Ahad, 7 Mei :50:03 Artikel Iptek - Bidang Energi dan Sumber Daya Alam Perkembangan Terkini Teknologi Refrigerasi (1) Oleh Yuli Setyo Indartono

dokumen-dokumen yang mirip
Qs Kalor sensibel zat [J] Q L Kalor laten Zat [J] ΔT Beda temperatur [ C] Δ Pads-evap. laju peningkatan rata-rata temperatur.

BAB I PENDAHULUAN. Saat ini setidaknya ada tiga isu umum besar yang terkait dengan bidang refrigerasi, yaitu :

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara

BAB I PENDAHULUAN. 1.1 Latar Belakang Penelitian. Air Conditioning (AC) adalah suatu mesin pendingin sebagai sistem pengkondisi

BAB I PENDAHULUAN. Sistem refrigerasi telah memainkan peran penting dalam kehidupan

Maka persamaan energi,

BAB II TINJAUAN PUSTAKA. temperatur di bawah 123 K disebut kriogenika (cryogenics). Pembedaan ini

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iii. DAFTAR GAMBAR... viii. DAFTAR TABEL... x. DAFTAR NOTASI... xi Rumusan Masalah...

BAB II TINJAUAN PUSTAKA

BAB II DASAR TEORI. Pengujian sistem refrigerasi..., Dedeng Rahmat, FT UI, Universitas 2008 Indonesia

BAB II DASAR TEORI. Energy balance 1 = Energy balance 2 EP 1 + EK 1 + U 1 + EF 1 + ΔQ = EP 2 + EK 2 + U 2 + EF 2 + ΔWnet ( 2.1)

ANALISIS BEBAN PENDINGINAN DAN KALOR UNIT PENGKONDISIAN UDARA DAIHATSU XENIA

BAB II DASAR TEORI. 2.1 Sistem Refrigerasi Kompresi Uap

PERFORMANSI RESIDENTIAL AIR CONDITIONING HIBRIDA DENGAN STANDBY MODE MENGGUNAKAN REFRIGERAN HCR-22 UNTUK PENDINGIN DAN PEMANAS RUANGAN

PENGARUH MEDIA PENDINGIN AIR PADA KONDENSOR TERHADAP KEMAMPUAN KERJA MESIN PENDINGIN

BAB III TINJAUAN PUSTAKA

BAB IV PEMBAHASAN. 4.1 Rangkaian Alat Uji Dan Cara Kerja Sistem Refrigerasi Tanpa CES (Full Sistem) Heri Kiswanto / Page 39

BAB II LANDASAN TEORI. Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk

UJI EKSPERIMENTAL MESIN PENDINGIN BERPENDINGIN UDARA, DENGAN MENGGUNAKAN REFRIGERAN R22 DAN REFRIGERAN R407C.

BAB I PENDAHULUAN Latar Belakang Udara di sekitar kita dewasa ini sangat peka terhadap pencemaran, hal ini erat

PENGARUH VARIASI BEBAN PENDINGIN TERHADAP PRESTASI KERJA MESIN PENDINGIN DENGAN REFRIGERAN R12 DAN LPG

BAB II DASAR TEORI BAB II DASAR TEORI

BAB II LANDASAN TEORI

BAB 1 PENDAHULUAN. tersebut memerlukan suatu alat untuk mengkondisikan udara. didalam ruangan bangunanbangunan tersebut seperti Air Conditioner

BAB II DASAR TEORI BAB II DASAR TEORI

Energi dan Ketenagalistrikan

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB II LANDASAN TEORI

BAB II DASAR TEORI. 2.1 Pengertian Sistem Heat pump

Penggunaan Refrigeran R22 dan R134a pada Mesin Pendingin. Galuh Renggani Wilis, ST.,MT

Bab I Pendahuluan 1.1 Latar Belakang

Pengaruh Pipa Kapiler yang Dililitkan pada Suction Line terhadap Kinerja Mesin Pendingin

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN. Penggunaan sistem pengkondisian udara pada saat ini bukan lagi. merupakan suatu kemewahan, namun telah menjadi kebutuhan yang harus

Pengaruh Debit Udara Kondenser terhadap Kinerja Mesin Tata Udara dengan Refrigeran R410a

LEMBAR PENGESAHAN PEMBIMBING PERANCANGAN PERPINDAHAN KALOR PADA SISTEM PENDINGIN ABSORBSI BERTENAGA MATAHARI

Seminar Nasional Mesin dan Industri (SNMI4) 2008 ANALISIS PERBANDINGAN UNJUK KERJA REFRIGERATOR KAPASITAS 2 PK DENGAN REFRIGERAN R-12 DAN MC 12

