Experimental Study of Heat Pipe for Solar Collector Heater

Ukuran: px
Mulai penontonan dengan halaman:

Download "Experimental Study of Heat Pipe for Solar Collector Heater"

Transkripsi

1 Jurnal Teknik Mesin ITP 6(1) (2016) 6-14 Experimental Study of Heat Pipe for Solar Collector Heater Studi Eksperimen Pipa Kalor untuk Pemanas Kolektor Surya Dian Wahyu Department of Mechanical Engineering, Politeknik Negeri Padang Received 10 Maret 2016; revised 14 Maret 2016; accepted 15 Maret 2016, Published 16 April 2016 Academic Editor: Asmara Yanto Correspondence should be addressed to Copyright 2016 D. Wahyu. This is an open access article distributed under the Creative Commons Attribution License. Abstract Heat pipes with a size of m diameter x 1.3 m lenght x m thick and absorber with a size of 1m length x 0.1 m width has been created and tested to be used as a solar collector heating element. Heat pipes are made using water as the heat transport medium and using a stainless steel mesh wick 120 as a tool that helps accelerate the flow of condensate inside the heat pipe. Testing of heat pipes will be do in two condition at an inclination of 30 o, before the heat pipes selected as the heating element in the solar collector. Testing of heat pipe on the first condition is done by using 1,000 ml of hot water temperature of 100 o C with the power supply of 20 watts as a heat source in the evaporator side and further testing of pipe heat was tested by direct solar radiation, this test is intended to see directly if heat pipe was made able to work in conditions that are expected. Tests are done to see the heat transfer capacity and response speed (τ) of the heat pipe. Based on testing obtained the fastest response in the heat pipes transfer of the heat contained in the filling ratio of 20% with the heat transfer efficiency of 75%. Keywords: heat pipe, heating elemen, solar collector 1. Pendahuluan Perpres Nomor 5 Tahun 2006 Tentang Kebijakan Energi Nasional (KEN) menunjukkan adanya supaya agar pemakaian energi baru dan terbarukan meningkat. Energi terbarukan adalah sumber energi yang dihasilkan dari sumberdaya energi yang secara alamiah tidak akan habis dan dapat berkelanjutan jika dikelola dengan baik, antara lain energi surya, panas bumi, bahan bakar nabati (biofuel), arus sungai, energi angin, biomassa, dan energi laut. Indonesia memiliki potensi menjadikan energi surya sebagai salah satu sumber energi alternatif masa depan, karena indonesia terletak pada posisi khatulistiwa. Berdasarkan letaknya, Indonesia berada di daerah beriklim tropik dimana daerah ini kaya akan curahan energi surya. Kementerian Energi dan Sumber Daya Mineral memberikan data potensi energi surya harian rata-rata di Indonesia sebesar 4,5-6,8 kwh/m 2 /hari. Bandung terletak pada koordinat 107 o 36 Bujur Timur dan 6 o 55 Lintang Selatan. Berdasarkan program Meteonorm radiasi ratarata harian berkisar antara 4,5-5,4 kwh/m 2 /hari. Berdasarkan hal tersebut, pertimbangan untuk memanfaatkan energi surya sangat mungkin dilakukan. Usaha pemanfaatan energi surya untuk memberikan sumbangan bagi pemenuhan kebutuhan energi sejak lama telah dilakukan tetapi belum optimal. Pada saat ini pemanfaatan energi surya telah dilakukan dengan dua cara, yaitu dengan menggunakan teknologi surya fotovoltaik dan teknologi surya termal. Teknologi surya fotovoltaik biasanya digunakan untuk pemenuhan kebutuhan listrik skala kecil seperti penerangan rumah, penyuplai pompa air, penyuplai televisi LCD dan LED, dan lain-lain. Sementara teknologi surya termal dapat digunakan langsung seperti untuk pengering dan pemanas air. Namun potensi ini belum termanfaatkan secara optimal khususnya untuk kebutuhan skala rumah tangga melalui penggunaan kolektor surya. Salah satu penyebabnya adalah adanya anggapan masyarakat bahwa kolektor surya sebagai alat untuk mengkonversi energi surya merupakan barang ekslusif berteknologi tinggi yang harganya cukup mahal. Tentu asumsi tersebut tidak sepenuhnya benar karena masih banyak faktor lain yang perlu dipertimbangkan khususnya untuk jangka panjang. Hal ini menarik untuk dikaji lebih mendalam, bagaimana mendapatkan kolektor 2016 ITP Press. All rights reserved. DOI /JTM.2016.V

2 Dian Wahyu / Jurnal Teknik Mesin ITP 6(1) (2016) surya sebagai pre-heater skala rumah tangga dengan biaya yang terjangkau untuk mereduksi penggunaan bahan bakar minyak yang semakin terbatas. Penelitian terdahulu diantaranya mengkaji kinerja berbagai jenis kolektor surya seperti Wibowo menganalisis perfomansi sistem kolektor surya jenis palung silindris dengan absorber multi-pipa, Sutrisno mengkaji kolektor surya pemanas air dengan menggunakan pelat absorber gelombang,, dan Alit melakukan studi eksperimental kolektor tubular dengan memanfaatkan lampu neon bekas sebagai kaca penutup kolektor (ITS Library Digital Content Publisher, 2007). Usaha pemanfaataan energi matahari menggunakan kolektor surya konvensional dirasa masih belum efisien karena memiliki efisiensi rendah sekitar 15% - 30% [8]. Pipa kalor adalah alat superkonduktor yang mampu memindahkan panas secara cepat, dengan memanfaatkan panas laten fluida kerja yang berada dalam pipa kalor. Beberapa penelitian pipa kalor telah dilakukan sebelumnya. Tarlo, (2005) :Pipa yang dibuat menggunakan fluida kerja air dengan pipa tembaga berukuran diameter luar 8 mm, tebal 1 mm, panjang 400 mm. Bahan struktur sumbu (wick) yang digunakan kasa Stainless Steel SS 304, mesh 50. Hasil penelitian menunjukkan bahwa pipa kalor yang dibuat mempunyai temperatur operasi pada kisaran o C dan kinerja terbaik tercapai pada filling ratio 0.19 dimana kecepatan perpindahan panas adalah 11 kali kecepatan perpindahan panas pada tembaga pejal. Yoga, (2005) : Pipa kalor menggunakan bahan tembaga dengan ukuran diameter luar 4.7 mm, tebal 0.5 mm dan panjang 360 mm. Fluida kerja adalah air dan struktur sumbu (wick) menggunakan kasa Stainless Steel SS 304, mesh 50. Penelitian dilakukan dengan memvariasikan kemiringan sudut pipa kalor dari posisi vertikal sampai horizontal dengan beda variasi sebesar masingmasing 15 o dan beban pemanasan. Hasil yang diperoleh menunjukkan kapasitas perpindahan panas pipa kalor dipengaruhi oleh kemiringan pipa kalor dan besarnya beban panas. Perbandingan konduktivitas termal pipa kalor terhadap tembaga pejal 950 kali pada posisi horizontal untuk input daya 45 Watt, sedangkan pada posisi vertical adalah 550 untuk input daya 92 Watt. Posisi terbaik pipa kalor pada posisi vertikal dengan kapasitas panas yang paling besar [4]. Wayan sugita meneliti pengaruh kemiringan pipa kalor dan pengaruh filling ratio dalam memindahkan panas. Pipa kalor yang dibuat menggunakan bahan tembaga diameter luar mm, tebal 0.8 mm, panjang 300 mm dengan fluida kerja air dan wick stainless steel mesh 100. Hasil penelitian menunjukkan kapasitas perpindahan panas pipa kalor dipengaruhi oleh kemiringan pipa kalor. Pipa kalor dengan posisi vert ikal mempunyai perpindahan panas yang paling tinggi dan posisi horizontal mempunyai perpindahan panas paling rendah. Dari perhitungan perpindahan panas diperoleh bahwa konduktivitas termal pipa kalor kali dari tembaga pejal. Penggunaan pipa kalor sebagai elemen pemanas kolektor surya, sangat menjadi prospek yang menjajikan karena memiliki kemampuan yang baik dalam menyerap panas energi matahari. Penggunaan pipa kalor didalam kolektor surya dapat meningkatkan penggunaan energi matahari yang mampu mencapai efisiensi kerja 47% [1]. 2. Metode A. Prinsip Kerja Pipa Kalor Pipa kalor merupakan pipa berongga yang kedua ujungnya ditutup setelah sejumlah fluida kerja ditempatkan di dalamnya [2]. Secara umum pipa kalor bekerja memanfaatkan kalor laten dari fluida kerja. Proses perpindahan panas pada pipa kalor terjadi pada tiga daerah hantaran yaitu, evaporator, adiabatic dan condenser dimana bagian itu dapat diilustrasikan seperti Gambar 1. Struktur wick digunakan untuk membantu mempercepat aliran kondensat di dalam pipa. Daerah Kondensor Daerah Adiabatik Daerah Evaporator Kondensat Uap Fluida Kerja Gambar 1. Skematik pipa kalor Panas Keluar (Q out ) Panas Masuk (Q in ) Pada Gambar 2, dapat dilihat kondisi fasa fluida kerja sebelum dan sesudah kalor masuk ke area evaporator pipa kalor. Ketika kalor masuk di sepanjang sisi evaporator, dimana temperatur kalor masuk melebihi temperatur saturasi fluida kerja, hal tersebut menyebabkan sejumlah cairan fluida kerja menguap. Uap

