Multiple Droplets Studi Eksperimental tentang Pengaruh Konduktivitas Material terhadap Fenomena Multiple droplets

dokumen-dokumen yang mirip
Multiple Droplets. Studi Eksperimental tentang Visualisai Pengaruh Frekuensi terhadap Fenomena Multiple droplets yang Menumbuk Permukaan Padat

Single Droplet Studi Eksperimental Pengaruh Bilangan Weber Terhadap Dinamika Tumbukan Single Droplet

Studi Eksperimental Pengaruh Bilangan Weber Terhadap Dinamika Tumbukan Single Droplet Pada Permukaan Aluminum Temperatur Tinggi

BAB I PENDAHULUAN. 1.1.Latar Belakang

Tumbukan Droplet Ganda pada Permukaan Panas

BAB I PENDAHULUAN 1.1. Latar Belakang

Pengaruh Sudut Kontak Statis terhadap Penyebaran Droplet di Atas Permukaan Padat yang Dipanaskan pada Bilangan Weber Menengah

Yogyakarta, Indonesia. Tel : (+62)

Proceeding National Symposium on Thermofluids VIII 2016 Yogyakarta, 10 November 2016

Sujawi Sholeh Sadiawan, Nova Risdiyanto Ismail, Agus suyatno, (2013), PROTON, Vol. 5 No 1 / Hal 44-48

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian

PENGARUH BAHAN INSULASI TERHADAP PERPINDAHAN KALOR PADA TANGKI PENYIMPANAN AIR UNTUK SISTEM PEMANAS AIR BERBASIS SURYA

STUDI EKSPERIMENTAL PERPINDAHAN KALOR DI CELAH SEMPIT ANULUS SELAMA BOTTOM FLOODING BERDASARKAN VARIASI TEMPERATUR AWAL BATANG PANAS

BAB IV HASIL DAN PEMBAHASAN

METODOLOGI PENELITIAN

LABORATORIUM TERMODINAMIKA DAN PINDAH PANAS PROGRAM STUDI KETEKNIKAN PERTANIAN FAKULTAS PERTANIAN UNIVERSITAS SUMATERA UTARA 2012

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor

BAB IV ANALISA DAN PERHITUNGAN

BAB II LANDASAN TEORI

BAB I PENDAHULUAN. kebutuhan utama dalam sektor industri, energi, transportasi, serta dibidang

ANALISIS KINERJA COOLANT PADA RADIATOR

JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SURAKARTA

BAB II Dasar Teori BAB II DASAR TEORI

BAB II LANDASAN TEORI

Conference paper: Kajian Perilaku Droplet Saat Menumbuk Permukaan Panas dengan Pengolahan Citra

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat

BAB I PENDAHULUAN Latar Belakang

BAB II TINJAUAN PUSTAKA

ANALISA DESAIN DAN PERFORMA KONDENSOR PADA SISTEM REFRIGERASI ABSORPSI UNTUK KAPAL PERIKANAN

LAPORAN TUGAS AKHIR BAB II DASAR TEORI

KAJI EKSPERIMENTAL ALAT UJI KONDUKTIVITAS TERMAL BAHAN

Seminar Nasional Tahunan Teknik Mesin (SNTTM) VIII

PENDINGIN TERMOELEKTRIK

PENGUKURAN KONDUKTIVITAS TERMAL

TUGAS AKHIR EKSPERIMEN HEAT TRANSFER PADA DEHUMIDIFIER DENGAN AIR DAN COOLANT UNTUK MENURUNKAN KELEMBABAN UDARA PADA RUANG PENGHANGAT

BAB IV PERHITUNGAN DAN PEMBAHASAN 4.2 MESIN EXTRUSI MOLDING CETAK PELLET PLASTIK

TOPIK: PANAS DAN HUKUM PERTAMA TERMODINAMIKA. 1. Berikanlah perbedaan antara temperatur, panas (kalor) dan energi dalam!

SUHU DAN KALOR DEPARTEMEN FISIKA IPB

BAB II DASAR TEORI. perpindahan kalor dari produk ke material tersebut.