ANALISA KINERJA MESIN REFRIGERASI RUMAH TANGGA DENGAN VARIASI REFRIGERAN

PENGHEMATAN ENERGI PADA PENGGUNAAN AIR CONDITIONER (AC) DALAM PENGATURAN UDARA DENGAN CARA BUATAN

BAB II DASAR TEORI Prinsip Kerja Mesin Refrigerasi Kompresi Uap

Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak. daur ini terjadi proses kompresi (1 ke 2), 4) dan penguapan (4 ke 1), seperti pada

BAB II LANDASAN TEORI

Analisa Performansi Sistem Pendingin Ruangan dan Efisiensi Energi Listrik padasistem Water Chiller dengan Penerapan Metode Cooled Energy Storage

MULTIREFRIGERASI SISTEM. Oleh: Ega T. Berman, S.Pd., M,Eng

KAJI EKSPERIMENTAL KARAKTERISTIK TERMODINAMIKA DARI PEMANASAN REFRIGERANT 12 TERHADAP PENGARUH PENDINGINAN

PENDINGINAN KOMPRESI UAP

Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air

BAB II TINJAUAN PUSTAKA

ANALISA PERBANDINGAN PERFORMANSI MESIN PENDINGIN KOMPRESI UAP MENGGUNAKAN R22 DAN R134a DENGAN KAPASITAS KOMPRESOR 1 PK

BAB I PENDAHULUAN. 1.1 Latar Belakang. Saat ini semua gedung bertingkat, baik itu untuk perkantoran maupun

Tugas akhir Perencanan Mesin Pendingin Sistem Absorpsi (Lithium Bromide) Dengan Tinjauan Termodinamika

2.1 SEJARAH REFRIGERAN

BAB II DASAR TEORI. This document was created with the trial version of Print2PDF! Once Print2PDF is registered, this message will disappear!

2.1 HUKUM TERMODINAMIKA DAN SISTEM TERBUKA

BAB II TINJAUAN PUSTAKA

BAB II LANDASAN TEORI

BAB II DASAR TEORI. BAB II Dasar Teori

ANALISIS KINERJA AIR CONDITIONING SEKALIGUS SEBAGAI WATER HEATER (ACWH)

HIDROKARBON SEBAGAI PENGGANTI REFRIGERAN FREON DALAM KULKAS YANG RAMAH LINGKUNGAN

BAB I PENDAHULUAN. selanjutnya jumlah dan kualitas dari udara yang dikondisikan tersebut dikontrol.

BAB III SISTEM REFRIGERASI DAN POMPA KALOR

Catatan : *) BPO : Bahan Perusak Ozon GRK : Gas Rumah Kaca

ANALISA WAKTU SIMPAN AIR PADA TABUNG WATER HEATER TERHADAP KINERJA AC SPLIT 1 PK

PENGARUH JENIS REFRIGERANT DAN BEBAN PENDINGINAN TERHADAP KEMAMPUAN KERJA MESIN PENDINGIN

Termodinamika II FST USD Jogja. TERMODINAMIKA II Semester Genap TA 2007/2008

APA ITU GLOBAL WARMING???

BAB I PENDAHULUAN. Universitas Sumatera Utara

ANALISA PEMAKAIAN ENERGI LISTRIK DAN COP PADA AC SPLIT 900 WATT MENGGUNAKAN REFRIGERAN HIDROKARBON MC-22 DAN R-22

Cara Kerja AC dan Bagian-Bagiannya

REFRIGERAN & PELUMAS. Catatan Kuliah: Disiapakan Oleh; Ridwan

BAB II. Prinsip Kerja Mesin Pendingin

BAB II TEORI DASAR. 2.1 Pengertian Sistem Tata Udara

LAPORAN TUGAS AKHIR BAB II DASAR TEORI

BAB II LANDASAN TEORI

BAB I PENDAHULUAN Latar belakang

PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR

BAB II DASAR TEORI. Gambar 2.1 sistem Blast Chiller [PT.Wardscatering, 2012] BAB II DASAR TEORI

INFORMASI PENGGUNAAN BAHAN PERUSAK OZON (BPO) DI PROVINSI JAMBI

LAPORAN AKHIR FISIKA ENERGI II PEMANFAATAN ENERGI PANAS TERBUANG PADA MESIN AC NPM : NPM :

