Prosiding Seminar Nasional XII Rekayasa Teknologi Industri dan Informasi 2017 Sekolah Tinggi Teknologi Nasional Yogyakarta

dokumen-dokumen yang mirip
Kendali Sistem Pengisi Baterai Tenaga Surya Metode Incremental Conductance Berbasis Mikrokontrol

ANALISIS STEP-UP CHOPPER SEBAGAI TRANSFORMASI R SEBAGAI INTERFACE PHOTOVOLTAIC DAN BEBAN

BAB I PENDAHULUAN. 1.1 Latar Belakang

MEMAKSIMALKAN DAYA PHOTOVOLTAIC SEBAGAI CHARGER CONTROLLER

BAB I PENDAHULUAN. sumber energi tenaga angin, sumber energi tenaga air, hingga sumber energi tenaga

DESAIN MAXIMUM POWER POINT TRACKER PADA PHOTOVOLTAIC

STUDI KOMPARASI MPPT ANTARA SOLAR CONTROLLER MPPT M10-20A DENGAN MPPT TIPE INCREMENTAL CONDUCTANCE SEBAGAI CHARGER CONTROLLER LAPORAN TUGAS AKHIR

DESAIN DAN IMPLEMENTASI SISTEM PENGISI BATERAI TENAGA SURYA MENGGUNAKAN METODE INCREMENTAL CONDUCTANCE-VOLTAGE CONTROL BERBASIS dspic30f4012

DESAIN DAN IMPLEMENTASI SISTEM PENGISI BATERAI TENAGA SURYA MENGGUNAKAN METODE INCREMENTAL CONDUCTANCE KENDALI ARUS BERBASIS dspic30f4012

Simulasi Maximum Power Point Tracking pada Panel Surya Menggunakan Simulink MATLAB

DESAIN DAN IMPLEMENTASI MAKSIMUM POWER POINT TRACKER MELALUI DETEKSI ARUS

PV-Grid Connected System Dengan Inverter Sebagai Sumber Arus. Pada Beban Resistif

IMPLEMENTASI MAXIMUM POWER POINT TRACKER (MPPT) UNTUK OPTIMASI DAYA PADA PANEL SURYA BERBASIS ALGORITMA INCREMENTAL CONDUCTANCE

DESAIN DAN IMPLEMENTASI MAKSIMUM POWER POINT TRACKER MELALUI DETEKSI DAYA DAN TEGANGAN

DESAIN DAN IMPLEMENTASI MAXIMUM POWER POINT TRACKER (MPPT) MIKROKONTROLLER AVR. Dosen Pembimbing

Desain Boosting MPPT Tiga Level untuk Distributed Generation Tiga Fasa Presented by: Hafizh Hardika Kurniawan

Desain. Oleh : Banar Arianto : NIM UNIVERS SEMARANG

Perancangan Battery Control Unit (BCU) Dengan Menggunakan Topologi Cuk Converter Pada Instalasi Tenaga Surya

Dwi Agustina Hery Indrawati

BAB I Pendahuluan. 1.1 Latar Belakang

MEMAKSIMALKAN KONVERSI ENERGI PV MODULE BERDASARKAN KURVA KARAKTERISTIK PADA LERENG TEGANGAN

METODE PENGENDALIAN DAYA PADA PHOTOVOLTAIC MODULE DENGAN METODE KENDALI INTERNAL TUGAS AKHIR

DESAIN SISTEM HIBRID PHOTOVOLTAIC-BATERAI MENGGUNAKAN BI-DIRECTIONAL SWITCH UNTUK CATU DAYA KELISTRIKAN RUMAH TANGGA 900VA, 220 VOLT, 50 HZ

MAXIMUM POWER POINT TRACKER DENGAN METODE INCREMENTAL CONDUCTANCE TRANSCONDUCTANCE CONTROL BERBASIS. dspic30f4012

Auto Charger System Berbasis Solar Cell pada Robot Management Sampah

KINERJA PHOTOVOLTAIC GRID CONNECTED SYSTEM

Sistem Manual MPPT Inverter Sebagai Interface. Antara PV dan Beban

OPERASI CHOPPER SEBAGAI MAXIMUM POWER POINT TRACKER TUGAS AKHIR

RANCANG BANGUN CATU DAYA TENAGA SURYA UNTUK PERANGKAT AUDIO MOBIL

Andriani Parastiwi. Kata-kata kunci : Buck converter, Boost converter, Photovoltaic, Fuzzy Logic

PERANCANGAN STAND ALONE PV SYSTEM DENGAN MAXIMUM POWER POINT TRACKER (MPPT) MENGGUNAKAN METODE MODIFIED HILL CLIMBING

IMPLEMENTASI INVERTER SATU FASA TERKENDALI ARUS MENGGUNAKAN SUMBER MODUL SURYA DENGAN KENDALI DAYA MAKSIMAL LAPORAN TUGAS AKHIR

Prof.Dr. Ir. Mochamad Ashari, M.Eng. Vita Lystianingrum B.P, ST., M.Sc.

