Pengaruh Aplikasi Refrigeran Hidrokarbon Terhadap Performansi Mobile Air Conditioning

dokumen-dokumen yang mirip
Pengaruh High Pressure Kompresor Terhadap Performansi Sistem Refrigerasi Dengan Menggunakan R-134a Dan Refrigeran Hidrokarbon

PERBANDINGAN UNJUK KERJA FREON R-12 DAN R-134a TERHADAP VARIASI BEBAN PENDINGIN PADA SISTEM REFRIGERATOR 75 W

Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air

Seminar Nasional Mesin dan Industri (SNMI4) 2008 ANALISIS PERBANDINGAN UNJUK KERJA REFRIGERATOR KAPASITAS 2 PK DENGAN REFRIGERAN R-12 DAN MC 12

PENGARUH KECEPATAN UDARA PENDINGIN KONDENSOR TERHADAP KOEFISIEN PRESTASI AIR CONDITIONING

PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR

Analisa Performansi Pengkondisian Udara Tipe Window dengan Penambahan Alat Penukar Kalor

BAB II TINJAUAN PUSTAKA

ANALISIS PENGARUH GANGGUAN HEAT TRANSFER KONDENSOR TERHADAP PERFORMANSI AIR CONDITIONING. Puji Saksono 1) ABSTRAK

Analisa Performansi Sistem Pendingin Ruangan dan Efisiensi Energi Listrik padasistem Water Chiller dengan Penerapan Metode Cooled Energy Storage

Pengaruh Variasi Putaran Poros Kompresor Terhadap Performansi Sistem Refrigrasi

BAB II TINJAUAN PUSTAKA. temperatur di bawah 123 K disebut kriogenika (cryogenics). Pembedaan ini

PENGARUH KECEPATAN PUTAR POROS KOMPRESOR TERHADAP PRESTASI KERJA MESIN PENDINGIN AC

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara

PERFORMANSI SISTEM REFRIGERASI HIBRIDA PERANGKAT PENGKONDISIAN UDARA MENGGUNAKAN REFRIGERAN HIDROKARBON SUBSITUSI R-22

ANALISA PEMAKAIAN ENERGI LISTRIK DAN COP PADA AC SPLIT 900 WATT MENGGUNAKAN REFRIGERAN HIDROKARBON MC-22 DAN R-22

Jurnal Teknik Mesin (JTM): Vol. 05, No. 3, Oktober

EFEK UDARA DI DALAM SISTEM REFRIGERASI

UNJUK KERJA MESIN PENDINGIN KOMPRESI UAP PADA BEBERAPA VARIASI SUPERHEATING DAN SUBCOOLING

BAB IV PEMBAHASAN. 4.1 Rangkaian Alat Uji Dan Cara Kerja Sistem Refrigerasi Tanpa CES (Full Sistem) Heri Kiswanto / Page 39

Penggunaan Refrigeran R22 dan R134a pada Mesin Pendingin. Galuh Renggani Wilis, ST.,MT

BAB II DASAR TEORI. Gambar 2.1 sistem Blast Chiller [PT.Wardscatering, 2012] BAB II DASAR TEORI

IV. METODE PENELITIAN

Heroe Poernomo 1) Jurusan Teknik Permesinan Kapal, Politeknik Perkapalan Negeri Surabaya, Indonesia

BAB II STUDI PUSTAKA

ANALISA KINERJA MESIN REFRIGERASI RUMAH TANGGA DENGAN VARIASI REFRIGERAN

EFEK RASIO TEKANAN KOMPRESOR TERHADAP UNJUK KERJA SISTEM REFRIGERASI R 141B

PENENTUAN EFISIENSI DAN KOEFISIEN PRESTASI MESIN PENDINGIN MERK PANASONIC CU-PC05NKJ ½ PK

BAB I PENDAHULUAN. 1.1 Latar Belakang Penelitian. Air Conditioning (AC) adalah suatu mesin pendingin sebagai sistem pengkondisi

EFEKTIVITAS PENGGUNAAN THERMOSTATIC EXPANTION VALVE PADA REFRIGERASI AC SPLIT. Harianto 1 dan Eka Yawara 2

BAB II DASAR TEORI. 2.1 Cooling Tunnel

PENGARUH MEDIA PENDINGIN AIR PADA KONDENSOR TERHADAP KEMAMPUAN KERJA MESIN PENDINGIN

STUDI EKSPERIMENTAL PERBANDINGAN REFRIJERAN R-12 DENGAN HYDROCARBON MC-12 PADA SISTEM PENDINGIN DENGAN VARIASI PUTARAN KOMPRESOR.