3 8 Dian Wahyu / Jurnal Teknik Mesin ITP 6(1) (2016) 6-14 akan mengalir ke area kondensor karena terjadi peningkatan tekanan uap. Pada bagian kondensor, kalor laten uap dipindahkan ke lingkungan sekitar, hal ini menyebabkan temperatur dan tekanan uap turun sehingga kondensat terbentuk. Kondensat akan kembali ke area evaporator melalui wick, sementara penurunan tekanan uap akan menguapkan lagi sejumlah fluida kerja yang berada pada daerah evaporator. Proses ini akan berlangsung secara terus menerus sepanjang adanya panas yang diterima dibagian evaporator. karena beberapa pemanas air surya tidak membutuhkan pasokan listrik untuk beroperasi. Selama irradiance matahari cukup, air panas tetap diproduksi seperti pemanasan air kolam renang secara langsung. Tiga operasi dasar pada sistem pemanas air surya [3] : 1. Pengumpulan Radiasi matahari dapat diserap dengan menggunakan kolektor surya. 2. Pemindahan Sirkulasi air pada kolektor surya menyebabkan perpindahan energi dari kolektor surya ke tangki penyimpanan. Sirkulasi fluida bisa terjadi secara alami (thermosiphon systems) atau sirkulasi paksa (low-head pump). 3. Penyimpanan Air panas dapat disimpan pada tangki penyimpanan yang diberi isolasi termal. Gambar 2. Proses perpindahan panas pipa kalor Secara sederhana siklus yang terjadi pada pipa kalor dapat diringkas berdasarkan Gambar 2, seperti di bawah ini: Proses Keterangan 0-1 Peristiwa evaporasi pertama kali kalor masuk 1-2 Peristiwa kondensasi karena kalor dipindahkan keluar pipa kalor 2-1 Peristiwa evaporasi B. Fluida Kerja Pipa kalor Fluida kerja berfungsi untuk memindahkan panas dari evaporator ke kondensor. Untuk itu harus dipilih fluida kerja yang yang memiliki temperatur titik cair di bawah temperatur operasi dan memiliki temperatur kritis di atas temperatur operasi dan memiliki kalor laten yang tinggi. C. Pemanas Air Surya Pemanfaatan energi matahari untuk pemanasan air bukan merupakan ide baru. Lebih dari seratus tahun yang lalu, tangki air yang dicat hitam telah digunakan sebagai pemanas air surya sederhana di berbagai Negara. Teknologi pemanas air surya telah berkembang dalam beberapa dekade terakhir. Sekarang lebih dari 30 juta m 2 kolektor pemanas air surya telah dipasang di seluruh permukaan bumi. Keuntungan penggunaan pemanas air surya adalah penghematan biaya dalam pemanasan air, Gambar 3. Tabung kolektor surya. (a) Konstruksi tabung kaca pada kolektor surya tabung hampa. (b) Tabung hampa kolektor surya menggunakan heat pipe. (c) Tabung hampa kolektor surya menggunakan pipa (a) (b) (c) (d)

4 Dian Wahyu / Jurnal Teknik Mesin ITP 6(1) (2016) berbentuk U. (d) Compound Parabolic Concentrator (CPC) yang digunakan pada kolektor surya tabung hampa Salah satu jenis kolektor surya yang menggunakan pipa kalor adalah kolektor tabung hampa. Kolektor surya ini terdiri dari tabungtabung kaca. Tabung tersebut memiliki 2 lapisan kaca, dimana udara di dalam ruang tersebut telah divakum, ini bertujuan untuk menimalisir rugi-rugi panas konveksi pada kolektor. Absorber dengan permukaan selektif ditempatkan di dalamnya seperti yang ditunjukkan pada Gambar 3.(a). Kolektor ini bagus dalam penyerapan energi matahari dan rugi termal ke lingkungan sangat rendah. Kolektor tersebut sudah menjadi komoditi pasar internasional. Kolektor ini memakai teknologi heat pipe dan pipa berbentuk U yang diletakkan dalam setiap tabung kaca hampa. Fungsi heat pipe dan pipa berbentuk U adalah untuk memindahkan panas yang diserap oleh absorber ke tempat manifold. Kolektor ini biasanya digunakan pada kondisi daerah temperatur sedang dan temperatur tinggi untuk tujuan pembuatan air panas (kondisi temperatur air yang dihasilkan sampai pada temperatur 90 o C), dan pemanasan ruangan dll. Beberapa kolektor ini dilengkapi dengan konsentrator yang membantu meningkatkan efisiensi kolektor [7]. Pada Gambar 3.(b) proses perpindahan panas antara heat pipe dengan manifold terjadi melewati perubahan fasa fluida kerja heat pipe. Fluida kerja di dalam heat pipe akan menguap ketika energi surya jatuh pada bidang absorber, dimana bidang absorber merupakan tempat penempelan evaporator heat pipe. Uap akan mengalir ke arah sisi kondensor heat pipe yang bersentuhan dengan manifold kolektor. Kondensat akan terbentuk ketika panas laten uap dipindahkan ke fluida yang mengalir pada manifold. Gambar 3.(c) ini adalah kolektor yang digunakan pada penelitian pengembangan teknologi pompa kalor temperatur tinggi oleh Djuanda. Secara konstruksi kolektor ini, mempunyai kemiripan dengan kolektor surya heat pipe tabung hampa. Perbedaannya terletak pada proses pemanasan air pada kolektor. Air yang akan dipanaskan, akan mengalir di dalam pipa U sebelum menuju ke manifold. Gambar 3(d) dapat digunakan pada kedua kolektor ini, dimana fungsinya membantu memantulkan kembali sinar radiasi yang jatuh di celah kolektor menuju absorber. Konsentrator tersebut berguna meningkatkan efisiensi dari kolektor. Adapun komponen yang digunakan pada kolektor surya tabung hampa ditunjukkan pada Gambar 4 [5]. 1. Heat pipe Perpindahan energi berlangsung sangat cepat dan efisien. 2. Glass tube top holder Berfungsi Sebagai penahan tabung kaca pada bagian manifold. 3. Cover Berfungsi meminimalisir rugi-rugi panas dari dalam tabung kaca. 4. Absorber plate Berfungsi sebagai penyimpan energi termal. 5. Vacuum layer between the glass skins 6. Solar glass tube Membantu meningkatkan penyerapan energi surya dan menimalisir rugi-rugi panas. 7. Base/tube seal Ujung pipa kaca membantu meminimalisir rugi panas kolektor Gambar 4. Bagian komponen pada tabung kaca pada kolektor surya hampa D. Perpindahan Panas dalam Pipa kalor Apabila ada kalor masuk pada sisi evaporator, maka kalor tersebut akan dipindahkan melalui kalor laten fluida kerja dalam pipa kalor ke bagian kondensor. Pada dasarnya, proses perpindahan panas yang terjadi di dalam pipa kalor merupakan bagian siklus termodinamika. Gambar 5. memperlihatkan jumlah panas yang masuk pada sisi evaporator sama besarnya dengan panas yang dilepaskan pada sisi kondensor pipa kalor.

5 10 Dian Wahyu / Jurnal Teknik Mesin ITP 6(1) (2016) 6-14 Gambar 5. Skema perpindahan panas pada pipa kalor Jumlah panas yang dipindahkan pipa kalor, pada kondisi temperatur kerja dapat dihitung sesuai dengan persamaan berikut: Q HP = (2σ lcosθ-ρ 1 gl eff sinφ)ρ 1 LA w K r c μ l l eff (1) Dengan l a = panjang bagian adiabatik (m) l c = panjang bagian kondensor (m) l e = panjang bagian evaporator (m) ρ 1 = massa jenis uap (kg/m 3 ) µ 1 = viskosita dinamik uap (Ns/m 2 ) l eff = panjang efektif (m) = I a + 0,5(I c + I e) L = kalor laten spesifik penguapan (J/kg) A w = luas wick= tπd K= permeabilitas wick (m 2 ) θ = sudut kontak antara fluida dengan dinding pipa kalor Φ= sudut pipa kalor terhadap horizontal r c= radius pori-pori E. Perhitungan Laju Perpindahan Panas dan Koefisien Perpindahan Panas Pipa Kalor Perhitungan mengenai laju perpindahan panas (Q out) dan konduktivitas termal dari pipa kalor. Persamaan untuk menghitung perpindahan panas yang terjadi dalam pipa kalor adalah [5] : pemanas surya. Pengujian dilakukan pada berbagai rasio pengisian fluida dan pada kemiringan pipa kalor sebesar 30 o. Rasio pengisian (filling ratio) adalah perbandingan volume fluida di dalam pipa kalor dengan volume rongga dalam pipa kalor. Dalam hal ini rasio pengisian yang diuji adalah 5%, 10%, 20%, 30%. Pengujian ini bertujuan untuk melihat kecepatan respon pipa kalor dalam memindahkan panas dan kapasitas panas yang mampu dipindahkan oleh pipa kalor. Indikator yang dilihat adalah waktu yang dibutuhkan untuk mencapai keadaan tunak atau dikenal dengan istilah thermal time constant (τ). Hal Ini bisa diketahui dengan mengukur temperatur sumber panas pada evaporator pipa kalor dan temperatur energi yang dipindahkan pada sisi kondensor pipa kalor. Pengujian ini dilakukan dengan dua sumber panas, pertama dengan pemanasan pipa kalor dengan air ml pada temperatur 100 o C dengan daya masuk 20 watt, berikutnya pemanasan dengan radiasi matahari langsung. Dengan melakukan pengujian ini diharapkan bisa mendapatkan pipa kalor yang tepat dan mampu bekerja pada kolektor pemanas air surya. Gambar 6. Skema pengujian pipa kalor Q out = m wc pw (T out T in ) (2) dengan m w : laju aliran massa air pendingain (kg/s) c pw : kalor jenis air (kj/kgk) T in : temperatur air pendingin masuk ( o C) T out : temperature air pendingin keluat ( o C) F. Skematik pengujian dan Perangkat pengujian serta Alat yang digunakan Pengujian pipa kalor dilakukan sebelum pemasangan absorber pipa kalor pada kolektor Gambar 7. Perangkat pengujian pipa kalor Prosedur untuk melakukan pengujian adalah:

6 Dian Wahyu / Jurnal Teknik Mesin ITP 6(1) (2016) Pipa kalor dengan berbagai rasio pengisian sudah dibuat dan dipersiapkan. 2. Panaskan air dengan volume ml dengan pemanas air degan daya 20 watt 3. Letakkan absorber pipa kalor ke tempat pengujian seperti yang terlihat pada Gambar. 4. Pasang termokopel pada sisi evaporator dan kondensor pipa kalor. 5. Hubungkan kabel termokopel ke data aquisisi. 6. Masukkan air panas yang telah mendidih pada sisi evaporator pipa kalor. 7. Rekam data temperatur evaporator dan kondensor dengan laptop. G. Pengujian Pipa Kalor dengan Radiasi Langsung Pengujian ini dilakukan untuk memprediksi apakah pipa kalor mampu bekerja untuk memanaskan air pada kolektor surya. Pengujian ini dilakukan pada radiasi rata-rata 800 W/m 2. Gambar 8. Perangkat pengujian dengan radiasi Prosedur untuk melakukan pengujian adalah: 1. Pipa kalor yang diuji adalah pipa kalor yang telah dipilih pada pengujian pipa kalor dengan sumber panas ml air pada temperatur 100 o C. 2. Pengujian dilakukan pada tempat yang sama, hari dan jam yang sama 3. Letakkan absorber pipa kalor ke tempat pengujian seperti yang terlihat pada Gambar 4. Pasang termokopel pada sisi evaporator dan kondensor pipa kalor. 5. Hubungkan kabel termokopel ke data aquisisi. 6. Sebelum merekam data temperatur, tutup bidang absorber pipa kalor agar radiasi tidak masuk. 7. Jika persiapan pengujian sudah matang, buka penutup dan rekam data temperatur evaporator dan kondensor dengan laptop. H. Alat-alat yang Dibutuhkan Adapun alat-alat yang dibutuhkan dalam pengujian ini adalah: 1. Pipa kalor dengan rasio pengisian yang berbeda, adalah pipa kalor yang akan diuji perfomansinya. 2. Air, digunakan sebagai indikator adanya penyerapan energi dari absorber pipa kalor ke air, yang diindikasikan dengan kenaikan temperatur air. 3. Tangki head konstan, berfungsi untuk mengatur laju aliran air ke kondensor pipa kalor. 4. Reservoar air, menampung air yang berlebih yang dipasok pompa ke tangki head konstan. 5. Pompa, berfungsi untuk mengalirkan air dari bak penampungan air ke tangki head konstan. 6. Sensor temperatur, digunakan untuk mengukur temperatur air masuk dan keluar kondensor pipa kalor serta temperatur lingkungan. 7. Alat ukur intensitas radiasi matahari, digunakan untuk mengukur intensitas radiasi matahari. 8. Data akuisisi, pengubah sinyal analog yang dihasilkan sensor temperatur ke sinyal digital. 9. Laptop, berfungsi sebagai perekam dan pengolah data. 3. Hasil dan Pembahasan Setelah melakukan pengujian pipa kalor, didapatkan beberapa data tentang kemampuan pipa kalor dalam memindahkan panas yang dapat dilihat pada Gambar Gambar 9. Pengujian pipa kalor dengan rasio pengisian 5%

7 12 Dian Wahyu / Jurnal Teknik Mesin ITP 6(1) (2016) 6-14 Gambar 10. Pengujian pipa kalor dengan rasio pengisian 10% Gambar 11. Pengujian pipa kalor dengan rasio pengisian 10% Gambar 9 sampai Gambar 14 diatas menunjukkan kemampuan pipa kalor dalam memindahkan panas. Data diatas merupakan data hasil pengujian dengan sumber panas input sebesar 20 W. Dari hasil pengujian dapat dilihat bahwa pipa kalor yang memiliki rasio pengisian sebesar 20% memiliki kemampuan yang lebih baik dibandingkan pipa kalor lainnya. Selain itu, jika dilihat dari perbedaan temperatur antara evaporator dan kondensor, pipa kalor yang memiliki rasio pengisian sebesar 20% memiliki perbedaan temperatur yang sangat kecil dibandingkan dengan pipa kalor lainnya. Hal ini mengindikasikan bahwa kemampuan pipa kalor Fr 20% memiliki kemampuan memindahkan panas sangat efektif dari yang lainnya. Dari hasil pengujian didapatkan efisiensi kerja tertinggi pipa kalor sebesar 75% pada pipa kalor yang memiliki rasio pengisian sebesar 20%. Gambar 12. Pengujian pipa kalor dengan rasio pengisian 30% Gambar 15. Pengujian pipa kalor dengan rasio pengisian 5% pada pengujian pemilihan pipa kalor dengan radiasi Gambar 13. Distribusi temperatur pada masing-masing pipa kalor Gambar 16. Pengujian pipa kalor dengan rasio pengisian 10% pada pengujian pemilihan pipa kalor dengan radiasi Gambar 14. Laju perpindahan panas pipa kalor Gambar 17. Pengujian pipa kalor dengan rasio pengisian 20% pada pengujian pemilihan pipa kalor dengan radiasi

8 Dian Wahyu / Jurnal Teknik Mesin ITP 6(1) (2016) Gambar 18. Pengujian pipa kalor dengan rasio pengisian 30% pada pengujian pemilihan pipa kalor dengan radiasi Gambar 19. Distribusi temeperatur pipa kalor pada pengujian pemilihan pipa kalor dengan radiasi Gambar 20. Pengujian pipa kalor pipa kalor dalam memindahkan panas Meskipun data dari pengujian pipa kalor dengan sumber panas sebesar 20 watt sudah dapat menggambarkan pipa kalor yang memiliki kemampuan yang baik dalam memindahkan panas dan respon yang cepat dalam memindahkan panas, namun belum dapat menentukan pilihan pipa kalor yang dapat berfungsi sebagai elemen pemanas kolektor surya. Gambar 15 sampai Gambar 20 merupakan hasil pengujian pipa kalor dengan sumber panas dari radiasi langsung. Gambar 15 sampai Gambar 20 diatas memperlihatkan kemampuan pipa kalor meneruskan panas. Ini diperlihatkan pada nilai temperatur pada sisi kondensor dan evaporator hampir sama. Pada Gambar 16 dan Gambar 17 memperlihatkan perbedaan nilai temperatur antara evaporator dengan kondensor relatif sama, namun nilai temperatur kondensor dan evaporator kedua pipa kalor berbeda. Pipa kalor dengan Fr 20% lebih memiliki nilai temperatur evaporator dan kondensor lebih tinggi dibandingkan dengan pipa kalor dengan Fr10%. Dengan demikian pipa kalor dengan Fr 20% lebih baik dibandingkan dengan pipa kalor dengan Fr 10% dan pipa kalor lainnya. Untuk mengambil kesimpulan pipa kalor yang akan dipilih, maka ditampilkan Gambar 20 yang memperlihatkan kecepatan respon pipa kalor (τ). Nilai kecepatan respon dari pipa kalor ini, dapat ditentukan besarannya pada rentang waktu tertentu untuk kedua jenis pengujian. Kecepatan respon pipa kalor ini, mengindikasikan waktu yang dibutuhkan untuk mencapai keadaan tunak. Terlihat jelas pada Gambar 20 diatas, keseluruhan pipa kalor yang dibuat dapat bekerja dalam memindahkan panas pada setiap filling ratio yang dibuat kecuali pada nilai filling ratio 100%. Berdasarkan hasil kedua jenis pengujian tersebut, didapatkan jenis pipa kalor yang mempunyai respon yang paling bagus, yaitu pipa kalor dengan pipa kalor filling ratio 20%. Selain itu, pipa kalor dengan Fr 20% memiliki kinerja yang paling bagus dalam memindahkan panas. Pertimbangan lain meliputi masalah kekeringan fluida (dryout) pada sisi evaporator. Dimana kondisi dryout ini perlu dihindari karena berpengaruh pada operasi kerja pipa kalor. Jika kondisi ini terjadi, maka proses transformasi panas pun terhenti, karena tidak ada lagi fluida yang akan diuapkan. Mengingat sumber panas pada sisi evaporator pipa kalor bersumber dari radiasi matahari maka kebutuhan pipa kalor untuk kolektor surya dengan filling ratio 20 % dipilih. Pemilihan ini dilakukan berdasarkan karakteristik pipa kalor yang memberikan respon yang paling baik terhadap energi masuk dan kapasitas pemindahan panas yang lebih besar dibandingkan dengan semua filling ratio lainnya. 4. Kesimpulan Setelah melakukan studi literatur, merancang, membuat, menguji, dan menganalisa penelitian ini, dapat disimpulkan sebagai berikut bahwa : 1) Pipa kalor dengan filling ratio 20% dipilih untuk elemen pemanas kolektor surya, dan selain itu pipa kalor ini mampu memindahkan panas dengan kapasitas 15 W dengan efisiensi kinerja 75%. 2) Pipa kalor yang dipilih memiliki nilai constant thermal yang tinggi dibandingkan dengan pipa kalor lainnya.

9 14 Dian Wahyu / Jurnal Teknik Mesin ITP 6(1) (2016) 6-14 Ucapan Terima Kasih Terima kasih diucapkan kepada Jurusan Teknik Mesin Politeknik Negeri Padang yang telah memberikan kontribusi sehingga paper ini dapat diselesaikan. Referensi [1]. American Society of Heating, Refrigeratoring, and Air Conditioning Engineers Inc. ASHRAE Pocket Guide for Air Conditioning, Heating, Ventilation, Refrigeration 7th Edition. Tullie Circle, NE Atlanta: W. Stephen Comstock. [2]. B&K Engineering. (1979). Pipa kalor Design Handbook. Maryland: Nasa. [3]. P. I. Cooper and R.V. Dunkle, A nonlinear flat plate collector model, Solar Energy, Vol. 26(2), pp , [4]. G. Y. Nugroho, Kaji Ekperimental Penggunaan Pipa Kalor Dalam Kolektor Surya Sebagai Penyerap Energi Termal Surya Untuk Penyuplai Pompa Kalor Temperatur Tinggi, Seminar Nasional Tahunan Teknik Mesin (SNTTM) ke-9, Palembang, Oktober [5]. D. Reay and P. Kew, Pipa kalors Theory, Design, and Aplication. Great Britain: Butterworth-Heinemann Publication, (2006). [6]. D. W. Shepherd, Energy Studies, 2 nd Ed., London, UK: Imperial College, [7]. A. A. M. Sayigh, Solar Flat Plate Collectors, in Technology for Solar Energy Utilization, Development and Transfer of Technology Series No.5, United Nations Industrial Development Organization, [8]. Stoecker, W.F. (1989), Design of Thermal Systems, 355 rd Ed., NewYork: McGraw-Hill Book Co. [9]. T. J. Jansen, Solar Engineering Technology, New York: Prentice-Hall, Inc., Englewood Cliffs., [10]. D. Wahyu, Kaji eksperimental kolektor surya untuk heat pump temperatur tinggi, Proceeding Seminar Nasional Tahunan Teknik Mesin XII, Universitas, Lampung, Bandar Lampung, Oktober 2013.

