IMPLEMENTASI PERSAMAAN MOORE AND BURCH UNTUK MENENTUKAN INDEKS EROSI POTENSIAL PADA DAERAH ALIRAN SUNGAI (DAS) BABAKAN KABUPATEN BREBES JAWA TENGAH

dokumen-dokumen yang mirip
BAB II TINJAUAN PUSTAKA

Pemodelan Hidrologi Untuk Identifikasi Daerah Rawan Banjir Di Sebagian Wilayah Surakarta Menggunakan SIG

BAB III METODOLOGI Rancangan Penulisan

BAB I PENDAHULUAN 1.1. Latar Belakang

Flood Prognosis of Keyang Sub-Watersheds Using SIMODAS for Strategic Environmental Assessment on Spatial Planning of Ponorogo District

Gambar 2. Peta Batas DAS Cimadur

TINJAUAN PUSTAKA. Daerah Aliran Sungai Asahan. harafiah diartikan sebagai setiap permukaan miring yang mengalirkan air

BAB I PENDAHULUAN BAB I PENDAHULUAN

Penggunaan SIG Untuk Pendeteksian Konsentrasi Aliran Permukaan Di DAS Citarum Hulu

BAB I PENDAHULUAN. A. Latar Belakang. Samudera, Danau atau Laut, atau ke Sungai yang lain. Pada beberapa

BAB I PENDAHULUAN. 1.1 Latar Belakang

Suryo Kuncoro Totok Gunawan Abstract

MENENTUKAN PUNCAK EROSI POTENSIAL YANG TERJADI DI DAERAH ALIRAN SUNGAI (DAS) LOLI TASIBURI DENGAN MENGGUNAKAN METODE USLEa

PROGNOSA BANJIR SUB DAS KONTO MENGGUNAKAN SIMODAS

TINJAUAN PUSTAKA. Daerah Aliran Sungai adalah suatu daerah atau wilayah dengan

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN. kehilangan tanah mendekati laju yang terjadi pada kondisi alami.

12. DAERAH ALIRAN SUNGAI

BAB I PENDAHULUAN. 1.1 Latar Belakang

Analisis Hidrologi. Materi Perkuliahan 11/17/14. n Tujuan Perkuliahan: n Pustaka : Pemodelan

Identifikasi Potensi Sumber Air Permukaan Dengan Menggunakan DEM (Digital Elevation Model) Di Sub Das Konto Hulu Kabupaten Malang

Model Data Spasial. by: Ahmad Syauqi Ahsan

KAJIAN KARAKTERISTIK DAS UNTUK DAERAH TANGKAPAN HUJAN WADUK SERMO KABUPATEN KULON PROGO, DAERAH ISTIMEWA YOGYAKARTA

Geo Image 1 (1) (2012) Geo Image.

TINJAUAN PUSTAKA. unsur-unsur utamanya terdiri atas sumberdaya alam tanah, air dan vegetasi serta

BAB I PENDAHULUAN. Daerah Aliran Sungai merupakan suatu sistem alam yang menjadi

ANALISIS POTENSI EROSI DAS PETAPAHAN PADA EMBUNG PETAPAHAN Lukman Nul Hakim 1), Mudjiatko 2), Trimaijon 2)

BERITA NEGARA REPUBLIK INDONESIA

Jurnal Teknik Sipil ISSN Pascasarjana Universitas Syiah Kuala 9 Pages pp. 1-9

Sistem Infornasi Geografis, atau dalam bahasa Inggeris lebih dikenal dengan Geographic Information System, adalah suatu sistem berbasis komputer yang

III. METODOLOGI PENELITIAN

NASKAH SEMINAR ANALISIS KARAKTERISTIK FISIK DAS DENGAN ASTER GDEM Versi 2.0 DI SUNGAI OPAK_OYO 1

Mega Wahyu Syah ( )

LAMPIRAN PROSEDUR ANALISA DENGAN ARCGIS

PERATURAN MENTERI KEHUTANAN REPUBLIK INDONESIA NOMOR : P.59/Menhut-II/2013 TENTANG TATA CARA PENETAPAN BATAS DAERAH ALIRAN SUNGAI

Jurnal Geodesi Undip Oktober 2014

PENDAHULUAN BAB I PENDAHULUAN

BAB I PENDAHULUAN. peningkatan kebutuhan manusia akibat dari pertambahan jumlah penduduk maka