BAB I PENDAHULUAN. Energi listrik adalah energi yang mudah dikonversikan ke dalam bentuk

ISSN : e-proceeding of Engineering : Vol.3, No.2 Agustus 2016 Page 1375

MAXIMUM POWER POINT TRACKER PADA SOLAR CELL/PHOTOVOLTAIC MODULE DENGAN MENGGUNAKAN FUZZY LOGIC CONTROLLER

KENDALI BUCK-BOOST MPPT BERBASIS DIGITAL LAPORAN TUGAS AKHIR

LAMPIRAN 1 CATU DAYA TRANSFORMATOR RANGKAIAN SENSOR ARUS SENSOR DAYA. Gambar 1. Realisasi alat

BAB I PENDAHULUAN 1.1 L atar Belakang Masalah

NAMA :M. FAISAL FARUQI NIM : TUGAS:ELEKTRONIKA DAYA -BUCK CONVERTER

BAB I PENDAHULUAN. Teknologi konverter elektronika daya telah banyak digunakan pada. kehidupan sehari-hari. Salah satunya yaitu dc dc konverter.

PENGONTROLAN DC CHOPPER UNTUK PEMBEBANAN BATERAI DENGAN METODE LOGIKA FUZZY MENGGUNAKAN MIKROKONTROLER ATMEGA 128 TUGAS AKHIR

Perancangan Boost Converter Untuk Sistem Pembangkit Listrik Tenaga Surya

PEMANFAATAN ENERGI MATAHARI MENGGUNAKAN SOLAR CELL SEBAGAI ENERGI ALTERNATIF UNTUK MENGGERAKKAN KONVEYOR

PERENCANAAN DAN PEMBUATAN DC-DC KONVERTER UNTUK PANEL SURYA PADA DC HOUSE SKRIPSI

Hari Agus Sujono a), Riny Sulistyowati a), Agus Budi Rianto a)

BAB I PENDAHULUAN 1.1 Latar Belakang

DESAIN DAN IMPLEMENTASI PENAIK TEGANGAN MENGGUNAKAN KOMBINASI KY CONVERTER DAN BUCK- BOOST CONVERTER

BAB 3 PERANCANGAN SISTEM

PEMODELAN DAN SIMULASI MAXIMUM POWER POINT TRACKER

RANCANG BANGUN MAXIMUM POWER POINT TRACKER (MPPT) PADA PANEL SURYA DENGAN MENGGUNAKAN METODE FUZZY

INVERTER 15V DC-220V AC BERBASIS TENAGA SURYA UNTUK APLIKASI SINGLE POINT SMART GRID

Raharjo et al., Perancangan System Hibrid... 1

BAB I PENDAHULUAN 1.1 Latar Belakang Gambar 1.1 Sumber energi di Indonesia (Overview Industri Hulu Migas, 2015)

SISTEM POMPA AIR BERTENAGA SURYA TUGAS AKHIR

BAB III DESKRIPSI DAN PERENCANAAN RANCANG BANGUN SOLAR TRACKER

Desain Sistem Photovoltaic (PV) Terhubung Dengan Grid Sebagai Filter Aktif

BAB II TINJAUAN PUSTAKA

Perancangan Sistem Charger Otomatis pada Pembangkit Listrik Tenaga Surya

Rancang Bangun Interleaved Boost Converter Berbasis Arduino

UPS (UNINTERRUPTABLE POWER SUPPLY) DENGAN METODE INVERTER GELOMBANG PENUH LAPORAN TUGAS AKHIR

PORTABLE SOLAR CHARGER

ISSN : e-proceeding of Engineering : Vol.4, No.3 Desember 2017 Page 3122

Desain dan Implementasi Catu Daya Searah Berarus Besar Bertegangan Kecil

RANCANG BANGUN SUATU SISTEM PEMANFAATAN SUMBER ENERGI TENAGA SURYA SEBAGAI PENDUKUNG SUMBER PLN UNTUK RUMAH TANGGA BERBASIS MIKROKONTROLER.