Studi Eksperimental Pipa Kalor untuk Pemanas Kolektor Surya. Experimental Study of Heat Pipe for Solar Collector Heater

Studi Eksperimental Pipa Kalor untuk Pemanas Kolektor Surya. Experimental Study of Heat Pipe for Solar Collector Heater JURNAL TEKNIK MESIN INSTITUT TEKNOLOGI PADANG http://ejournal.itp.ac.id/index.php/tmesin/ e-issn : 2089-4880 Vol. 6, No. 1, April 2016 p-issn : 2089-4880 Studi Eksperimental Pipa Kalor untuk Pemanas Kolektor

Lebih terperinci

Kolektor Surya Pipa Panas Tipe Datar: Sebuah Penelitian Eksperimental. The Flat Type Heat Pipe Solar Collector: An Experimental Research

Kolektor Surya Pipa Panas Tipe Datar: Sebuah Penelitian Eksperimental. The Flat Type Heat Pipe Solar Collector: An Experimental Research JURNAL TEKNIK MESIN INSTITUT TEKNOLOGI PADANG http://ejournal.itp.ac.id/index.php/tmesin/ e-issn : 2089-4880 Vol. 6, No. 2, October 2016 p-issn : 2089-4880 Kolektor Surya Pipa Panas Tipe Datar: Sebuah

Lebih terperinci

PERPINDAHAN PANAS PIPA KALOR SUDUT KEMIRINGAN

PERPINDAHAN PANAS PIPA KALOR SUDUT KEMIRINGAN PERPINDAHAN PANAS PIPA KALOR SUDUT KEMIRINGAN 0 o, 30 o, 45 o, 60 o, 90 o I Wayan Sugita Jurusan Teknik Mesin, Fakultas Teknik, Universitas Negeri Jakarta e-mail : wayan_su@yahoo.com ABSTRAK Pipa kalor

Lebih terperinci

KINERJA PIPA KALOR DENGAN STRUKTUR SUMBU FIBER CARBON dan STAINLESS STEEL MESH 100 dengan FLUIDA KERJA AIR

KINERJA PIPA KALOR DENGAN STRUKTUR SUMBU FIBER CARBON dan STAINLESS STEEL MESH 100 dengan FLUIDA KERJA AIR KINERJA PIPA KALOR DENGAN STRUKTUR SUMBU FIBER CARBON dan STAINLESS STEEL MESH 100 dengan FLUIDA KERJA AIR I Wayan Sugita Program Studi Teknik Mesin, Fakultas Teknik, Universitas Negeri Jakarta e-mail

Lebih terperinci

STUDI EKSPERIMENTAL PENGARUH PERUBAHAN DEBIT ALIRAN PADA EFISIENSI TERMAL SOLAR WATER HEATER DENGAN PENAMBAHAN FINNED TUBE

STUDI EKSPERIMENTAL PENGARUH PERUBAHAN DEBIT ALIRAN PADA EFISIENSI TERMAL SOLAR WATER HEATER DENGAN PENAMBAHAN FINNED TUBE Studi Eksperimental Pengaruh Perubahan Debit Aliran... (Kristian dkk.) STUDI EKSPERIMENTAL PENGARUH PERUBAHAN DEBIT ALIRAN PADA EFISIENSI TERMAL SOLAR WATER HEATER DENGAN PENAMBAHAN FINNED TUBE Rio Adi

Lebih terperinci

Performansi Kolektor Surya Tubular Terkonsentrasi Dengan Pipa Penyerap Dibentuk Anulus Dengan Variasi Posisi Pipa Penyerap

Performansi Kolektor Surya Tubular Terkonsentrasi Dengan Pipa Penyerap Dibentuk Anulus Dengan Variasi Posisi Pipa Penyerap Jurnal Ilmiah Teknik Mesin Vol. 5 No.1. April 2011 (98-102) Performansi Kolektor Surya Tubular Terkonsentrasi Dengan Pipa Penyerap Dibentuk Anulus Dengan Variasi Posisi Pipa Penyerap Made Sucipta, Ketut

Lebih terperinci

PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI

PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh

Lebih terperinci

SISTEM PEMANFAATAN ENERGI SURYA UNTUK PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNGAN. Fatmawati, Maksi Ginting, Walfred Tambunan

SISTEM PEMANFAATAN ENERGI SURYA UNTUK PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNGAN. Fatmawati, Maksi Ginting, Walfred Tambunan SISTEM PEMANFAATAN ENERGI SURYA UNTUK PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNGAN Fatmawati, Maksi Ginting, Walfred Tambunan Mahasiswa Program S1 Fisika Bidang Fisika Energi Jurusan Fisika Fakultas

Lebih terperinci

Pengaruh variasi jenis pasir sebagai media penyimpan panas terhadap performansi kolektor suya tubular dengan pipa penyerap disusun secara seri

Pengaruh variasi jenis pasir sebagai media penyimpan panas terhadap performansi kolektor suya tubular dengan pipa penyerap disusun secara seri Jurnal Energi dan Manufaktur Vol 9. No. 2, Oktober 2016 (161-165) http://ojs.unud.ac.id/index.php/jem ISSN: 2302-5255 (p) ISSN: 2541-5328 (e) Pengaruh variasi jenis pasir sebagai media penyimpan panas

Lebih terperinci

RANCANG BANGUN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI

RANCANG BANGUN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI RANCANG BANGUN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik OLEH CHRIST JULIO BANGUN

Lebih terperinci

PENGARUH FLUIDA KERJA CAMPURAN AIR ASETON TERHADAP KINERJA PERPINDAHAN PANAS PADA PIPA KALOR

PENGARUH FLUIDA KERJA CAMPURAN AIR ASETON TERHADAP KINERJA PERPINDAHAN PANAS PADA PIPA KALOR Jurnal Sains dan Teknologi 14 (2), September 15: 51-57 PENGARUH FLUIDA KERJA CAMPURAN AIR ASETON TERHADAP KINERJA PERPINDAHAN PANAS PADA PIPA KALOR Utari Prayetno 1, Rahmat Iman Mainil 1 dan Azridjal Aziz

Lebih terperinci

UNJUK KERJA PENGKONDISIAN UDARA MENGGUNAKAN HEAT PIPE PADA DUCTING DENGAN VARIASI LAJU ALIRAN MASSA UDARA

UNJUK KERJA PENGKONDISIAN UDARA MENGGUNAKAN HEAT PIPE PADA DUCTING DENGAN VARIASI LAJU ALIRAN MASSA UDARA UNJUK KERJA PENGKONDISIAN UDARA MENGGUNAKAN HEAT PIPE PADA DUCTING DENGAN VARIASI LAJU ALIRAN MASSA UDARA Sidra Ahmed Muntaha (0906605340) Departemen Teknik Mesin Fakultas Teknik Universitas Indonesia

Lebih terperinci

Eddy Elfiano 1, M. Natsir Darin 2, M. Nizar 3

Eddy Elfiano 1, M. Natsir Darin 2, M. Nizar 3 Analisa Pengaruh Variasi Lapisan Plat Pada Pipa Sejajar ANALISA PENGARUH VARIASI LAPISAN PLAT PADA PIPA SEJAJAR TERHADAP EFEKTIFITAS PENYERAPAN PANAS KOLEKTOR SURYA UNTUK PEMANAS AIR DENGAN SISTEM EFEK

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 19 BAB I PENDAHULUAN 1.1. Latar Belakang Kebutuhan akan air panas pada saat ini sangat tinggi. Tidak hanya konsumen rumah tangga yang memerlukan air panas ini, melainkan juga rumah sakit, perhotelan, industri,

Lebih terperinci

BAB I PENDAHULUAN. khatulistiwa, maka wilayah Indonesia akan selalu disinari matahari selama jam

BAB I PENDAHULUAN. khatulistiwa, maka wilayah Indonesia akan selalu disinari matahari selama jam BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan negara yang memiliki berbagai jenis sumber daya energi dalam jumlah yang cukup melimpah. Letak Indonesia yang berada pada daerah khatulistiwa, maka

Lebih terperinci

Seminar Nasional Tahunan Teknik Mesin (SNTTM) VIII

Seminar Nasional Tahunan Teknik Mesin (SNTTM) VIII M5-15 Pemanfaatan Arang Untuk Absorber Pada Destilasi Air Enegi Surya I Gusti Ketut Puja Jurusan Teknik Mesin Universitas Sanata Dharma Yogyakarta Kampus III Paingan Maguwoharjo Depok Sleman Yogyakarta,

Lebih terperinci

BAB I PENDAHULUAN. menjadi sumber energi pengganti yang sangat berpontensi. Kebutuhan energi di

BAB I PENDAHULUAN. menjadi sumber energi pengganti yang sangat berpontensi. Kebutuhan energi di 1.1 Latar Belakang BAB I PENDAHULUAN Matahari adalah sumber energi tak terbatas dan sangat diharapkan dapat menjadi sumber energi pengganti yang sangat berpontensi. Kebutuhan energi di Indonesia masih

Lebih terperinci

Preparasi pengukuran suhu kolektor surya dan fluida kerja dengan Datapaq Easytrack2 System

Preparasi pengukuran suhu kolektor surya dan fluida kerja dengan Datapaq Easytrack2 System Spektra: Jurnal Fisika dan Aplikasinya, Vol. XI No.1 Mei 2011 Preparasi pengukuran suhu kolektor surya dan fluida kerja dengan Datapaq Easytrack2 System Handjoko Permana a, Hadi Nasbey a a Staf Pengajar

Lebih terperinci

PEMANFAATAN ENERGI SURYA UNTUK MEMANASKAN AIR MENGGUNAKAN KOLEKTOR PARABOLA MEMAKAI CERMIN SEBAGAI REFLEKTOR

PEMANFAATAN ENERGI SURYA UNTUK MEMANASKAN AIR MENGGUNAKAN KOLEKTOR PARABOLA MEMAKAI CERMIN SEBAGAI REFLEKTOR PEMANFAATAN ENERGI SURYA UNTUK MEMANASKAN AIR MENGGUNAKAN KOLEKTOR PARABOLA MEMAKAI CERMIN SEBAGAI REFLEKTOR Nafisha Amelya Razak 1, Maksi Ginting 2, Riad Syech 2 1 Mahasiswa Program S1 Fisika 2 Dosen

Lebih terperinci

SUDUT PASANG SOLAR WATER HEATER DALAM OPTIMALISASI PENYERAPAN RADIASI MATAHARI DI DAERAH CILEGON

SUDUT PASANG SOLAR WATER HEATER DALAM OPTIMALISASI PENYERAPAN RADIASI MATAHARI DI DAERAH CILEGON SUDUT PASANG SOLAR WATER HEATER DALAM OPTIMALISASI PENYERAPAN RADIASI MATAHARI DI DAERAH CILEGON Caturwati NK, Agung S, Chandra Dwi Jurusan Teknik Mesin Universitas Sultan Ageng Tirtayasa Jl. Jend. Sudirman

