ESTIMASI JARAK DAN KECEPATAN PADA ALAT UJI STATIS ROKET LATIH EXPERIMENT DENGAN PEDEKATAN GAYA DORONG OPTIMAL

dokumen-dokumen yang mirip
UJI TEKANAN ANGIN MENGGUNAKAN METODE ROLL TESTER PADA NOSE CONE ROKET

KETEPATAN DAN KECEPATAN PEMBIDIKAN PISIR PENJERA PADA LATIHAN BIDIK KERING MENGGUNAKAN FUZZY LOGIC

PENGUJIAN KEHANDALAN SIRIP ROKET RUDDER DAN AILERON DENGAN BEBAN MENGGUNAKAN KONTROL PID

BAB III PERANCANGAN SISTEM DAN PEMBUATAN ALAT. hardware dan perancangan software. Pada perancangan hardware ini meliputi

BAB III PERANCANGAN SISTEM

BAB IV HASIL DAN PEMBAHASAN. 1. Nama : Timbangan Bayi. 2. Jenis : Timbangan Bayi Digital. 4. Display : LCD Character 16x2. 5. Dimensi : 30cmx20cmx7cm

PENGENDALI RUDDER ROKET MENGGUNAKAN KONTROL PID (PROPORTIONAL INTEGRAL DERIVATIVE)

IMPLEMENTASI KONTROL PID PADA PERGERAKAN LARAS MORTIR 81MM SESUAI DENGAN HASIL PERHITUNGAN KOREKSI TEMBAKAN

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN SISTEM

BAB IV PENGUJIAN DAN ANALISIS

SISTEM MONITORING SUHUINKUBATOR DAN BERAT BADAN PADA BAYI BERAT LAHIR RENDAH (BBLR) DI DALAM INKUBATOR BERBASIS PERSONAL COMPUTER(PC)

EFISIENSI DAYA TAHAN BATERAI PADA SISTEM KEAMANAN KSATRIAN DENGAN PIR MENGGUNAKAN KONTROL PID

BAB I PENDAHULUAN 1.1 Latar Belakang

SIMULASI DATA ACQUISITION ALAT UJI FLIGHT CONTROL ACTUATOR PESAWAT MENGGUNAKAN SOFTWARE LABVIEW

III. METODE PENELITIAN. Universitas Lampung yang dilaksanakan mulai dari bulan Maret 2014.

POSITRON, Vol. VI, No. 1 (2016), Hal ISSN :

PERANCANGAN TIMBANGAN DIGITAL DENGAN PC SEBAGAI MEDIA DATABASE INFORMASI INVENTORI BUAH

BAB III METODE PENELITIAN. Penelitian tugas akhir dilaksanakan pada bulan Februari 2014 hingga Januari

RANCANG BANGUN ALAT UJI KEBOCORAN PADA BOTOL AIR MINERAL BERBASIS MIKROKONTROLER

BAB III PERANCANGAN SISTEM

STRATEGI PENGHEMATAN DAYA DENGAN PEMBUATAN ALAT MONITORING PENGGUNAAN DAYA LISTRIK SECARA DETAIL MENGGUNAKAN MIKROKONTROLER

SISTEM KEAMANAN KSATRIAN DENGAN SENSOR PIR MENGGUNAKAN METODE CLUSTER BASED

BAB III PERANCANGAN SISTEM. untuk efisiensi energi listrik pada kehidupan sehari-hari. Perangkat input untuk

III. METODE PENELITIAN. Penelitian ini dilaksanakan mulai pada November 2011 hingga Mei Adapun tempat

TDS SEBAGAI INDIKATOR SOLENOID VALVE UNTUK SIMULATOR INSTRUMEN PENGOLAH AIR KETEL BERBASIS ARDUINO

BAB I PENDAHULUAN 1.1 Latar Belakang

Bab IV PENGOLAHAN DATA DAN ANALISA

BAB III METODE PENELITIAN

BAB IV PENGUJIAN DAN ANALISA SISTEM

III. METODE PENELITIAN. Teknik Elektro Universitas Lampung dilaksanakan mulai bulan Desember 2011

2 METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Januari 2015 hingga Oktober 2015

III. METODE PENELITIAN. Penelitian dan perancangan tugas akhir ini dilakukan di Laboratorium Terpadu

MESIN PENYAJI BERAS SECARA DIGITAL

BAB III METODE PENELITIAN DAN PERANCANGAN SISTEM. kelembaban di dalam rumah kaca (greenhouse), dengan memonitor perubahan suhu

METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari 2015 sampai dengan bulan Juli

BAB I PENDAHULUAN I.1

III. METODE PENELITIAN. Teknik Elektro Universitas Lampung dilaksanakan mulai bulan Mei 2012 sampai

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Juli 2014 sampai dengan Januari 2015.