DESAIN DAN IMPLEMENTASI MULTI-INPUT KONVERTER DC-DC PADA SISTEM TENAGA LISTRIK HIBRIDA PV/WIND

Desain dan Implementasi Catu Daya Searah Berarus Besar Bertegangan Kecil

RANCANG BANGUN KONVERTER PHOTOVOLTAIC DAN PENTAKSIRAN DAYA PHOTOVOLTAIC UNTUK DC POWER HOUSE

BAB I PENDAHULUAN 1.1. Latar Belakang

Desain Inverter Tiga Fasa dengan Minimum Total Harmonic Distortion Menggunakan Metode SPWM

PERANCANGAN SINGLE ENDED PRIMARY INDUCTOR CONVERTER UNTUK PENYETABIL TEGANGAN PADA PEMBANGKIT LISTRIK TENAGA SURYA

BAB I PENDAHULUAN. 1.1 Latar Belakang

DESAIN DAN IMPLEMENTASI MAXIMUM POWER POINT TRACKER (MPPT) SOLAR PV BERBASIS FUZZY LOGIC MENGGUNAKAN MIKROKONTROLLER AVR

PERANCANGAN DAN IMPLEMENTASI KONVERTER DC-DC SINGLE-INPUT MULTIPLE- OUTPUT BERBASIS COUPLED INDUCTOR

DAFTAR PUSTAKA. [1] Felix. Y dan Pratomo, H. L, 2009 Memaksimalkan Daya Photovoltaic

Rancang Bangun Charger Baterai dengan Buckboost Konverter

KENDALI VARIABEL VOLTAGE VARIABEL FREKUENSI PADA MOTOR INDUKSI SATU FASA BERBASIS MIKROKONTROL ATMEGA8535 LAPORAN TUGAS AKHIR OLEH : MATHIAS WINDY

RANCANG BANGUN BECAK LISTRIK TENAGA HYBRID DENGAN MENGGUNAKAN KONTROL PI-FUZZY (SUBJUDUL: HARDWARE) Abstrak

PERANCANGAN SISTEM MAXIMUM POWER POINT TRACKING CONVERTER BERBASIS MIKROKONTROLER ATMEGA 328

1. BAB I PENDAHULUAN 1.1 Latar Belakang

DESAIN DAN ANALISIS PROPORSIONAL KONTROL BUCK-BOOST CONVERTER PADA SISTEM PHOTOVOLTAIK

BAB III METODOLOGI PENELITIAN

DAFTAR GAMBAR. Magnet Eksternal µt Gambar Grafik Respon Daya Output Buck Converter dengan Gangguan Medan

Sistem MPPT Untuk PV dan Inverter Tiga Fasa yang Terhubung Jala-Jala Menggunakan Voltage-Oriented Control

Perbaikan Variabel Step Size MPPT pada Aplikasi Panel Surya untuk Perubahan Iradiasi Matahari yang Cepat

BAB IV HASIL PENGUJIAN DAN ANALISA

Diajukan untuk memenuh salah satu persyaratan dalam menyelesaikan pendidikan sarjana (S-1) pada Departemen Teknik Elektro OLEH :

ABSTRAK. Kata-kata kunci: Solar Cell, Media pembelajaran berbasis web, Intensitas Cahaya, Beban, Sensor Arus dan Tegangan

PERANCANGAN MULTILEVEL BOOST CONVERTER TIGA TINGKAT UNTUK APLIKASI SEL SURYA

DC-DC Step-Up Converter Rasio Tinggi Kombinasi Charge Pump dan Boost Converter untuk Catu Daya Motor Induksi pada Mobil Listrik

Oleh : Aries Pratama Kurniawan Dosen Pembimbing : Prof. Dr.Ir. Mochamad Ashari, M.Eng Vita Lystianingrum ST., M.Sc

Rancang Bangun Inverter Tiga Phasa Back to Back Converter Pada Sistem Konversi Energi Angin

Latar Belakang dan Permasalahan!

PERANCANGAN KONVERTER ARUS SEARAH TIPE CUK YANG DIOPERASIKAN UNTUK PENCARIAN TITIK DAYA MAKSIMUM PANEL SURYA BERBASIS PERTURB AND OBSERVE

UNINTERRUPTIBLE POWER SUPPLY MENGGUNAKAN DOUBLE SWITCH SEBAGAI PENYEARAH DAN PERBAIKAN FAKTOR DAYA

ANALISIS INVERTER SATU FASA PADA KONFIGURASI MASTER-SLAVE

Materi Sesi Info Listrik Tenaga Surya. Politeknik Negeri Malang, Sabtu 12 November 2016 Presenter: Azhar Kamal

H-Bridge Inverter dengan Boost-up Chopper sebagai Pengondisi Daya Photovoltaic

BOOST-UP CHOPPER 24 V/320 V DENGAN KENDALI PROPORSIONAL- INTEGRAL (PI) BERBASIS MIKROKONTROLLER

Materi 3: ELEKTRONIKA DAYA (2 SKS / TEORI) SEMESTER 106 TA 2016/2017 PROGRAM STUDI PENDIDIKAN TEKNIK ELEKTRONIKA

Transkripsi:

Simulasi Sistem Pengisi Baterai Berbasis Lereng Daya dan Lereng Tegangan Pada Panel Surya Berbasis DC-DC Converter Tipe Buck-Boost Untuk Aplikasi PJU Energi Bersih dan Terbarukan Dimas Arifiyan, Lidya Gita Ronauly, Leonardus Heru Pratomo Program Studi Teknik Elektro Fakultas Teknik, Universitas Katolik Soegijapranata Semarang dimas_arifiyan@yahoo.com Abstrak Pada PJU (Penerangan Jalan Umum ) panel surya digunakan untuk mengisi baterai. Keluaran daya pada panel surya tidak bisa maksimal secara terus menerus apabila tidak diberi DC-DC converter. Untuk mendapatkan daya maksimal secara terus menerus maka diperlukan suatu sistem DC-DC converter. DC-DC converter yang digunakan di PJU pada umumnya menggunakan manual PWM (Pulse Width Modulation) sebagai kontroln ya. Kontrol manual PWM menghasilkan daya yang kurang maksimal bila dibandingkan dengan kontrol automatic MPPT. Maka dari itu untuk aplikasi pada PJU sebaiknya digunakan kontrol automatic MPPT, namun saat ini pada PJU seringnya digunakan kontrol manual PWM. Untuk merancang simulasi kontrol automatic MPPT harus mengikuti kurva karakteristik panel surya itu sendiri. Pada paper ini dikaji suatu simulasi sistem teknik kendali yang memaksimalkan keluaran daya panel surya, dengan memanfaatkan pertemuan lereng daya dan lereng tegangan dari keluaran panel surya untuk mengisi baterai, dan pada akhirnya daya akan diteruskan ke inverter serta ke beban PJU. DC-DC converter yang digunakan dalam simulasi ini adalah tipe buck-boost converter. Daya yang dihasilkan oleh sistem ini selalu maksimal dan tegangan keluaran mengunci di tegangan baterai. Kata Kunci: buck-boost converter, charge controller, photovoltaic. 1. Pendahuluan Meningkatnya kebutuhan listrik dalam kehidupan manusia mendorong setiap orang mengembangkan energi terbarukan untuk menggantikan energi fosil, salah satunya adalah tenaga surya. Sekarang ini, mulai banyak negara yang sudah mengembangkan dan memanfaatkan tenaga surya untuk memenuhi kebutuhan listriknya, salah satunya adalah Indonesia. (Pltag, 2013) Secara astronomis Indonesia terletak pada 6º LU - 11ºLS dan 95º BT - 145º BT, ini menunjukkan bahwa Indonesia berada di kawasan tropis yang memiliki intensitas cahaya matahari yang tinggi. Oleh karena itu, Indonesia memiliki prospek yang tinggi untuk memanfaatkan tenaga surya. Tenaga surya dapat dimanfaatkan di berbagai sistem kelistrikan. Satu contoh dari banyak pengaplikasiannya yaitu pada sistem PJU (Penerangan Jalan Umum). (Elektro et al., 1991) PJU merupakan kebutuhan penting masyarakat di berbagai daerah. Karena dibutuhkan masyarakat luas maka PJU sebaiknya memiliki sumber energi mandiri, karena penyebaran listrik di indonesia masih belum merata. Sumber energi dari sistem PJU harus memiliki daya yang maksimal. Komponen utama pada sistem PJU adalah panel surya. Panel surya itu sendiri, memiliki kurva karakteristik daya yang khusus yaitu semakin tinggi daya yang dihasilkan maka tegangan yang dihasilkan pun semakin meningkat dan akan mencapai titik puncaknya. Karakteristik ini juga memiliki kelemahan apabila tegangan yang dihasilkan sudah mencapai titik puncaknya, maka keluaran daya dan tegangan pada panel surya akan mengalami penurunan yang sangat signifikan. Hal ini akan sangat mengganggu dalam sistem PJU. Untuk memaksimalkan kinerja sistem PJU biasanya dipasaran masih menggunakan kontrol manual PWM (Pulse Width Modulation) sebagai alat untuk memaksimakan keluaran daya dari panel surya. Namun pada paper ini akan digunakan sebuah kontrol MPPT (Maximum Powerpoint Tracker) full automatic untuk mendapatkan daya maksimal pada panel surya secara terus menerus. (Setiono and Pratomo, 2011) MPPT adalah sebuah sistem DC-DC converter yang terkendali. MPPT bisa mengendalikan keluaran daya panel surya. Keluaran dayanya dikendalikan dengan mendeteksi lereng daya dan lereng tegangan. Dari titik temu kedua lereng ini didapatkan nilai daya maksimal. MPPT yang tersebar di pasaran memiliki banyak jenis. Jenis yang digunakan pada paper ini memiliki jenis buck-boost converter. Dengan 218