ANALISIS SEDIMENTASI LAHAN DAS EMBUNG UWAI KABUPATEN KAMPAR MENGGUNAKAN METODE USLE BERBASIS SISTEM INFORMASI GEOFRAFIS (SIG)

BAB II METODOLOGI 2.1 Bagan Alir Perencanaan

PENGARUH PERUBAHAN TATA GUNA LAHAN TERHADAP DEBIT LIMPASAN PADA SUB DAS SEPAUK KABUPATEN SINTANG KALIMANTAN BARAT

1267, No Undang-Undang Nomor 4 Tahun 2011 tentang Informasi Geospasial (Lembaran Negara Republik Indonesia Tahun 2011 Nomor 49, Tambahan Lem

BAB I PENDAHULUAN. sebelah Tenggara Kota Yogyakarta dengan jarak sekitar 39 km. Kabupaten

BAB II TINJAUAN PUSTAKA A. Model

Bab IV Metodologi dan Konsep Pemodelan

Study on Form, Drainage Network, and Watershed Hydrograph by Using SIMODAS (Case Study on Sabu Island - Nusa Tenggara Timur)

PENUNTUN PRAKTIKUM Inderaja dan Sistim Informasi Geografis Perairan (GMKB604)


Gambar 3. 1 Wilayah Sungai Cimanuk (Sumber : Laporan Akhir Supervisi Bendungan Jatigede)

Teknik Konservasi Waduk

Bab I Pendahuluan. I.1 Latar Belakang

BAB I PENDAHULUAN. Latar Belakang. Wilayahnya meliputi bagian hulu, bagian hilir, bagian pesisir dan dapat berupa

BAB V ANALISIS DAN PEMBAHASAN. A. Analisis karakteristik DTA(Daerah Tangkapan Air ) Opak

Ailran sedimen dari lokasi titik tambang (contoh dari tambang mangan Timor Barat)

Konsentrasi Sistem Informasi Geografis,Teknik Informatika, Fakultas Teknik Komputer Universitas Cokroaminoto Palopo

BAB IV INPUT DATA SPASIAL (PARAMETER LAHAN KRITIS)

BAB II LANDASAN TEORI

Departemen Konservasi Sumberdaya Hutan dan Ekowisata IPB Bogor ) Departemen Manajemen Hutan IPB Bogor Diterima... / Disetujui...

USLE (Universal S UNAKAN

USLE (Universal S UNAKAN

III. BAHAN DAN METODE

BAB I PENDAHULUAN. Sumber daya alam meliputi sumber daya lahan, hutan, air, dan mineral.

Pengenalan Peta & Data Spasial Bagi Perencana Wilayah dan Kota. Adipandang Yudono 13

Prosiding Seminar Nasional Pengelolaan Daerah Aliran Sungai Berbasis Masyarakat untuk Hutan Aceh Berkelanjutan Banda Aceh, 19 Maret 2013

SKRIPSI. Oleh : MUHAMMAD TAUFIQ

Aplikasi Sistem Informasi Geografi untuk Penetapan Potensi Lahan Budidaya Perikanan di Kabupaten Sumedang *)

3/17/2011. Sistem Informasi Geografis

BAB II TINJAUAN PUSTAKA

PENDUGAAN BESAR ANGKUTAM SEDiMEN PADA DAERAH ALIRAN SUNGAI CITANDUY

PENDUGAAN BESAR ANGKUTAM SEDiMEN PADA DAERAH ALIRAN SUNGAI CITANDUY

BAB III BAHAN DAN METODE

PENGEMBANGAN KONSERVASI LAHAN TERHADAP EROSI PARIT/JURANG (GULLY EROSION) PADA SUB DAS LESTI DI KABUPATEN MALANG

Prosiding Seminar Nasional INACID Mei 2014, Palembang Sumatera Selatan

BAB I PENDAHULUAN. 1.1 Latar Belakang

PREDIKSI TINGKAT BAHAYA EROSI MENGGUNAKAN SISTEM INFORMASI GEOGRAFIS (SIG) DI DAERAH TANGKAPAN AIR DANAU WISATA BANDAR KAYANGAN