PENGARUH PERBANDINGAN TANPA SIRIP DENGAN SIRIP LURUS DENGAN ALIRAN AIR BERLAWANAN TERHADAP EFISIENSI PERPINDAHAN PANAS PADA HEAT EXCHANGER ABSTRAK

Pengaruh Variasi Putaran Dan Debit Air Terhadap Efektifitas Radiator

BAB II TINJAUAN PUSTAKA

Proceeding Seminar Nasional Tahunan Teknik Mesin XIV (SNTTM XIV) Banjarmasin, 7-8 Oktober 2015 Pengaruh Variasi Luas Heat Sink

ANALISIS VISUAL PENDINGINAN ALIRAN DUA FASA MENGGUNAKAN KAMERA KECEPATAN TINGGI ABSTRAK ABSTRACT

Perpindahan Panas. Perpindahan Panas Secara Konduksi MODUL PERKULIAHAN. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh 02

PERPINDAHAN PANAS PIPA KALOR SUDUT KEMIRINGAN

KATA PENGANTAR. Tangerang, 24 September Penulis

FISIKA TERMAL Bagian I

P I N D A H P A N A S PENDAHULUAN

BAB II DASAR TEORI. 2.1 Pengertian Radiator

Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

FISIKA TERMAL(1) Yusron Sugiarto

JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: ( Print) B-192

BAB II TINJAUAN PUSTAKA

Alat Peraga Pembelajaran Laju Hantaran Kalor

Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air

UNJUK KERJA PENGKONDISIAN UDARA MENGGUNAKAN HEAT PIPE PADA DUCTING DENGAN VARIASI LAJU ALIRAN MASSA UDARA

PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR

Gambar 11 Sistem kalibrasi dengan satu sensor.

BAB III METODOLOGI PENELITIAN. jalan Kolam No. 1 / jalan Gedung PBSI Telp , Universitas Medan

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian

KOEFISIEN PERPINDAHAN KALOR DUA FASA UDARA DAN AIR SEARAH DALAM PIPA VERTIKAL PADA DAERAH ALIRAN KANTUNG (SLUG FLOW)

BAB 3 METODOLOGI PENELITIAN

PENINGKATAN KUALITAS PENGERINGAN IKAN DENGAN SISTEM TRAY DRYING

Pengaruh Tebal Isolasi Termal Terhadap Efektivitas Plate Heat Exchanger

Jl. Grafika No. 2 Yogyakarta 55281, Indonesia ABSTRAK

Karakteristik Perpindahan Panas dan Pressure Drop pada Alat Penukar Kalor tipe Pipa Ganda dengan aliran searah

Analisis Koesien Perpindahan Panas Konveksi dan Distribusi Temperatur Aliran Fluida pada Heat Exchanger Counterow Menggunakan Solidworks

STUDI EKSPERIMENTAL KOEFISIEN PERPINDAHAN KALOR MODEL WATER HEATER KAPASITAS 10 LITER DENGAN INJEKSI GELEMBUNG UDARA

BAB III. METODE PENELITIAN

EFEKTIFITAS PERPINDAHAN PANAS PADA DOUBLE PIPE HEAT EXCHANGER DENGAN GROOVE. Putu Wijaya Sunu*, Daud Simon Anakottapary dan Wayan G.

BAB II TINJAUAN PUSTAKA Tinjauan tentang aplikasi sistem pengabutan air di iklim kering

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( (2016). www. ferotec.com/technology/thermoelectric)

Simposium Nasional Teknologi Terapan (SNTT) ISSN X STUDI LITERATUR PENGEMBANGAN NANOFLUIDA UNTUK APLIKASI PADA BIDANG TEKNIK DI INDONESIA

STUDI EKSPERIMENTAL DISTRIBUSI TEMPERATUR TRANSIEN PADA SEMI SPHERE SAAT PENDINGINAN. Amirruddin 1, Mulya Juarsa 2

KINERJA PIPA KALOR DENGAN STRUKTUR SUMBU FIBER CARBON dan STAINLESS STEEL MESH 100 dengan FLUIDA KERJA AIR

Pompa Air Energi Termal dengan Fluida Kerja Petroleum Eter. A. Prasetyadi, FA. Rusdi Sambada

