LAPORAN ASISTENSI MATA KULIAH PENGINDERAAN JAUH. Dosen : Lalu Muhammad Jaelani ST., MSc., PhD. Cherie Bhekti Pribadi ST., MT

dokumen-dokumen yang mirip
LAPORAN PRAKTIKUM PENGINDERAAN JAUH REGISTRASI DAN REKTIFIKASI DENGAN MENGGUNAKAN SOFTWARE ENVI. Oleh:

LAPORAN PRAKTIKUM MATA KULIAH PENGOLAHAN CITRA DIGITAL

LAPORAN PRAKTIKUM PRAKTEK INDERAJA TERAPAN

GD 319 PENGOLAHAN CITRA DIGITAL KOREKSI GEOMETRIK CITRA

ACARA IV KOREKSI GEOMETRIK

LAPORAN PRAKTIKUM PENGINDERAAN JAUH KOMPOSIT BAND CITRA LANDSAT DENGAN ENVI. Oleh: Nama : Deasy Rosyida Rahmayunita NRP :

Penginderaan Jauh Dan Interpretasi Citra Khursanul Munibah Asisten : Ninda Fitri Yulianti

LAPORAN PRAKTIKUM PENGINDERAAN JAUH TERAPAN KALIBRASI RADIOMETRIK PADA CITRA LANDSAT 8 DENGAN MENGGUNAKAN ENVI 5.1

KOREKSI GEOMETRIK. Tujuan :

METODOLOGI. Gambar 4. Peta Lokasi Penelitian

REGISTRASI PETA TUTORIAL I. Subjek Matter: 1.1 GEOFERENSING 1.2 COORDINAT GEOMETRIK (COGO)

BAB III METODE PENELITIAN

LAPORAN PRAKTIKUM PENGINDERAAN JAUH KOMBINASI BAND PADA CITRA SATELIT LANDSAT 8 DENGAN PERANGKAT LUNAK BILKO OLEH: : HILDA ARSSY WIGA CINTYA

Citra Satelit IKONOS

MODUL 2 REGISTER DAN DIGITASI PETA

BAB I PENDAHULUAN. Bab ini berisi tentang latar belakang, tujuan, dan sistematika penulisan. BAB II KAJIAN LITERATUR

BAB IV. Ringkasan Modul:

PENGOLAHAN IDENTIFIKASI MANGROVE

Analisis Ketelitian Geometric Citra Pleiades 1B untuk Pembuatan Peta Desa (Studi Kasus: Kelurahan Wonorejo, Surabaya)

menunjukkan nilai keakuratan yang cukup baik karena nilai tersebut lebih kecil dari limit maksimum kesalahan rata-rata yaitu 0,5 piksel.

5. PEMBAHASAN 5.1 Koreksi Radiometrik

BAB III PELAKSANAAN PENELITIAN

Evaluasi Ketelitian Luas Bidang Tanah Dalam Pengembangan Sistem Informasi Pertanahan

BAB 3 KOREKSI KOORDINAT

Analisa Ketelitian Geometric Citra Pleiades Sebagai Penunjang Peta Dasar RDTR (Studi Kasus: Wilayah Kabupaten Bangkalan, Jawa Timur)

BAB IV BASIS DATA SISTEM INFORMASI GEOGRAFIS DI DAERAH PENELITIAN

BAB IV PENGOLAHAN DATA

2. GEO REFERENCING. A. Georeferencing menggunakan koordinat yang tertcantum dalam peta analog.

III. METODOLOGI. Gambar 2. Peta Orientasi Wilayah Penelitian. Kota Yogyakarta. Kota Medan. Kota Banjarmasin

BAB III METODOLOGI PENELITIAN

Lampiran 1. Peta klasifikasi penutup lahan Kodya Bogor tahun 1997

BAB III METODOLOGI 3.1 Waktu dan Tempat 3.2 Alat dan Data 3.3 Tahapan Pelaksanaan