BAB II TINJAUAN PUSTAKA

PENGEMBANGAN MODEL PREDIKSI EROSI LAHAN BERBASIS SISTEM INFORMASI GEOGRAFI UNTUK KEJADIAN HUJAN TUNGGAL

BAB I PENDAHULUAN. yang mempunyai peluang pasar dan arti ekonomi cukup baik. digunakan untuk pertanian dan perkebunan. Dinas Pertanian adalah sebuah

PEMODELAN SEDIMENTASI PADA TAMPUNGAN BENDUNG TIBUN KABUPATEN KAMPAR

PENDUGAAN EROSI TANAH DIEMPAT KECAMATAN KABUPATEN SIMALUNGUN BERDASARKAN METODE ULSE

Analisis Sedimentasi Sungai Jeneberang Menggunakan Citra SPOT-4

SMA/MA IPS kelas 10 - GEOGRAFI IPS BAB 8. SUPLEMEN PENGINDRAAN JAUH, PEMETAAN, DAN SISTEM INFORMASI GEOGRAFI (SIG)LATIHAN SOAL 8.3.

PEMANFAATAN CITRA ASTER DIGITAL UNTUK ESTIMASI DAN PEMETAAN EROSI TANAH DI DAERAH ALIRAN SUNGAI OYO. Risma Fadhilla Arsy

Sistem Informasi Geografis (SIG) Geographic Information System (SIG)

Analisis Sedimentasi Sungai Jeneberang Menggunakan Citra SPOT-4 Andi Panguriseng 1, Muh. Altin Massinai 1, Paharuddin 1 1

DIAH IRAWATI DWI ARINI 1), LILIK BUDI PRASETYO 1) DAN OMO RUSDIANA 2) Diterima 22 Januari 2007 / Disetujui 28 Mei 2007

125 permukaan dan perhitungan erosi berasal dari data pengukuran hujan sebanyak 9 kejadian hujan. Perbandingan pada data hasil tersebut dilakukan deng

Gambar 4.1 Peta lokasi penelitian (PA-C Pasekan)

Tujuan. Model Data pada SIG. Arna fariza. Mengerti sumber data dan model data spasial Mengerti perbedaan data Raster dan Vektor 4/7/2016

PENDAHULUAN A. Latar Belakang

ANALISA EROSI DAN USAHA KONSERVASI PADA SUB DAS KONTO HULU BERBASIS SISTEM INFORMASI GEOGRAFIS

BAB IV METODE PENELITIAN

BAB III METODOLOGI PENELITIAN

III.BAHAN DAN METODE. Gambar 1. Lokasi Penelitian (DAS Ciliwung Hulu)

METODE. Waktu dan Tempat

SISTEM INFORMASI GEOGRAFIS PERTANIAN PADI DI KABUPATEN BANTUL, D.I. YOGYAKARTA

1.2 MAKSUD DAN TUJUAN

BAB IV METODE PENELITIAN. A. Lokasi Penelitian

BAB II TINJAUAN PUSTAKA

Transkripsi:

Jurnal Reka Buana Volume No, Maret 017 - Agustus 017 161 IMPLEMENTASI PERSAMAAN MOORE AND BURCH UNTUK MENENTUKAN INDEKS EROSI POTENSIAL PADA DAERAH ALIRAN SUNGAI (DAS) BABAKAN KABUPATEN BREBES JAWA TENGAH Poegoeh Prasetyo Rahardjo 1) dan Alexander Tunggul Sutan Haji ) 1)Institut Pertanian Malang )Universitas Brawijaya Malang ABSTRACT The research aim to make an spatial information system to determine Potential Erosion Index in Babakan watershed area to learning, testing, and evaluating erosion level using Geographical Information System (GIS). Spatial analysis that used are Digital Terrain Modelling (DTM)/Digital Elevation Modelling (DEM) that integrated with Moore and Burc (1986) equations. This analyze represented land surface relief in 3 dimension form to increase correctness of identification of land slope, catchment area, flow direction, flow accumulation, length of flow, and flowing area. The datas that used on this research are digital tophographic map 1:5000 scale, watershed boundary map, rivers network of Babakan watershed map, and landuse map. Analysis on this research is DEM processing from the countour map than integrated them to the Moore and Burch (1986) equations. The result of this research shown that minimum Potential Erosion Index value is 0 and maximum is 144515840. Keywords : Geographical Information System, erotion, DAS, SIG PENDAHULUAN Metode baru yang masih dikembangkan dan di uji untuk memprakirakan besarnya erosi adalah persamaan Moore and Burch (1986). Metode ini didapatkan melalui proses substitusi dari fluks sediment dan dipengaruhi oleh topografi suatu daerah walaupun tidak mengabaikan faktor hujan, faktor tanah dan penggunaan lahan. Penggunaan teknologi Sistem Informasi Geografis (SIG) melalui pemodelan permukaan bumi secara digital dengan model spasial dapat diintegrasikan ke dalam persamaan Moore and Burch sehingga besarnya erosi pada wilayah Daerah Aliran Sungai (DAS) Babakan Kabupatan Brebes, Jawa Tengah dapat diprakirakan dengan merepresentasikan model aliran yang mengalami pengendapan sedimentasi, sehingga dapat memberikan informasi spasial secara rasional. Penelitian ini bertujuan untuk mengetahui faktor-faktor yang mempengaruhi Indeks Erosi Potensial dalam persamaan Moore and Burch pada DAS Babakan Kabupaten Brebes, dan untuk mengetahui besarnya nilai Indeks Erosi Potensial pada DAS Babakan Kabupaten Brebes. METODE PENELITIAN 1) Data Penelitian Data yang diperlukan adalah sebagai berikut :