Pengaruh Penggunaan Katup Ekspansi Termostatik dan Pipa Kapiler terhadap Efisiensi Mesin Pendingin Siklus Kompresi Uap

BAB II LANDASAN TEORI. Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk

PENGARUH PENGGUNAAN KATUP EKSPANSI JENIS KAPILER DAN TERMOSTATIK TERHADAP TEKANAN DAN TEMPERATUR PADA MESIN PENDINGIN SIKLUS KOMPRESI UAP HIBRIDA

HUBUNGAN TEGANGAN INPUT KOMPRESOR DAN TEKANAN REFRIGERAN TERHADAP COP MESIN PENDINGIN RUANGAN

Kaji Eksperimental Pemanfaatan Panas Kondenser pada Sistem Vacuum Drying untuk Produk Kentang

Azridjal Aziz (1) Hanif (2) ABSTRAK

PERFORMANSI RESIDENTIAL AIR CONDITIONING HIBRIDA DENGAN STANDBY MODE MENGGUNAKAN REFRIGERAN HCR-22 UNTUK PENDINGIN DAN PEMANAS RUANGAN

Analisis Beban Thermal Rancangan Mesin Es Puter Dengan Kompresor ½ PK Untuk Skala Industri Rumah Tangga

Analisa Performansi Sistem Pendingin Ruangan dan Efisiensi Energi Listrik padasistem Water Chiller dengan Penerapan Metode Cooled Energy Storage

STUDI EKSPERIMENTAL PENGARUHPENGGUNAAN EJEKTOR SEBAGAI PENGGANTI KATUP EKSPANSI UNTUK MENINGKATKAN KINERJA SIKLUS REFRIGERASI PADA MESIN AC

ANALISA PENGARUH ARUS ALIRAN UDARA MASUK EVAPORATOR TERHADAP COEFFICIENT OF PERFORMANCE

KAJI EKSPERIMENTAL KARAKTERISTIK PIPA KAPILER DAN KATUP EKSPANSI TERMOSTATIK PADA SISTEM PENDINGIN WATER-CHILLER

ANALISA PERBANDINGAN PERFORMANSI MESIN PENDINGIN KOMPRESI UAP MENGGUNAKAN R22 DAN R134a DENGAN KAPASITAS KOMPRESOR 1 PK

BAB II LANDASAN TEORI

EFEK PERUBAHAN LAJU ALIRAN MASSA AIR PENDINGIN PADA KONDENSOR TERHADAP KINERJA MESIN REFRIGERASI FOCUS 808

Pengaruh Pipa Kapiler yang Dililitkan pada Suction Line terhadap Kinerja Mesin Pendingin

V. HASIL DAN PEMBAHASAN. Perbaikan Dan Uji Kebocoran Mesin Pendingin Absorpsi

BAB II DASAR TEORI. 2.1 Pengertian Sistem Heat pump

BAB II TINJAUAN PUSTAKA

Ahmad Farid* dan Moh. Edi.S. Iman Program Studi Teknik Mesin, Universitas Pancasakti Tegal Jl. Halmahera km 1, Tegal *

Azridjal Aziz (1), Hanif (2) ABSTRACT

BAB V HASIL DAN ANALISIS

PEMBUATAN ALAT PENGERING SERBUK TEMBAGA DENGAN MENGGUNAKAN SISTEM REFRIGERASI KOMPRESI UAP

ROTASI Volume 7 Nomor 3 Juli

Simposium Nasional RAPI XVI 2017 FT UMS ISSN

PENGARUH JENIS REFRIGERANT DAN BEBAN PENDINGINAN TERHADAP KEMAMPUAN KERJA MESIN PENDINGIN

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iii. DAFTAR GAMBAR... viii. DAFTAR TABEL... x. DAFTAR NOTASI... xi Rumusan Masalah...