Gambar 1. prinsip proyeksi dari bidang lengkung muka bumi ke bidang datar kertas

PENGUKURAN GROUND CONTROL POINT UNTUK CITRA SATELIT CITRA SATELIT RESOLUSI TINGGI DENGAN METODE GPS PPP

IV. METODOLOGI 4.1. Waktu dan Lokasi

III. BAHAN DAN METODE

MODUL 3 REGISTER DAN DIGITASI PETA

Identifikasi Mangrove dan Kerapatan Mangrove. Tutorial Ringkas Identifikasi Ekosistem Mangrove dan Pemetaan Kerapatan Mangrove

BAB II TINJAUAN PUSTAKA

Studi Akurasi Citra Landsat 8 dan Citra MODIS untuk Pemetaan Area Terbakar (Studi Kasus: Provinsi Riau)

GD 319 PENGOLAHAN CITRA DIGITAL KOREKSI RADIOMETRIK CITRA

ISSN Jalan Udayana, Singaraja-Bali address: Jl. Prof Dr Soemantri Brodjonogoro 1-Bandar Lampung

DAFTAR ISI. - i Teguh_blackFord

ANALISIS PERUBAHAN SUHU PERMUKAAN TANAH DENGAN MENGGUNAKAN CITRA SATELIT TERRA DAN AQUA MODIS (STUDI KASUS : DAERAH KABUPATEN MALANG DAN SURABAYA)

3. BAHAN DAN METODE. Penelitian dilakukan di wilayah yang tercemar tumpahan minyak dari

ANALISA KESEHATAN VEGETASI MANGROVE BERDASARKAN NILAI NDVI (NORMALIZED DIFFERENCE VEGETATION INDEX ) MENGGUNAKAN CITRA ALOS

KAJIAN KETELITIAN KOREKSI GEOMETRIK DATA SPOT-4 NADIR LEVEL 2 A STUDI KASUS: NUSA TENGGARA TIMUR

III. BAHAN DAN METODE

Sistem Informasi Geografis (SIG) Pengenalan Dasar ArcGIS 10.2 JURUSAN TEKNIK GEOMATIKA FAKULTAS TEKNIK SIPIL DAN PERENCANAAN

Bab 8 Georeference Data Raster

BAB III METODE PENELITIAN

LAMPIRAN Menggabungkan Citra dari Wikimapia dengan metode Panavue; Metode Panavue. 2. Kemudian pilih File, lalu New Project

GEOGRAFI. Sesi PENGINDERAAN JAUH : 2 A. PENGINDERAAN JAUH NONFOTOGRAFIK. a. Sistem Termal

BAB III METODA. Gambar 3.1 Intensitas total yang diterima sensor radar (dimodifikasi dari GlobeSAR, 2002)

BAB III PEMBAHASAN. 3.1 Data. Data yang digunakan dalam penelitian ini berupa :

SENSOR DAN PLATFORM. Kuliah ketiga ICD

GEOGRAFI. Sesi PENGINDERAAN JAUH : 3 A. CITRA NONFOTO. a. Berdasarkan Spektrum Elektromagnetik

Pemetaan Distribusi Spasial Konsentrasi Klorofil-a dengan Landsat 8 di Danau Towuti dan Danau Matano, Sulawesi Selatan

MODIFIKASI ALGORITMA AVHRR UNTUK ESTIMASI SUHU PERMUKAAN LAUT (SPL) CITRA AQUA MODIS

STUDI PERUBAHAN SUHU PERMUKAAN LAUT (SPL) MENGGUNAKAN SATELIT AQUA MODIS

ix

MODIFIKASI ALGORITMA AVHRR UNTUK ESTIMASI SUHU PERMUKAAN LAUT (SPL) CITRA AQUA MODIS

METODOLOGI PENELITIAN

III. METODE PENELITIAN. berlokasi di kawasan Taman Nasional Way Kambas. Taman Nasional Way

III. METODE PENELITIAN

ANALISA DAERAH POTENSI BANJIR DI PULAU SUMATERA, JAWA DAN KALIMANTAN MENGGUNAKAN CITRA AVHRR/NOAA-16

HASIL DAN PEMBAHASAN. Gambar 4 Subset citra QuickBird (uint16).