16 Jurnal Reka Buana Volume No, Maret 017 - Agustus 017 Peta topografi skala 1 : 5.000 dari BAKOSURTANAL (Badan Koordinasi Survei dan Pemetaan Nasional). Peta batas DAS dan jaringan sungai DAS Babakan dari Balai Pengelolaan DAS Babakan Kabupaten Brebes. Peta tataguna lahan DAS Babakan skala 1 : 5.000 dari Balai Pengelolaan DAS Babakan Kabupaten Brebes. ) Pengolahan Data Pengolahan DEM (Digital Elevation Model)/DTM (Digital Terrain Model) pada studi ini digunakan untuk mendapatkan peta kontur dalam format grid dari peta topografi digital dengan skala 1 : 5.000, kemudian DEM dalam format grid tersebut digunakan dalam analisa spasial untuk melakukan perhitungan Indeks Erosi Potensial. Peta kontur digital dalam format grid selanjutnya dapat digunakan untuk mengetahui karakteristik fisik daerah yang berupa penentuan arah aliran (flow direction), dan penentuan akumulasi aliran (flow accumulation). Kualitas dari DEM ditentukan oleh skala dari peta topografi dan ketelitian dalam proses digitasi. 3) Analisis Data Proses selanjutnya setelah mendapatkan data dari hasil pengolahan DEM (Digital Elevation Model) adalah analisis data dengan mengolah data dari pengolahan DEM ke dalam persamaan Moore and Burch untuk mendapatkan pemodelan analisis spasial dalam menentukan Indeks Erosi Potensial. Gambar Diagram Alir Pengolahan DEM Persamaan (1) : Y k x n1 p z z 1A sx n Asx 1 x Persamaan () : x p1 1r k Y A p sx z x n1 Y x = x na sx z x z A x x sx p1 p r z A sx p 1 x x Kehilangan sediment per unit area Y x p1 k1r = Indeks Erosi Potensial k 1 = Karakteristik DAS r = Pengaruh air hujan

Jurnal Reka Buana Volume No, Maret 017 - Agustus 017 163 A sx = A sx x = z x = z x catchment area (Tangkapan air) Turunan dari catchment area Turunan pertama dari slope = Turunan kedua dari slope n = Eksponen ; n 1, p = Eksponen ; p 0, 6 HASIL DAN PEMBAHASAN 1. Pengolahan DEM (Digital Elevation Model) DEM dalam format grid ini akan digunakan dalam analisa spasial untuk mengetahui karakteristik fisik daerah studi yang berupa kemiringan (slope), arah aliran (flow direction), dan akumulasi aliran (flow accumulation) yang berguna untuk melakukan perhitungan besarnya erosi yang terjadi pada daerah studi. Pengolahan DEM pada dasarnya sangat memerlukan peta kontur (garis-garis ketinggian) yang digunakan untuk memodelkan permukaan bumi secara digital. Hal ini dikarenakan dari peta kontur inilah dapat diperkirakan bentuk relief dari permukaan bumi yang akan dimodelkan, sedangkan peta kontur untuk Daerah Aliran Sungai (DAS) Babakan ditunjukkan pada Gambar 3. Gambar 3 Diagram Alir Pengolahan Persamaan Moore and Burch Gambar 4 Peta Kontur DAS Babakan

