BAB IV HASIL DAN PEMBAHASAN

dokumen-dokumen yang mirip
BABrV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN

BAB III METODE PENELITIAN

HASIL DAN PEMBAHASAN. nm. Setelah itu, dihitung nilai efisiensi adsorpsi dan kapasitas adsorpsinya.

BAB I PENDAHULUAN. Universitas Sumatera Utara

BAB 3 METODE PENELITIAN. Neraca Digital AS 220/C/2 Radwag Furnace Control Indicator Universal

BAB III METODE PENELITIAN. Ide Penelitian. Studi Literatur. Persiapan Alat dan Bahan Penelitian. Pelaksanaan Penelitian.

II. TINJAUAN PUSTAKA

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Mei sampai Juli 2015 di Laboratorium

PEMANFAATAN ABU SEKAM PADI DENGAN TREATMENT HCL SEBAGAI PENGGANTI SEMEN DALAM PEMBUATAN BETON

BAB 4 HASIL DAN ANALISIS

HASIL DAN PEMBAHASAN. kedua, dan 14 jam untuk Erlenmeyer ketiga. Setelah itu larutan disaring kembali, dan filtrat dianalisis kadar kromium(vi)-nya.

BAB I PENDAHULUAN. 1.1 Latar Belakang

Hariadi Aziz E.K

BAHAN DAN METODE Alat dan Bahan Metode Penelitian Pembuatan zeolit dari abu terbang batu bara (Musyoka et a l 2009).

Adsorpsi Pb (II) oleh Lempung Alam Desa Talanai (Das Kampar): modifikasi NaOH ABSTRAK

HASIL DAN PEMBAHASAN Hasil analisis proses preparasi, aktivasi dan modifikasi terhadap zeolit

BAB III METODOLOGI PENELITIAN

BAB IV HASIL DAN PEMBAHASAN. Sebelum melakukan uji kapasitas adsorben kitosan-bentonit terhadap

DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN HALAMAN PERNYATAAN HALAMAN MOTTO DAN PERSEMBAHAN KATA PENGANTAR DAFTAR GAMBAR DAFTAR TABEL DAFTAR LAMPIRAN

HASIL DAN PEMBAHASAN Pengaruh Terak Baja terhadap Sifat Kimia Tanah

BAB V HASIL PENELITIAN DAN PEMBAHASAN

θ HASIL DAN PEMBAHASAN. oksida besi yang terkomposit pada struktur karbon aktif.

BAB III METODE PENELITIAN

METODA AKTIVASI ZEOLIT ALAM DAN APLIKASINYA SEBAGAI MEDIA AMOBILISASI ENZIM α-amilase. Skripsi Sarjana Kimia. Oleh WENI ASTUTI

4 Hasil dan Pembahasan

BAB 1 PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

I. PENDAHULUAN. serius, ini karena penggunaan logam berat yang semakin meningkat seiring

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Indonesia merupakan negara yang sangat kaya dengan sumber daya alam yang potensial, didukung dengan keadaan

AKTIVASI ABU LAYANG BATUBARA DAN APLIKASINYA SEBAGAI ADSORBEN TIMBAL DALAM PENGOLAHAN LIMBAH ELEKTROPLATING

HASIL DAN PEMBAHASAN. Lanjutan Nilai parameter. Baku mutu. sebelum perlakuan

HASIL DAN PEMBAHASAN. Skema interaksi proton dengan struktur kaolin (Dudkin et al. 2004).

BAB IV HASIL DAN PEMBAHASAN. Modifikasi Ca-Bentonit menjadi kitosan-bentonit bertujuan untuk

PASI NA R SI NO L SI IK LI A KA

4 Hasil dan Pembahasan

4 Hasil dan Pembahasan

PENGEMBANGAN METODE SINTESIS UNTUK MENINGKATKAN KUALITAS ZEOLIT ALAMI DI INDONESIA

BAB I PENDAHULUAN Latar Belakang

BAB IV HASIL DAN PEMBAHASAN. Penelitian ini dilaksanakan dari tanggal 15 April 3 Mei 2013, dimana