Lebih terperinci

PENGARUH KECEPATAN ANGIN DAN WARNA PELAT KOLEKTOR SURYA BERLUBANG TERHADAP EFISIENSI DI DALAM SEBUAH WIND TUNNEL

PENGARUH KECEPATAN ANGIN DAN WARNA PELAT KOLEKTOR SURYA BERLUBANG TERHADAP EFISIENSI DI DALAM SEBUAH WIND TUNNEL PENGARUH KECEPATAN ANGIN DAN WARNA PELAT KOLEKTOR SURYA BERLUBANG TERHADAP EFISIENSI DI DALAM SEBUAH WIND TUNNEL Irwin Bizzy, Dendi Dwi Saputra, Muhammad Idris Dwi Novarianto Jurusan Teknik Mesin Fakultas

Lebih terperinci

ANALISA PERFORMASI KOLEKTOR SURYA TERKONSENTRASI DENGAN VARIASI JUMLAH PIPA ABSORBER BERBENTUK SPIRAL

ANALISA PERFORMASI KOLEKTOR SURYA TERKONSENTRASI DENGAN VARIASI JUMLAH PIPA ABSORBER BERBENTUK SPIRAL ANALISA PERFORMASI KOLEKTOR SURYA TERKONSENTRASI DENGAN VARIASI JUMLAH PIPA ABSORBER BERBENTUK SPIRAL Oleh Dosen Pembimbing : I Gusti Ngurah Agung Aryadinata : Dr. Eng. Made Sucipta, S.T, M.T : Ketut Astawa,

Lebih terperinci

PENINGKATAN KAPASITAS PEMANAS AIR KOLEKTOR PEMANAS AIR SURYA PLAT DATAR DENGAN PENAMBAHAN BAHAN PENYIMPAN KALOR

PENINGKATAN KAPASITAS PEMANAS AIR KOLEKTOR PEMANAS AIR SURYA PLAT DATAR DENGAN PENAMBAHAN BAHAN PENYIMPAN KALOR Peningkatan Kapasitas Pemanas Air Kolektor Pemanas Air Surya PENINGKATAN KAPASITAS PEMANAS AIR KOLEKTOR PEMANAS AIR SURYA PLAT DATAR DENGAN PENAMBAHAN BAHAN PENYIMPAN KALOR Suharti 1*, Andi Hasniar 1,

Lebih terperinci

Studi Eksperimental Efektivitas Penambahan Annular Fins Pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Studi Eksperimental Efektivitas Penambahan Annular Fins Pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: 2301-9271 1 Studi Eksperimental Efektivitas Penambahan Annular Fins Pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup Edo Wirapraja, Bambang

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Jenis Energi Unit Total Exist

BAB I PENDAHULUAN 1.1 Latar Belakang   Jenis Energi Unit Total Exist 1 BAB I PENDAHULUAN 1.1 Latar Belakang Energi merupakan kebutuhan pokok bagi kegiatan sehari-hari, misalnya dalam bidang industri, dan rumah tangga. Saat ini di Indonesia pada umumnya masih menggunakan

Lebih terperinci

LAPORAN TUGAS AKHIR BAB II DASAR TEORI

LAPORAN TUGAS AKHIR BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Dispenser Air Minum Hot and Cool Dispenser air minum adalah suatu alat yang dibuat sebagai alat pengkondisi temperatur air minum baik air panas maupun air dingin. Temperatur air

Lebih terperinci

STUDI PERFORMANSI ALAT PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR SURYA PLAT DATAR STUDY OF WATER HEATER PERFORMANCE USING FLAT PLAT SOLAR COLLECTOR

STUDI PERFORMANSI ALAT PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR SURYA PLAT DATAR STUDY OF WATER HEATER PERFORMANCE USING FLAT PLAT SOLAR COLLECTOR STUDI PERFORMANSI ALAT PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR SURYA PLAT DATAR STUDY OF WATER HEATER PERFORMANCE USING FLAT PLAT SOLAR COLLECTOR Darwin 1*), Hendri Syah 1), Sujan Yadi 1) 1) Program Studi

Lebih terperinci

PENGARUH BAHAN INSULASI TERHADAP PERPINDAHAN KALOR PADA TANGKI PENYIMPANAN AIR UNTUK SISTEM PEMANAS AIR BERBASIS SURYA

PENGARUH BAHAN INSULASI TERHADAP PERPINDAHAN KALOR PADA TANGKI PENYIMPANAN AIR UNTUK SISTEM PEMANAS AIR BERBASIS SURYA ISSN : 2355-9365 e-proceeding of Engineering : Vol.4, No.3 Desember 2017 Page 3845 PENGARUH BAHAN INSULASI TERHADAP PERPINDAHAN KALOR PADA TANGKI PENYIMPANAN AIR UNTUK SISTEM PEMANAS AIR BERBASIS SURYA

Lebih terperinci

Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Print) B-204 Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Lebih terperinci

PEMBUATAN KOLEKTOR PELAT DATAR SEBAGAI PEMANAS AIR ENERGI SURYA DENGAN JUMLAH PENUTUP SATU LAPIS DAN DUA LAPIS

PEMBUATAN KOLEKTOR PELAT DATAR SEBAGAI PEMANAS AIR ENERGI SURYA DENGAN JUMLAH PENUTUP SATU LAPIS DAN DUA LAPIS PEMBUATAN KOLEKTOR PELAT DATAR SEBAGAI PEMANAS AIR ENERGI SURYA DENGAN JUMLAH PENUTUP SATU LAPIS DAN DUA LAPIS D. Hayati 1, M. Ginting 2, W. Tambunan 3. 1 Mahasiswa Program Studi S1 Fisika 2 Bidang Konversi

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. 1. Temperatur udara masuk kolektor (T in ). T in = 30 O C. 2. Temperatur udara keluar kolektor (T out ). T out = 70 O C.

BAB IV HASIL DAN PEMBAHASAN. 1. Temperatur udara masuk kolektor (T in ). T in = 30 O C. 2. Temperatur udara keluar kolektor (T out ). T out = 70 O C. BAB IV HASIL DAN PEMBAHASAN 4.1 Spesifikasi Alat Pengering Surya Berdasarkan hasil perhitungan yang dilakukan pada perancangan dan pembuatan alat pengering surya (solar dryer) adalah : Desain Termal 1.

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah :

BAB IV HASIL DAN PEMBAHASAN. 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah : BAB IV HASIL DAN PEMBAHASAN 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah : Desain Termal 1. Temperatur udara masuk kolektor (T in ). T

Lebih terperinci

KARAKTERISTIK PIPA KALOR DENGAN FLUIDA KERJA ASETON, FILLING RATIO 60% PADA POSISI HORIZONTAL, KEMIRINGAN 45º DAN VERTIKAL

KARAKTERISTIK PIPA KALOR DENGAN FLUIDA KERJA ASETON, FILLING RATIO 60% PADA POSISI HORIZONTAL, KEMIRINGAN 45º DAN VERTIKAL KARAKTERISTIK PIPA KALOR DENGAN FLUIDA KERJA ASETON, FILLING RATIO 60% PADA POSISI HORIZONTAL, KEMIRINGAN 45º DAN VERTIKAL Ferly Septian Iskandar, Rahmat Iman Mainil dan Azridjal Aziz Laboratorium Rekayasa

Lebih terperinci

BAB III METODE PENELITIAN (BAHAN DAN METODE) keperluan. Prinsip kerja kolektor pemanas udara yaitu : pelat absorber menyerap

BAB III METODE PENELITIAN (BAHAN DAN METODE) keperluan. Prinsip kerja kolektor pemanas udara yaitu : pelat absorber menyerap BAB III METODE PENELITIAN (BAHAN DAN METODE) Pemanfaatan energi surya memakai teknologi kolektor adalah usaha yang paling banyak dilakukan. Kolektor berfungsi sebagai pengkonversi energi surya untuk menaikan

Lebih terperinci

Pompa Air Energi Termal dengan Fluida Kerja Petroleum Eter. A. Prasetyadi, FA. Rusdi Sambada

Pompa Air Energi Termal dengan Fluida Kerja Petroleum Eter. A. Prasetyadi, FA. Rusdi Sambada Pompa Air Energi Termal dengan Fluida Kerja Petroleum Eter A. Prasetyadi, FA. Rusdi Sambada Jurusan Teknik Mesin, Fakultas Sains dan Teknologi, Universitas Sanata Dharma Kampus 3, Paingan, Maguwoharjo,

Lebih terperinci

Pengaruh Jarak Kaca Ke Plat Terhadap Panas Yang Diterima Suatu Kolektor Surya Plat Datar

Pengaruh Jarak Kaca Ke Plat Terhadap Panas Yang Diterima Suatu Kolektor Surya Plat Datar JURNA TEKNIK MESIN Vol. 3, No. 2, Oktober 2001: 52 56 Pengaruh Jarak Kaca Ke Plat Terhadap Panas Yang Diterima Suatu Kolektor Surya Plat Datar Ekadewi Anggraini Handoyo Dosen Fakultas Teknik, Jurusan Teknik

Lebih terperinci

PERBANDINGAN UNJUK KERJA FREON R-12 DAN R-134a TERHADAP VARIASI BEBAN PENDINGIN PADA SISTEM REFRIGERATOR 75 W

PERBANDINGAN UNJUK KERJA FREON R-12 DAN R-134a TERHADAP VARIASI BEBAN PENDINGIN PADA SISTEM REFRIGERATOR 75 W PERBANDINGAN UNJUK KERJA FREON R-2 DAN R-34a TERHADAP VARIASI BEBAN PENDINGIN PADA SISTEM REFRIGERATOR 75 W Ridwan Jurusan Teknik Mesin Fakultas Teknologi Industri Universitas Gunadarma e-mail: ridwan@staff.gunadarma.ac.id

Lebih terperinci

PENGHITUNGAN EFISIENSI KOLEKTOR SURYA PADA PENGERING SURYA TIPE AKTIF TIDAK LANGSUNG PADA LABORATORIUM SURYA ITB

PENGHITUNGAN EFISIENSI KOLEKTOR SURYA PADA PENGERING SURYA TIPE AKTIF TIDAK LANGSUNG PADA LABORATORIUM SURYA ITB No. 31 Vol. Thn. XVI April 9 ISSN: 854-8471 PENGHITUNGAN EFISIENSI KOLEKTOR SURYA PADA PENGERING SURYA TIPE AKTIF TIDAK LANGSUNG PADA LABORATORIUM SURYA ITB Endri Yani Jurusan Teknik Mesin Universitas