menggunakan kontrol MPPT tipe buck-boost ini diharapkan pengisian baterai pada PJU bisa berlangsung cepat, sehingga fungsi PJU bisa dimanfaatkan secara maksimal. 2. Metode Penelitian Pengambilan data dari Sistem Pengisi Baterai Berbasis Lereng Daya dan Lereng Tegangan Pada Panel Surya Berbasis DC-DC Converter Tipe Buck-Boost akan didapatkan melalui hasil kuantitatif dari 2 simulasi rangkaian daya inverter menggunakan software PSIM. Pada dasarnya, sistem cara kerja dari PJU (Penerangan Jalan Umum) ini dapat dilihat pada diagram blok di Gambar 1. dari total daya yang dihasilkan yaitu 1000 Watt/m 2, 800 Watt/m 2, 600 Watt/m 2, 400 Watt/m 2, dan 200 Watt/m 2. Walaupun memiliki tipe berbeda-beda, panel surya memiliki kurva karakteristik daya-tegangan yang sama. Gambar 2. Panel Surya 1000 watt (indonesian.alibaba.com) Adapun kurva karakteristik panel surya adalah sebagai berikut Gambar 3. Kurva Karakteristik panel surya I-V Gambar 1. Diagram Blok Keseluruhan sistem Penerangan Jalan Umum Dari gambar diatas menunjukkan bahwa keluaran daya dari panel surya tidak bisa langsung digunakan untuk memberi energi ke beban. Keluaran daya dari panel surya harus diproses melalui MPPT tipe buck-boost dan inverter sebelum masuk ke beban. Di dalam paper ini akan dijelaskan tentang bagaimana kontrol MPPT tipe buck-boost ini bisa menghasilkan daya yang lebih baik dibandingkan dengan kontrol tipe manual PWM. 2.1 Panel Surya Panel surya merupakan suatu alat konversi energi yang mengubah energi cahaya matahari menjadi energi listrik. Adapun jenis listrik yang dihasilkan adalah DC (Direct Current). Panel Surya terdiri dari berbagai varian dibedakan Gambar 4. Kurva Karakteristik panel surya P-V semakin tinggi daya yang dihasilkan maka tegangan yang dihasilkan pun semakin meningkat dan akan mencapai titik puncaknya. Apabila tegangan yang dihasilkan sudah mencapai titik puncaknya, maka keluaran daya dan tegangan pada panel surya akan mengalami penurunan yang sangat signifikan. 2.2 DC-DC Converter DC-DC converter dibedakan menjadi 3 (tiga) jenis yaitu tipe buck (step-down converter), boost (step -up conveter), dan buck-boost (step down-up converter). (POWER ELECTRONICS Academic Press Series in Engineering, 2001). 219

Berikut ini adalah penjelasan rangkaian berikut siklus kerja dari ketiga DC-DC converter tersebut. 2.2.1 Buck Converter Buck merupakan sebuah DC-DC converter yang mengubah tegangan DC ke tegangan DC yang lebih rendah. Adapun rangkaian dan siklus kerjanya adalah sebagai berikut. Saklar induktor induktor Saklar Gambar 8. Rangkaian buck converter Siklus kerja saat saklar menutup ( ON) menyebabkan komponen induktor dalam rangkaian boost ini mengalami pengisian arus (charge). Arah arus yang melewati rangkaiannya adalah seperti gambar 9. Gambar 5. Rangkaian buck converter Siklus kerja saat saklar menutup ( ON) menyebabkan komponen induktor dalam rangkaian buck ini mengalami pengisian arus ( charge). Arah arus yang melewati rangkaiannya adalah seperti gambar 6. Gambar 9. Arah arus yang mengalir dalam siklus saklar ON rangkaian boost converter Sedangkan siklus saat saklar membuka ( OFF) menyebabkan komponen induktor pada rangkaian boost ini mengalalami pengeluaran arus (discharge). Arah arus yang melewati rangkaiannya adalah seperti gambar 10. Gambar 6. Arah arus yang mengalir dalam siklus saklar ON rangkaian buck converter Sedangkan siklus kerja saat saklar membuka (OFF) menyebabkan komponen induktor pada rangkaian buck ini mengalalami pengeluaran arus (discharge). Arah arus yang melewati rangkaiannya adalah seperti gambar 7. Gambar 7. Arah arus yang mengalir dalam siklus saklar OFF rangkaian buck converter Tegangan DC yang dihasilkan oleh rangkaian ini adalah 0%-100% dari total tegangan sumber. Total tegangan yang dihasilkan sesuai dengan duty cycle yang diberikan pada saklar. Gambar 10. Arah arus yang mengalir dalam siklus saklar OFF rangkaian boost converter Tegangan DC yang dihasilkan oleh rangkaian ini adalah lebih tinggi dari total tegangan sumber. Total tegangan yang dihasilkan berubah-ubah sesuai dengan duty cycle yang diberikan pada saklar. 2.2.3 Buck-Boost Converter Buck-boost merupakan sebuah DC-DC converter yang mengubah tegangan DC ke tegangan DC yang lebih rendah ataupun bisa juga lebih tinggi. Adapun rangkaian dan siklus kerjanya adalah seperti gambar 11. 2.2.2 Boost Converter Boost merupakan sebuah DC-DC converter yang mengubah tegangan DC ke tegangan DC yang lebih tinggi. Adapun rangkaian dan siklus kerjanya adalah sebagai berikut. 220