Gambar 5. Skematik Resindential Air Conditioning Hibrida dengan Thermal Energy Storage

BAB II DASAR TEORI. 2.1 Blood Bank Cabinet

BAB I PENDAHULUAN 1.1. Latar Belakang 1.2. Rumusan Masalah

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya

Ahmad Farid* dan Moh. Edi.S. Iman Program Studi Teknik Mesin, Universitas Pancasakti Tegal Jl. Halmahera km 1, Tegal *

BAB I PENDAHULUAN 1.1 Latar Belakang (K. Chunnanond S. Aphornratana, 2003)

Jurnal Ilmiah Widya Teknik Volume 15 Nomor ISSN INOVASI MESIN PENGERING PAKAIAN YANG PRAKTIS, AMAN DAN RAMAH LINGKUNGAN

BAB 2. TINJAUAN PUSTAKA

Studi Eksperimen Variasi Beban Pendinginan pada Evaporator Mesin Pendingin Difusi Absorpsi R22-DMF

ROTASI Volume 7 Nomor 3 Juli

ANALISA AUDIT KONSUMSI ENERGI SISTEM HVAC (HEATING, VENTILASI, AIR CONDITIONING) DI TERMINAL 1A, 1B, DAN 1C BANDARA SOEKARNO-HATTA

BAB II DASAR TEORI 0,93 1,28 78,09 75,53 20,95 23,14. Tabel 2.2 Kandungan uap air jenuh di udara berdasarkan temperatur per g/m 3

Oleh: Daglish Yuliyantoro Dosen Pembimbing: Ari Bachtiar K.P. ST.MT.PhD

BAB II DASAR TEORI. 2.1 Prinsip Pembangkit Listrik Tenaga Gas

Laporan Tugas Akhir 2012 BAB II DASAR TEORI

KAJI EKSPERIMENTAL APLIKASI KATUP EPR TERHADAP TEMPERATUR MESIN REFRIGERASI MULTI EVAPORATOR

Recovery Energi pada Residential Air Conditioning Hibrida sebagai Pemanas Air dan Penyejuk Udara yang Ramah Lingkungan

Studi Eksperimen Pengaruh Variasi Perubahan Refrigeran-22 Dengan Musicool-22 Pada Sistem Pengkondisian Udara Dengan Pre-cooling

BAB II DASAR TEORI. 2.1 Cooling Tunnel

UNJUK KERJA MESIN PENDINGIN KOMPRESI UAP PADA BEBERAPA VARIASI SUPERHEATING DAN SUBCOOLING

Transkripsi:

Ahad, 7 Mei 2006 11:50:03 Artikel Iptek - Bidang Energi dan Sumber Daya Alam Perkembangan Terkini Teknologi Refrigerasi (1) Oleh Yuli Setyo Indartono Siklus refrigerasi merupakan sebuah mekanisme berupa siklus yang mengambil energi (termal) dari daerah bertemperatur rendah dan dibuang ke daerah bertemperatur tinggi. Siklus ini berlawanan dengan proses spontan yang terjadi sehari-hari, maka diperlukan masukan energi untuk menjalankan siklus refrigerasi. Teknologi refrigerasi sangat erat terkait dengan kehidupan dunia modern; bukan hanya pada sisi peningkatan kualitas dan kenyamanan hidup, namun juga menyentuh hal-hal esensial penunjang kehidupan manusia. Teknologi refrigerasi dibutuhkan untuk meminimalkan, bahkan bisa meniadakan, pertumbuhan mikroorganisme perusak bahan-bahan tertentu; maka teknologi ini dibutuhkan keberadaannya di bidang penyimpanan dan transportasi bahan makanan. Mesin refrigerasi saat ini dengan mudah kita jumpai di berbagai swalayan yang menjual bahan kebutuhan sehari-hari. Truk berpendingin sudah menjadi kebutuhan umum guna mentransportasikan bahan makanan melalui jarak yang cukup jauh. Selain meminimalkan atau meniadakan pertumbuhan mikroorganisme, pendinginan yang dihasilkan oleh teknologi refrigerasi juga diperlukan untuk mencegah terjadinya reaksi kimiawi/biologis yang bisa merusak kondisi suatu zat. Maka teknologi ini juga menjadi tuntutan di bidang kedokteran (penyimpanan vaksin, obat-obatan, hingga cadangan darah). Dukungan mesin refrigerasi terhadap kemajuan iptek jelas terlihat dari keberadaan mesin ini di berbagai instalasi penting berbagai bidang; biologi, kimia, kedokteran, dsb. Teknologi refrigerasi bukan hanya monopoli perusahaan besar ataupun institusi ilmiah, mesin ini, dalam bentuk lemari pendingin (refrigerator) dan pengkondisi udara (AC) umum dijumpai di tengah-tengah masyarakat. Bukan sekedar gaya hidup, karena mesin refrigerasi berfungsi untuk meningkatkan kualitas hidup manusia. Pengkondisian udara merupakan salah satu aplikasi penting teknologi refrigerasi. Teknologi ini bisa menghasilkan dua hal esensial yang diperlukan dalam pengkondisan udara; yakni pendinginan (cooling) dan pemanasan (heating). Pengkondisian udara adalah usaha untuk mengatur temperatur dan kelembaban udara agar menghasilkan kenyamanan termal (thermal comfort) bagi manusia. Pengkondisian udara lengkap meliputi pemanasan (heating), pendinginan (cooling), pengaturan kelembaban (humidifying dan dehumidifying), dan pertukaran udara (ventilating). Sedangkan pengkondisian udara skala kecil umumnya dilakukan tanpa mengikutsertakan pengaturan kelembaban. Pengkondisian udara saat ini telah menjadi standard bangunan, publik ataupun privat dalam berbagai skala, di berbagai penjuru dunia. Untuk daerah yang mengalami empat musim, terjadi perubahan fungsi pengkondisian udara dari pemanasan (heating) pada saat musim dingin menjadi pendinginan (cooling) pada saat musim panas. Sedangkan pada daerah khatulistiwa seperti Indonesia, pada umumnya fungsi pengkondisian udara adalah pada mode pendinginan saja. Mesin pengkondisian udara yang bekerja sebagai pendingin biasanya disebut sebagai AC (Air Conditioning),