3 METODE PENELITIAN 3.1 Waktu dan Tempat 3.2 Alat dan Bahan Alat Bahan 3.3 Prosedur Penelitian

I. PENDAHULUAN II. LANDASAN TEORI

BAB I PENDAHULUAN. disegala aspek kehidupan manusia. Untuk itu pengaplikasian ilmu pengetahuan

Pengaruh Penggunaan Katup Ekspansi Termostatik dan Pipa Kapiler terhadap Efisiensi Mesin Pendingin Siklus Kompresi Uap

HEAT TRANSFER METODE PENGUKURAN KONDUKTIVITAS TERMAL

MODUL PRAKTIKUM Mata Kuliah Perpindahan Kalor Konduksi dan Radiasi. Disusun oleh : Tito Hadji Agung S., ST, MT Teddy Nurcahyadi, S.T., M.Eng.

SILABUS MATA KULIAH D4 REFRIGERASI DASAR KURIKULUM 2011 tahun ajaran 2010/2011. Materi Tujuan Ket.

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

Pengaruh Kecepatan Aliran Terhadap Efektivitas Shell-and-Tube Heat Exchanger

Analisis Karakteristik Rewetting Dalam Celah Sempit Vertikal Untuk Kasus Bilateral Heating Berdasarkan Perubahan Temperatur Awal Plat

LAMPIRAN I. Tes Hasil Belajar Observasi Awal

BAB IV ANALISA KOMPONEN MESIN

Pengaruh Penggunaan Baffle pada Shell-and-Tube Heat Exchanger

STUDI PENGARUH DIAMETER RONGGA PENAMPANG KONDUKTOR TERHADAP PERUBAHAN SUHU ARTIKEL. Oleh: DewiPuspitasari NIM

BAB III DESAIN SISTEM REFRIGERASI ADSORPSI

Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik TAMBA GURNING NIM SKRIPSI

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer

MARDIANA LADAYNA TAWALANI M.K.

UNIVERSITAS DIPONEGORO TUGAS SARJANA. Disusun oleh:

12/3/2013 FISIKA THERMAL I

9/17/ KALOR 1

BAB II LANDASAN TEORI

Transkripsi:

Multiple Droplets Studi Eksperimental tentang Pengaruh Konduktivitas Material terhadap Fenomena Multiple droplets yang Menumbuk Permukaan Padat yang Dipanaskan pada Rejim Nucleat Boiling dan Temperatur Critical Heat Flux Farid Subarkah 1, Windy Hermawan Mitrakusuma 2, Deendarlianto 1,3 Jurusan Teknik Mesin dan Industri, Universitas Gadjah Mada, Jalan Grafika No. 2, Yogyakarta 55281, Indonesia 1 Farid.subarkah@yahoo.co.id Pascasarjana Teknik Mesin UGM, urusan Teknik Refrigerasi dan Tata Udara, Politeknik Negeri Bandung 2 Pusat Studi Energi, Universitas Gadjah Mada, Sekip K-1A Kampus UGM, Yogyakarta 55281, Indonesia 3 Abstrak Studi ekperimental kali ini dilakukan untuk mengetahui tentang pengaruh konduktivitas material terhadap fenomena multiple droplets yang menumbuk permukaan padat yang dipanaskan pada Rejim Nucleat Boiling dan temperatur sekitar critical heat flux. Material-material padat yang digunakan sebagai bahan uji pada penelitian ini adalah stainless steel, tembaga, dan aluminium karena material tersebut memiliki konduktivitas yang jauh berbeda satu sama lain. Substansi yang digunakan adalah air dengan diameter droplet sebanyak 10 tetes. Kata Kunci: Seminar RETII, dua fasa, spray cooling, multiple droplets, konduktivitas. 1. Pendahuluan Proses tumbukan antara tetesan air atau droplet dengan permukaan benda padat yang memiliki temperatur tinggi atau dipanaskan telah diterapkan pada berbagai banyak hal. Fenomena yang terjadi antara droplet dari bahan bakar yang bertumbukan dengan dinding-dinding ruang bakar pada internal combustion engine akan memengaruhi atomisasi dan pencampuran sebelum pembakaran. Spray cooling system yang digunakan pada proses quenching, reaksi inti nuklir, dan peralatan elektronik dimana droplet digunakan untuk mendinginkan permukaan material pada proses-proses tersebut. Contoh lain dari penerapan droplet adalah pada sistem pemadam kebakaran, coating, dan lain-lain Spray cooling merupakan salah satu metode pendinginan yang menggunakan multiple droplets yang menumbuk material yang akan didinginkan. Spray cooling digunakan karena dengan menggunakan sistem ini maka kalor dari benda padat tersebut akan diserap dengan heat flux yang tinggi dan dapat mengontrol laju pendinginan yang diinginkan (Bernaddin dkk., 1995). Konduksi adalah proses perpindahan energi dari partikel substansi yang memiliki energi lebih besar ke partikel substansi yang berdekatan yang memiliki energi lebih kecil karena interaksi dari partikel-partikel tersebut. Konduksi dapat terjadi pada benda padat maupun fluida. Besarnya kalor yang dipindahkan dari proses konduksi dipengaruhi oleh konduktivitas termal dari meterial tersebut. Konduktivitas termal merupakan salah satu sifat dari suatu material yang menunjukan kemampuan material tersebut untuk menghantarkan kalor secara konduksi atau besarnya laju perpindahan panas dikalikan dengan tebal dari material per satuan luas permukaan per perbedaan temperatur. Penelitian ini bertujuan untuk mengetahui pengaruh konduktivitas material pada fenomena multiple droplets yang menumbuk permukaan benda padat pada rejim nucleat boiling. Distribusi suhu yang terjadi pada permukaan benda padat yang bertumbukan dengan droplets menjadi bahasan utama pada makalah ini. 2. Metode Tahapan yang dilakukan dalaam penelitian kali ini adalah : 1. Pengumpulan Data 2. Analisis Data 1