Saklar induktor Gambar 11. Rangkaian buck-boost converter duty cycle pada sistem manual PWM dan full automatic MPPT tipe buck-boost converter. 2.3.1 Rangkaian Kontrol Manual tracker PWM Kontrol jenis ini menggunakan pengaturan manual duty cycle PWM (Pulse Width Modulation) sebagai pengaturan daya keluarannya. Untuk pengaturan PWM tidak bisa dilakukan secara otomatis. Berikut rangkaian simulasi dan hasil simulasinya. Siklus kerja saat saklar menutup ( ON) menyebabkan komponen induktor dalam rangkaian buck-boost ini mengalami pengisian arus (charge). Arah arus yang melewati rangkaiannya adalah seperti gambar 12. Pengaturan duty cyle Gambar 14. Rangkaian Simulasi PSIM Buck-Boost Converter Gambar 12. Arah arus yang mengalir dalam siklus saklar ON rangkaian buck-boost converter Sedangkan siklus saat saklar membuka ( OFF) komponen induktor pada rangkaian buck-boost ini mengalalami pengeluaran arus (discharge). Arah arus yang melewati rangkaiannya adalah seperti gambar 13. Gambar 13. Arah arus yang mengalir dalam siklus saklar OFF rangkaian buck-boost converter Tegangan DC yang dihasilkan oleh rangkaian ini bisa lebih tinggi dari total tegangan sumber dan juga bisa lebih rendah dari total tegangan sumber. Total tegangan yang dihasilkan berubah-ubah sesuai dengan duty cycle yang diberikan pada saklar. Pada sistem automatic MPPT di paper ini menggunakan DC-DC converter tipe ini, dengan harapan pengisian baterai bisa lebih efektif dan efisien. 2.3 MPPT (Maximum Powerpoint Tracker) MPPT (Maximum Powerpoint Tracker) memiliki banyak jenis. Jenis yang sering dipakai di pasaran untuk PJU yaitu kontrol manual tracker PWM. Sedangkan yang digunakan pada paper ini adalah full automatic MPPT tipe buck-boost converter. Berikut ini akan dibahas Rangkaian dan Beban yang digunakan pada rangkaian buck-boost ini adalah beban baterai dengan tegangan 12 Volt, dan tahanan dalam baterai tersebut adalah 0,003 Ω. Pada saat duty cyle PWM pada nilai 42% dan frekuensi 10Khz (Gambar 16) maka daya keluaran yang dihasilkan panel surya adalah maksimal. Hasil simulasi dari rangkaian diatas menunjukkan bahwa Pi (daya keluaran di panel surya) dan Po (daya keluaran setelah panel surya) berhimpit, hasilnya adalah gambar 18. Namun, apabila beban dalam sistem ini mengalami penurunan tegangan maka daya yang dikeluarkan pada sitem manual PWM akan tidak maksimal. Hasil simulasi manual PWM dengan beban baterai ber-tegangan 10.5 Volt adalah seperti gambar 20. 2.3.1 Rangkaian Kontrol MPPT full automatic tipe buck-boost Kontrol ini menggunakan sensor arus dan sensor tegangan sebagai kontrol untuk menghasilkan PWM secara otomatis. Persamaan yang digunakan untuk mendapatkan lereng daya dan lereng tegangan, agar mendapatkan daya maksimal adalah sebagai berikut. Berikut adalah rangkaian MPPT full automatic tipe buck-boost gambar 15. 221