BAB IV HASIL PENELITIAN DAN ANALISIS DATA

BAB IV HASIL DAN PEMBAHASAN. coba untuk penentuan daya serap dari arang aktif. Sampel buatan adalah larutan

Gambar 3.1 Diagram Alir Penelitian Secara Keseluruhan

BAB IV HASIL DAN PEMBAHASAN

RECOVERY ALUMINA (Al 2 O 3 ) DARI COAL FLY ASH (CFA) MENJADI POLYALUMINUM CHLORIDE (PAC)

BAB 1 PENDAHULUAN. supaya dapat dimanfaatkan oleh semua makhluk hidup. Namun akhir-akhir ini. (Ferri) dan ion Fe 2+ (Ferro) dengan jumlah yang tinggi,

besarnya polaritas zeolit alam agar dapat (CO) dan hidrokarbon (HC)?

BAB I PENDAHULUAN. dalam bidang perindustrian. Penggunaan logam krombiasanya terdapat pada industri

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari - Juni 2015 di Balai Besar

LAMPIRAN 1 DATA HASIL PERCOBAAN

BAB I PENDAHULUAN. lingkungan adalah kromium (Cr). Krom adalah kontaminan yang banyak ditemukan

BAB IV DATA DAN ANALISIS

BAB III METODE PENELITIAN

BAB IV HASIL DAN PEMBAHASAN

MAKALAH PENDAMPING : PARALEL A PREPARASI DAN APLIKASI SILIKA GEL YANG BERSUMBER DARI BIOMASSA UNTUK ADSORPSI LOGAM BERAT

TES AWAL II KIMIA DASAR II (KI-112)

PENURUNAN KADAR PHENOL DENGAN MEMANFAATKAN BAGASSE FLY ASH DAN CHITIN SEBAGAI ADSORBEN

AKTIVASI DAN KARAKTERISASI FLY ASH SEBAGAI MATERIAL ADSORBEN LIMBAH TIMBAL

DAFTAR ISI HALAMAN PERNYATAAN ABSTRAK... i KATA PENGANTAR... ii UCAPAN TERIMA KASIH... iii DAFTAR ISI... v DAFTAR TABEL... vii DAFTAR GAMBAR...

SELEKSI OLIMPIADE NASIONAL MIPA PERGURUAN TINGGI (ONMIPA-PT) 2014 TINGKAT UNIVERSITAS MUHAMMADIYAH JAKARTA BIDANG KIMIA

Oleh: ARUM KARTIKA SARI

BAB V HASIL DAN PEMBAHASAN

Disusun Oleh : Shellyta Ratnafuri M BAB I PENDAHULUAN. A. Latar Belakang Masalah

HASIL DAN PEMBAHASAN. Preparasi Adsorben

HASIL DAN PEMBAHASAN Preparasi Contoh

BAB III METODE PENELITIAN

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

POTENSI ABU CANGKANG KERANG DARAH (Anadara Granosa) SEBAGAI ADSORBEN ION TIMAH PUTIH

BAB IV ANALISIS DAN PEMBAHASAN 4.2 DATA HASIL ARANG TEMPURUNG KELAPA SETELAH DILAKUKAN AKTIVASI

BAHAN DAN METODE. Prosedur Penelitian

BAB III METODE PENELITIAN. 3.1 Kerangka Penelitian Kerangka penelitian secara umum dijelaskan dalam diagram pada Gambar 3.

Kata kunci: surfaktan HDTMA, zeolit terdealuminasi, adsorpsi fenol

STUDI KEMAMPUAN LUMPUR ALUM UNTUK MENURUNKAN KONSENTRASI ION LOGAM Zn (II) PADA LIMBAH CAIR INDUSTRI ELEKTROPLATING

BAB I PENDAHULUAN. Dalam bab ini diuraikan mengenai latar belakang masalah, tujuan dari penelitian dan manfaat yang diharapkan.

