BAB II TINJAUAN PUSTAKA. yang berlaku untuk mendapatkan suatu struktur bangunan yang aman

dokumen-dokumen yang mirip
BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA. yang berlaku untuk mendapatkan suatu struktur bangunan yang aman

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA. Menurut PBI 1983, pengertian dari beban-beban tersebut adalah seperti yang. yang tak terpisahkan dari gedung,

BAB II TINJAUAN PUSTAKA. Melihat sejarah panjang gempa bumi di Indonesia, wilayah Jakarta

BAB II LANDASAN TEORI

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA. harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang

BAB II TINJAUAN PUSTAKA. beban mati, beban hidup dan beban gempa yang bekerja pada struktur bangunan. tak terpisahkan dari gedung (SNI ).

BAB II TINJAUAN PUSTAKA. yang aman. Pengertian beban di sini adalah beban-beban baik secara langsung

BAB II TINJAUAN PUSTAKA. itu sendiri adalah beban-beban baik secara langsung maupun tidak langsung yang. yang tak terpisahkan dari gedung.

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA. maupun tidak langsung mempengaruhi struktur bangunan tersebut. Berdasarkan

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut.

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan

BAB II TINJAUAN PUSTAKA. Pada perencanaan bangunan bertingkat tinggi, komponen struktur

BAB II TINJAUAN PUSTAKA. perkantoran, sekolah, atau rumah sakit. Dalam hal ini saya akan mencoba. beberapa hal yang harus diperhatikan.

T I N J A U A N P U S T A K A

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA. aman secara konstruksi maka struktur tersebut haruslah memenuhi persyaratan

BAB II TINJAUAN PUSTAKA. komponen struktur yang harus diperhatikan. penggunaan suatu gedung, dan ke dalamnya termasuk beban-beban pada lantai

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA. desain untuk bangunan strukturalnya, a, terutama bila terletak di wilayah yang

BAB II TINJAUAN PUSTAKA. geser membentuk struktur kerangka yang disebut juga sistem struktur portal.

BAB II TINJAUAN PUSTAKA. Pada perencanaan bangunan bertingkat tinggi, komponen struktur

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA. tersebut. Menurut PBI 1983, pengertian dari beban-beban tersebut adalah

BAB II TINJAUAN PUSTAKA. yang lebih bawah hingga akhirnya sampai ke tanah melalui fondasi. Karena

BAB 1 PENDAHULUAN Latar Belakang Isi Laporan

BAB II TINJAUAN PUSTAKA

PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI)

BAB II TINJAUAN PUSTAKA

DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI ps f c adalah kuat tekan beton yang diisyaratkan f y

PERENCANAAN GEDUNG PASAR TIGA LANTAI DENGAN SATU BASEMENT DI WILAYAH BOYOLALI (DENGAN SISTEM DAKTAIL PARSIAL)

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek

BAB III LANDASAN TEORI. A. Pembebanan

BAB VI KONSTRUKSI KOLOM

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG KANTOR PERPAJAKAN PUSAT KOTA SEMARANG

BAB I PENDAHULUAN Latar Belakang. Fasilitas rumah atau asrama yang dikhususkan untuk tempat tinggal

PERANCANGAN STRUKTUR GEDUNG RUSUNAWA MAHASIWA UNIVERSITAS NEGERI YOGYAKARTA. Oleh : CAN JULIANTO NPM. :

berupa penuangan ide atau keinginan dari pemilik yang dijadikan suatu pedoman

PERENCANAAN GEDUNG HOTEL 4 LANTAI & 1 BASEMENT DENGAN SISTEM DAKTAIL PARSIAL DI WILAYAH GEMPA 4

BAB II TINJAUAN PUSTAKA

3.4.5 Beban Geser Dasar Nominal Statik Ekuivalen (V) Beban Geser Dasar Akibat Gempa Sepanjang Tinggi Gedung (F i )

JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN

BAB I PENDAHULUAN. runtuh total (total collapse) seluruh struktur (Sudarmoko,1996).