164 Jurnal Reka Buana Volume No, Maret 017 - Agustus 017 Peta kontur tersebut selanjutnya diolah dengan peta batas DAS yang sudah berupa polygon sehingga dihasilkan peta dengan format TIN (Triangulated Irregular Network) seperti ditunjukkan pada Gambar 5. sel-sel no data. Peta grid ketinggian DAS Babakan ditunjukkan pada Gambar 5. Arah aliran merupakan propertas hidrologi yang digunakan sebagai acuan kemana air akan mengalir dari satu sel ke sel tetangganya yang berdekatan. Menurut Sutan Haji (005) arah aliran tersebut digunakan sebagai pedoman untuk menghubungkan sel yang satu dengan yang lainnya, maka akan didapatkan jaringan sungai sintetik di seluruh DAS yang diperhatikan. Gambar 5 Peta TIN Grid peta ketinggian didapatkan dari peta dengan format TIN yang dirubah (convert) dalam bentuk grid. Permukaan bumi pada penelitian ini dimodelkan dalam ukuran sel grid 5 m x 5 m dengan pengertian bahwa satu grid DEM mewakili luasan 5 m x 5 m dipermukaan bumi, sehingga dari seluruh area studi terbentuk sebanyak 163.785 sel grid yang terdiri atas 537 baris sel grid dan 305 kolom sel grid. Dari jumlah grid yang terbentuk tersebut dapat diketahui pemodelan DAS Babakan dilakukan pada luasan 10.365.65 m atau 1036,565 hektar, nilai ini jauh berbeda dengan luas DAS Babakan sesungguhnya yaitu 5.788,88 hektar. Hal ini dikarenakan pada grid hasil pemodelan banyak terdapat Gambar 6 Peta Grid Ketinggian Nilai yang terbentuk pada theme peta arah aliran (flow direction) merupakan gambaran dari arah aliran air pada suatu sel grid ketika terjadi hujan. Menentukan arah aliran suatu sel dari DEM (Digital Elevation Model) ditentukan dengan membandingkan elevasi tersebut dengan elevasi 8 (delapan) tetangganya yang bersebelahan, cara ini pada umumnya disebut dengan metode delapan arah mata angin dan nilai yang terdefinisi pada grid arah aliran hanya

Jurnal Reka Buana Volume No, Maret 017 - Agustus 017 165 menggambarkan atau menunjukkan arah dari aliran saja. Maka aliran dari sel ini akan mengalir ke arah sel yang memiliki kemiringan relatif paling curam terhadap sel yang akan ditentukan arah alirannya. Penentuan arah aliran dengan metode delapan arah mata angin ditunjukkan pada Gambar 7. tertinggi adalah 745), biasanya mengidentifikasikan saluran sungai (Sutan Haji, 001). Peta grid akumulasi aliran (flow accumulation) ditunjukkan pada Gambar 8. 3 64 18 16 1 8 4 Gambar 7 Konvensi Penilaian Arah Aliran Pada Suatu Grid Akumulasi aliran perlu diturunkan untuk pemodelan hidrologi/aliran dimana besarnya akumulasi aliran suatu grid sama dengan jumlah sel-sel grid lain disekitarnya yang alirannya menuju padanya. Peta grid arah aliran yang sudah terbentuk selanjutnya digunakan untuk menentukan akumulasi aliran (flow accumulation) melalui menu hydro dengan pilihan adalah flow accumulation pada program ArcView 3.3. Nilai 0 (nol) yang terbentuk pada sel akumulasi aliran dapat diartikan bahwa tidak ada aliran dari sel lain yang masuk ke sel tersebut. Nilai 0 (nol) ini biasanya merupakan daerah yang topografinya tinggi yang berupa punggung-punggung bukit yang selanjutnya diidentifikasikan sebagai batas DAS, sedangkan sel-sel dengan jumlah akumulasi aliran tinggi (dengan nilai Gambar 8 Peta Grid Flow Accumulation. Pemodelan Indeks Erosi Potensial Indeks Erosi Potensial didapatkan dari persamaan Moore and Burch dengan menggunakan persamaan (), sedangkan pada prosesnya persamaan tersebut membutuhkan data-data berupa catchment area A, turunan dari catchment area sx A sx z, kemiringan (slope), dan x x turunan dari kemiringan (slope) yaitu slope of z slope, sebab data tersebut x merupakan atribut topografi yang dapat langsung dihitung dengan analisa permukaan/terrain analysis.