Penulis sangat menyadari bahwa masih terdapat banyak kekurangan dalam penyusunan tesis ini, oleh karena itu penulis mengharapkan kritik dan saran

BAB II TINJAUAN PUSTAKA

PEMANFAATAN BENTONIT SEBAGAI ADSORBEN PADA PROSES BLEACHING MINYAK SAWIT

PEMANFAATAN KITOSAN DARI CANGKANG RAJUNGAN PADA PROSES ADSORPSI LOGAM NIKEL DARI LARUTAN NiSO 4

BAB III METODOLOGI PENELITIAN

III. METODOLOGI PENELITIAN. Penelitian ini telah dilakukan pada bulan Mei sampai Juli 2013 di Laboratorium

I. PENDAHULUAN. Pembangunan infrastruktur di tiap-tiap wilayah semakin meningkat, seiring dengan

MAKALAH PENDAMPING : PARALEL B KARAKTERISASI LIMBAH FLY ASH BATUBARA SEBAGAI MATERIAL KONVERSI ADSORBEN DAN UJI KETAHANAN PANAS STRUKTURPADATAN

Amobilisasi Kation Logam Berat Cr 3+ pada Geopolimer Berbahan Baku Abu Layang PT. IPMOMI

POTENSI PEMANFAATAN ABU TULANG KERBAU SEBAGAI ADSORBEN ION BESI (Fe 3+ ) M. Meutia 1, Itnawita 2, S.Bali 2

BAB I PENDAHULUAN 1.1 Latar Belakang

Oleh : Yanis Febri Lufiana NRP :

BAB IV HASIL DAN PEMBAHASAN. Hasil preparasi bahan baku larutan MgO, larutan NH 4 H 2 PO 4, dan larutan

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

HASIL DAN PEMBAHASAN

III. BAHAN DAN METODA 3.1. Tempat dan Waktu Penelitian Penelitian ini akan dilakukan di laboratorium Kimia Analitik Fakultas matematika dan Ilmu

ANALISIS GRAVIMETRI. Gravimetri??? Tiga cara gravimetri 1. Cara penguapan 2. Cara elektrolisis 3. Cara pengendapan

Makalah Pendamping: Kimia Paralel E PENGARUH KONSENTRASI KITOSAN DARI CANGKANG UDANG TERHADAP EFISIENSI PENJERAPAN LOGAM BERAT

Bab IV Hasil Penelitian dan Pembahasan

PEMANFAATAN LUMPUR SIDOARJO SECARA MAKSIMAL DENGAN CAMPURAN FLY ASH DALAM PEMBUATAN MORTAR GEOPOLIMER

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB III METODA PENELITIAN

BAB III METODE PENELITIAN

PEMANFAATAN SERAT DAUN NANAS (ANANAS COSMOSUS) SEBAGAI ADSORBEN ZAT WARNA TEKSTIL RHODAMIN B

BAB I PENDAHULUAN A. Latar Belakang Masalah

Transkripsi:

BAB IV HASIL DAN PEMBAHASAN 4.1. Hasil Penelitian 4.1.1. Hasil penentuan kandungan oksida logam dalam abu boiler PKS Penentuan kandungan oksida logam dari abu boiler PKS dilakukan dengan menggvmakan XRF ( X-Ray Fluorescence). Hasil yang diperoleh dapat dilihat pada tabel dibawah ini: Tabcl 5. Kandungan Oksida Logam dalam Abu Boiler PKS PTPN 3 Asahan Oksida Logam Kandungan (%) Si02 60,63 AI2O3 11,77 CaO 4,29 FezOs 1,50 MgO 2,88 4.1.2 Karakterisasi adsorpsi abu boiler PKS terhadap logam berat Pb Kemampiian adsorpsi Abu boiler PKS terhadap logam berat Pb dianalisis menggunakan Spektroskopi Serapan Atom (SSA) Alpha 4. Berikut ini adalah data daya adsorpsi optimum abu boiler PKS terhadap logam berat Pb dengan parameter ukuran butiran, ph, waktu kontak, temperatur dan kecepatan pengadukan untuk setiap konsentrasi sebagai berikut: Tabel 6. Daya Scrap Optimal Abu Boiler PKS terhadap Larutan Pb 100 ppm No Parameter Kondisi Optimum Serapan Optimal (ppm) Rekovery penyerapan (%) 1 Ukiuan butiran 300 mesh 91,398 91,398 % 2 ph 5 92,043 92,043 % 3 Waktu kontak 30 menit 94,946 94,946 % 4 Temperatur 40 C 94,946 94,946 % 5 Kecepatan pengadukan 150 rpm 93,763 93,763 % 28