2.1 Metode Pengumpulan Data Temperatur bahan uji dinaikkan dengan menggunakan heater. Kemudian Pengumpulan data akan dilakukan dengan mencatat temperatur pada tiap-tiap sensor yang telah dirangkai seperti pada Gambar 3 dengan menggunakan perangkat lunak pada komputer. Pencatatan temperatur tersebut dilakukan ketika suhu set telah tercapai dan stabil. Parameter eksperimen yang akan dilakukan adalah : 1. Temperatur adalah Temperatur permukaan yang digunakan untuk pengujian adalah mulai dari 110 0-150 0 Celcius dengan kenaikan 10 0 Celcius, temperatur tersebut dipilih karena temperatur tersebut terdapat pada atau sekitar rejim nucleat boiling. 2. Jumlah droplets yang dijatuhkan adalah 10 droplets. 3. Ketinggian jatuh droplet adalah 110 mm dari permukaan material padat. 4. Frekuensi droplet jatuh adalah sebesar 80 tetes per menit. 5. Benda uji yang digunakan adalah Stainless Steel, aluminium, dan tembaga. 2.2 Metode Analisis Data Data dianalisa secara kualitatif dengan mengamati perubahan temperatur yang terjadi pada permukaan, T a, T m, dan T ab. Data-data yang telah dikumpulkan atau dicatat oleh perangkat lunak pada komputer dipindahkan, diolah dan dibuat grafik yang menghubungkan antara temperatur thermocouple pada setiap bahan uji dan seting. 3. Hasil dan Pembahasan Sesuai rumus konduksi yaitu Q konduksi = ka T 1 T 2 x dt = ka...(1) dx Dimana : Q konduksi = Besarnya laju kalor konduksi k = konduktivitas termal material A = Luas permukaan x = Tebal dari material Jika tebal material yang diukur sangat kecil, x 0, maka persamaan akan menjadi : Q konduksi = k A dt dx...(2) Sedangkan jika Q /A = q ( heat flux ) maka q = k dt dx...(3) Sedangkan analisa kalor pada liquid menggunakan rumus Q = m droplets C p (T sat T ) Dimana : Q Cp Tsat T = kalor yang diserap air = kapasitas kalor air pada tekanan konstan = temperatur saturasi air = temperatur air pada sebelum dipanaskan atau pada suhu ruang Persamaan (1) digunakan untuk menghitung kalor dari permukaan benda padat yang diserap oleh droplets sehingga tempratur droplets naik dari suhu ruangan menjadi suhu saturasi. Sedangkan rumus Q = m droplets h fg dimana hfg adalah entalpi penguapan. Besarnya selisih antara temperatur thermocouple paling atas (Ta) (Gambar 3) dengan temperatur thermocouple paling bawah (Tb) atau Tab sangat dipengaruhi oleh nilai konduktivitas termal yang dimiliki oleh material tersebut. Seperti yang kita lihat pada hasil grafik di atas, Pada hasil data temperatur stainless steel, Tab paling besar dibandingkan dengan tembaga dan aluminium, Hal ini terjadi karena stainless steel memiliki konduktivitas termal terendah yaitu SEBESAR, sedangkan sebaliknya tembaga memiliki Tab terkecil karena tembaga memiliki nilai konduktivitas terbesar dibandingkan dengan stainless steel dan aluminium. Proses perubahan temperatur pada permukaan sangat dipengaruhi oleh beberapa hal, yaitu yang Cp,hfg, dan q (heat flux), konduktivitas termal material padat. Pada penelitian ini, dapat kita asumsikan : Karena waktu yang diperlukan untuk menjatuhkan 10 droplets lebih sedikit dibandingkan waktu penguapan (evaporation time), jumlah massa untuk setiap pengujian pada temperatur set yang sama dengan bahan uji aluminium, stainless steel, maupun tembaga besarnya sama dengan 10 kali massa satu droplet. sehingga kalor yang digunakan untuk menaikan suhu droplets dari temperatur awal (sama dengan temperatur ruang) menjadi temperatur saturasi, kurang lebih 100 0 C, dan saat proses evaporasi, sama untuk setiap pengujian. Droplet jatuh dengan luas kontak sama dengan luas lingkaran. Droplets menggunakan air sehingga harga Cp dan hfg untuk air sama. Perubahan panas hanya mengalir secara vertikal dari sumber panas ke droplets tidak dipengaruhi oleh panas dari samping mengingat luas penampang spesimen lebih besar dari pada luas kontak droplets. Pada Gambar 7, 10, 13, 16, dan 19, menunjukkan stainless steel mengalami penurunan suhu permukaan yang paling besar, lalu diikuti oleh 2