166 Jurnal Reka Buana Volume No, Maret 017 - Agustus 017 Data pertama yang diperlukan adalah theme peta grid catchment area, theme tersebut didapatkan dari perkalian antara grid akumulasi aliran dengan luasan ukuran grid. Penelitian ini pemodelan permukaan bumi dilakukan dalam ukuran grid 5 meter, maka untuk menentukan catchment area, grid akumulasi aliran dikalikan dengan 65 dan proses perkalian untuk mendapatkan catchment area dikerjakan dengan menggunakan Map Calculation yang terdapat pada ArcView 3.3, sedangkan peta hasil grid catchment area dapat ditunjukkan pada Gambar 9. Gambar 9 Peta Grid Catchment Area Nilai yang didapatkan dari proses ini dalam satuan meter persegi (m ). Nilai catchment area yang terkecil sebesar 0 (nol) m dan yang terbesar adalah 46.576.48 m atau 4657,648 hektar. Nilai 0 (nol) menunjukkan bahwa sel tersebut tidak memiliki catchment area atau tidak ada aliran yang masuk dari sel lain ke sel tersebut. Nilai catchment area terbesar terdapat pada sel dimana sebagian besar aliran air dari sel-sel lain terakumulasi pada sel tersebut, sedangkan pada peta grid catchment area hasil analisa, nilai yang terbesar terdapat pada bagian hilir yang lokasinya dekat dengan bendungan Cisadap, hal ini menunjukkan bahwa sebagian besar aliran air pada Daerah Aliran Sungai (DAS) Babakan akan terakumulasi pada sel tersebut. Data kedua yang dibutuhkan dalam pemodelan hidrologi merupakan turunan pertama dari catchment area. Turunan dari catchment area dapat terbentuk melalui menu surface dengan pilihan derive slope pada ArcView 3.3. Nilai catchment area yang terbentuk dari proses tersebut masih dalam satuan derajat ( ), nilai ini harus diubah dalam satuan desimal agar dapat digunakan dalam perhitungan selanjutnya. Perubahan dilakukan dengan terlebih dahulu mengubah nilai sudut catchment area yang terbentuk dari satuan derajat ( ) ke dalam satuan radian (rad), selanjutnya dicari tangen (tan) dari sudut yang terbentuk. Nilai yang tercantum setelah turunan catchment area sudah terbentuk dan satuannya telah berubah ke dalam bentuk desimal adalah 0 (nol) m dan yang terbesar adalah 1.098.945,875 m atau 1.09,8945875 hektar. Peta hasil turunan grid catchment area ditunjukkan pada Gambar 10. Peta grid kemiringan (slope) merupakan data yang selanjutnya dibutuhkan dalam pengolahan untuk mendapatkan pemodelan Indeks Erosi Potensial. Peta grid kemiringan (slope) didapatkan dari peta grid ketinggian yang telah diturunkan dengan menggunakan derive slope, salah satu option yang ada di dalam menu surface pada program ArcView 3.3. Hasil peta grid