MULTIREFRIGERASI SISTEM. Oleh: Ega T. Berman, S.Pd., M,Eng

BAB II DASAR TEORI. 2.1 Blood Bank Cabinet

Momentum, Vol. 13, No. 2, Oktober 2017, Hal ISSN ANALISA PERFORMANSI REFRIGERATOR DOUBLE SYSTEM

Tugas akhir Perencanan Mesin Pendingin Sistem Absorpsi (Lithium Bromide) Dengan Tinjauan Termodinamika

BAB II DASAR TEORI Prinsip Kerja Mesin Refrigerasi Kompresi Uap

PROGRAM PENDIDIKAN SARJANA EKSTENSI DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2016

Pengaruh Debit Udara Kondenser terhadap Kinerja Mesin Tata Udara dengan Refrigeran R410a

V. HASIL DAN PEMBAHASAN

Laporan Tugas Akhir 2012 BAB II DASAR TEORI

BAB II DASAR TEORI BAB II DASAR TEORI

m laju aliran massa kg/det UNJUK KERJA SISTEM AIR-COOLED CHILLER DENGAN EVAPORATOR JENIS SPIRAL MENGGUNAKAN REFRIGERAN HCR-22 Syaiful 1)

BAB IV METODE PENELITIAN

PENGUJIAN UNJUK KERJA SOLAR ASSISTED HEAT PUMP WATER HEATER. MENGGUNAKAN HFC-134a DENGAN VARIASI INTENSITAS RADIASI

BAB III SISTEM REFRIGERASI DAN POMPA KALOR

PENDAHULUAN TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

BAB II DASAR TEORI. Tabel 2.1 Daya tumbuh benih kedelai dengan kadar air dan temperatur yang berbeda

PENGARUH BEBAN PENDINGIN TERHADAP TEMPERATUR SISTEM PENDINGIN SIKLUS KOMPRESI UAP DENGAN PENAMBAHAN KONDENSOR DUMMY

RANCANGAN BANGUN MODEL MESINPENDINGIN TERPADU PENGHASIL ES SERUT

Bab IV Analisa dan Pembahasan

ANALISA KEBUTUHAN BEBAN PENDINGIN DAN DAYA ALAT PENDINGIN AC UNTUK AULA KAMPUS 2 UM METRO. Abstrak

COEFFICIENT OF PERFORMANCE (COP) MINI FREEZER DAGING AYAM KAPASITAS 4 KG

BAB II LANDASAN TEORI

BAB III TINJAUAN PUSTAKA

PENGUJIAN REFRIGERAN HYCOOL HCR-22 PADA AC SPLITE SEBAGAI PENGGANTI FREON R-22

STUDI EKSPERIMENTAL PERBANDINGAN REFRIJERAN R-12 DENGAN HYDROCARBON MC-12 PADA SISTEM PENDINGIN DENGAN VARIASI PUTARAN KOMPRESOR. Ir.

PENGUJIAN PERFORMANCE DAN ANALISA PRESSURE DROP SISTEM WATER-COOLED CHILLER MENGGUNAKAN REFRIGERAN R-22 DAN HCR-22

BAB II DASAR TEORI. perpindahan kalor dari produk ke material tersebut.

Studi Eksperimen Variasi Beban Pendinginan pada Evaporator Mesin Pendingin Difusi Absorpsi R22-DMF

BAB I PENDAHULUAN Latar belakang

BAB II DASAR TEORI. Pengujian sistem refrigerasi..., Dedeng Rahmat, FT UI, Universitas 2008 Indonesia

LAPORAN AKHIR FISIKA ENERGI II PEMANFAATAN ENERGI PANAS TERBUANG PADA MESIN AC NPM : NPM :

HANIF BADARUS SAMSI ( ) DOSEN PEMBIMBING ARY BACHTIAR K.P, ST, MT, PhD

BAB II LANDASAN TEORI. Suatu mesin refrigerasi akan mempunyai tiga sistem terpisah, yaitu:

BAB II DASAR TEORI BAB II DASAR TEORI

BAB IV HASIL PENGUJIAN DAN PEMBAHASAN

BAB IV HASIL DAN ANALISA

KAJI EKSPERIMENTAL KARAKTERISTIK TERMODINAMIKA DARI PEMANASAN REFRIGERANT 12 TERHADAP PENGARUH PENDINGINAN

PENGARUH DEBIT ALIRAN AIR TERHADAP PROSES PENDINGINAN PADA MINI CHILLER

Bab IV Analisa dan Pembahasan

Transkripsi:

Pengaruh Aplikasi Refrigeran Hidrokarbon Terhadap Performansi Mobile Air Conditioning Puji Saksono Program Studi Teknik Mesin Fakultas Teknologi Industri Universitas Balikpapan Jl. Pupuk Raya PO BOX 335 Balikpapan Email : saksono_puji@yahoo.co.id Abstract Refrigeration system this day has been developed fastly in advance technology manner. In general this system is developed to preserve food and to refresh the air condition. One of the usage of this system for Mobile Air Conditioning (MAC). The Global warming issues then become the limitation of the usage of refrigerant system of R-134a. As the replacement, retrofit process is conducted to change to refrigerant Hydrocarbon (HC) type. This research has objective to find the performance of those two types refrigerants. The test was conducted by using testing tool from MAC system that had been modified with control addition equipments. The result of the test toward testing tool of Mobile Air Conditioning, the mass number of refrigerant in full level condition of HC-134 is less than R-134a. The mass of R-134a was 420 gram while HC-134 was 240 gram. Beside the usage of refrigerant is lesser than normal condition, the aplication of HC-134 can give coeffcient of performance (COP) higher value than R-134a. Keywords: refrigerant type, refrigeration effect, compression work, COP Abstrak System pendingin pada saat ini telah banyak berkembang pesat seiring dengan kemajuan teknologi. Pada umumnya sistem ini digunakan untuk mengawetkan makanan dan penyegaran udara. Salah satu pemanfaatannya yaitu pada Mobile Air Conditioning (MAC). Isu pemanasan global di bumi menjadi bagian pembatasan pemakaian refrigeran R-134a, dan sebagai gantinya dilakukan retrofit ke jenis refrigeran Hydrocarbon (HC). Penelitian ini bertujuan untuk mengetahui performansi dari kedua jenis refrigeran tersebut. Pengujian dilakukan dengan menggunakan alat uji dari sistem MAC yang telah dimodifikasi dengan peralatan kontrol. Hasil pengujian pada alat uji Mobile Air Conditioning, jumlah massa refrigeran pada isian penuh HC- 134 lebih sedikit dibandingkan dengan R-134a. Untuk R-134a sebesar 420 gram, sedangkan HC-134 sebesar 240 gram. Disamping pemakaian refrigeran yang lebih sedikit, aplikasi HC-134 juga memberikan nilai COP (coeffcient of performance) yang lebih tinggi dibanding dengan R-134a. Kata kunci: Jenis refrigerasi, efek refrigerasi, kerja kompresi, COP. 1. Pendahuluan 1.1. Latar Belakang Karakteristik prestasi masing-masing komponen pembentuk sistem refrigerasi kompresi uap tidak bekerja sendiri, tetapi bergabung dalam satu sistem, Parameter performansi sistem refrigerasi kompresi uap antara lain; kerja kompresi, efek refrigerasi dan COP. Penentuan parameter tersebut dapat dibantu dengan menggunakan sketsa proses pada diagram tekanan enthalpy atau biasa disebut diagram P-h (pressure-enthalpy). Refrigeran hidrokarbon memiliki beberapa kelebihan seperti ramah lingkungan, yang ditunjukkan dengan nilai Ozon Depleting Potential (ODP) nol, dan GWP yang dapat diabaikan, properti termofisika dan karakteristik perpindahan kalor yang baik, kerapatan fasa uap yang rendah, dan kelarutan yang baik dengan pelumas mineral. 12