aluminium (5, 8, 11, 14, dan 17), sedangkan tembaga (6, 9, 12, 15, dan 18) memiliki penurunan suhu yang paling kecil. Stainless steel memiliki penurunan temperatur terbesar karena stainless steel memiliki konduktivitas termal paling kecil, sedangkan tembaga memiliki konduktivitas termal paling besar sehingga selisih temperatur antara Ta, Tm, dan Tb (Gambar 3). Pada Gambar 4, Mebrouk Ait Saada dkk. 2012, melakukan analisis numerik tentang distribusi temperatur pada material padat dengan temperatur tertentu yang terdapat satu droplet di atas permukaan dengan suhu lebih rendah. Hasil analisa tersebut adalah semakin besar konduktivitas termal suatu material maka distribusi temperatur akan semakin merata. Namun jika konduktivitas termal suatu material semakin rendah maka distribusi temperatur yang terjadi akan tidak merata. Mengacu pada Gambar 1, kurva Nukiyama, temperatur sekitar saturasi memiliki heat flux yang paling kecil pada regime nucleate boiling kemudian seiring dengan kenaikan temperatur, heat flux memiliki nilai yang semakin besar. Pada daerah sekitar Critical heat flux (CHF) terjadi penurunan suhu terbesar untuk semua bahan uji dan seting, pada gambar, hal ini terjadi karena pada daerah sekitar (CHF), heat flux droplets memiliki nilai yang besar dengan kata lain kemampuan droplets untuk menyerap kalor dari permukaan bahan uji semakin besar. Pada Gambar 5 sampai 10 saat semua spesimen diatur temparatur permukaan diatur kurang lebih 110 dan 120. Tembaga (Gambar 6 dan 9) dan aluminium (Gambar 5 dan 8) cukup mampu mempertahankan temperatur permukaan pada suhu yang telah ditetapkan. Namun pada stainless steel (Gambar 7 dan 10), terjadi penurunan hanya pada permukaan sedangkan pada Tb tidak terjadi penurunan temperatur. Ketika temperatur permukaan diatur sebesar kurang lebih 130 (Gambar 11 sampai 13). Tembaga (Gambar 12) adalah spesimen yang baik dalam mempertahankan temperatur permukaan. Aluminium (Gambar 11) mulai mengalami penurunan pada semua thermocouple (Ta, Tm, dan Tb). Sedangkan pada stainless steel (Gambar 13), penurunan temperatur hanya terjadi pada permukaan dan thermocouple paling atas (Ta). Pada Gambar 14 sampai 19, merupakan grafik hasil pengujian pada suhu sekitar CHF, terlihat pada aluminium (Gambar 14 dan 17) dan tembaga (Gambar 15 dan 18) penurunan temperatur terdeteksi pada thermocouple paling bawah (Tb). Namun pada stainless steel (Gambar 16 dan 19) penurunan temperatur tetap tidak terjadi pada thermocouple paling bawah (Tb). Hal tersebut terjadi juga akibat konduktivitas stainless steel yang kecil dibandingkan dengan aluminium maupun tembaga. Stainless steel 502,1 16,26 Tabel 1. Data kalor spesifik dan konduktivitas untuk ketiga.spesimen.(http://www.engineersedge.com/prope rties_of_metals.htm) 3.2 Gambar Gambar 1. Kurva pendidihan Nukiyama (Cengel, Yunus A, John M Cimbala, 2006, Fluid Mechanic, New York: McGraw- Hill). ambar 2. (a) kurva pendidihan, (b) Kurva waktu evaporasi droplet terhadap temperatur permukaan (Bernardin dan Mudawar, 1999). (a) 3.1 Tabel Spesimen Aluminium Kalor Spesifik (J/kg 0 C) 896 Konduktivitas (W/m 0 C) 220 Tembaga 380 386 Keterangan: 3