4.2. Pembahasan Dari tabel 4 dapat kita lihat bahwa komponen utama penjojsun abu boiler PKS berdasarkan analisa pendahuluan dengan XRF adalah SiOi dengan persentase yang paling besar yaitu 60,63%, dan oksida-oksida anorganik lain seperti AI2O3, CaO, FeiOa dan MgO. Komposisi kimia abu boiler ini tidak berbeda jauh dengan hasil penelitian Yoescha tahun 2007 yaitu Si02 ±58,02%; AI2O3 ±8,70%; CaO ± 12,65%; MgO ±4,23%; Fe203 ±2,60%; NaiO 0,41% dan K2O ±0,72% (Yoescha,2007). Kandungan kimia abu boiler ini juga sangat mirip dengan kandungan kimia fly ash yaitu Si02 ±62%; AI2O3 ±21,98%; Fe203 ±7,20%; CaO ±3,20%; MgO ± 1,10%; Ti02 ±1,10%; K2O ±2,10%; P2O5 ±1,35%; SO3 ±0,62% (Sahu et al., 2005). Mengingat fly ash sudah banyak digunakan sebagai adsorben, maka diasumsikan abu boiler PKS ini juga dapat digunakan sebagai adsorben. Kandungan oksida logam yang terdapat dalam abu boiler PKS ini membentuk kerangka berongga, sehingga memungkinkan teqadinya proses adsorpsi. Adsorpsi abu boiler PKS juga terjadi melalui proses pertukaran ion, hal ini dikarenakan abu boiler PKS mengandung alumina (AI2O3), dimana logam berat Pb akan terikat pada Al yang bermuatan negatif dari AI2O3 Dari hasil analisa menggunakan SSA didapatkan konsentrasi K sebesar 20,075 %, dan dari analisa menggunakan flamefotometri didapatkan konsentrasi Na sebesar 0,4201%. Adanya kandungan K dan Na pada abu boiler juga dapat menyebabkan terjadinya pertukaran ion pada proses adsorpsi. Sebelum digunakan sebagai adsorben terlebih dahulu abu boiler PKS dikalsinasi pada suhu 900 C imtuk menghilangkan senyawa volatil pada permukaan abu, sehingga pori-pori abu menjadi lebih terbuka dan adsorpsi akan lebih maksimal. Beberapa faktor yang dapat mempengaruhi adsorpsi abu boiler PKS terhadap logam berat Pb adalah ukuran butiran adsorben, ph, waktu kontak, temperatur dan kecepatan pengadukan. Untuk mempelajari kemampiian adsorpsi optimimi abu boiler PKS pertama dilakukan berdasarkan variasi ukuran butiran yaitu 100 mesh, 200 mesh dan 300 mesh, masing- masing dikontakkan terhadap larutan Pb dengan 29