BAB II TINJAUAN PUSTAKA. Desain struktur merupakan salali satu bagian dari proses perencanan

DAFTAR ISI. Halaman Judul Pengesahan Persetujuan Surat Pernyataan Kata Pengantar DAFTAR TABEL DAFTAR GAMBAR DAFTAR NOTASI DAFTAR LAMPIRAN

BAB I PENDAHULUAN. I.1 Latar Belakang. Jakarta sebagai salah satu kota besar di Indonesia tidak dapat lepas dari

Meliputi pertimbangan secara detail terhadap alternatif struktur yang

Desain Struktur Beton Bertulang Tahan Gempa

BAB IV PERMODELAN STRUKTUR

BAB VI KESIMPULAN DAN SARAN. dan perhitungan elemen struktur gedung Condotel Sahid Jogja Lifestyle City. sudah mampu menahan gaya geser.

03. Semua komponen struktur diproporsikan untuk mendapatkan kekuatan yang. seimbang yang menggunakan unsur faktor beban dan faktor reduksi.

BAB I PENDAHULUAN. beban maka struktur secara keseluruhan akan runtuh. yang menahan beban aksial vertikal dengan rasio bagian tinggi dengan dimensi

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN PUSAT YSKI SEMARANG

BAB I PENDAHULUAN Konsep Perencanaan Struktur Beton Suatu struktur atau elemen struktur harus memenuhi dua kriteria yaitu : Kuat ( Strength )

Desain Struktur Beton Bertulang Tahan Gempa

BAB II DASAR-DASAR DESAIN BETON BERTULANG. Beton merupakan suatu material yang menyerupai batu yang diperoleh dengan

BAB I PENDAHULUAN. Sebagai salah satu perguruan tinggi negeri di Indonesia, Universitas

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA. Menurut Iswandi Imran (2014) konsep dasar perencanaan struktur

BAB II TINJAUAN PUSTAKA. yang berlaku untuk mendapatkan suatu struktur bangunan yang aman

BAB I PENDAHULUAN. maka kegiatan pemerintahan yang berkaitan dengan hukum dan perundangundangan

BAB III METODE PENELITIAN

BAB II TINJAUAN PUSTAKA. tengah sekitar 0,005 mm 0,01 mm. Serat ini dapat dipintal menjadi benang atau

BAB III ANALISA PERENCANAAN STRUKTUR

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan

BAB I PENDAHULUAN. I. 1. Latar Belakang

DAFTAR NOTASI. Luas penampang tiang pancang (mm²). Luas tulangan tarik non prategang (mm²). Luas tulangan tekan non prategang (mm²).

struktur. Pertimbangan utama adalah fungsi dari struktur itu nantinya.

BAB I PENDAHULUAN Latar Belakang. Dalam bidang konstruksi, beton dan baja saling bekerja sama dan saling

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi

BAB 2 DASAR TEORI. Bab 2 Dasar Teori. TUGAS AKHIR Perencanaan Struktur Show Room 2 Lantai Dasar Perencanaan

BAB III METEDOLOGI PENELITIAN. dilakukan setelah mendapat data dari perencanaan arsitek. Analisa dan

a home base to excellence Mata Kuliah : Struktur Beton Lanjutan Kode : TSP 407 Pondasi Pertemuan - 5

PERANCANGAN STRUKTUR GEDUNG. KANTOR DAN HUNIAN PT.MANDALA MULTI FINANCE.tbk

Dosen Pembimbing : Ir. Tony Hartono Bagio,MT.,MM. Abstrak

BAB II TINJAUAN PUSTAKA

BAB V KESIMPULAN. Kedoya Jakarta Barat, dapat diambil beberapa kesimpulan: ganda dengan ukuran 50x50x5 untuk batang tarik dan 60x60x6 untuk batang

PERENCANAAN GEDUNG DINAS KESEHATAN KOTA SEMARANG. (Structure Design of DKK Semarang Building)