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan September 2014 sampai November

CLOSED LOOP CONTROL MENGGUNAKAN ALGORITMA PID PADA LENGAN ROBOT DUA DERAJAT KEBEBASAN BERBASIS MIKROKONTROLER ATMEGA16

III. METODE PENELITIAN. Penelitian ini dilakukan di Laboratorium Terpadu Teknik Elektro Universitas

BAB 3 PERANCANGAN SISTEM. Computer. Parallel Port ICSP. Microcontroller. Motor Driver Encoder. DC Motor. Gambar 3.1: Blok Diagram Perangkat Keras

TERMOMETER BADAN DIGITAL OUTPUT SUARA BERBASIS MIKROKONTROLLER AVR ATMEGA8535

BAB I PENDAHULUAN. Mikrokontroler merupakan pengontrol mikro atau disebut juga Single Chip

RANCANG BANGUN DATA AKUISISI TEMPERATUR 10 KANAL BERBASIS MIKROKONTROLLER AVR ATMEGA16

BAB III PERANCANGAN DAN IMPLEMENTASI SISTEM

BAB III METODE PENELITIAN

BAB IV HASIL DAN PEMBAHSAN. blok rangkaian penyusun sistem, antara laian pengujian Power supply,

Pada akhirnya, kesuksesan pengamanan ruang server juga akan sangat tergantung dari faktor manusia. Faktor manusia perlu diatasi dengan menggunakan met

Identifikasi Self Tuning PID Kontroler Metode Backward Rectangular Pada Motor DC

NASKAH PUBLIKASI KARYA ILMIAH PEMASANGAN MOTOR DC PADA SEKUTER DENGAN PENGENDALI PULSE WIDTH MODULATION

PENGEMBANGAN TIMBANGAN BUAH DIGITAL BERBASIS MIKROKONTROLER ATMEGA16

BAB III PERANCANGAN ALAT

ABSTRAK. Kata Kunci: Constant Current Regulator (CCR), Mikrokontroller, Ethernet, Touchscreen ABSTRACTION

APLIKASI BLUETOOTH SEBAGAI INTERFACING KENDALI MULTI- OUTPUT PADA SMART HOME

BAB I PENDAHULUAN. 1.1 Latar Belakang

III. METODELOGI PENELITIAN. Tempat dan waktu penelitian yang telah dilakukan pada penelitian ini adalah

BAB IV. PERANCANGAN. Blok diagram menggambarkan cara kerja semua sistem E-dump secara keseluruhan yang terdiri dari beberapa komponen:

BAB 1 PENDAHULUAN. daripada meringankan kerja manusia. Nilai lebih itu antara lain adalah kemampuan

BAB III PERANCANGAN ALAT DAN PROGRAM

BAB III ANALISIS DAN DESAIN SISTEM

BAB II KAJIAN PUSTAKA. otomatis masih belum menggunakan filter. Dari hasil penelitian yang dilakukan,

BAB III PERANCANGAN SISTEM

Clamp-Meter Pengukur Arus AC Berbasis Mikrokontroller

BAB III PEMBUATAN ALAT Tujuan Pembuatan Tujuan dari pembuatan alat ini yaitu untuk mewujudkan gagasan dan

BAB III PERANCANGAN SISTEM

DAFTAR ISI Error! Bookmark not defined.

BAB IV PENGUJIAN DAN ANALISIS

III. METODE PENELITIAN. : Laboratorium Teknik Kendali Jurusan Teknik Elektro. Universitas Lampung

PINTU PEMBERITAHU KEGIATAN RUANGAN MENGGUNAKAN HMI SCADA BERBASIS MODUL MIKROKONTROLER (HARDWARE SISTEM ALARM DAN KUNCI OTOMATIS)

BAB II DASAR TEORI Arduino Mega 2560

BAB III ANALISIS DAN PERANCANGAN

SISTEM INFORMASI REAL TIME PEMAKAIAN ENERGI LISTRIK

PENGENDALI LAMPU JARAK JAUH TANPA KABEL BERBASIS PC

BAB III PERANCANGAN ALAT DAN PEMBUATAN SISTEM. kadar karbon monoksida yang di deteksi oleh sensor MQ-7 kemudian arduino