TUTORIAL TEKNIK PENENTUAN SUDUT MATAHARI PADA CITRA SATELIT MENGGUNAKAN SOFTWARE ENVI

TUTORIAL DASAR PERANGKAT LUNAK ER MAPPER

BAB III BAHAN DAN METODE

PENGOLAHAN CITRA SATELIT LANDSAT UNTUK IDENTIFIKASI TUTUPAN LAHAN VEGETASI MENGGUNAKAN ER MAPPER 7.0 (Laporan Peongolahan Citra Satelit)

PENGOLAHAN CITRA DIGITAL DENGAN ENVI 4.1.

Analisa Kondisi Ekosistem Mangrove Menggunakan Data Citra Satelit Multitemporal dan Multilevel (Studi Kasus: Pesisir Utara Surabaya)

LATIHAN GPS SUNGAI TIGO. Di Ambil dari Berbagai Sumber

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB III PELAKSANAAN PENELITIAN

BAB II TINJAUAN PUSTAKA...

Seminar Nasional Penginderaan Jauh ke-4 Tahun Staf Pengajar Jurusan Teknik Geodesi FT-UNPAK.

ANALISA PERUBAHAN TATA GUNA LAHAN WILAYAH SURABAYA BARAT MENGGUNAKAN CITRA SATELIT QUICKBIRD TAHUN 2003 DAN 2009

MODIFIKASI ALGORITMA AVHRR UNTUK ESTIMASI SUHU PERMUKAAN LAUT (SPL) CITRA SATELIT TERRA MODIS

2. TINJAUAN PUSTAKA Pemanfaatan Citra Satelit Untuk Pemetaan Perairan Dangkal

Membuat Layout Data Citra Satelit Menggunakan ENVI November 2012 Hal. 1

PENGEMBANGAN MODEL KOREKSI GEOMETRI ORTHO LANDSAT UNTUK PEMETAAN PENUTUP LAHAN WILAYAH INDONESIA

Pengertian Sistem Informasi Geografis

III METODOLOGI. 3.1 Lokasi dan Waktu Penelitian

3. BAHAN DAN METODE. Penelitian yang meliputi pengolahan data citra dilakukan pada bulan Mei

BAB I PENDAHULUAN. I.1. Latar belakang

Oleh : Hernandi Kustandyo ( ) Jurusan Teknik Geomatika Fakultas Teknik Sipil dan Perencanaan Institut Teknologi Sepuluh Nopember

PENGGUNAAN CITRA SATELIT RESOLUSI TINGGI UNTUK PEMBUATAN PETA DASAR SKALA 1:5.000 KECAMATAN NGADIROJO, KABUPATEN PACITAN

MODIFIKASI ALGORITMA AVHRR UNTUK ESTIMASI SUHU PERMUKAAN LAUT (SPL) CITRA SATELIT TERRA MODIS

Abstrak PENDAHULUAN.

BAB 4. METODE PENELITIAN

Bab I Pendahuluan. I.1. Latar Belakang

JURNAL TEKNIK ITS Vol. 6, No. 2, (2017) ISSN: ( Print) A-572

JURNAL TEKNIK POMITS Vol. X, No. X, (XXXX) ISSN: XXXX-XXXX (XXXX-XXXX Print) 1

Analisis Ketelitian Objek pada Peta Citra Quickbird RS 0,68 m dan Ikonos RS 1,0 m

GEOGRAFI. Sesi PENGINDERAAN JAUH : 1 A. PENGERTIAN PENGINDERAAN JAUH B. PENGINDERAAN JAUH FOTOGRAFIK

BAB III METODE PENELITIAN

LAPORAN RESPONSI PENGINDERAAN JAUH

III. METODE PENELITIAN

Transkripsi:

LAPORAN ASISTENSI MATA KULIAH PENGINDERAAN JAUH Dosen : Lalu Muhammad Jaelani ST., MSc., PhD Cherie Bhekti Pribadi ST., MT Oleh: Mutia Kamalia Mukhtar 3514100084 Jurusan Teknik Geomatika Institut Teknologi Sepuluh Nopember Ph. 031-5929487 2016