PERENCANAAN STRUKTUR GEDUNG SWALAYAN RAMAI SEMARANG ( Structure Design of RAMAI Supermarket, Semarang )

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

LENTUR PADA BALOK PERSEGI ANALISIS

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG SEKOLAH SMP SMU MARINA SEMARANG

Pengenalan Kolom. Struktur Beton II

BAB I PENDAHULUAN. A. Latar Belakang. Di dalam perencanaan desain struktur konstruksi bangunan, ditemukan dua

Transkripsi:

BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Dalam perencanaan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman secara kontruksi. Struktur bangunan yang direncanakan harus mampu menahan beban mati, beban hidup dan beban gempa yang bekerja pada struktur bangunan tersebut. Menurut PBI 1983, pengertian dari beban-beban tersebut adalah seperti yang tercantum di bawah ini. 1. Beban mati adalah berat dari semua bagian dari suatu gedung yang bersifat tetap, termasuk segala unsur tambahan, penyelesaianpenyelesaian (finishing), mesin-mesin, serta peralatan tetap yang merupakan bagian yang tak terpisahkan dari gedung. 2. Beban hidup adalah semua beban yang terjadi akibat penghunian atau penggunaan suatu gedung, dan termasuk beban-beban pada lantai yang berasal dari barang-barang yang berpindah, mesin-mesin serta peralatan yang tidak merupakan bagian yang tak terpisahkan dari gedung dan dapat diganti selama masa hidup dari gedung itu, sehingga mengakibatkan perubahan dalam pembebanan atap dan lantai tersebut. 3. Beban gempa adalah semua beban statik ekuivalen yang bekerja dalam gedung atau bagian gedung yang menirukan pengaruh dari gerakan tanah akibat gempa itu, maka yang diartikan dengan gempa disini ialah 5

6 gaya-gaya didalam struktur tersebut yang terjadi oleh gerakan tanah akibat gempa. 4. Beban angin adalah semua beban yang bekerja pada gedung atau bagian gedung yang disebabkan oleh selisih tekanan udara. 2.2 Balok Balok adalah komponen struktur yang bertugas meneruskan beban yang disangga sendiri maupun dari plat kepada kolom penyangga. Balok menahan gaya-gaya yang bekerja dalam arah transversal terhadap sumbunya yang mengakibatkan terjadinya lenturan (Dipohusodo, 1994). Menurut Nawy (1990), berdasarkan jenis keruntuhannya, keruntuhan yang terjadi pada balok dapat dikelompokkan menjadi 3 kelompok (lihat Gambar 2.1). 1. Penampang balanced. Tulangan tarik mulai leleh tepat pada saat beton mencapai regangan batasnya dan akan hancur karena tekan. Pada saat awal terjadinya keruntuhan, regangan beton tekan yang diijinkan pada saat serat tepi yang tertekan adalah 0,003 sedangkan regangan baja sama dengan regangan lelehnya yaitu ε s = f y / E s. 2. Penampang over-reinforced. Keruntuhan ditandai dengan hancurnya beton yang tertekan. Pada awal keruntuhan, regangan baja ε s yang terjadi masih lebih kecil daripada regangan lelehnya ε y. Dengan demikian tegangan baja f s juga lebih kecil daripada tegangan lelehnya f y. Kondisi ini terjadi apabila tulangan yang

7 digunakan lebih banyak daripada yang diperlukan dalam keadaan balanced 3. Penampang under-reinforced. Keruntuhan ditandai dengan terjadinya leleh pada tulangan baja. Kondisi penampang yang demikian dapat terjadi apabila tulangan tarik yang dipakai pada balok kurang dari yang diperlukan untuk kondisi balanced. ε c = 0,003 c b under-reinforced f s = f y d balanced over-reinforced f s < f y f E y s ε s > f E y s ε s < f E y s Gambar 2.1. Distribusi Regangan Penampang Balok 2.3 Kolom Kolom adalah komponen struktur bangunan yang tugas utamanya adalah menyangga beban aksial tekan vertikal dengan bagian tinggi yang tidak ditopang paling tidak tiga kali dimensi lateral kecil. Apabila terjadi kegagalan pada kolom maka dapat berakibat keruntuhan komponen struktur yang lain yang berhubungan