1.2. Perumusan dan Batasan Masalah Bagaimana pengaruh aplikasi refrigeran hidrokarbon terhadap performansi Mobile Air Conditioning (MAC)?. Adapun batasan masalah dari penelitian ini yaitu analisa siklus pada kondisi ideal, dan data diperoleh setelah sistem refrigerasi pada keadaan tunak (steady state). 1.3. Tujuan dan Manfaat Penelitian Tujuan dari penelitian ini adalah untuk mengkaji seberapa besar pengaruh performansi setelah dilakukan proses retrofit ke refrigeran hidrokarbon. Adapun manfaatnya yaitu sebagai referensi buat masyarakat untuk beralih ke refrigeran hidrokarbon dilihat dari aspek teknis, ekonomi maupun lingkungan. 2. Tinjauan Pustaka 2.1. Sistem refrigerasi siklus kompresi uap Standar (Teoritis) Siklus kompresi uap standar merupakan siklus teoritis, dimana pada siklus tersebut mengasumsikan beberapa proses sebagai berikut: 1 2 merupakan proses kompresi adiabatic dan reversible, dari uap jenuh menuju ke tekanan kondensor. 2 3 merupakan proses pelepasan kalor reversible pada tekanan konstan, menyebabkan penurunan panas lanjut (desuperheating) dan pengembunan refrigerasi. 3 4 merupakan proses ekspansi unreversibel pada entalpi konstan, dari fase cair jenuh menuju tekanan evaporator. 4 1 merupakan proses penambahan kalor reversible pada tekanan konstan yang menyebabkan terjadinya penguapan menuju uap jenuh. Gambar 2.1. Siklus kompresi uap standar (a) Diagram alir proses (b) Diagram temperatur-entropi (T-s) Sumber: Pasek, 2007. 2.2. Analisa Kinerja Mesin Refrigerasi Kompresi Uap Parameter-parameter prestasi sistem refrigerasi kompresi uap antara lain: efek/dampak refrigerasi, kerja kompresi, kapasitas refrigerasi, dan koefisien performansi (coefficient of performance, COP). Penentuan parameter -parameter tersebut dapat dibantu dengan penggunaan sketsa proses pada diagram tekanan-entalpi. (Stocker, 1996; Pasek, 2004) Kerja kompresi persatuan massa refrigeran ditentukan oleh perubahan entalpi pada proses 1-2 dan dapat dinyatakan sebagai: (Stocker, 1996) w W h 2 h 1 m... 2.1 Dimana: 13

W = Daya kompresor [kw] w = kerja kompresi [KJ/kg] m = laju aliran refrigeran [kg/det] Hubungan tersebut diturunkan dari persamaan energi dalam keadaan tunak, pada proses kompresi adiabatik reversibel dengan perubahan energi kinetik dan energi potensial diabaikan. Perbedaan entalpinya merupakan besaran negatif yang menunjukkan bahwa kerja diberikan kepada sistem. Gambar 2.2. Siklus refrigerasi kompresi uap ideal pada diagram tekanan-entalpi (Ph). Sumber: Herlianika, 2005. Kalor yang dibuang melalui kondensor dari refrigeran ke lingkungan yang lebih rendah temperaturnya terjadi pada proses 2-3, yaitu: q rj Qrj h 2 h 3... 2.2 (2.2) m Dimana: Q rj = Kapasitas Kondensor / pemanasan [kw] q rj = kalor yang dibuang melalui kondensor [KJ/kg] m = laju aliran refrigeran [kg/det] Besaran ini bernilai negatif, karena kalor dipindahkan dari sistem refrigerasi ke lingkungan. Pada proses 3-4 merupakan proses ekspansi refrigeran menuju tekanan evaporator. Proses ini biasanya dimodelkan dengan proses cekik tanpa adanya perpindahan kalor (adiabatik) dan proses berlangsung tak-reversibel, 7. Leak detector (Alat uji kebocoran refrigeran) sehingga diperoleh hubungan: h 3 = h 4 Efek refrigerasi (q rc ) adalah kalor yang diterima oleh sistem dari lingkungan melalui evaporator per satuan laju massa refrigeran. Efek refrigerasi merupakan parameter penting, karena merupakan efek yang berguna dan diinginkan dari suatu sistem refrigerasi. q Q m rc rc h 1 h 4... 2.3 Sedangkan kapasitas refrigerasi (Q rc ) merupakan perkalian antara laju massa refrigeran dengan efek refrigerasi. Dimana: Q rc = Kapasitas refrigerasi [kw] q rc = efek refrigerasi [KJ/kg] m = laju aliran refrigeran [kg/det] Koefisien performansi (COP), adalah besarnya energi yang berguna, yaitu efek refrigerasi, dibagi dengan kerja yang diperlukan sistem, yaitu kerja kompresi. Koefisien Performansi (COP) = efek refrigerasi kerja kompresi = 1 4 2 1.. 2.4 3. Metodologi Penelitian 3.1. Tempat dan Waktu Penelitian Tempat penelitian dilakukan di laboratorium Mesin Pendingin Program Studi Teknik Mesin Fakultas Teknologi Industri Universitas Balikpapan (UNIBA). Waktu penelitian dilaksanakan pada bulan Februari s/d Nopember 2012. 3.2. Bahan dan Alat Adapun perlengkapan dan alat penelitian yang digunakan adalah: 1. Satu unit uji sistim refrigrasi AC Mobil yang sudah dimodifikasi. 2. Pompa vakum 3. Gauge manifold 4. Termometer (Digital) 5. Timbangan refrigeran (Digital) 6. Refrigeran R-134a merk Klea dan refrigeran hidrokarbon (HC) merk 8. Multimeter (Gigital) 9. Peralatan workshop 14