sedangkan pada saat bekerja sebagai pemanas disebut sebagai pompa kalor (heat pump). Kedua fungsi tersebut bisa menyatu dalam satu mesin (mesin refrigerasi), bisa juga terpisah menjadi dua bagian; tergantung pada mekanisme yang digunakan. 1. Masalah kontemporer yang mempengaruhi perkembangan mesin pengkondisian udara Dewasa ini banyak diserukan pentingnya penghematan energi di berbagai penjuru dunia. Hal tersebut dipicu oleh kekhawatiran semakin menipisnya cadangan minyak dunia, sementara pada saat yang sama, manusia belum mampu menemukan bahan bakar pengganti yang memiliki kemampuan dan ketersediaan yang setara dengan minyak bumi. Di sisi lain, permintaan minyak dunia terus meningkat sebesar 1 2% pertahun (Kerr dan Service, 2005). Kombinasi faktor-faktor tersebut menyebabkan ketidakstabilan harga minyak bumi. Selain itu, penggunaan bahan bakar minyak (BBM) mengakibatkan akibat buruk lain bagi bumi, yakni efek rumah kaca (greenhouse) yang disebabkan oleh peningkatan jumlah karbon dioksida (CO 2 ) di atmosfer. Kebutuhan energi pada mesin refrigerasi / pengkondisian udara terhadap pasokan listrik nasional cukup signifikan. Di Shanghai, Saito (2002) mengemukakan bahwa pada beban puncak di musim panas, pengkondisian udara mengkonsumsi 1/3 suplai listrik. Suzuki dkk (2005) memperkirakan bahwa beban listrik untuk mesin pengkondisian udara mengkonsumsi tidak kurang dari 1/5 suplai listrik di Jepang. Untuk belahan Amerika Utara, Todesco (2005) menyatakan bahwa kebuhan listrik untuk mesin pengkondisian udara pada beban puncak mencapai 3.6 9.2 GW --bandingkan dengan kemampuan PT PLN yang sekitar 39.5 GW (Seymour dkk (2002). Sedangkan di Indonesia, Suwono (2005) menyebut sekitar 60% konsumsi listrik hotel di Jakarta digunakan untuk memasok energi mesin pengkondisian udara. Oleh karena itu, usaha penghematan energi yang dilakukan terhadap mesin pengkondisian udara akan berdampak signifikan terhadap usaha penghematan energi dunia. Hipotesis yang disampaikan oleh Molina dan Rowland (1974) mengenai dampak buruk chlorofluoromethane (CFC) terhadap lapisan ozon mencetuskan babak baru dalam dunia pengkondisian udara. Verifikasi yang dilakukan berbagai penelitian yang dibiayai beberapa perusahaan penghasil refrigerant (bahan yang digunakan dalam mesin refrigerasi/mesin pendingin) pada akhir 1970-an menghasilkan temuan yang mendukung hipotesis Molina dan Rowland. Diperkirakan terjadi perusakan lapisan ozon sekitar 3% per-dekade. Lapisan ozon yang terdapat di daerah stratosphere berfungsi untuk menghalangi masuknya sinar ultraviolet-b ke permukaan bumi (Calm, 2002). Sinar ultraviolet-b ini ditengarai akan menyebabkan masalah kesehatan bagi manusia dan gangguan pada tumbuhan di permukaan bumi. Setelah sebuah ekspedisi dari Inggris ke daerah Antartika mengindikasikan adanya kerusakan parah pada lapisan ozon (Farman dkk., 1985), dunia segera mengambil langkah serius untuk mencegah bertambah parahnya kerusakan lapisan ozon. Protokol Montreal tahun 1987 mengatur penggunaan dan penghapusan berbagai zat yang ditengarai menyebabkan kerusakan lapisan ozon; refrigerant CFC termasuk salah satu diantaranya. Protokol Montreal dan berbagai amandemennya mengamanatkan penghapusan CFCs di negara maju pada tahun 1996,