Gambar 17. Rangkaian Manual Tracker PWM dengan beban baterai 12 volt Gambar 15. Rangkaian Kontrol MPPT full automatic tipe buck-boost Panel surya pada simulasi ini memiliki memiliki tegangan keluaran maksimal 11,83 Volt dan arus 3,55 A. Dengan meggunakan full automatic MPPT tipe buck-boost converter, panel surya ini dapat digunakan untuk beban pengisi baterai dengan tegangan 10-24 Volt dan tahanan dalam baterai 0,003 Ω. Daya yang dihasilkan oleh panel surya tetap bisa mencapai titik maksimal terus menerus. 3. Hasil dan Pembahasan Berikut merupakan hasil simulasi keluaran gelombang PWM (Pulse Width Modulation), grafik tegangan dengan beban baterai 12 Volt, 10,5 Volt, dan grafik tegangan 24 Volt dari simulasi PSIM rangkaian Manual tracker PWM dan simulasi PSIM full automatic MPPT tipe buck-boost converter. Panel surya yang digunakan memiliki keluaran maksimal 11,83 Volt. 3.1 Hasil Gelombang Keluaran Manual Tracker PWM Berikut merupakan hasil simulasi keluaran dari Manual Tracker PWM. Nilai duty cycle yang digunakan pada saklar, agar daya keluaran dari panel surya maksimal adalah sebesar 42%. Apabila duty cycle berubah maka daya yang dihasilkan tidak lagi maksimal. Gambar 18. Hasil simulasi menunjukkan bahwa Pi (daya keluaran di panel surya) dan Po (daya keluar an setelah panel surya) berhimpit maksimal Namun, apabila beban dalam sistem ini mengalami penurunan tegangan maka daya yang dikeluarkan pada sitem manual PWM akan tidak maksimal. Hasil simulasi manual PWM dengan beban baterai ber-tegangan 10.5 Volt (tegangan drop baterai) adalah seperti gambar 20. Gambar 19. Rangkaian Manual Tracker PWM dengan beban baterai 10,5 volt Gambar 16. duty cyle PWM pada nilai 42% dan frekuensi 10Khz Daya keluaran maksimal saat duty cycle 42% dengan beban baterai 12 Volt 0,003Ω dibuktikan dengan hasil simulasi dibawah ini. Gambar 20. Hasil simulasi menunjukkan bahwa Pi (daya panel surya) tidak lagi berhimpit dan tidak stabil Daya keluaran juga tidak bisa maksimal saat beban baterai berubah menjadi 24 Volt 0,003Ω dibuktikan dengan hasil simulasi di bawah ini. 222

Gambar 21. Rangkaian Manual Tracker PWM dengan beban baterai 24 volt Gambar 22. Hasil simulasi menunjukkan bahwa Pi (daya panel surya) tidak berhimpit dan terjadi drop tegangan pada Po 3.1 Hasil Gelombang Keluaran MPPT full automatic tipe buck-boost Berikut merupakan hasil simulasi keluaran dari MPPT full automatic tipe buckboost. Nilai duty cycle yang digunakan pada saklar menyetel otomatis sesuai dengan beban. Apabila beban berubah maka nilai keluaran dari MPPT tetap maksimal. Gambar 25. Hasil simulasi menunjukkan bahwa Pi (daya panel surya) berhimpit maksimal saat beban baterai 12 Volt Daya keluaran juga maksimal saat beban baterai 24 Volt 0,003Ω dibuktikan dengan hasil simulasi di bawah ini. Pada kondisi ini DC-DC converter buck-boost sedang bekerja pada kondisi stepup/boost, karena keluaran dari panel surya hanya 11,83 volt. Beban 24 Volt 0,003Ω Gambar 26. Rangkaian MPPT full automatic tipe buckboost dengan beban baterai 24 volt Gambar 23. PWM pada MPPT full automatic tipe buckboost Daya keluaran maksimal saat beban baterai 12 Volt 0,003Ω dibuktikan dengan hasil simulasi di bawah ini. Gambar 27. Hasil simulasi menunjukkan bahwa Pi (daya panel surya) tetap berhimpit maksimal saat beban baterai menjadi 24 Volt Daya keluaran juga akan maksimal saat beban baterai 10,5 Volt 0,003Ω (tegangan drop baterai) dibuktikan dengan hasil simulasi di bawah ini. Pada kondisi ini DC-DC converter buck-boost sedang bekerja pada kondisi step-down/buck, karena keluaran dari panel surya hanya 11,83 volt. Beban 12 Volt 0,003Ω Gambar 24. Rangkaian MPPT full automatic tipe buckboost dengan beban baterai 12 volt 223