3.3. Langkah-langkah Penelitian Langkah-langkah penelitian adalah sebagai berikut: 1. Menyiapkan peralatan uji sistim refrigerasi dan perlengkapan lainnya 2. Sistim divakum terlebih dahulu dengan menggunakan pompa vakum 3. Melakukan pengisian dengan refrigeran R-134a sampai terisi penuh 4. Menghidupkan alat uji sampai dengan kondisi konstan 5. Mencatat hasil pengukuran temperature dan tekanan T 1,, T 2, T 3,, T 4,, P 1,, P 2 6. Mengulang semua langkah dengan menggunakan refrigeran MC-134 3.4. Variabel Penelitian Variabel-variabel dalam penelitian: 1. Variabel bebas, yang meliputi: - Jenis Refrigran, R-134a dan Hidrokarbon MC-22 - Interrval waktu [menit] 2. Variabel terikat - Efek refrigerasi [KJ/kg] - Kerja Kompresor [KJ/kg] - COP (coeffcient of performance) 3. Variabel Kontrol, yang meliputi penggunaan: - Temperatur ruang uji 29-30 0 C. - Kelembaban ruang uji 85±1 0 C (relatif) Gambar 3.1. Alat uji Mobile Air Conditioning(MA 4. Hasil dan Pembahasan 4.1. Spesifikasi alat uji dan data pengujian siklus ideal Spesifikasi alat uji Tipe alat uji : Mobile Air Conditioning (MAC) Jenis Kompressor : Tipe torak Tabel 4.1 Hasil pengujian dan pengolahan data R-134a pada siklus ideal Menit ke- Temperatur (⁰C) Tekanan (bar) T1 T2 T3 T4 P1=P4 P2=p3 Enthalpy h 1 h 2 h 3 = h 4 (w) = (Q rj ) =Kalor (Q rc ) = efek kerja kel. refrigerasi kompresi Kondensor h h 2 - h 1 - h h 4 2 - h 1 3 COP (h 1 - h 4 ) / (h 2 - h 1) 5 5 53 33-22 1.2 8.3 384.054 423.916 245.819 39.862 178.097 138.235 3.47 10-2 67 36-20 1.3 9.1 385.279 425.125 250.22 39.846 174.905 135.059 3.39 15-6 67 34-22 1.2 8.6 384.054 424.517 247.281 40.463 177.236 136.773 3.38 20-8 68 35-22 1.2 8.8 384.054 425.114 248.748 41.06 176.366 135.306 3.30 25-7 69 35-23 1.1 8.8 383.44 425.415 248.748 41.975 176.667 134.692 3.21 15