sedangkan untuk negara berkembang pada tahun 2010 (United Nations for Environment Programme, 2000). Pada lapisan stratosphere secara alamiah terjadi proses pembentukan dan penghancuran molekul ozon (O3) oleh sinar ultraviolet. Keberadaan atom chlorine (Cl) menyebabkan kesetimbangan reaksi tersebut terganggu. Kerusakan lapisan ozon akibat chlorine (Cl) dijelaskan melalui reaksi kimia berantai berikut: O 3 + UV O * + O 2 Cl + O 3 ClO + O 2 ClO + O * Cl + O 2 Cl + O 3 ClO + O 2 ClO + O * Cl + O 2... Mayoritas ilmuwan dunia meyakini bahwa pemanasan global yang terjadi belakangan ini diakibatkan oleh gas-gas rumah kaca yang dihasilkan oleh aktivitas manusia (Oreskes, 2002). Selain berkontribusi pada produksi CO 2 melalui system pembangkit energi untuk suplai listrik mesin refrigerasi, teknologi refrigerasi juga berkontribusi langsung pada pemanasan global melalui kebocoran dan buangan refrigeran (yang bersifat gas rumah kaca) ke lingkungan. Terkait dengan hal ini, Protokol Kyoto tahun 1997 tentang perubahan iklim bumi telah mengatur penggunaan refrigerant yang termasuk dalam gas rumah kaca, yakni HFCs (Hidro Fluoro Carbons). Gas-gas yang memiliki potensi efek rumah kaca dikategorikan dalam zat GWP (Global Warming Potential), sedangkan zat perusak lapisan ozon disebut sebagai ODS (Ozon Depleting Substance). Dengan demikian, terdapat tiga hal yang mempengaruhi perkembangan mesin refrigerasi saat ini, yakni: (1) Penghematan energi, (2) Tuntutan refrigerant non-ods, dan (3) Tuntutan refrigerant non-gwp. Perlu diketahui bahwa efek GWP dan ODS pada zat refrigerant hanya terjadi bila zat tersebut terlepas ke atmosfer yang disebabkan kebocoran pada mesin refrigerasi ataupun penggantian dan recycling refrigerant. Di luar sistem refrigerasi, CFC juga digunakan dalam berbagai aplikasi lain seperti zat pendorong (propellant), aerosol, zat pengembang, dll. Guna menjawab tiga kebutuhan terkait dengan perkembangan teknologi refrigerasi di atas, ilmuwan dan teknolog melakukan berbagai inovasi yang pada umumnya terkategorikan dalam tiga hal: (1) Perbaikan prestasi dan karakteristik mesin refrigerasi yang telah eksis, (2) Penelitian guna menghasilkan refrigerant non-ods dan non-gwp, dan (3) Pencarian teknologi refrigerasi alternatif. 1.1 Perbaikan prestasi dan karakteristik mesin refrigerasi/pengkondisian udara Saat ini mesin refrigerasi yang paling banyak digunakan di dunia adalah dari jenis siklus kompresi uap. Sistem lain, seperti sistem magneto-kalorik, absorbsi, adsorpsi, dan efek Siebeck hingga saat ini masih terbatas penggunaannya. Mesin refrigerasi siklus kompresi uap memiliki fleksibilitas penggunaan, yakni bisa berfungsi sebagai mesin pendingin (AC) ataupun pompa kalor (heat pump) dengan mengubah arah aliran refrigerannya. Mesin refrigerasi jenis ini juga berukuran cukup kompak, sehingga tidak memerlukan ruang yang besar. Di bawah ini akan dijelaskan prinsip kerja mesin refrigerasi siklus kompresi uap.