KATA PENGANTAR Puji syukur kehadirat Tuhan Yang Maha Esa karena dengan rahmat, karunia, serta hidayah-nya penulis dapat menyelesaikan laporan ini. Penulis mengucapkan terima kasih kepada: 1. Bapak Lalu Muhammad Jaelani ST., MSc., PhD. selaku dosen mata kuliah Penginderaan Jauh. 2. Ibu Cherie Bhekti Pribadi ST., MT. selaku asisten dosen mata kuliah Penginderaan Jauh. 3. Teman-teman yang membantu dalam proses penyelesaian laporan praktikum ini. Penulis berharap laporan ini dapat berguna dalam menambah wawasan serta pengetahuan kita mengenai koreksi geometrik citra. Jika terdapat kekurangan dalam penulisan laporan ini mohon dimaafkan. Oleh sebab itu, Penulis berharap adanya kritik, saran dan usulan demi perbaikan laporan yang akan di buat berikutnya. Semoga laporan ini dapat dipahami bagi siapapun yang membacanya dan juga dapat berguna bagi penulis. Mohon maaf apabila terdapat kesalahan kata dalam penulisan laporan ini. Kritik dan saran yang membangun sangat diperlukan demi perbaikan laporan ini. Surabaya, 12 Oktober 2016 Penulis

DAFTAR ISI HALAMAN JUDUL KATA PENGANTAR DAFTAR ISI BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Maksud dan Tujuan BAB II DASAR TEORI 2.1 Koreksi Geometrik ( Registrasi Image to Map) 2.2 Citra Satelit MODIS 2.3 Resolusi Spektral BAB III PELAKSANAAN 3.1 Alat dan Bahan 3.2 Tempat dan Waktu Praktikum 3.3 Petunjuk Praktikum 3.3.1 Subset Data Via ROI 3.3.2 Spatial Subset 3.3.3 Spectral Subset 3.3.4 Registration Image to Map BAB IV HASIL DAN ANALISA 4.1 Subset Data Via ROI 4.2 Spatial Subset 4.3 Spectral Subset 4.4 Registration Image to Map BAB V PENUTUP 5.1 Kesimpulan 5.2 Saran DAFTAR PUSTAKA LAMPIRAN

BAB I PENDAHULUAN 1.1 Latar Belakang Di bidang keilmuan geomatika memang difokuskan di bidang pemetaan. Berbagai macam teknik digunakan untuk menghasilkan peta suatu daerah yang dikehendaki. Mulai dari metode yang sederhana sampai teknologi yang sangat canggih pun digunakan untuk mendapatkan gambaran suatu daerah sesuai keperluan. Salah satunya yaitu dengan memperoleh peta dengan menggunakan citra satelit maupun foto udara. Maka dari itu digunakan beberapa software untuk mengolah peta yang didapatkan sesuai kebutuhan. Dalam praktikum kali ini, kami melakukan pengolahan citra hasil satelit agar mudah untuk di analisa dan di interpretasikan. Maka dari itu dalam pengolahan data kali ini software yang digunakan adalah adalah ENVI 4.6.1 yang merupakan software yang digunakan untuk pengolahan data citra satelit karena dalam pengoperasiannya cukup sederhana. 1.2 Maksud dan Tujuan Tujuan dalam melaksanaan praktikum ini adalah sebagai berikut : a. Pengenalan cara melakukan koreksi geometrik dengan metode registrasi (image to map). b. Mengetahui tentang spatial subset. c. Mengetahui tentang spectral subset. d. Registration Image to Map.

