889398; Fax: 0274-889057; E-mail: info@grahailmu.co.id

Lebih terperinci

Optimasi Penyusunan Paket Suku Cadang Pada PT. XYZ Menggunakan Metode Algoritma Genetik

Optimasi Penyusunan Paket Suku Cadang Pada PT. XYZ Menggunakan Metode Algoritma Genetik Optimasi Penyusunan Paket Suku Cadang Pada PT. XYZ Menggunakan Metode Algoritma Genetik Ridzky Utomo 1,, Pratya Poeri S 2, Mira Rahayu 3 Program Studi Teknik Industri, Fakultas Rekayasa Industri,Institut

Lebih terperinci

OPTIMASI MULTI TRAVELLING SALESMAN PROBLEM (M-TSP) UNTUK DISTRIBUSI PRODUK PADA HOME INDUSTRI TEKSTIL DENGAN ALGORITMA GENETIKA

OPTIMASI MULTI TRAVELLING SALESMAN PROBLEM (M-TSP) UNTUK DISTRIBUSI PRODUK PADA HOME INDUSTRI TEKSTIL DENGAN ALGORITMA GENETIKA OPTIMASI MULTI TRAVELLING SALESMAN PROBLEM (M-TSP) UNTUK DISTRIBUSI PRODUK PADA HOME INDUSTRI TEKSTIL DENGAN ALGORITMA GENETIKA Agung Mustika Rizki, Wayan Firdaus Mahmudy, Gusti Eka Yuliastuti Program

Lebih terperinci

DAFTAR ISI BAB I PENDAHULUAN Latar Belakang Masalah Rumusan Masalah Batasan Masalah Tujuan Penelitian...

DAFTAR ISI BAB I PENDAHULUAN Latar Belakang Masalah Rumusan Masalah Batasan Masalah Tujuan Penelitian... DAFTAR ISI Halaman Judul... Lembar Pengesahan Pembirnbing... Lembar Pengesahan Penguji... Halaman Persembahan... Halaman Motto... Kata Pengantar... Daftar Isi... Daftar Gambar... Daftar Tabel... Abstrak...

Lebih terperinci

DASAR-DASAR Algoritma Evolusi

DASAR-DASAR Algoritma Evolusi Modul Kuliah Semester Ganjil 2015-2016 DASAR-DASAR Algoritma Evolusi Wayan Firdaus Mahmudy Program Teknologi Informasi dan Ilmu Komputer (PTIIK) Universitas Brawijaya Kata Pengantar Algoritma evolusi

Lebih terperinci

ABSTRAK. Laporan Tugas Akhir. Universitas Kristen Maranatha

ABSTRAK. Laporan Tugas Akhir. Universitas Kristen Maranatha ABSTRAK PT. Kerta Laksana adalah perusahaan manufaktur yang bergerak di bidang pembuatan mesin, dimana pesanan pada perusahaan ini bersifat Job Order. Dalam menjadwalkan pesanan yang diterima, perusahaan

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Algoritma Genetika

BAB 2 LANDASAN TEORI. 2.1 Algoritma Genetika 6 BAB 2 LANDASAN TEORI 2.1 Algoritma Genetika Algoritma genetika merupakan metode pencarian yang disesuaikan dengan proses genetika dari organisme-organisme biologi yang berdasarkan pada teori evolusi

Lebih terperinci