konsentrasi yaitu 100 ppm. Hasil pengukuran adsorpsi abu boiler PKS terhadap larutan dapat dilihat pada gambar 3. Kurva Adsorpsi Abu Boiler PKS terhadap Ion Pb2+ Berdasarkan Ukuran Butiran 50 100 150 200 250 Ukuran Butiran (mesh) 300 350 100 ppm Gambar 3. Kurva Adsorpsi Abu boiler PKS Terhadap Ion Pb^* pada Konsentrasi 100 ppm Berdasarkan Ukuran Butiran Dari kurva pada gambar 3 terlihat bahwa semakin kecil ukuran butiran terjadi peningkatan kemampuan adsorpsi abu boiler PKS. Berdasarkan teoritis dinyatakan bahwa semakin halus ukuran partikel adsorben, maka luas permukaan kontak adsorben semakin besar sehingga kontak yang terjadi antara adsorben dengan logam berat lebih baik, namun pada penelitian tidak ditemukan adsorpsi optimum karena ukuran partikel berbanding terbalik dengan kemampuan penyerapan. Dapat dilihat pada gambar 3 rekovery penyerapan optimum abu boiler PKS pada larutan Pb dengan konsentrasi 100 ppm yakni 91,398 %. Pada penelitian ini didapatkan penyerapan optimvim terjadi pada ukuran butiran 300 mesh. Dari hasil penelitian Yusmanita tahun 2007 yang menggunakan abu layang sebagai adsorben terhadap logam berat Cd, juga didapatkan penyerapan optimimi terjadi pada ukuran butiran 300 mesh dengan variasi ukuran butiran 100 mesh, 200 mesh, dan 300 mesh. Untuk karakterisasi yang lainnya digunakan ukuran butiran 300 mesh. 30

Kemampuan adsorpsi abu boiler PKS terhadap larutan Pb berdasarkan ph, terlihat pada gambar 4 bahwa daya adsorpsi abu boiler PKS pada larutan Pb 100 ppm optimum pada ph 5 dengan rekovery penyerapannya adalah 92,043 %. Hasil pengukuran ph larutan terhadap kemampuan adsorpsi abu boiler PKS terhadap logam berat Pb dapat dilihat pada gambar 4. Kurva Adsorpsi Abu Boiler PKS terhadap Ion Pb2+ Berdasarkan ph ph - 100 ppm Gambar 4. Kurva Adsorpsi Abu boiler PKS Terhadap Ion Pb^^ pada Konsentrasi 100 ppm Berdasarkan ph Dari kurva penyerapan pada gambar 4 terlihat adsorpsi terus meningkat seiring naiknya ph larutan yaitu pada ph 3,4 dan 5, hal ini terjadi karena pada ph 5 kemungkinan Pb^^ terserap atau dipertukarkan dengan ion lain atau teijadinya hidrolisa yang mengubah muatan oksida terutama SiOa dan AI2O3 bermuatan negatif dan memungkinkan teijadinya ikatan antara oksida dengan logam yang bermuatan positif (Ngoh, 2006). Sedangkan diatas ph optimum yaitu pada ph 6 terjadi penurunan daya adsorpsi adsorben. Penurunan daya adsorpsi kemungkinan karenan terbentuk hidroksida Pb yang mengalami kopresipitasi sehingga menutupi permukaan pori. Reaksi logam Pb dalam suasana asam dan basa: PbS04 +2HNO3 Pb(N03)2 +H2SO4 PbS04 +2NaOH i putih Pb(0H)2+Na2S04 31

Untuk semua ion logam penyerapan akan berkurang dibawah optimimi dikarenakan konsentrasi ion it yang terlalu tinggi sehingga gugus fungsi negatif bereaksi dengan ion dan akan menghalangi terikatnya ion logam pada gugus fungsi adsorben tersebut. Sedangkan diatas ph optimum juga terjadi penunman rekoverypenyerapan dikarenakan pada ph yang lebih tinggi ion logam akan membentuk endapan sehingga lebih sukar diadsorpsi pada permukaan material (Drastinawati,2002). Berdasarkan penelitian yang dilakukan Adri Saputra tahun 2006 dengan memanfaatkan ampas tebu sebagai adsorben untuk logam berat Pb dan Zn juga didapatkan penyerapan berkurang dibawah ph optimum dan diatas ph optimum juga terjadi penurunan rekovery penyerapan. Pada penelitiannya rekovery penyerapan optimum terjadi pada ph 5. Berdasarkan pengaruh waktu kontak dari tabel 4 terlihat bahwa adsorpsi optimum teijadi pada waktu kontak 30 menit, dengan rekovery penyerapan larutan yakni 94,946 %. Hasil pengukuran waktu kontak larutan terhadap penyerapan logam Pb 100 ppm dapat dilihat pada gambar 5. 96 r Kurva Adsorpsi Abu Boiler PKS terhadap Ion Pb2+ Berdasarkan Waktu Kontak 90 89 88 10 30 50 70 90 Waktu Kontak (menit) 100 ppm Gambar 5. Kurva Adsorpsi Abu boiler PKS Terhadap Ion Pb pada Konsentrasi 100 ppm Berdasarkan waktu kontak 32