BAB II DASAR TEORI 2.1 Koreksi Geometrik Geometrik merupakan posisi geografis yang berhubungan dengan distribusi keruangan (spatial distribution). Geometrik memuat informasi data yang mengacu bumi (geo-referenced data), baik posisi (sistem koordinat lintang dan bujur) maupun informasi yang terkandung di dalamnya. Menurut Mather (1987), koreksi geometrik adalah transformasi citra hasil penginderaan jauh sehingga citra tersebut mempunyai sifat-sifat peta dalam bentuk, skala dan proyeksi. Transforamasi geometrik yang paling mendasar adalah penempatan kembali posisi pixel sedemikian rupa, sehingga pada citra digital yang tertransformasi dapat dilihat gambaran objek dipermukaan bumi yang terekam sensor. Pengubahan bentuk kerangka liputan dari bujur sangkar menjadi jajaran genjang merupakan hasil transformasi ini. Tahap ini diterapkan pada citra digital mentah (langsung hasil perekaman satelit), dan merupakan koreksi kesalahan geometrik sistematik. Geometrik citra penginderaan jauh mengalami pergeseran, karena orbit satelit sangat tinggi dan medan pandangya kecil, maka terjadi distorsi geometric. Kesalahan geometrik citra dapat tejadi karena posisi dan orbit maupun sikap sensor pada saat satelit mengindera bumi, kelengkungan dan putaran bumi yang diindera. Akibat dari kesalahan geometrik ini maka posisi pixel dari data inderaja satelit tersebut sesuai dengan posisi (lintang dan bujur) yang sebenarnya. Kesalahan geometrik citra berdasarkan sumbernya kesalahan geometrik pada cita penginderaan jauh dapat dikelompokkan menjadi dua tipe kesalahan, yaitu kesalahan internal (internal distorsion), dan kesalahan eksternal (external distorsion). Kesalahan geometrik menurut sifatnya dapat dibedakan menjadi dua jenis yaitu kesalahan sistematik dan kesalahan random. Kesalahan sistematik merupakan kesalahan yang dapat diperkirakan sebelumnya, dan besar kesalahannya pada umumnya konstan, oleh karena itu dapat dibuat perangkat lunak koreksi geometrik secara sitematik. Kesalahan geometrik yang bersifat random (acak) tidak dapat diperkirakan terjadinya, maka

koreksinya harus ada data referensi tambahan yang diketahui. Koreksi geometrik yang biasa dilakukan adalah koreksi geometrik sistemik dan koreksi geometrik presisi. Kesalahan geometrik internal disebabkan oleh konfigurasi sensornya, akibat pembelokan arah penyinaran menyebabkan distorsi panoramic (look angle), yang terjadi saat cermin scan melakukan penyiaman (scanning). Besarnya sudut pengamatan (field of view) satelit pada proses penyiaman akan mengakibatkan perubahan luas cakupan objek. Distorsi panoramic sangat besar pengaruhnya pada sensor satelit resolusi rendah seperti rendah NOAA-AVHRR dan MODIS, namun citra resolusi tinggi seperti Landsat, SPOT, IKONOS, Quickbird, dan ALOS bebas dari distorsi panoramic, karena orbitnya yang tinggi dengan medan pandang kecil hampir tidak terjadi pergeseran letak oleh relief pada data satelit tersebut. Distorsi yang disebabkan perubahan atau pembelokan arah penyiaman bersifat sistematik, dapat dikoreksi secara sistematik. Kesalahan geometrik menyebabkan perubahan bentuk citra. 2.1.1 Registrasi Memberikan koordinat pada citra berdasarkan koordinat yang ada pada citra lain (dengan cakupan area yang sama) yang telah memiliki koordinat. Dalam beberapa kasus, yang dibutuhkan adalah penyamaan posisi antara satu citra dengan citra lainnya dengan mengabaikan sistem koordinat dari citra yang bersangkutan. Penyamaan posisi ini kebanyakan dimaksudkan agar posisi piksel yang sama dapat dibandingkan. Dalam hal ini penyamaan posisi citra satu dengan citra lainnya untuk lokasi yang sama sering disebut dengan registrasi. Dibandingkan dengan rektifikasi, registrasi ini tidak melakukan transformasi ke suatu koordinat sistem. Dengan kata lain, registrasi adalah suatu proses membuat suatu citra konform dengan citra lainnya, tanpa melibatkan proses pemilihan sistem koordinat. 2.2 Citra Satelit MODIS MODIS (Moderate Resolution Imaging Spectroradiometer) merupakan sensor multispektral yang memiliki jumlah 36 band yang mempunyai resolusi spasial yang berbeda-beda mulai dari 250 m (band 1-2), 500 m (band 3-7), 1000 m (band 8-36)