41,65 W. Sedangkan nilai daya rata-rata dari manual PWM adalah 26,51W. Apabila keluaran daya maksimal panel surya adalah 42,04 W, maka efisiensi MPPT full automatic tipe buck-boost pada saat tegangan baterai drop menjadi 10,5 Volt adalah 99,07%. Sedangkan efisiensi dari manual PWM hanya 63,05%. Beban 10,5 Volt 0,003Ω Gambar 28. Rangkaian MPPT full automatic tipe buckboost dengan beban baterai 10,5 volt Gambar 29. Hasil simulasi menunjukkan bahwa Pi (daya panel surya) tetap berhimpit maksimal saat beban baterai menjadi 10,5 Volt Gambar 32. Hasil simulasi perbandingan grafik nilai daya keluaran dari MPPT full automatic tipe buck-boost dan manual PWM dengan beban baterai 12 Volt Perbandingan efisiensi nilai tegangan keluaran pada MPPT full automatic tipe buck-boost dan manual PWM bisa dihitung dengan membandingkan nilai rata-rata / average value kedua hasil gelombang pada software PSIM. Efisiensi Tiap rangkaian berbeda-beda setiap beban baterai berubah. Gambar 30. Hasil simulasi perbandingan grafik nilai daya keluaran dari MPPT full automatic tipe buck-boost dan manual PWM dengan beban baterai 10,5 Volt Gambar 33. Hasil simulasi komputasi nilai daya keluaran dari MPPT full automatic tipe buck-boost dan manual PWM dengan beban baterai 12 Volt Dari gambar 33. dapat diamati nilai daya rata-rata dari MPPT full automatic tipe buck-boost adalah 41,61 W. Sedangkan nilai daya rata-rata dari manual PWM adalah 29,51W. Apabila keluaran daya maksimal panel surya adalah 42,04 W, maka efisiensi MPPT full automatic tipe buck-boost pada saat tegangan baterai 12 Volt adalah 98,98%. Sedangkan efisiensi dari manual PWM hanya 70,19%. Gambar 34. Hasil simulasi perbandingan grafik nilai daya keluaran dari MPPT full automatic tipe buck-boost dan manual PWM dengan beban baterai 24 Volt Gambar 31. Hasil simulasi komputasi nilai daya keluaran dari MPPT full automatic tipe buck-boost dan manual PWM dengan beban baterai 10,5 Volt Dari gambar 31. dapat diamati nilai daya rata-rata dari MPPT full automatic tipe buck-boost adalah 224

Daftar Pustaka Elektro, T. et al. (1991) Penerangan Jalan Umum Solar Cell, pp. 1 6. Pltag, A. (2013) Rancang Bangun Maximum Power Point Tracking (Mppt) Solar Sel Untuk Aplikasi Pada Sistem Grid Pembangkit Listrik Tenaga Angin (PLTAg), (September), pp. 170 178. POWER ELECTRONICS Academic Press Series in Engineering (2001). Gambar 35. Hasil simulasi komputasi nilai daya keluaran dari MPPT full automatic tipe buck-boost dan manual PWM dengan beban baterai 24 Volt Setiono, F. Y. and Pratomo, L. H. (2011) Maximum Power Point Tracker as Regulated Voltage Supply using Ripple Correlation Control, (July). Dari gambar 35. dapat diamati nilai daya rata-rata dari MPPT full automatic tipe buck-boost adalah 41,54 W. Sedangkan nilai daya rata-rata dari manual PWM adalah 29,93W. Apabila keluaran daya maksimal panel surya adalah 42,04 W, maka efisiensi MPPT full automatic tipe buck-boost pada saat tegangan baterai 24 Volt adalah 98,85%. Sedangkan efisiensi dari manual PWM hanya 71,22%. 4. Kesimpulan Dari hasil rancangan simulasi sistem pengisi baterai pada panel surya berbasis dc-dc converter MPPT full automatic tipe buck-boost ini didapatkan efisiensi pengisian terhadap beban baterai dengan tegangan 10,5 Volt, 12 Volt, dan 24 volt secara berurutan adalah 99,07%, 98,98%, dan 98,85%. Efisiensi ini lebih tinggi dibandingkan dengan pengisi baterai manual PWM. Harga alat MPPT full automatic tipe buckboost ini jauh lebih mahal dibandingkan dengan manual PWM, karena didalam sistem ini terdapat sensor arus dan sensor tegangan sebagai kendalinya. Ucapan Terima Kasih Kami ucapkan terimakasih kepada berbagai pihak, tenaga pengajar yang telah membantu secara langsung maupun tidak langsung dalam penyusunan paper ilmiah ini sehingga dapat diselesaikan dalam jangka waktu yang telah ditentukan. 225