Jurnal Reka Buana Volume No, Maret 017 - Agustus 017 167 kemiringan (slope) ditunjukkan pada Gambar 11. Gambar 10 Peta Grid Turunan Catchment Area perhitungan selanjutnya. Nilai yang tercantum setelah peta grid kemiringan (slope) sudah terbentuk dan satuannya telah berubah ke dalam bentuk desimal sebesar 0 (nol) dan untuk nilai terbesar adalah 1,537. Nilai slope sebesar 1,537 berarti bahwa pada sel tersebut memiliki kemiringan sekitar 57 0. Nilai ini terletak pada bagian hulu DAS yang merupakan daerah pegunungan. Turunan dari peta grid kemiringan (slope) yaitu slope of slope, didapatkan dari peta grid kemiringan (slope) yang satuannya sudah dirubah ke dalam desimal diturunkan kembali (derive slope), setelah didapatkan peta grid slope of slope/turunan dari peta kemiringan satuannya juga harus dirubah ke dalam bentuk desimal dengan cara yang sama seperti ketika merubah nilai slope, hal ini dilakukan agar nilai-nilai tersebut bisa digunakan dalam perhitungan selanjutnya. Nilai terkecil pada peta slope of slope adalah 0 dan terbesar adalah 0,01. Peta hasil turunan dari grid kemiringan (slope of slope) ditunjukkan pada Gambar 1. Gambar 11 Peta Grid Kemiringan (Slope) Nilai slope yang terbentuk dari proses tersebut masih dalam satuan derajat ( ), maka nilai ini harus diubah dalam satuan desimal agar dapat digunakan dalam Gambar 1 Peta Grid Turunan Kemiringan (Sloe of slope)

168 Jurnal Reka Buana Volume No, Maret 017 - Agustus 017 Data catchment area, turunan cathment area, kemiringan (slope), dan turunan dari kemiringan (slope of slope) diintegrasikan kedalam persamaan () untuk mendapatkan pemodelan dari Indeks Erosi Potensial. Proses pengolahan data ke dalam persamaan () semuanya dikerjakan dengan menggunakan Map Calculation, hingga didapatkan pemodelan dari Indeks Erosi Potensial. Langkah-langkah proses pengerjaannya dapat ditunjukkan pada Gambar. 3. Indeks Erosi Potensial Indeks Erosi Potensial ditentukan dengan persamaan () dengan menggunakan theme yang terbentuk dari proses sebelumnya. Penentuan ini dilakukan dengan memanfaatkan Map Calculation. Peta grid Indeks Erosi Potensial Daerah Aliran Sungai (DAS) Babakan ditunjukkan pada Gambar 1, dari hasil yang didapatkan terlihat bahwa nilai Indeks Erosi Potensial mempunyai variasi dan kisaran yang cukup besar, hal ini menunjukkan bahwa bentuk topografi suatu daerah sangat berpengaruh terhadap proses-proses terjadinya erosi permukaan. Pengaruh tersebut ditunjukkan dari nilai Indeks Erosi Potensial yang didasarkan pada bentuk topografi permukaan bumi. Nilai Indeks Erosi Potensial mulai dari yang terkecil adalah 0 (nol) dan yang terbesar adalah 1.44.515.840. Nilai 0 (nol) menunjukkan bahwa pada daerah tersebut tidak berpotensi terjadi erosi atau terjadi penumpukan hasil-hasil erosi. Jika dianalisa lebih lanjut, nilai 0 (nol) ini terjadi pada daerah-daerah dimana relief permukaan buminya relatif seragam atau landai. Hal ini menunjukkan besarnya pengaruh bentuk permukaan bumi terhadap aliran air permukaan (runoff) yang pada akhirnya akan mengikis permukaan tanah dan mengangkut hasil erosi ke tempat yang lebih rendah elevasinya. Nilai Indeks Erosi Potensial yang besar terjadi pada daerah-daerah dimana kemungkinan besar terjadi penumpukan/pengendapan sedimen hasil erosi, daerah-daerah ini adalah di sepanjang alur sungai. Karena erosi yang terjadi di suatu lahan akan terbawa aliran air menuju daerah-daerah akumulasi aliran air, maka daerah yang memiliki akumulasi aliran besar cenderung akan memiliki nilai Indeks Erosi Potensial besar. Berdasarkan hipotesa awal, Indeks Erosi Potensial paling besar akan terjadi pada bendung Cisadap, dengan asumsi bahwa daerah ini merupakan daerah tempat terakumulasinya aliran-aliran dari daerah hulu beserta material hasil erosi (sedimen) yang dibawanya. Berbeda dengan hasil analisa menunjukkan bahwa akumulasi aliran paling besar teridentifikasi pada daerah belokan sungai sekaligus pertemuan dua aliran sungai sebelum bendung Cisadap, sehingga daerah inilah yang memiliki nilai Indeks Erosi Potensial paling besar. Hal ini dikarenakan faktor ketinggian tempat yang kemudian berpengaruh terhadap arah dan akumulasi aliran. Jika dilihat pada grid ketinggian, ketinggian daerah ini adalah 0 meter dan pada sel-sel grid sekitarnya tidak ditemukan sel yang memiliki ketinggian lebih rendah.