dengan panjang gelombang mulai dari 0,620-14,385 µm. Sensor ini mengorbit bumi secara polar pada ketinggian 705 km, lebar cakupan lahan pada permukaan bumi setiap putarannya sekitar 2330 km. Resolusi Band λ (µm) Kegunaan Utama Spasial (m) Saluran Reflektan (Pantulan) 1 0,620-0,670 250 2 0,841-0,876 250 Aerosol, Awan, Lahan 3 0,459-0,479 500 4 0,545-0,565 500 5 1,230-1,250 500 6 1,628-1,652 500 Aerosol, Awan, Ketebalan Optis,Bentuk Awan, Masking Awan, Salju, Lahan/Tanah 7 2,105-2,155 500 8 0,405-0,420 1000 9 0,438-0,448 1000 10 0,483-0,493 1000 Warna Laut, Klorofil,Fitoplankton, Biogeo-kimiawi 11 0,526-0,536 1000 12 0,546-0,556 1000 13 0,662-0,672 1000 Sedimen, Atmosfer 14 0,673-0,683 1000 Flouresense 15 0,743-0,753 1000 16 0,862-0,877 1000 Aerosol Atmosfer 17 0,890-0,920 1000 Uap Air, Awan

Band λ (µm) Resolusi Spasial (m) Kegunaan Utama 18 0,931-0,941 1000 19 0,915-0,965 1000 26 1,360-1,390 1000 Awan Sirus 20 3,660-3,840 1000 Saluran Radian (Pancaran) 21 3,929-3,989 1000 22 3,929-3,989 1000 Permukaan dan Awan, Suhu, Api dan Vulkanik, Suhu Muka Laut 23 4,020-4,080 1000 24 4,433-4,498 1000 25 4,482-4,549 1000 27 6,535-6,895 1000 28 7,175-7,475 1000 Suhu Atmosfer Uap Air Troposfer 29 8,400-8,700 1000 Partikel Awan 30 9,580-9,880 1000 Total Kandungan Ozon 31 10,780-11,280 1000 32 11,770-12,270 1000 Awan, Api, Suhu Permukaan 33 13,185-13,485 1000 34 13,485-13,785 1000 35 13,785-14,085 1000 Ketinggian Awan, Suhu, Tekanan, Profil Suhu/Temperatur 36 14,085-14,385 1000

2.3 Resolusi Spektral Resolusi spektral diartikan sebagai dimensi dan jumlah daerah panjang gelombang yang dimiliki oleh sensor. Sebagai contoh, potret hitam-putih mempunyai resolusi yang lebih rendah (0,4 m - 0,7 m) dibandingkan dengan Landsat TM band 3 (0,63 m - 0,69 m). Dengan jumlah band-band sempit yang banyak maka pemakai atau peneliti dapat memilih kombinasi yang terbaik sesuai dengan tujuan dari analisis untuk mendapatkan hasil yang optimal. TM mempunyai 7 band dengan lebar setiap bandnya yang sempit tetapi rentang band yang digunakan lebar (mulai band biru sampai dengan band termal), sedangkan SPOT 5 mempunyai 4 band dengan rentang dari band hijau sampai dengan inframerah sedang, ini berarti bahwa TM mempunyai resolusi spektral yang lebih baik dibandingkan dengan SPOT.

BAB III PELAKSANAAN 3.1 Alat dan Bahan Laptop Asus S551L Citra Landsat Kota Bogor Tanggal : 17 Agustus 2016 Path : 122 Row : 64 Citra MODIS Sulawesi Software ENVI 5.1 3.2 Tempat dan Waktu Praktikum Hari : Selasa Tanggal : 11 Oktober 2016 Jam : 14.00-15.00 BBWI Tempat : Laboratorium Geospasial Teknik Geomatika ITS 3.3 Petunjuk Praktikum 3.3.1 Subset Data Via ROI 1. Buka software ENVI. 2. Pilih Open Image File. Masukkan band yang telah di warping sebelumnya.

3. Pilih RGB, lalu klik Band 3-2-1 dan Load. 4.Masukkan peta vektor yang telah di potong sesuai daerah kabupaten masingmasing.

5. Pilih Subset Data Via ROIs di menu Basic Tools. 6. Lalu pilih data vektor yang telah anda masukkan sebelumnya. Klik OK.

7. Pilih data yang akan di subset lalu aktifkan Mask pixels output of ROI, dan save. 8.Setelah itu akan muncul band hasil subset. Klik Load jika ingin menampilkan hasil citra yang telah di subset.