Mesin refrigerasi kompresi uap terdiri atas empat komponen utama, yakni kompresor, kondensor, katup ekspansi, dan evaporator. Kondensor dan evaporator sesungguhnya merupakan penukar kalor (heat exchanger) yang berfungsi mempertukarkan kalor diantara dua fluida, yakni antara refrigerant dengan fluida luar (bisa berupa air ataupun udara). Skema mesin refrigerasi ini dapat dilihat pada Gambar 1 di bawah ini. Gambar 1. Skema mesin refrigerasi siklus kompresi uap Sedangkan diagram tekanan entalpi yang menjelaskan proses pada mesin refrigerasi siklus kompresi uap bisa dilihat pada Gambar 2. Gambar 2. Diagram tekanan entalpi pada proses refrigerasi siklus kompresi uap Pada proses 1 2, kompresor menaikkan tekanan uap refrigerant. Kenaikan tekanan ini diikuti dengan kenaikan temperatur uap refrigerant. Pada tingkat keadaan (TK) 2, uap refrigerant berada pada kondisi uap super-panas. Pada proses 2 3, uap refrigerant memasuki kondensor dan mendapatkan pendinginan dari kondensor. Pendinginan ini terjadi akibat pertukaran panas antara uap refrigerant dengan fluida luar (misalnya udara lingkungan ataupun air pendingin). Refrigerant keluar dari kondensor pada TK 3 dalam kondisi cair jenuh, atau bisa juga pada kondisi cair sub-dingin. Refrigerant kemudian memasuki katup ekspansi. Katup ekspansi ini pada prinsipnya berupa penyempitan daerah aliran yang berakibat pada penurunan tekanan fluida secara drastis. Idealnya,

refrigerant melalui katup ekspansi (proses 3 4) secara iso-entalpi (isentalpi). Pada TK 4, refrigerant berada dalam kondisi campuran cair dan uap. Karena refrigerant berada pada tekanan jenuhnya (tekanan penguapan), maka dia akan mengalami penguapan; hukum alam menyatakan bahwa penguapan membutuhkan energi, terjadilah penyerapan energi termal dari luar evaporator yang menyebabkan efek pendinginan oleh mesin refrigerasi. Pada mesin refrigerasi siklus kompresi uap, fungsi kondensor dan evaporator bisa dibalik dengan mengubah arah aliran refrigerant. Dengan demikian, mesin ini bisa berfungsi sebagai pendingin di musim panas dan pemanas di musim dingin. Pada saat berfungsi sebagai mesin pendingin, umumnya mesin ini disebut sebagai mesin AC (Air Conditioning) dan saat berfungsi sebagai mesin pemanas, mesin ini disebut sebagai heat pump (pompa kalor). Prestasi AC dapat dinyatakan dengan: COP (tak bersatuan) singkatan dari Coefficient of Performance, QE adalah perpindahan panas pada evaporator, dan WC adalah kerja kompresor. Persamaan (1) menyatakan prestasi AC pada satu saat tertentu. Prestasi AC dalam kurun waktu yang lama, misalnya selama musim panas, dinyatakan dalam SEER (Seasonal Energy Efficiency Ratio). SEER memiliki bentuk yang sama dengan Persamaan (1), hanya berbeda pada satuan SEER, yakni Btu.h/Watt. Sedangkan untuk pompa kalor, prestasi mesin refrigerasi dapat dinyatakan dengan: PF (besaran tak bersatuan) singkatan dari Performance Factor dan QK adalah perpindahan panas pada kondensor. Sama halnya dengan AC, untuk menunjukkan prestasi pompa kalor pada waktu yang lama, misalnya dalam satu kurun musim dingin, orang bisa menggunakan HSPF (Heating Seasonal Performance Factor). HSPF memiliki satuan yang sama dengan SEER. Beberapa perbaikan karakteristik yang telah dilakukan terhadap mesin refrigerasi siklus kompresi uap konvensional akan dijelaskan pada bagian ke-2 tulisan ini. Yuli Setyo Indartono, Mahasiswa di Graduate School of Science and Technology, Kobe University, Japan. Peneliti Istecs. E-mail: indartono@yahoo.com