Lebih terperinci

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor BAB II DASAR TEORI 2.1 Pasteurisasi Pasteurisasi ialah proses pemanasan bahan makanan, biasanya berbentuk cairan dengan temperatur dan waktu tertentu dan kemudian langsung didinginkan secepatnya. Proses

Lebih terperinci

PRESTASI SISTEM DESALINASI TENAGA SURYA MENGGUNAKAN BERBAGAI TIPE KACA PENUTUP MIRING

PRESTASI SISTEM DESALINASI TENAGA SURYA MENGGUNAKAN BERBAGAI TIPE KACA PENUTUP MIRING PRESTASI SISTEM DESALINASI TENAGA SURYA MENGGUNAKAN BERBAGAI TIPE KACA PENUTUP MIRING Mulyanef Jurusan Teknik Mesin Universitas Bung Hatta Jalan Gajah Mada No.19 Padang, Telp.754257, Fax. 751341 E-mail:

Lebih terperinci

PENGARUH LAJU ALIRAN FLUIDA TERHADAP EFISIENSI TERMAL PADA KOLEKTOR PANAS MATAHARI JENIS PLAT DATAR

PENGARUH LAJU ALIRAN FLUIDA TERHADAP EFISIENSI TERMAL PADA KOLEKTOR PANAS MATAHARI JENIS PLAT DATAR ISSN : 2355-9365 e-proceeding of Engineering : Vol.4, No.1 April 217 Page 64 PENGARUH LAJU ALIRAN FLUIDA TERHADAP EFISIENSI TERMAL PADA KOLEKTOR PANAS MATAHARI JENIS PLAT DATAR EFFECT OF FLUID FLOW RATE

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan. Metode pengawetan dengan cara pengeringan merupakan metode paling tua dari semua metode pengawetan yang ada. Contoh makanan yang mengalami proses pengeringan ditemukan

Lebih terperinci

Analisis Performa Kolektor Surya Pelat Bersirip Dengan Variasi Luasan Permukaan Sirip

Analisis Performa Kolektor Surya Pelat Bersirip Dengan Variasi Luasan Permukaan Sirip Jurnal Ilmiah Teknik Mesin Vol. 4 No.2. Oktober 2010 (88-92) Analisis Performa Kolektor Surya Pelat Bersirip Dengan Variasi Luasan Permukaan Sirip Made Sucipta, I Made Suardamana, Ketut Astawa Jurusan

Lebih terperinci

Optimasi periode data berdasarkan time constant pada pengujian unjuk kerja termal kolektor surya pelat datar Amrizal1,a*, Amrul1,b

Optimasi periode data berdasarkan time constant pada pengujian unjuk kerja termal kolektor surya pelat datar Amrizal1,a*, Amrul1,b Optimasi periode data berdasarkan time constant pada pengujian unjuk kerja termal kolektor surya pelat datar Amrizal1,a*, Amrul1,b 1 Jurusan Teknik Mesin Fakultas Teknik Universitas Lampung Jl. Prof. Dr.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 ALAT PENGKONDISIAN UDARA Alat pengkondisian udara merupakan sebuah mesin yang secara termodinamika dapat memindahkan energi dari area bertemperatur rendah (media yang akan

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan energi surya dalam berbagai bidang telah lama dikembangkan di dunia. Berbagai teknologi terkait pemanfaatan energi surya mulai diterapkan pada berbagai

Lebih terperinci

TEKNOLOGI PEMANAS AIR MENGGUNAKAN KOLEKTOR TIPE TRAPEZOIDAL BERPENUTUP DUA LAPIS

TEKNOLOGI PEMANAS AIR MENGGUNAKAN KOLEKTOR TIPE TRAPEZOIDAL BERPENUTUP DUA LAPIS TEKNOLOGI PEMANAS AIR MENGGUNAKAN KOLEKTOR TIPE TRAPEZOIDAL BERPENUTUP DUA LAPIS Ayu Wardana 1, Maksi Ginting 2, Sugianto 2 1 Mahasiswa Program S1 Fisika 2 Dosen Bidang Energi Jurusan Fisika Fakultas Matematika

Lebih terperinci

Karakteristik Pengering Surya (Solar Dryer) Menggunakan Rak Bertingkat Jenis Pemanasan Langsung dengan Penyimpan Panas dan Tanpa Penyimpan Panas

Karakteristik Pengering Surya (Solar Dryer) Menggunakan Rak Bertingkat Jenis Pemanasan Langsung dengan Penyimpan Panas dan Tanpa Penyimpan Panas Karakteristik Pengering Surya (Solar Dryer) Menggunakan Rak Bertingkat Jenis Pemanasan Langsung dengan Penyimpan Panas dan Tanpa Penyimpan Panas Azridjal Aziz Jurusan Teknik Mesin, Fakultas Teknik, Universitas

Lebih terperinci

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya BAB II DASAR TEORI 2.1 Hot and Cool Water Dispenser Hot and cool water dispenser merupakan sebuah alat yang digunakan untuk mengkondisikan temperatur air minum baik dingin maupun panas. Sumber airnya berasal

Lebih terperinci

Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air

Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air Arif Kurniawan Jurusan Teknik Mesin Institut Teknologi Nasional (ITN) Malang E-mail : arifqyu@gmail.com Abstrak. Pada bagian mesin pendingin

Lebih terperinci

KARAKTERISTIK KINERJA PIPA KALOR MENGGUNAKAN STRUKTUR WICK SCREEN 100 MESH DENGAN FLUIDA KERJA AIR

KARAKTERISTIK KINERJA PIPA KALOR MENGGUNAKAN STRUKTUR WICK SCREEN 100 MESH DENGAN FLUIDA KERJA AIR KARAKTERISTIK KINERJA PIPA KALOR MENGGUNAKAN STRUKTUR WICK SCREEN 100 MESH DENGAN FLUIDA KERJA AIR Wandi Wahyudi 1, Rahmat Iman Mainil 1, Azridjal Aziz 1 dan Afdhal Kurniawan Mainil 2 1 Laboratorium Rekayasa

Lebih terperinci

OPTIMALISASI PENYERAPAN RADIASI MATAHARI PADA SOLAR WATER HEATER MENGGUNAKAN VARIASI SUDUT KEMIRINGAN

OPTIMALISASI PENYERAPAN RADIASI MATAHARI PADA SOLAR WATER HEATER MENGGUNAKAN VARIASI SUDUT KEMIRINGAN Optimalisasi Penyerapan Radiasi Matahari Pada Solar Water Heater... (Sulistyo dkk.) OPTIMALISASI PENYERAPAN RADIASI MATAHARI PADA SOLAR WATER HEATER MENGGUNAKAN VARIASI SUDUT KEMIRINGAN Agam Sulistyo *,

Lebih terperinci

Analisa Performa Kolektor Surya Pelat Datar Bersirip dengan Aliran di Atas Pelat Penyerap

Analisa Performa Kolektor Surya Pelat Datar Bersirip dengan Aliran di Atas Pelat Penyerap Jurnal Ilmiah Teknik Mesin CakraM Vol. 4 No.1. April 2010 (7-15) Analisa Performa Kolektor Surya Pelat Datar Bersirip dengan Aliran di Atas Pelat Penyerap I Gst.Ketut Sukadana, Made Sucipta & I Made Dhanu

Lebih terperinci

TUGAS AKHIR. Perbandingan Temperatur Pada PTC Dengan Kamera Infrared antara Fluida Air dan Minyak Kelapa Sawit

TUGAS AKHIR. Perbandingan Temperatur Pada PTC Dengan Kamera Infrared antara Fluida Air dan Minyak Kelapa Sawit TUGAS AKHIR Perbandingan Temperatur Pada PTC Dengan Kamera Infrared antara Fluida Air dan Minyak Kelapa Sawit Diajukan guna melengkapi sebagian syarat dalam mencapai gelar Sarjana Strata Satu (S1) Disusun

Lebih terperinci

Perbandingan Konfigurasi Pipa Paralel dan Unjuk Kerja Kolektor Surya Plat Datar

Perbandingan Konfigurasi Pipa Paralel dan Unjuk Kerja Kolektor Surya Plat Datar JURNAL TEKNIK MESIN Vol., No. 1, April : 68-7 Perbandingan Konfigurasi Pipa Paralel dan Unjuk Kerja Kolektor Surya Plat Datar Terhadap Ekadewi Anggraini Handoyo Dosen Fakultas Teknik, Jurusan Teknik Mesin

Lebih terperinci

POTENSI PENGGUNAAN KOMPOR ENERGI SURYA UNTUK KEBUTUHAN RUMAH TANGGA

POTENSI PENGGUNAAN KOMPOR ENERGI SURYA UNTUK KEBUTUHAN RUMAH TANGGA Prosiding Seminar Nasional AVoER ke-3 POTENSI PENGGUNAAN KOMPOR ENERGI SURYA UNTUK KEBUTUHAN RUMAH TANGGA KMT-8 Marwani Jurusan Teknik Mesin, Fakultas Teknik Universitas Sriwijaya, Palembang Prabumulih

Lebih terperinci

INSTITUT TEKNOLOGI PADANG

INSTITUT TEKNOLOGI PADANG INSTITUT TEKNOLOGI PADANG Jurnal Teknik Mesin Volume 6 Issue 1 Pages 1 54 Padang April 2016 ISSN 2089 4880 Editorial Team Editor-in-Chief Editor Section Editors Reviewer IT Support Publication JURNAL TEKNIK

Lebih terperinci

Peningkatan Efisiensi Absorbsi Radiasi Matahari pada Solar Water Heater dengan Pelapisan Warna Hitam

Peningkatan Efisiensi Absorbsi Radiasi Matahari pada Solar Water Heater dengan Pelapisan Warna Hitam Peningkatan Efisiensi Absorbsi Radiasi Matahari pada Solar Water Heater dengan Pelapisan Warna Hitam NK. Caturwati 1)*, Yuswardi Y. 2), Nino S. 3) 1, 2, 3) Jurusan Teknik Mesin Universitas Sultan Ageng