1. Water tank 2. Control valve 3. Reflektor 4. Lampu LED (light emiting diode) 5. Droplet injector 6. Droplet counter 7. Thermocouple 8. Heater atau pemanas spesimen 9. Sumber listrik AC Gambar 6. Grafik hubungan antara waktu dengan suhu permukaan, Ta, Tm, dan Tb pada temperatur set 180 0 C pada spesimen tembaga. (b) (c) Gambar 3. (a) Gambar teknik spesimen, (b) Skema Alat Uji visualisasi multiple droplets impact on a hot Surface (Ardi Wiranata, 2015), (c) letak posisi tiga thermocouple.. Gambar 7. Grafik hubungan antara waktu dengan suhu permukaan, Ta, Tm, dan Tb pada temperatur set 180 0 C pada spesimen Stainless steel. Gambar 4. Hasil simulasi distribusi temperatur pada benda padat yang dipanaskan dengan droplet yang bersuhu lebih rendah (Ait Saada, Mebrouk dkk. 2012 Effect of substrate thickness and thermal conductivity on an evaporating sessile drop. European: 6th European Thermal Sciences Conference). Gambar 8. Grafik hubungan antara waktu dengan suhu permukaan, Ta, Tm, dan Tb pada temperatur set 120 0 C pada spesimen aluminium. Gambar 5. Grafik hubungan antara waktu dengan suhu permukaan, Ta, Tm, dan Tb pada temperatur set 180 0 C pada spesimen Aluminium. Gambar 9. Grafik hubungan antara waktu dengan suhu permukaan, Ta, Tm, dan Tb pada temperatur set 120 0 C pada spesimen tembaga. 4