BAB IV DATA DAN ANALISA

BAB III PERANCANGAN ALAT

BAB 3 PERANCANGAN SISTEM. Bab ini akan membahas tentang perancangan sistem yang digunakan dari alat

BAB III METODE PENELITIAN DAN PERANCANGAN SISTEM. secara otomatis. Sistem ini dibuat untuk mempermudah user dalam memilih

Konversi Nilai Pada Dial ke Sistem Digital Menggunakan Mikrokontroler Arduino Nano untuk Uji Kekerasan Metode Rockwell

BAB I PENDAHULUAN. tersebut terjaga dan menangis, tidak ada seorang pun yang bisa menghiburnya.

BAB III MIKROKONTROLER

BAB IV PENGUJIAN DAN ANALISA RANGKAIAN

RANCANG BANGUN SISTEM AUTOTRACKING UNTUK ANTENA UNIDIRECTIONAL FREKUENSI 2.4GHZ DENGAN MENGGUNAKAN MIKROKONTOLER ARDUINO

BAB IV ANALISIS DATA DAN PEMBAHASAN

BAB II DASAR TEORI. Gambar 2.1. Untai Hard Clipping Aktif

RANCANG BANGUN PROTOTYPE SISTEM KONTROL JARAK JAUH BERBASIS PONSEL ANDROID

Prosid i ng SNATIF K e - 4 Tahun ISBN:

PENGENDALIAN KETINGGIAN AIR PADA DISTILASI AIR LAUT MENGGUNAKAN KONTROLER ON-OFF PROPOSAL SKRIPSI

TUGAS AKHIR RANCANG BANGUN PENGUKUR MASSA MENGGUNAKAN LOADCELL BERBASIS MIKROKONTROLER AT89S51

III. METODE PENELITIAN. Penelitian, perancangan, dan pembuatan tugas akhir ini dilakukan di Laboratorium

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Maret 2015 sampai dengan Agustus 2015.

Sistem Pengaturan Kecepatan Motor DC Pada Alat Penyiram Tanaman Menggunakan Kontoler PID

BAB III METODE PENELITIAN

APLIKASI PENGOLAHAN DATA DARI SENSOR-SENSOR DENGAN KELUARAN SINYAL LEMAH

BAB V. IMPLEMENTASI DAN PENGUJIAN

PERANCANGAN TIMBANGAN DAN PENGUKUR DIAMETER KAWAT TEMBAGA PADA MESIN GULUNG KAWAT TEMBAGA DENGAN MIKROKONTROLER ATmega328 ABSTRAK

Sistem Pengaturan Kecepatan Motor DC pada Alat Pengaduk Adonan Dodol Menggunakan Kontroler PID

Prototype Pengontrolan Alat Elektronik Masjid Berbasis Arduino

Transkripsi:

Prosid i ng SNATIF K e - 4 Tahun 2 17 ISBN: 978-62-118-5-1 ESTIMASI JARAK DAN KECEPATAN PADA ALAT UJI STATIS ROKET LATIH EXPERIMENT DENGAN PEDEKATAN GAYA DORONG OPTIMAL Erik Roma Hurmuzi 1*, Dwi Arman Prasetya 1, Suprayogi 2 1 Program Studi Teknik Elektro, Fakultas Teknik, Universitas Merdeka Malang Jl. Terusan Raya Dieng No. 62-64, Malang 65146 2 Jurusan Teknik Elektronika Sistem Senjata, Politeknik Angkatan Darat Jl. Ksatrian Pusdik Arhanud, Kota Batu 65324 * E-mail : erik_muzzi@yahoo.com Abstrak Dalam proses pengujian kerja roket, salah satu cara dapat dilakukan dengan uji statis roket. Istilah uji statis mengandung pengertian pengujian dalam keadaan statis/diam. Hasil yang didapat dari proses pengujian tersebut salah satunya adalah gaya dorong roket (thrust). Sehingga perlu dirancang sebuah alat ukur tekanan gaya dorong (thrust) dengan menggunakan sensor loadcell yang kemudian ditampilkan ke laptop berupa data grafik dan tabel yang dapat dilihat secara realtime,sehingga bisa dihitung estimasi atau perkiraan jarak dan kecepatan roket menggunakan metode pedekatan gaya dorong optimal, kemudian data tersebut disimpan didalam database menggunakan microsoft access dan juga tersimpang pada micro SD agar memudahkan dalam fleksibilitas pemindahan data ke perangkat lain Kata kunci: sensor loadcell, thrust, uji statis 1. PENDAHULUAN Berkembangnya zaman yang didukung dengan kemajuan teknologi yang semakin pesat dan teknologi militer yang berkembang semakin mutakhir. Salah satu contohnya perkembangan roket di Indonesia sendiri, telah mempunyai lembaga yang berhasil membuat dan meluncurkan roket roket yang produksinya. Hal ini didukung oleh perkembangan sistem telemetri, sistem navigasi, dan sistem aktuatornya. Dalam proses pengujian kerja roket, salah satu cara dapat dilakukan dengan uji statis roket. Istilah uji statis mengandung pengertian pengujian dalam keadaan statis. Hasil yang didapat dari proses pengujian statis roket salah satunya adalah gaya dorong roket (thrust) Untuk pengukuran gaya dorong roket harus memenuhi syarat-syarat untuk mendapatkan data yang akurat dan presisi. Apabila tidak memenuhi syarat, akan menyebabkan tidak akan mendapatkan suatu nilai yang ideal untuk menjadi patokan nilai sebuah roket. Salah satu analisa parameter pada pengujian statis ini adalah besarnya nilai gaya gaya dorong (thrust) sebuah roket dengan massa propelan yang telah ditentukan. Besarnya nilai tersebut diukur menggunakan sensor berat yaitu sensor loadcell. Pengukuran yang dilakukan Angkatan Darat selama ini masih menggunakan sistem analog. Sehingga nilai yang didapatkan tidak akurat dan tidak praktis. Oleh karena itu diperlukan pengukuran digital yang bisa menampilkan nilai gaya dorong secara realtime, akurat dan presisi. Kita juga bisa menentukan sebuah estimasi jarak dan kecepatan berdasarkan data yang sudah diperoleh dengan tingkat keakuratan dan presisi yang baik. 2. METODOLOGI Penelitian ini menggunakan sebuah metode pendekatan untuk menganalisa hasil gaya dorong yang diperoleh dari pengukuran. Gaya dorong roket merupakan hasil reaksi massa terhadap momentum yang berasal dari gas buang hasil pembakaran propelan. Metode pendekatan gaya dorong optimal menggunakan nilai puncak dari gaya dorong yang diperoleh tiap perubahan waktu. Dari nilai puncak itu bisa dihitung estimasi jarak capai roket dan juga estimasi kecepatan roket. Berdasarkan estimasi-estimasi tersebut maka bisa ditentukan sebuah kofigurasi yang optimum untuk sebuah roket. 2.3 Pembuatan Rangkaian Sensor Loadcell Dalam penelitian ini perancangan rangkaian sensor loadcell menggunakan gabungan dari 211

Prosid i ng SNATIF K e - 4 Tahun 2 17 ISBN: 978-62-118-5-1 modul ADC HX711 dan sensor loadcell. 2.1.1 Rangkaian Sensor Loadcell Prinsip kerja dari loadcell adalah menggunakan perlawanan listrik ke tegangan logam foil yang saling berhubungan, dititik maksimum tegangan elemen tersebut diukur kemudian dikonversi mejadi tegangan listrik proporsional. Rangkaian sensor ditunjukkan pada Gambar 2. Gambar 2. Rangkaian Sensor Keluaran sinyal yang diperoleh akan menjadi sinyal masukan untuk Arduino. Untuk mendukung rangkaian sensor, diperlukan rangkaian penunjang berupa rangkaian ADC menggunakan IC HX711 sebagai pengkonversi perubahan terukur dalam perubahan resistansi dan mengkonversikannya kedalam besaran tegangan melalui rangkaian yang ada. Rangkaian ADC HX711 ditunjukkan pada Gambar 3. Gambar 3. Rangkaian ADC (Analog to Digital Converter) HX711 Di dalam HX711, ADC yang disediakan adalah ADC 24 bit sehingga range output yang dihasilkan adalah 2 24 atau sama dengan 16.777.216. Untuk mencari tegangan output dari yang terbaca oleh ADC, didapat dari Persamaan 1. Rentang pengukuran nilai tekanan loadcell yang dibuat mulai dari mv sampai 1 mv. Untuk mendapatkan kenaikan nilai tekanan loadcell setiap 1 bit dengan Persamaan 2. 2.4 Pembuatan Perangkat Lunak Perangkat lunak dibuat menggunakan mikrokontroler Arduino Mega 256. Arduino Mega 256 adalah suatu mikrokontroler dengan ATMEGA 256 yang mempunyai 54 input output digital dimana 16 pin digunakan sebagai PWM, 16 input analog, dan lainnya. Program dibuat menggunakan software Arduino IDE. Selanjutnya, di upload ke Arduino. Untuk simulator data grafik menggunakan software Delphi seperti pada Gambar 4. (1) (2) 212