3.3.2 Spatial Subset 1. Pilih Open Image File, lalu masukkan data citra MODIS yang telah di georeferencing sebelumnya. Dan load Band 3-2-1. 2. Pilih menu Basic Tools lalu pilih Resize Data. 3. Pilih citra yang sudah di georeferencing.

4. Klik Spatial Subset di menu Subset Using klik Image. 5. Ganti angka Samples dan Lines sesuai yang anda butuhkan, disini saya menggunakan 800x1000. Lalu arahkan kotak merah ke daerah yang ingin anda potong. Klik OK.

3.3.3 Spectral Subset 1. Pilih Spectral Subset. 2. Pilih Band 1 sampai Band 4 lalu klik OK.

3. Akan muncul jendela Resize Data Parameters. Lalu save citra. Klik OK. 4. Citra akan terpotong sesuai daerah yang sebelumnya kita pilih di kotak merah.

3.3.4 Registration Image to Map 1. Masukkan citra MODIS yang telah di potong. Load Band 3-2-1. 2. Masukkan peta vektor provinsi dan aktifkan di Display 1.

3. Pilih menu Map lalu pilih Registration kemudian pilih Image to Map. Lalu pilih proyeksi UTM, Datum WGS-84, Units Meters, Zone 51 S, dan klik OK. 4. Akan muncul jendela Ground Points Selection.

5. Buka kembali jendela Vector Parameters: Cursor Query. Pilih titik GCP yang anda inginkan, lalu pilih mode zoom, klik ditengah-tengah piksel. Akan keluar angka Easting dan Northing di kolom Location. Copy angka Easting dan Northing tersebut ke jendela Ground Points Selection lalu klik Add Point. 6. Ulangi langkah 4 dan 5 untuk mendapatkan titik GCP sebanyak yang anda inginkan. 7. Pilih Option lalu Warp File. 8. Pilih citra MODIS Sulawesi yang sudah di crop sebelumnya. Klik OK.

9. Save citra yang akan ada GCP nya. 10. Lalu proses registrasi pun akan selesai dengan munculnya band seperti berikut. Load Band 1 sampai 4 untuk melihat hasilnya.

4.1 Hasil Subset Data Via ROI BAB IV HASIL DAN ANALISA

4.2 Hasil Spatial Subset 4.3 Hasil Spectral Subset

4.4 Hasil Registration Image to Map

BAB V PENUTUP 5.1 Kesimpulan Subset Data via ROI : Citra telah terpotong menjadi citra daerah Kota Bogor saja dan daerah di sekitar Kota Bogor sudah hilang/tidak tampak. Resize Data (Spatial/Spectral) : Citra telah terpotong menjadi citra daerah Pulau Sulawesi saja tetapi pulau-pulau kecil di sekitar Pulau Sulawesi masih tampak. Registration Image to Map : Secara geometrik tidak ada perubahan yang signifikan. Tetapi dibandingkan dengan metode sebelumnya yakin Registration Image to Image, nilai RMS Error pada metode Registration Image to Map ini lebih besar dari pada metode sebelumnya. 5.2 Saran 1. Dalam melakukan praktikum hendaknya mendengarkan penjelasan dari dosen dengan baik. 2. Terus berlatih setiap hari agar lebih menguasai software. 3. Catat dan tanyakan pada dosen pembimbing apa yang tidak kita mengerti.

DAFTAR PUSTAKA Saripin, Ipin. 2003. Kajian Pemanfaatan Satelit Masa Depan:Sistem Penginderaan Jauh Satelit Ldcm (Landsat-8) Buletin Teknik Pertanian Vol.8 No.2. Sitanggang, Gokmaria. Kajian Pemanfaatan Satelit Masa Depan: Sistem Penginderaan Jauh Satelit Lcdm (Lansat-8) Peneliti Bidan Bangfaja. LAPAN. geomatikainderaja.blogspot.com/p/koreksi-geometrik.html http://www.gispedia.com/2016/04/karakteristik-citra-modis.html Danoedoro, P. 1996. Pengolahan Citra Digital Teori Dan Aplikasinya Dalam Bidang Penginderaan Jauh, Fakultas Geografi, Universitas Gadjah Mada.

LAMPIRAN Hasil Registration Image to Map Band 1

Band 2

Band 3

Band 4