8 dengannya atau bahkan terjadi keruntuhan total pada keseluruhan struktur bangunan (Dipohusodo, 1994). Kolom dievaluasi berdasarkan prinsip - prinsip dasar sebagai berikut : 1. distribusi regangannya linier diseluruh tebal kolom, 2. tidak ada gelincir antara beton dengan tulangan baja (ini berarti regangan pada baja sama dengan regangan pada beton yang mengelilinginya), 3. regangan beton maksimum yang diizinkan pada keadaan gagal (untuk perhitungan kekuatan) adalah 0,003, dan 4. kekuatan tarik beton diabaikan. Besarnya regangan pada tulangan baja yang tertarik (Gambar 2.2), penampang kolom dapat dibagi menjadi dua kondisi awal keruntuhan, yaitu : 1. keruntuhan tarik, yang dawali dengan lelehnya tulangan yang tertarik, 2. keruntuhan tekan, yang diawali dengan hancurnya beton yang tertekan. Kondisi balanced terjadi apabila keruntuhan diawali dengan lelehnya tulangan yang tertarik sekaligus juga hancurnya beton yang tertekan (Nawy, 1990).

9 2.4 Pelat Pelat lantai adalah elemen horisontal utama yang menyalurkan beban hidup maupun beban mati ke kerangka pendukung vertikal dari suatu sistem struktur. Elemen-elemen tersebut dapat dibuat sehingga bekerja dalam satu arah atau bekerja dalam dua arah (Nawy, 1990). 2.5 Pondasi Pondasi adalah komponen struktur pendukung bangunan yang terbawah, dan telapak pondasi berfungsi sebagai elemen terakhir yang meneruskan beban ke tanah. Telapak pondasi harus memenuhi persyaratan untuk mampu dengan aman menebar beban yang diteruskan sedemikian rupa sehingga kapasitas atau daya dukung tanah tidak dilampaui. Dasar pondasi harus diletakkan di atas tanah kuat pada kedalaman cukup tertentu, bebas dari lumpur, humus, dan pengaruh perubahan cuaca (Dipohusodo, 1994). Bowles (1991) meyatakan bahwa pilar-pilar yang dibor (bored pile) bisa dipakai pada hampir semua kasus yang memerlukan pondasi-pondasi tiang pancang. Pilar-pilar yang dibor memiliki kelebihan-kelebihan seperti yang tercantum di bawah ini. 1. Eliminasi sungkup tiang pancang (pile caps) seperti pantek-pantek penyambung (dowels) bisa dipasang dalam beton basah pada tempat yang diperlukan. 2. Meniadakan cukup banyak getaran (vibrasi) dan suara gaduh yang biasanya merupakan akibat dari pendorongan tiang pancang.

10 3. Bisa menembus tanah berangkal yang dapat mengakibatkan tiang-tiang pancang yang didorong bisa bengkok. 2.6 Dinding geser Dinding geser beton bertulang berangkai adalah suatu subsistem struktur gedung yang fungsi utamanya adalah untuk memikul beban geser akibat pengaruh gempa rencana, yang terdiri dari dua buah atau lebih dinding geser yang dirangkaikan oleh balok-balok perangkai dan yang runtuhnya terjadi dengan sesuatu daktilitas tertentu oleh terjadinya sendi-sendi plastis pada kedua ujung balok-balok perangkai dan pada kaki semua dinding geser, dimana masing-masing momen lelehnya dapat mengalami peningkatan hampir sepenuhnya akibat pengerasan regangan. (SNI 03-1726-2002 pasal 3.1.4.2).