Prosid i ng SNATIF K e - 4 Tahun 2 17 ISBN: 978-62-118-5-1 Gambar 4. Simulator Pengolahan Data 2.5 Instalasi dan Pengujian Setelah rangkaian sensor loadcell dan program selesai dibuat, kemudian dipasang pada instrumen pengujian gaya dorong. Gabungan rangkaian sensor loadcell, Arduino, LCD, IC HX711 dan modul micro SD ditunjukkan pada Gambar 5a dan 5b. Selanjutnya data ditampilkan ke dalam layar LCD dan diinterfacekan ke laptop untuk mendapatkan grafik. a b Gambar 5. Desain Mekanik Instrumen Uji 3. HASIL DAN PEMBAHASAN 3.1. Hasil Perancangan Penelitian Blok diagram dari hasil perancangan seperti Gambar 6 berikut : Loadcell HX711 Arduino LCD PC Gambar 6. Blok Diagram Perancangan Prinsip kerja alat pengujian gaya dorong ini adalah memonitor gaya dorong yang dihasilkan oleh roket, sehingga bekerja jika sensor membaca gaya dorong dari roket uji. Untuk mendapatkan keluaran tegangan ADC yang sesuai, diperlukan rangkaian ADC yang dibuat dari IC HX711. Hal ini untuk mengatur keluaran tegangan ADC yang masuk pada Arduino. 3.2. Hasil dan Pembahasan Hasil pengujian diperoleh bahwa rangkaian sensor loadcell dapat bekerja dengan baik. Pengujian pertama menggunakan propelan 2 gram dilakukan sebanyak 3 kali dengan komposisi bahan yang sama dan diperoleh hasil pengukuran sensor berupa data nilai gaya dorong yang tertampil pada aplikasi monitoring seperti pada Tabel 1 (percobaan ke-2). 213

6. 6.63 7.25 7.88 8.5 9.13 9.75 8. 8.63 9.25 9.88 1.5 11.13 11.75 4 4.625 5.25 5.875 6.5 7.125 7.75 Prosid i ng SNATIF K e - 4 Tahun 2 17 ISBN: 978-62-118-5-1 Tabel 1. Hasil pengukuran gaya dorong dengan propelan 2 gr (N) 8 8,125 8,25 8,375 8,5 9,8125 8,625 9,8125 8,75 9,8125 8,875 9,8125 9 9,8125 9,125 9,8125 9,25 9,8125 9,375 19,625 9,5 19,625 9,625 19,625 9,75 19,625 9,875 19,625 1 49,625 1,125 49,625 1,25 49,625 1,375 58,875 1,5 58,875 1,625 58,875 1,75 58,875 1,875 58,875 11 58,875 11,125 58,875 11,25 19,625 11,375 19,625 11,5 9,8125 11,625 9,8125 11,75 11,875 Dari Tabel 1 maka akan didapatkan grafik gaya dorong terhadap waktu pembakaran propelan yang kita uji seperti pada Gambar 7. Grafik Percobaan ke-1 8 6 4 2 Grafik Percobaan ke-2 8 6 4 2 Grafik Percobaan ke-3 8 6 4 2 Gambar 7. Grafik Perbandingan pada propelan 2 gr Pada pengujian selanjutnya menggunakan propelan 3 gram dilakukan sebanyak 3 kali pengujian dengan komposisi bahan yang sama dan diperoleh hasil pengukuran sensor berupa data nilai gaya dorong yang tertampil pada aplikasi monitoring seperti pada Tabel 2 (percobaan ke-1). 214