Efek refrigrasi [kj/kg] JURNAL TEKNOLOGI TERPADU NO. 1 VOL. 2 SEPTEMBER ISSN 2338-6649 Tabel 4.2 Hasil pengujian dan pengolahan data refrigeran hidrokarbon MC-134 pada siklus ideal Menit ke- Temperatur (⁰C) Tekanan (bar) Enthalpy (w) = kerja kompresi (Q rj ) =Kalor (Q rc ) = efek kel. refrigerasi Kondensor COP (h 1 - h 4 ) / T1 T2 T3 T4 P1=P4 P2=p3 h1 h 2 h 3 = h 4 h 2 - h 1 h 2 - h 3 h 1 - h 4 (h 2 - h 1) 5 8 56 36-20 1.5 9.2 546.8 613.76 291.82 66.96 321.94 254.98 3.81 10 0 64 39-21 1.5 9.2 545.52 616.85 299.98 71.33 316.87 245.54 3.44 15 3 68 33-20 1.6 9.6 549.36 617.44 302.70 68.08 314.74 246.66 3.62 20 3 69 39-19 1.6 9.9 548.08 616.59 299.98 68.51 316.61 248.10 3.62 25 2 70 41-18 1.6 9.9 549.36 618.40 305.46 69.04 312.94 243.90 3.53 Pada pengujian refrigeran R-134a jumlah massa refrigeran yang dimasukan ke dalam alat uji sistem MAC dalam keadaan penuh. Sebagai acuan kalau isian sudah penuh pada indikator sigh glass berwarna bening dan tidak terlihat ada gelembung udara. Setelah proses pengambilan data selesai dilakukan, barulah kita dapat menghitung nilai dari efek refrigerasi, kerja kompresi dan nilai COP dari kedua jenis refrigeran tersebut. 4.2. Perbandingan efek refrigerasi Interval Waktu vs Efek refrigerasi 300 250 200 150 100 50 0 HC-134 R-134a 5 10 15 20 25 Interval Waktu [menit] Gambar 4.1. Grafik Perbandingan Interval waktu vs Efek refrigerasi Peningkatan efek refrigrasi dipengaruhi oleh kemampuan evaporator menyerap kalor dari luar untuk menguapkanya. Selisih nilai efek refrigrasi yang cukup besar antara refrigran hidrokarbon Musicool MC-134 dengan R-134a memberikan dampak yang sangat besar bagi peningkatan nilai COP. 16

COP Kerja Kompresi kjj/kg] JURNAL TEKNOLOGI TERPADU NO. 1 VOL. 2 SEPTEMBER ISSN 2338-6649 4.3. Perbandingan kerja kompresi pada kompresor 80 60 40 20 0 Interval Waktu vs Kerja kompresi 0 5 10 15 20 25 30 Interval waktu [menit] HC-134 R-134a Gambar 4.2. Grafik Perbandingan Interval waktu vs Kerja kompresi Interval waktu vs COP 4 3.8 3.6 3.4 3.2 3 0 10 20 30 Interval waktu [menit] R-134a MC-134 Gambar 4.3. Grafik Perbandingan Interval waktu vs COP Koefisien performasi (COP) adalah bentuk penilaian dari suatu mesin refrigerasi, semakin besar nilai COP menunjukkan bahwa kerja mesin tersebut semakin baik. Dari grafik di atas disimpulkan bahwa aplikasi refrigeran MC-134 hidrokarbon akan memberikan nilai COP yang lebih tinggi dibandingkan dengan R-134a. 4. Kesimpulan Kesimpulan yang diperoleh dari hasil penelitian adalah sebagai berikut: 1. Dari hasil data pengujian pada alat uji Mobile Air Conditioning (MAC), jumlah massa refrigeran pada isian penuh hidrokarbon MC-134 lebih sedikit dibandingkan dengan R-134a. Untuk R-134a sebesar 420 gram, sedangkan hidrokarbon MC-134 sebesar 240 gram. 2. Nilai COP yang dihasilkan dari aplikasi refrigeran hidrokarbon MC-134 lebih tinggi dibanding dengan R-134a. 3. Interval waktu dipergunakan untuk mengetahui trend nilai COP tetap stabil. Daftar Pustaka 1. A. R. Trott and T.C. Welch, 2000, Refrigeration & Air-Conditioning (Third edition), Butterworth- Heinemann, Oxford. 2. Arismunandar, W dan Saito, H, 2002, Penyegaran Udara, Cetakan ke-6, PT. Pradnya, Paramita, Jakarta. 3. Daly S. 2006: Automotive Air Conditioning And Climate Control Systems, Butterworth-Heinemann, Oxford. 4. Dincer, I., 2003, Refrigeration System and Application, Wiley, England. 17

5. Herlianika, H, 2005, Eksperimen Dengan Alat Peraga Refrigerasi Dasar, Butterworth-Heinemann, Oxford. 6. Moran J. Michael & Shapiro, N, Howard, Fundamentals of Engineering Thermodinamics. John Wiley & Son Ltd. England, 5 th Edition. 7. Pasek, A.D., 2007, Retrofit Sistim Refrigerasi Dan Pengkondisian Udara Ramah Lingkungan, Pusat Pendidikan dan Pelatihan Kementerian Lingkungan Hidup, Jakarta. 8. Stocker, W.F., 1996, Refrigerasi dan Pengkondisian Udara, Erlangga, Jakarta. 18