ANALISA PENGARUH BESAR NILAI KAPASITOR EKSITASI TERHADAP KARAKTERISTIK BEBAN NOL DAN BERBEBAN PADA MOTOR INDUKSI SEBAGAI

dokumen-dokumen yang mirip
PERBANDINGAN PENGARUH TAHANAN ROTOR TIDAK SEIMBANG DAN SATU FASA ROTOR TERBUKA : SUATU ANALISIS TERHADAP EFISIENSI MOTOR INDUKSI TIGA FASA

ANALISA PENGARUH SATU FASA ROTOR TERBUKA TERHADAP TORSI AWAL, TORSI MAKSIMUM, DAN EFISIENSI MOTOR INDUKSI TIGA FASA

ANALISIS PERBANDINGAN TORSI START

STUDI PENGARUH PERUBAHAN TEGANGAN INPUT TERHADAP KAPASITAS ANGKAT MOTOR HOISTING ( Aplikasi pada Workshop PT. Inalum )

ANALISA PERBANDINGAN PENGARUH HUBUNGAN SHORT-SHUNT DAN LONG-SHUNT TERHADAP REGULASI TEGANGAN DAN EFISIENSI GENERATOR INDUKSI PENGUATAN SENDIRI

ABSTRAK. Kata Kunci: pengaturan, impedansi, amperlilit, potier. 1. Pendahuluan. 2. Generator Sinkron Tiga Fasa

ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR ARUS SEARAH KOMPON

Karakteristik Kerja Paralel Generator Induksi dengan Generator Sinkron

STUDI PENGARUH ARUS EKSITASI PADA GENERATOR SINKRON YANG BEKERJA PARALEL TERHADAP PERUBAHAN FAKTOR DAYA

BAB II MESIN INDUKSI TIGA FASA. 2. Generator Induksi 3 fasa, yang pada umumnya disebut alternator.

PENGARUH PENGATURAN TAHANAN SHUNT DAN SERI TERHADAP PUTARAN DAN EFISIENSI MOTOR ARUS SEARAH KOMPON

ANALISIS PERBANDINGAN REGULASI TEGANGAN GENERATOR INDUKSI PENGUATAN SENDIRI TANPA MENGGUNAKAN KAPASITOR KOMPENSASI DAN DENGAN MENGGUNAKAN KAPASITOR

PENGARUH PEMBEBANAN TERHADAP REGULASI TEGANGAN DAN EFISIENSI PADA GENERATOR INDUKSI PENGUATAN SENDIRI DENGAN KOMPENSASI TEGANGAN MENGGUNAKAN KAPASITOR

ANALISIS PERBANDINGAN UNJUK KERJA MOTOR INDUKSI SATU FASA SPLIT-PHASE

PENGARUH PEGATURAN KECEPATAN MENGGUNAKAN METODE PENGATURAN FLUKSI TERHADAP EFISIENSI PADA MOTOR ARUS SEARAH KOMPON

ANALISIS PENGARUH PERUBAHAN ARUS EKSITASI TERHADAP ARUS JANGKAR DAN FAKTOR DAYA MOTOR SINKRON TIGA FASA. Elfizon. Abstract

ANALISIS PENENTUAN TEGANGAN TERMINAL, REGULASI, DAN EFISIENSI GENERATOR SINKRON 3 FASA ROTOR SALIENT POLE DENGAN METODE BLONDEL (TWO REACTION THEORY)

Dampak Perubahan Putaran Terhadap Unjuk Kerja Motor Induksi 3 Phasa Jenis Rotor Sangkar

BAB I PENDAHULUAN. Dengan ditemukannya Generator Sinkron atau Alternator, telah memberikan. digunakan yaitu listrik dalam rumah tangga dan industri.

PENGARUH POSISI SIKAT DAN PENAMBAHAN KUTUB BANTU TERHADAP EFISIENSI DAN TORSI MOTOR DC SHUNT

Kata Kunci: motor DC, rugi-rugi. 1. Pendahuluan. 2. Rugi-Rugi Pada Motor Arus Searah Penguatan Seri Dan Shunt ABSTRAK

ANALISIS PERBANDINGAN EFEK PEMBEBANAN TERHADAP GGL BALIK DAN EFISIENSI PADA MOTOR DC PENGUATAN KOMPON PANJANG DAN MOTOR INDUKSI

Gambar 1. Karakteristik torka-kecepatan pada motor induksi, memperlihatkan wilayah operasi generator. Perhatikan torka pushover.