Jurnal Reka Buana Volume No, Maret 017 - Agustus 017 169 3. Indeks Erosi Potensial dapat diselesaikan dengan menggunakan teknologi spasial (modelling) dengan cara membentuk grid ketinggian (DEM) dengan bantuan Map Calculation yang tersedia dalam perangkat aplikasi ArcView 3.3. 4. Nilai Indeks Erosi Potensial pada Daerah Aliran Sungai (DAS) Babakan yang terkecil adalah 0 (nol) dan nilai terbesar adalah 1.44.515.840. Gambar 13 Peta Grid Indeks Erosi Potensial KESIMPULAN Berdasarkan hasil penelitian dapat disimpulkan sebagai berikut : 1. Indeks Erosi Potensial merupakan nilai erosi yang memodelkan pengaruh geometri permukaan tanah terhadap besarnya erosi yang terjadi, selain itu Indeks Erosi Potensial dapat dipengaruhi oleh faktor curah hujan, sifat tanah, dan penutupan lahan (land cover) dalam menentukan besarnya nilai erosi.. Besarnya nilai Indeks Erosi Potensial dipengaruhi oleh kemiringan lahan (Slope), akumulasi aliran (Flow Accumulation), dan bentuk permukaan tanah. Berdasarkan penelitian yang telah dilakukan dapat disarankan : 1. Perlu adanya penelitian lanjutan dengan data-data dari besarnya Indeks Erosi Potensial mengenai besarnya erosi pada DAS Babakan Kabupaten Brebes dengan menggunakan persamaan Moore and Burch.. Setelah adanya penelitian lanjutan mengenai besarnya erosi dengan menggunakan persamaan Moore and Burch, perlu adanya penelitian yang sama untuk mencari besarnya nilai erosi pada DAS Babakan Kabupaten Brebes dengan menggunakan metode USLE (Universal Soil Loss Equation) dan hasilnya dapat digunakan sebagai pembanding dari hasil-hasil penelitian sebelumnya (antara persamaan Moore and Burch dengan metode USLE). 3. Indeks Erosi Potensial sangat dipengaruhi oleh slope (kemiringan), maka perlu dilakukan pengolahan lahan yang baik terutama pada daerahdaerah yang memiliki kemiringan cukup besar.

170 Jurnal Reka Buana Volume No, Maret 017 - Agustus 017 DAFTAR PUSTAKA Aronof, S. 1993. Geographic Information System : A Management Perspective. WDL Publication ; Otawa Canada. Asdak, Chay. 00. Hidrologi dan Pengelolaan Daerah Aliran Sungai. Gadjah Mada University Press. Yogyakarta. Arsyad. 1983. Pengawetan Tanah dan Air. Penerbit Institut Pertanian Bogor. Bogor. Moore, I. D., and G. J. Burch. 1986. Modeling Erosion and Deosition: Topographic Effects. Trans. Am. Soc. Agr: Engrs. 9:1,64-30,1,640. Prahasta, Eddy. 001. Konsep-konsep Dasar Sistem Informasi Geografis. Informatika bandung. Puntodewo, Atie. 003. Sistem Informasi Geografis untuk Pengelolaan Sumber Daya Alam. Center for International Forestry Research (CIFOR). Bogor. Saifudin, Sarief. 1986. Konservasi Tanah dan Air. CV Pustaka Buana. Bandung Sukatja, C.B. dan Danang S. 004. Memanfaatkan Program ILWIS 3.1 untuk Menayangkan Foto Udara Secara Stereo pada Layar Komputer dan Aplikasinya dalam Usaha Pengelolaan Sumber Daya Air. Prosiding Pertemuan Ilmiah Tahunan (PIT) XXI HATHI : 1-1. HATHI, Denpasar, Bali. Sutan Haji, Tunggul. Sri Legowo. 001. Pemanfaatan Sistem Informasi Geografi (SIG) untuk Model Hidrologi Sebar Keruangan. Kongres VII dan Pertemuan Ilmiah HATHI. Himpunan ahli Teknik Hidraulika Indonesia (HATHI). Utomo, Hadi, Wani. 1994. Erosi dan Konservasi Tanah. Cetakan Pertama. Universitas Negeri Malang.