3.75 4.25 4.75 5.25 5.75 6.25 6.75 4 4.5 5 5.5 6 6.5 7 3 3.5 4 4.5 5 5.5 6 Prosid i ng SNATIF K e - 4 Tahun 2 17 ISBN: 978-62-118-5-1 Tabel 2. Hasil pengukuran gaya dorong dengan propelan 3 gr (N) 3,75 3,875 4 4,125 4,25 1,962 4,375 5,887 4,5 9,812 4,625 78,5 4,75 82,425 4,875 82,425 5 82,425 5,125 98,125 5,25 98,125 5,375 98,125 5,5 147,187 5,625 147,187 5,75 151,112 5,875 153,75 6 153,75 6,125 19,326 6,25 196,25 6,375 137,375 6,5 9,8125 6,625 5,8875 6,75 6,875 Dari Tabel 2 maka akan didapatkan grafik gaya dorong terhadap waktu pembakaran propelan yang kita uji seperti pada Gambar 8. Grafik percobaan ke-1 25 2 15 1 5 Grafik Percobaan Ke-2 25 2 15 1 5 Grafik percobaan ke-3 25 2 15 1 5 Gambar 8. Grafik Perbandingan pada propelan 3 gr Dari pengujian tersebut kita bisa mencari estimasi jarak dan kecepatan sebuah roket. Untuk menghitung estimasi jarak dan kecepatan menggunakan pesamaan berikut : (3) max (4) (5) 215

Prosid i ng SNATIF K e - 4 Tahun 2 17 ISBN: 978-62-118-5-1 Tabel 3. Hasil Perhitungan Propelan 2 gr Percobaan 1 2 3 Gaya dorong maksimal (N) 57,6975 58,875 6,525 Rata-rata gaya dorong (N) 59,325 Rata-rata waktu maksimal (detik) 9,875 Estimasi jarak capai roket (meter) 376,48 Estimasi kecepatan roket (m/s) 97,158 Tabel 4. Hasil Perhitungan Propelan 3 gr Percobaan 1 2 3 Gaya dorong maksimal (N) 196,25 192,325 2,5 Rata-rata gaya dorong (N) 196,28 Rata-rata waktu maksimal (detik) 6,78 Estimasi jarak capai roket (meter) 786,4 Estimasi kecepatan roket (m/s) 219,36 4. KESIMPULAN 1. Telah dibuat monitoring alat uji gaya dorong secara digital. 2. Alat ini mampu menampilkan data gaya dorong secara akurat dan menampilkannya di aplikasi monitoring dalam bentuk grafik. 3. Untuk propelan 2 gr diperoleh nilai ideal estimasi jarak sebesar 376,48 m dan estimasi kecepatan sebesar 97,158 m/s. 4. Untuk propelan,3 kg diperoleh nilai ideal estimasi jarak sebesar 786,4 m dan estimasi kecepatan sebesar 219,36 m/s. DAFTAR PUSTAKA Anggraini Nenny, Koneksi Jaringan Antara Dua Komputer Menggunakan Kabel USB Metwork/Brodge dengan Chip Bridge PL 251,Jurnal Teknik Informatika, 215. Budiman Haris, Analisis Pengujian Tarik pada Baja ST37 dengan Alat Bantu Ukur Loadcell, Jurnal J-Ensitec Vol. 3, No. 1, November 216. Kadir Abdul, Panduan Praktis Mempelajari Aplikasi Mikrokontoler dan Pemrogramannya Menggunakan Arduino, Jakarta : Penerbit Andi Publisher,213 Satrya Errya, Kajian Tentang Rancangan Motor Roket RX 1 Menggunakan Pendekatan Gaya Dorong Optimal, Jurnal Mat Stat Vol. 13, No.1, Januari 213. S. S. M. Chung, "Parametric Simulation on Reduction of $S$ -Band Rear Bistatic Radar Cross Section of Jet Engine With Vector Thrust Nozzle via Plasmatized Exhaust," in IEEE Transactions on Plasma Science, vol. 45, no. 3, pp. 388-44, March 217. Sutrisno, Evaluasi Kinerja Insuliner Berbasis Epoksi melalui Uji Statik Motor Roket Case Bonded, Jurnal Teknologi Dirgantara Vol. 11, No. 1, Juni 213. Syahwil Muhammad, Panduan Mudah Simulasi dan Praktek Mikrokontroler Arduino,Jakarta : Penerbit Andi Publisher,213. Taufiq Aris, Pengontrol Sistem Digital pada Laboratorium Elektronika Berbasis Pemrograman Delphi dengan Mikrokontroler, Jurnal Paradigma Vol.X, No. 2, Desember 29. Y. Fujioka, J. Sun and T. Ono, "High accurate weighing system used under the vibration-like moving conditions - on estimation of angular velocities," Proceedings of the 41st SICE Annual Conference. SICE 22., 22, pp. 483-488 vol.1. 216