PENGARUH POSISI SIKAT TERHADAP WAKTU PENGEREMAN PADA MOTOR ARUS SEARAH PENGUATAN SHUNT DENGAN METODE DINAMIS

STUDI PENGATURAN KECEPATAN MOTOR DC SHUNT DENGAN METODE WARD LEONARD (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU)

ANALISIS PERBAIKAN FAKTOR DAYA BEBAN RESISTIF,INDUKTIF,KAPASITIF GENERATOR SINKRON 3 FASA MENGGUNAKAN METODE POTTIER

SINGUDA ENSIKOM VOL. 7 NO. 3/ Juni 2014

TUGAS AKHIR PANAS PADA GENERATOR INDUKSI SAAT PEMBEBANAN AHMAD TAUFIQ

ANALISIS DAN SIMULASI PENGATURAN TEGANGAN GENERATOR INDUKSI BERPENGUATAN SENDIRI MENGGUNAKAN STATIC SYNCHRONOUS COMPENSATOR (STATCOM)

ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA ROTOR BELITAN (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU)

METODE PERLAMBATAN (RETARDATION TEST) DALAM MENENTUKAN RUGI-RUGI DAN EFISIENSI MOTOR ARUS SEARAH

BAB III 3 METODE PENELITIAN. Peralatan yang digunakan selama penelitian sebagai berikut : 1. Generator Sinkron tiga fasa Tipe 72SA

SISTEM PENGEREMAN REGENERATIVE MENGGUNAKAN KAPASITOR PADA MOTOR LISTRIK BERPENGGERAK MOTOR INDUKSI TIGA FASA

ANALISIS PENGARUH BEBAN NONLINIER TERHADAP KINERJA KWH METER INDUKSI SATU FASA

MESIN SINKRON ( MESIN SEREMPAK )

BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG)

FORMULIR RANCANGAN PERKULIAHAN PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNIK

BAB I PENDAHULUAN. Pada suatu kondisi tertentu motor harus dapat dihentikan segera. Beberapa

ABSTRAK. Kata Kunci: generator dc, arus medan dan tegangan terminal. 1. Pendahuluan

PENGENDALIAN TEGANGAN TERMINAL GENERATOR SINKRON TERHADAP PERUBAHAN ARUS DAN FAKTOR DAYA BEBAN

Dasar Teori Generator Sinkron Tiga Fasa

BAB 4 HASIL DAN PEMBAHASAN

PENGEREMAN DINAMIK PADA MOTOR INDUKSI TIGA FASA

MARTUA NABABAN NIM:

( APLIKASI PADA LABORATORIUM KONVERSI ENERGI LISTRIK FT- USU) Oleh : NAMA : AHMAD FAISAL N I M :

BAB 2II DASAR TEORI. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang

ANALISIS PERFORMA GENERATOR INDUKSI PENGUATAN SENDIRI TIGA PHASA PADA KONDISI STEADY STATE

BAB II TINJAUAN PUSTAKA

BAB II MOTOR SINKRON. 2.1 Prinsip Kerja Motor Sinkron

MEDIA ELEKTRIK, Volume 4 Nomor 2, Desember 2009

Jurnal Teknik Elektro Vol. 2, No. 1, Maret 2002: 22-26

PENGGUNAAN MOTOR INDUKSI SEBAGAI GENERATOR ARUS BOLAK BALIK. Ferdinand Sekeroney * ABSTRAK

ABSTRAK. Kata Kunci: Tahanan, pengereman dinamik, motor induksi

Momentum, Vol. 10, No. 2, Oktober 2014, Hal ISSN

TUGAS AKHIR ANALISIS KARAKTERISTIK TEGANGAN DAN EFISIENSI MOTOR INDUKSI TIGA FASA SEBAGAI GENERATOR INDUKSI DENGAN KELUARAN SATU FASA

ANALISA BERBAGAI HUBUNGAN BELITAN TRANSFORMATOR 3 PHASA DALAM KEADAAN BEBAN LEBIH (APLIKASI PADA LABORATORIUM KONVERSI ENERGI LISTRIK FT.

ANALISIS KARAKTERISTIK TORSI DAN PUTARAN MOTOR INDUKSI TIGA FASA PADA KONDISI OPERASI SATU FASA DENGAN PENAMBAHAN KAPASITOR

menyelesaikan pendidikan sarjana (S-1) pada Departemen Teknik Elektro Oleh : ANTONIUS P. NAINGGOLAN NIM : DEPARTEMEN TEKNIK ELEKTRO

ANALISIS EFISIENSI MOTOR DC SERI AKIBAT PERGESERAN SIKAT

Studi Komparatif Arus Asut Motor Induksi Tiga Fasa Standar NEMA Berdasarkan Rangkaian Ekivalen Dan Kode Huruf

Abstrak. Kata kunci: kualitas daya, kapasitor bank, ETAP 1. Pendahuluan. 2. Kualitas Daya Listrik

JURUSAN TEKNIK SISTEM PERKAPALAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2014