Lebih terperinci

BAB II DASAR TEORI. 2.1 Energi Matahari

BAB II DASAR TEORI. 2.1 Energi Matahari BAB II DASAR TEORI 2.1 Energi Matahari Matahari merupakan sebuah bola yang sangat panas dengan diameter 1.39 x 10 9 meter atau 1.39 juta kilometer. Kalau matahari dianggap benda hitam sempurna, maka energi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sejarah dan Pengenalan Fenomena termoelektrik pertama kali ditemukan tahun 1821 oleh seorang ilmuwan Jerman, Thomas Johann Seebeck. Ia menghubungkan tembaga dan besi dalam sebuah

Lebih terperinci

Laporan Tugas Akhir BAB I PENDAHULUAN

Laporan Tugas Akhir BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Belakangan ini terus dilakukan beberapa usaha penghematan energi fosil dengan pengembangan energi alternatif yang ramah lingkungan. Salah satunya yaitu dengan pemanfaatan

Lebih terperinci

Radiasi ekstraterestrial pada bidang horizontal untuk periode 1 jam

Radiasi ekstraterestrial pada bidang horizontal untuk periode 1 jam Pendekatan Perhitungan untuk intensitas radiasi langsung (beam) Sudut deklinasi Pada 4 januari, n = 4 δ = 22.74 Solar time Solar time = Standard time + 4 ( L st L loc ) + E Sudut jam Radiasi ekstraterestrial

Lebih terperinci

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian METODOLOGI PENELITIAN Waktu dan Tempat Penelitian Penelitian ini telah dilaksanakan dari bulan Januari hingga November 2011, yang bertempat di Laboratorium Sumber Daya Air, Departemen Teknik Sipil dan

Lebih terperinci

PERANCANGAN TANGKI PEMANAS AIR TENAGA SURYA KAPASITAS 60 LITER DAN INSULASI TERMALNYA

PERANCANGAN TANGKI PEMANAS AIR TENAGA SURYA KAPASITAS 60 LITER DAN INSULASI TERMALNYA PERANCANGAN TANGKI PEMANAS AIR TENAGA SURYA KAPASITAS 60 LITER DAN INSULASI TERMALNYA Rasyid Atmodigdo 1, Muhammad Nadjib 2, TitoHadji Agung Santoso 3 Program Studi S-1 Teknik Mesin, Fakultas Teknik, Universitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Pengeringan adalah proses mengurangi kadar air dari suatu bahan [1]. Dasar dari proses pengeringan adalah terjadinya penguapan air ke udara karena perbedaan kandungan

Lebih terperinci

Pengaruh jumlah haluan pipa paralel pada kolektor surya plat datar absorber batu kerikil terhadap laju perpindahan panas

Pengaruh jumlah haluan pipa paralel pada kolektor surya plat datar absorber batu kerikil terhadap laju perpindahan panas Dinamika Teknik Mesin 6 (2016) 127-133 Pengaruh jumlah haluan pipa paralel pada kolektor surya plat datar absorber batu kerikil terhadap laju perpindahan panas M. Wirawan*, R. Kurniawan, Mirmanto Teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bab ini akan dijabarkan mengenai penukar panas (heat exchanger), mekanisme perpindahan panas pada heat exchanger, konfigurasi aliran fluida, shell and tube heat exchanger,

Lebih terperinci

PENGARUH DEBIT ALIRAN AIR TERHADAP PROSES PENDINGINAN PADA MINI CHILLER

PENGARUH DEBIT ALIRAN AIR TERHADAP PROSES PENDINGINAN PADA MINI CHILLER PENGARUH DEBIT ALIRAN AIR TERHADAP PROSES PENDINGINAN PADA MINI CHILLER Senoadi 1,a, A. C. Arya 2,b, Zainulsjah 3,c, Erens 4,d 1, 3, 4) Jurusan Teknik Mesin, Fakultas Teknologi Industri, Universitas Trisakti

Lebih terperinci

Studi Alat Destilasi Surya Tipe Basin Tunggal Menggunakan Kolektor Pemanas

Studi Alat Destilasi Surya Tipe Basin Tunggal Menggunakan Kolektor Pemanas Studi Alat Destilasi Surya Tipe Basin Tunggal Menggunakan Kolektor Pemanas Mulyanef Jurusan Teknik Mesin Universitas Bung Hatta, Padang-Indonesia Email : smulyanef@yahoo.com Abstract Experimental investigation

Lebih terperinci

ANALISIS PERPINDAHAN PANAS PADA KOLEKTOR PEMANAS AIR TENAGA SURYA DENGAN TURBULENCE ENHANCER

ANALISIS PERPINDAHAN PANAS PADA KOLEKTOR PEMANAS AIR TENAGA SURYA DENGAN TURBULENCE ENHANCER ANALISIS PERPINDAHAN PANAS PADA KOLEKTOR PEMANAS AIR TENAGA SURYA DENGAN TURBULENCE ENHANCER Nizar Ramadhan 1, Sudjito Soeparman 2, Agung Widodo 3 1, 2, 3 Jurusan Teknik Mesin Fakultas Teknik Universitas

Lebih terperinci

Analisa Pengaruh Konfigurasi Pipa Pemanas Air Surya Terhadap Efisiensi

Analisa Pengaruh Konfigurasi Pipa Pemanas Air Surya Terhadap Efisiensi Analisa Pengaruh Konfigurasi Pipa Pemanas Air Surya Terhadap Efisiensi Darwin Departement Of Mechanical Engineering, Syiah Kuala University Jl. Tgk. Syeh Abdurrafuf No. 7 Darussalam - Banda Aceh 23111,

Lebih terperinci

SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING

SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING Mulyanef 1, Marsal 2, Rizky Arman 3 dan K. Sopian 4 1,2,3 Jurusan Teknik Mesin Universitas Bung Hatta,

Lebih terperinci

BAB I PENDAHULUAN. Universitas Sumatera Utara

BAB I PENDAHULUAN. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1. Latar Belakang Energi panas yang kita peroleh dari matahari adalah energi panas gratis yang kita peroleh secara terus menerus dan dalam jumlah yang besar. Dengan pengolahan yang

Lebih terperinci

Analisa Pengaruh Variasi Diameter Receiver Dan Intensitas Cahaya Terhadap Efisiensi Termal Model Kolektor Surya Tipe Linear Parabolic Concentrating

Analisa Pengaruh Variasi Diameter Receiver Dan Intensitas Cahaya Terhadap Efisiensi Termal Model Kolektor Surya Tipe Linear Parabolic Concentrating JURNAL TEKNIK POMITS Vol. 1, No. 1, (212) 1-5 1 Analisa Pengaruh Variasi Diameter Receiver Dan Intensitas Cahaya Terhadap Efisiensi Termal Model Kolektor Surya Tipe Linear Parabolic Concentrating Hendra

Lebih terperinci

Analisa Performa Kolektor Surya Tipe Parabolic Trough Sebagai Pengganti Sumber Pemanas Pada Generator Sistem Pendingin Difusi Absorpsi

Analisa Performa Kolektor Surya Tipe Parabolic Trough Sebagai Pengganti Sumber Pemanas Pada Generator Sistem Pendingin Difusi Absorpsi JURNAL TEKNIK POMITS Vol. 2, No. 3, (2013) ISSN: 2337-3539 (2301-9271 Print B-394 Analisa Performa Kolektor Surya Tipe Parabolic Trough Sebagai Pengganti Sumber Pemanas Pada Generator Sistem Pendingin

Lebih terperinci

Analisis performansi kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder

Analisis performansi kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder Analisis performansi kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder Ketut Astawa, I Ketut Gede Wirawan, I Made Budiana Putra Jurusan Teknik Mesin, Universitas Udayana, Bali-Indonesia

Lebih terperinci

PENDINGIN TERMOELEKTRIK

PENDINGIN TERMOELEKTRIK BAB II DASAR TEORI 2.1 PENDINGIN TERMOELEKTRIK Dua logam yang berbeda disambungkan dan kedua ujung logam tersebut dijaga pada temperatur yang berbeda, maka akan ada lima fenomena yang terjadi, yaitu fenomena

Lebih terperinci

collectors water heater menggunakan

collectors water heater menggunakan Pengaruh Bentuk Kolektor Konsentrator Terhadap Efisiensi Pemanas Air Surya Darwin*, M. Ilham Maulana, Irwandi ZA Jurusan Teknik Mesin Fakultas Teknik Universitas Syiah Kuala Jl. Tgk. Syeh Abdurrauf No.

Lebih terperinci

Perancangan Solar Thermal Collector tipe Parabolic Trough

Perancangan Solar Thermal Collector tipe Parabolic Trough LAPORAN TUGAS AKHIR Perancangan Solar Thermal Collector tipe Parabolic Trough Diajukan Guna Memenuhi Syarat Kelulusan Mata Kuliah Tugas Akhir Pada Program Sarjana Strata Satu (S1) Disusun Oleh : Nama :

Lebih terperinci

RANCANG BANGUN PEMANAS AIR TENAGA SURYA ABSORBER GELOMBANG TIPE SINUSOIDAL DENGAN PENAMBAHAN HONEYCOMB OLEH : YANUAR RIZAL EKA SB

RANCANG BANGUN PEMANAS AIR TENAGA SURYA ABSORBER GELOMBANG TIPE SINUSOIDAL DENGAN PENAMBAHAN HONEYCOMB OLEH : YANUAR RIZAL EKA SB TUGAS AKHIR RANCANG BANGUN PEMANAS AIR TENAGA SURYA ABSORBER GELOMBANG TIPE SINUSOIDAL DENGAN PENAMBAHAN HONEYCOMB OLEH : YANUAR RIZAL EKA SB 2105 100 127 DOSEN PEMBIMBING : Prof. Dr. Ir. DJATMIKO ICHSANI,

Lebih terperinci

II. TINJAUAN PUSTAKA. Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi

II. TINJAUAN PUSTAKA. Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi II. TINJAUAN PUSTAKA 2.1. Energi Surya Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi panas surya (Matahari) melalui peralatan tertentu menjadi sumber daya dalam bentuk lain.