Dengan mengamati kurva pada gambar 5, terlihat bahwa setelah mencapai kondisi penyerapan optimum, terjadi penurunan adsorpsi pada menit berikutnya dikarenakan partikel adsorben telah mencapai kejenuhan, sehingga material tidak mampu lagi untuk mengikat (Drastinawati,2002). Penurunan kemampuan adsorpsi juga dapat terjadi karena pada saat waktu kontak optimum tclah terjadi dan dilakukan kontak maka ion Pb yang telah teradsorpsi akan lepas kembali kedalam larutan sampel sehingga konsentrasi larutan Pb yang tidak teradsorpsi menjadi lebih besar. Hal ini disebabkan karena adsorpsi yang terjadi disini merupakan adsorpsi fisika, sehingga logam berat yang teradsorpsi tidak terikat kuat pada permukaan abu boiler PKS. Waktu kontak optimum digunakan untuk variasi selanjutnya. Hasil pengukuran temperatur larutan terhadap penyerapan logam Pb 100 ppm dapat dilihat pada gambar 6. Kurva Adsorpsi Abu Boiler PKS terhadap Ion Pb2+ Berdasarltan Temperatur 25 30 35 40 45 50 55 60 65 70 75 Temperatur (C) 100 ppm Gambar 6. Kurva Adsorpsi Abu boiler PKS Terhadap Ion Pb pada Konsentrasi 100 ppm Berdasarkan Temperatur Bila dilihat pengaruh temperatur terhadap kemampuan adsorpsi abu boiler PKS terhadap logam berat Pb, berdasarkan kurva pada gambar 6 terlihat pada konsentrasi 100 ppm adsorpsi optimum teijadi pada temperatur 40 C dengan rekovery penyerapan 94,946%. Pada kurva terlihat adsorpsi optimum terjadi pada temperatur rendah. Hal ini disebabkan karena adsorpsi yang terjadi disini 33

merapakan adsorpsi fisika, dimana secara teoritis diketahui bahwa adsorpsi fisika teqadi pada temperatur rendah, oleh karena itu semakin tinggi temperatur maka akan menyebabkan adsorpsi yang terjadi akan berkurang. Kemungkinan lain pada suhu 40*^0 adsorben telah mencapai kejenuhan sehingga tidak mampu untuk berikatan lagi. Kurva Adsoipsi Abu Boiler PKS terhadap Ion Pb2+ Berdasarkan Kecepatan Pengadukan 140 145 150 155 160 165 Kecepatan Pengadukan (rpm) 170-100 ppm Gambar 7. Kurva Adsorpsi Abu boiler PKS Terhadap Ion Pb^* pada Konsentrasi 100 ppm Berdasarkan kecepatan pengadukan Pengaruh kecepatan pengadukan terhadap kemampuan adsorpsi abu boiler PKS dari kurva pada gambar 7 terlihat bahwa adsorpsi optimum pada konsentrasi 100 ppm terjadi pada kecepatan pengadukan 150 rpm dengan rekovery penyerapan yaitu 93,763%. Dari data yang diperoleh daya adsorpsi optimimi teijadi pada kecepatan pengadukan yang rendah, hal ini disebabkan karena ikatan yang lemah (ikatan van der waals antara Pb dengan silika, yang menyebabkan logam yang terikat lemah pada adsorben akan terlepas lagi. Penurunan kemampuan penyerapan diatas kondisi optimum disebabkan karena telah jenuhnya adsorben, sehingga tidak mampu lagi untuk menyerap. Pada grafik juga terlihat adanya alur yang turun naik, hasil yang demikian diduga akibat ukuran partikel yang kurang homogenitas akibatnya luas permukaan, jumlah serta distribusi pori tidak merata. 34