Gambar 10. Grafik hubungan antara waktu dengan 120 0 C pada spesimen stainless steel. Gambar 14. Grafik hubungan antara waktu dengan 142 0 C pada spesimen aluminium. Gambar 11. Grafik hubungan antara waktu dengan 130 0 C pada spesimen aluminium. Gambar 15. Grafik hubungan antara waktu dengan 142 0 C pada spesimen tembaga. Gambar 12. Grafik hubungan antara waktu dengan 130 0 C pada spesimen tembaga. Gambar 16. Grafik hubungan antara waktu dengan 142 0 C pada spesimen stainless steel. Gambar 13. Grafik hubungan antara waktu dengan 130 0 C pada spesimen stainless steel. Gambar 17. Grafik hubungan antara waktu dengan 150 0 C pada spesimen aluminium. 5

material padat pada rejim nucleate boiling. Kekurangan dari penelitian ini adalah perubahan suhu yang sangat kecil saat droplets tepat permukaan datar benda uji tidak dapat dicatat. Saran untuk penelitian selanjutnya adalah pencatatan temperatur dapat menggunakan sensor yang lebih baik sehingga perubahan suhu akibat 1 droplet dapat terekam dan dapat disingkronkan dengan visualisasi fenomena multiple droplets. Gambar 18. Grafik hubungan antara waktu dengan 150 0 C pada spesimen tembaga. Gambar 19. Grafik hubungan antara waktu dengan 150 0 C pada spesimen stainless steel. 4. Kesimpulan Dari penelitian ini, penulis dapat mengambil kesimpulan : 1. Distribusi temperatur pada stainless steel yang dipanaskan pada rejim nucleate boiling memiliki tren yang sama walaupun heat flux akibat droplets semakin tinggi ketika mendekati CHF, yaitu. Tb memiliki temperatur yang konstan sedangkan Ta maupun temperatur permukaan mengalami penurunan. Heat flux yang semakin besar hanya menyebabkan perubahan atau penurunan temperatur permukaan dan Ta yang semakin besar. 2. Distribusi temperatur pada aluminium pada rejim nucleat boiling dan sekitar CHF bergantung pada nilai heat flux dari droplets yang mengikuti kurva pendidihan Nukiyama (Gambar 1). Semakin besar heat flux hingga mencapai sekitar CHF maka perubahan temperatur tidak hanya terjadi pada Ta dan temperatur permukaan tetapi juga pada Tm dan Tb. 3. Distribsi temperatur pada tembaga pada rejim nucleate boiling dan sekitar CHF adalah hampir sama dengan aliminium. Perbedaanya adalah penurunan temperatur akibat droplets lebih kecil dibandingkan dengan aluminium. Keunggulan dari penelitian ini adalah fokus menampilkan grafik perubahan temperatur yang terjadi pada fenomena multiple droplets yang menumbuk Ucapan Terima Kasih Penulis ingin mengucapkan terima kasih pertama kepada Allah SWT yang telah melimpahkan rahmat-nya sehingga penulis dapat melakukan penelitian dan menyelasaikan makalah ini. Kedua, Penulis mengucapkan terima kasih kepada orang tua yang telah memberi dukungan dan doa restu sehingga penelitian dan makalah ini dapat diselesaikan dengan baik. ketiga, Penulis ingin mengucapakan terima kasih kepada para pengurus jurusan teknik mesin dan industri, Universitas Gadjah Mada yang telah memberi izin kepada penulis untuk menggunakan laboratorium fluida dan perpindahan kalor dan massa UGM. keempat, Penulis mengucapkan terima kasih kepada rekan-rekan mahasiswa S3 dan S1 yang telah berkontribusi membantu penelitian tentang multiple droplets ini. Penulis juga mengucapkan terima kasih telah menyelenggarakan acara ini dan semoga acara ini dapat berlangsung terus dengan baik dan penuh manfaat. Daftar Pustaka Cengel, Yunus A, John M Cimbala, 2006, Fluid Mechanic, New York: McGraw-Hill. Bernardin, J.D. & Mudawar, I., 1999, The Leidenfrost Point: Experimental Study and Assessment of Existing Models, Journal of Heat Transfer, 121(4), p.894. Deendarlianto, Yasuki, T., Sumitorno, H., Indarto, dkk., 2014, Effect of Static Contact Angle on The Droplet Dynamics During The Evaporation of a Water Droplet on The Hot Walls, International Jurnal of Heat and Mass Transfer, 71, pp.691-705. Ait Saada, Mebrouk, Chikha., Salah., Tadristb Lounès. 2012. Effect of substrate thickness and thermal conductivity on an evaporating sessile drop. European: 6th European Thermal Sciences Conference 6