Lebih terperinci

PENGARUH BESAR LAJU ALIRAN AIR TERHADAP SUHU YANG DIHASILKAN PADA PEMANAS AIR TENAGA SURYA DENGAN PIPA TEMBAGA MELINGKAR

PENGARUH BESAR LAJU ALIRAN AIR TERHADAP SUHU YANG DIHASILKAN PADA PEMANAS AIR TENAGA SURYA DENGAN PIPA TEMBAGA MELINGKAR Seminar Nasional Cendekiawan ke 3 Tahun 2017 ISSN (P) : 2460-8696 Buku 1 ISSN (E) : 2540-7589 PENGARUH BESAR LAJU ALIRAN AIR TERHADAP SUHU YANG DIHASILKAN PADA PEMANAS AIR TENAGA SURYA DENGAN PIPA TEMBAGA

Lebih terperinci

PENGARUH BENTUK PLAT ARBSORBER PADA SOLAR WATER HEATER TERHADAP EFISIENSI KOLEKTOR. Galuh Renggani Wilis ST.,MT. ABSTRAK

PENGARUH BENTUK PLAT ARBSORBER PADA SOLAR WATER HEATER TERHADAP EFISIENSI KOLEKTOR. Galuh Renggani Wilis ST.,MT. ABSTRAK PENGARUH BENTUK PLAT ARBSORBER PADA SOLAR WATER HEATER TERHADAP EFISIENSI KOLEKTOR Galuh Renggani Wilis ST.,MT. ABSTRAK Energi fosil di bumi sangat terbatas jumlahnya. Sedangkan pertumbuhan penduduk dan

Lebih terperinci

JURNAL TEKNIK ITS Vol. 4, No. 1, (2015) ISSN: ( Print)

JURNAL TEKNIK ITS Vol. 4, No. 1, (2015) ISSN: ( Print) B-62 Studi Eksperimental Pengaruh Laju Aliran Air terhadap Efisiensi Thermal pada Kolektor Surya Pemanas Air dengan Penambahan External Helical Fins pada Pipa Sandy Pramirtha dan Bambang Arip Dwiyantoro

Lebih terperinci

Karakteristik Perpindahan Panas dan Pressure Drop pada Alat Penukar Kalor tipe Pipa Ganda dengan aliran searah

Karakteristik Perpindahan Panas dan Pressure Drop pada Alat Penukar Kalor tipe Pipa Ganda dengan aliran searah Karakteristik Perpindahan Panas dan Pressure Drop pada Alat Penukar Kalor tipe Pipa Ganda dengan aliran searah Mustaza Ma a 1) Ary Bachtiar Krishna Putra 2) 1) Mahasiswa Program Pasca Sarjana Teknik Mesin

Lebih terperinci

KAJI EKSPERIMENTAL KARAKTERISTIK PIPA KAPILER DAN KATUP EKSPANSI TERMOSTATIK PADA SISTEM PENDINGIN WATER-CHILLER

KAJI EKSPERIMENTAL KARAKTERISTIK PIPA KAPILER DAN KATUP EKSPANSI TERMOSTATIK PADA SISTEM PENDINGIN WATER-CHILLER No. Vol. Thn.XVII April ISSN : 85-87 KAJI EKSPERIMENTAL KARAKTERISTIK PIPA KAPILER DAN KATUP EKSPANSI TERMOSTATIK PADA SISTEM PENDINGIN WATER-CHILLER Iskandar R. Laboratorium Konversi Energi Jurusan Teknik

Lebih terperinci

PEMODELAN DAN SIMULASI PERPINDAHAN PANAS PADAKOLEKTOR SURYA PELAT DATAR

PEMODELAN DAN SIMULASI PERPINDAHAN PANAS PADAKOLEKTOR SURYA PELAT DATAR ISSN 2302-0180 7 Pages pp. 32-38 PEMODELAN DAN SIMULASI PERPINDAHAN PANAS PADAKOLEKTOR SURYA PELAT DATAR Faisal Amir 1, Ahmad Syuhada 2, Hamdani 2 1) Magister Ilmu Hukum Banda Aceh 2) Fakultas Hukum Universitas

Lebih terperinci

BAB I PENDAHULUAN BAB I PENDAHULUAN

BAB I PENDAHULUAN BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan salah satu kebutuhan pokok yang sangat penting dalam kehidupan manusia saat ini, hampir semua aktifitas manusia berhubungan dengan energi listrik.

Lebih terperinci

BAB 9. PENGKONDISIAN UDARA

BAB 9. PENGKONDISIAN UDARA BAB 9. PENGKONDISIAN UDARA Tujuan Instruksional Khusus Mmahasiswa mampu melakukan perhitungan dan analisis pengkondisian udara. Cakupan dari pokok bahasan ini adalah prinsip pengkondisian udara, penggunaan

Lebih terperinci

KAJIAN EXPERIMENTAL KOLEKTOR SURYA PRISMATIK DENGAN VARIASI JARAK KACA TERHADAP PLAT ABSORBER MENGGUNAKAN SISTEM TERTUTUP UNTUK PEMANAS AIR

KAJIAN EXPERIMENTAL KOLEKTOR SURYA PRISMATIK DENGAN VARIASI JARAK KACA TERHADAP PLAT ABSORBER MENGGUNAKAN SISTEM TERTUTUP UNTUK PEMANAS AIR 1 KAJIAN EXPERIMENTAL KOLEKTOR SURYA PRISMATIK DENGAN VARIASI JARAK KACA TERHADAP PLAT ABSORBER MENGGUNAKAN SISTEM TERTUTUP UNTUK PEMANAS AIR SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh

Lebih terperinci

Pengaruh Debit Udara Kondenser terhadap Kinerja Mesin Tata Udara dengan Refrigeran R410a

Pengaruh Debit Udara Kondenser terhadap Kinerja Mesin Tata Udara dengan Refrigeran R410a Pengaruh Debit Udara Kondenser terhadap Kinerja Mesin Tata Udara dengan Refrigeran R410a Faldian 1, Pratikto 2, Andriyanto Setyawan 3, Daru Sugati 4 Politeknik Negeri Bandung 1,2,3 andriyanto@polban.ac.id

Lebih terperinci

ANALISA KOMPONEN KOLEKTOR PADA MESIN PENDINGIN SIKLUS ADSORPSI TENAGA SURYA DENGAN VARIASI SUDUT KOLEKTOR 0 0 DAN 30 0

ANALISA KOMPONEN KOLEKTOR PADA MESIN PENDINGIN SIKLUS ADSORPSI TENAGA SURYA DENGAN VARIASI SUDUT KOLEKTOR 0 0 DAN 30 0 ANALISA KOMPONEN KOLEKTOR PADA MESIN PENDINGIN SIKLUS ADSORPSI TENAGA SURYA DENGAN VARIASI SUDUT KOLEKTOR 0 0 DAN 30 0 Skripsi yang Diajukan untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik Oleh:

Lebih terperinci

BAB 3 METODE PENGUJIAN DAN PENGAMBILAN DATA

BAB 3 METODE PENGUJIAN DAN PENGAMBILAN DATA BAB 3 METODE PENGUJIAN DAN PENGAMBILAN DATA 3.1. Deskripsi Alat Adsorpsi Alat adsorpsi yang diuji memiliki beberapa komponan utama, yaitu: adsorber, evaporator, kondenser, dan reservoir (gbr. 3.1). Diantara

Lebih terperinci

Pengaruh Tebal Plat Dan Jarak Antar Pipa Terhadap Performansi Kolektor Surya Plat Datar

Pengaruh Tebal Plat Dan Jarak Antar Pipa Terhadap Performansi Kolektor Surya Plat Datar Pengaruh Tebal Plat Dan Jarak Antar Pipa Terhadap Performansi Kolektor Surya Plat Datar Philip Kristanto Dosen Fakultas Teknik, Jurusan Teknik Mesin - Universitas Kristen Petra Yoe Kiem San Alumnus Fakultas

Lebih terperinci

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iv. DAFTAR ISI... vi. DAFTAR GAMBAR... xi. DAFTAR GRAFIK...xiii. DAFTAR TABEL... xv. NOMENCLATURE...

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iv. DAFTAR ISI... vi. DAFTAR GAMBAR... xi. DAFTAR GRAFIK...xiii. DAFTAR TABEL... xv. NOMENCLATURE... JUDUL LEMBAR PENGESAHAN KATA PENGANTAR... i ABSTRAK... iv... vi DAFTAR GAMBAR... xi DAFTAR GRAFIK...xiii DAFTAR TABEL... xv NOMENCLATURE... xvi BAB 1 PENDAHULUAN 1.1. Latar Belakang... 1 1.2. Perumusan

Lebih terperinci

Analisis Beban Thermal Rancangan Mesin Es Puter Dengan Kompresor ½ PK Untuk Skala Industri Rumah Tangga

Analisis Beban Thermal Rancangan Mesin Es Puter Dengan Kompresor ½ PK Untuk Skala Industri Rumah Tangga Analisis Beban Thermal Rancangan Mesin Es Puter Dengan Kompresor ½ PK Untuk Skala Industri Rumah Tangga IDG Agus Tri Putra (1) dan Sudirman (2) (2) Program Studi Teknik Pendingin dan Tata Udara, Jurusan

Lebih terperinci

PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR

PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR Arif Kurniawan Institut Teknologi Nasional (ITN) Malang; Jl.Raya Karanglo KM. 2 Malang 1 Jurusan Teknik Mesin, FTI-Teknik Mesin

Lebih terperinci

JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SURAKARTA

JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SURAKARTA TUGAS AKHIR PENGUJIAN MODEL WATER HEATER FLOW BOILING DENGAN VARIASI GELEMBUNG UDARA Diajukan Untuk Memenuhi Tugas Dan Syarat-Syarat Guna Memperoleh Gelar Sarjana Teknik Jurusan Mesin Fakultas Teknik Univesitas

Lebih terperinci

Analisa Efisiensi Prototype Solar Collector Jenis Parabolic Trough dengan Menggunakan Cover Glass Tube pada Pipa Absorber

Analisa Efisiensi Prototype Solar Collector Jenis Parabolic Trough dengan Menggunakan Cover Glass Tube pada Pipa Absorber LAPORAN TUGAS AKHIR Analisa Efisiensi Prototype Solar Collector Jenis Parabolic Trough dengan Menggunakan Cover Glass Tube pada Pipa Absorber Diajukan Guna Memenuhi Syarat Kelulusan Mata Kuliah Tugas Akhir

Lebih terperinci

PENGARUH JARAK ANTAR PIPA PADA KOLEKTOR TERHADAP PANAS YANG DIHASILKAN SOLAR WATER HEATER (SWH)

PENGARUH JARAK ANTAR PIPA PADA KOLEKTOR TERHADAP PANAS YANG DIHASILKAN SOLAR WATER HEATER (SWH) TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH JARAK ANTAR PIPA PADA KOLEKTOR TERHADAP

Lebih terperinci