MOTOR LISTRIK 1 & 3 FASA

PENGATURAN TEGANGAN DAN FREKUENSI PADA MOTOR INDUKSI SEBAGAI GENERATOR

LAPORAN PRAKTIKUM TEKNIK TENAGA LISTRIK NO LOAD AND LOAD TEST GENERATOR SINKRON EXPERIMENT N.2 & N.4

GENERATOR SINKRON Gambar 1

BAB I PENDAHULUAN. putaran tersebut dihasilkan oleh penggerak mula (prime mover) yang dapat berupa

PENGARUH ANGULAR DAN PARALLEL MISALIGNMENT TERHADAP KONSUMSI ENERGI PADA MOTOR LISTRIK

TUGAS AKHIR ANALISA ALIRAN DAYA PADA MOTOR INDUKSI LIMA PHASA ROTOR SANGKAR. Diajukan untuk memenuhi persyaratan

BAB I PENDAHULUAN. adanya tambahan sumber pembangkit energi listrik baru untuk memenuhi

RANCANGAN BANGUN PENGUBAH SATU FASA KE TIGA FASA DENGAN MOTOR INDUKSI TIGA FASA

Analisis Pengaruh Perubahan Tegangan Terhadap Torsi Motor Induksi Tiga Fasa Menggunakan Simulasi Matlab

PENGARUH BENTUK GELOMBANG SINUS TERMODIFIKASI (MODIFIED SINE WAVE) TERHADAP UNJUK KERJA MOTOR INDUKSI SATU FASA

Kata Kunci : Transformator Distribusi, Ketidakseimbangan Beban, Arus Netral, Rugi-rugi, Efisiensi

BAB II MOTOR INDUKSI TIGA PHASA

PENGARUH KECEPATAN PUTAR PENGGERAK MULA MIKROHIDRO TERHADAP KELUARAN GENERATOR INDUKSI 1 FASE 4 KUTUB ABSTRAKSI

LABSHEET PRAKTIK MESIN LISTRIK MESIN ARUS BOLAK-BALIK (MESIN SEREMPAK)

RANCANG BANGUN MODEL PENYEIMBANG BEBAN PADA GENERATOR INDUKSI

STUDI TENTANG PENGUKURAN PARAMETER TRAFO DISTRIBUSI DENGAN MENGGUNAKAN EMT (ELECTRICAL MEASUREMENT & DATA TRANSMIT)

PERANCANGAN GENERATOR INDUKSI MAGNET PERMANEN SATU FASE KECEPATAN RENDAH

PENGARUH PENGGUNAAN INVERTER VARIABLE SPEED DRIVE (VSD) TERHADAP KINERJA MOTOR INDUKSITIGA FASA

SINGUDA ENSIKOM VOL. 7 NO. 2/Mei 2014

STUDI PENGGUNAAN SISTEM PENDINGIN UDARA TEKAN UNTUK MENINGKATKAN EFISIENSI TRANSFORMATOR PADA BEBAN LEBIH

ANALISA PERBANDINGAN PENGARUH TAHANAN PENGEREMAN DINAMIS TERHADAP WAKTU ANTARA MOTOR ARUS SEARAH PENGUATAN KOMPON PANJANG

BAB I PENDAHULUAN. tidak berputar) dan kumparan jangkar disebut rotor (bagian yang berputar)

TUGAS AKHIR. PERUBAHAN TEGANGAN INPUT TERHADAP KAPASITAS ANGKAT MOTOR HOISTING ( Aplikasi pada Workshop PT. INALUM )

Penentuan Parameter dan Arus Asut Motor Induksi Tiga Fasa

ANALISA PENGARUH PERUBAHAN BEBAN TERHADAP KARAKTERISTIK GENERTOR SINKRON ( Aplikasi PLTG Pauh Limo Padang )

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang

MODUL 10 DASAR KONVERSI ENERGI LISTRIK. Motor induksi

BAB II DASAR TEORI. 2.1 Umum. Motor induksi tiga fasa rotor belitan merupakan salah satu mesin ac yang

1 BAB I PENDAHULUAN. energi alternatif yang dapat menghasilkan energi listrik. Telah diketahui bahwa saat

TUGAS AKHIR PENGATURAN KECEPATAN MOTOR INDUKSI TIGA FASA ROTOR BELITAN DENGAN INJEKSI TEGANGAN PADA ROTOR

PERBANDINGAN PENGATURAN KECEPATAN MOTOR INDUKSI SATU FASA MENGGUNAKAN VARIAC DAN KONVERTER AC AC KONTROL SUDUT FASA BERBASIS IC TCA 785

LAPORAN TAHUNAN PENELITIAN HIBAH BERSAING

JURUSAN TEKNIK SISTEM PERKAPALAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER

MODIFIKASI ALTERNATOR MOBIL MENJADI GENERATOR SINKRON 3 FASA PENGUAT LUAR 220V/380V, 50Hz. M. Rodhi Faiz, Hafit Afandi

Modul Kuliah Dasar-Dasar Kelistrikan 1

TUGAS AKHIR PENGATURAN PENGEREMAN REGENERATIF PADA MOTOR INDUKSI TIGAFASA DENGAN MICROCONTROLLER ATMEGA8. Diajukan untuk memenuhi persyaratan

Perancangan Soft Starter Motor Induksi Satu Fasa dengan Metode Closed Loop Menggunakan Mikrokontroler Arduino

Transkripsi:

ANALISA ENGARUH BESAR NILAI KAASITOR EKSITASI TERHADA KARAKTERISTIK BEBAN NOL DAN BERBEBAN ADA MOTOR INDUKSI SEBAGAI GENERATOR (MISG) ENGUATAN SENDIRI Muhammad Habibi Lubis, Masykur Sjani Konsentrasi Teknik Energi Listrik, Departemen Teknik Elektro Fakultas Teknik Universitas Sumatera Utara (USU) Jl. Almamater, Kampus USU Medan 20155 INDONESIA e-mail: abee_ziercy@yahoo.com Abstrak Motor induksi merupakan salah satu penggerak yang paling sering digunakan dalam aplikasi industri. Disamping fungsinya sebagai penggerak, motor induksi juga dapat dijadikan sebagai generator atau sering juga disebut dengan Motor Induksi Sebagai Generator (MISG). MISG memiliki kekurangan dalam hal efisiensi dan regulasi tegangan. Oleh karena itu pada penelitian kali ini akan menganalisis karakteristik motor induksi tiga fasa yang dioperasikan sebagai generator. MISG dioperasikan dalam keadaan beban nol dan keadaan berbeban dengan berbagai nilai kapasitor eksitasi yang telah ditentukan untuk mendapatkan parameter mesin. Dari hasil pengujian, nilai kapasitor eksitasi berbanding lurus dengan nilai tegangan yang dihasilkan, untuk C = 16 μf, tegangan yang dihasilkan V = 423 V, untuk C = 20 μf, tegangan yang dihasilkan V = 428 V, untuk C = 16 μf, tegangan yang dihasilkan V = 435 V. Diperoleh juga pada kondisi beban resistif dan putaran dijaga konstan maka regulasi dan efisiensi semakin kecil serta frekuensi dan slip yang dihasilkan konstan, yaitu 50 Hz dan -0,0167. Kata Kunci: MISG, Kapasitor Eksitasi, Karakteristik Berbeban 1. endahuluan Mesin induksi dapat dioperasikan sebagai motor maupun sebagai generator, walaupun generator induksi jarang digunakan alasannya karena generator induksi tidak mampu mengendalikan tegangan dan frekuensi pada kondisi berbeban dan kecepatan perputaran yang berubah. Namun, akhir akhir ini karena cadangan sumber energi yang tidak terbarukan seperti minyak, gas bumi, batubara dan lain lain dirasakan semakin menipis,maka pengembangan generator induksi penguatan sendiri yang digerakkan oleh energi angin, pembangkit mikrohidro, biogas dan lain lain mulai menjadi semakin mendapat perhatian untuk dikembangkan [1]. Sebagai generator, karakteristik motor induksi dapat berubah ubah dikarenakan penambahan beban. utaran, frekuensi, tegangan, arus, faktor daya dan daya pada generator induksi dapat berubah ubah dikarenakan pembebanan [2]. Karakteristik suatu generator induksi sangat mempengaruhi kinerja kerja dari suatu generator itu sendiri. Untuk itu dalam tulisan ini, penulis akan membahas tentang analisa pengaruh besar kapasitor eksitasi terhadap karakteristik beban nol dan berbeban. -89- copyright @ DTE FT USU

2. Motor Induksi Tiga Fasa Mesin induksi dapat dioperasikan sebagai motor maupun sebagai generator. Jika mesin dioperasikan sebagai generator, maka diperlukan daya mekanis untuk memutar rotornya searah dengan arah medan putar melebihi kecepatan sinkronnya dan sumber daya reaktif untuk memenuhi kebutuhan arus eksitasinya [3]. Kebutuhan daya reaktif dapat diperoleh dari jala jala atau dari suatu kapasitor. Tanpa adanya daya reaktif, mesin induksi yang dioperasikan sebagai generator tidak menghasilkan tegangan. Jika generator induksi terhubung dengan jala jala, maka kebutuhan daya reaktif diambil dari jala jala. Namun, bila generator induksi tidak tehubung dengan jala jala, maka kebutuhan daya reaktif dapat disediakan dari suatu unit kapasitor. Kapasitor tersebut dihubungkan paralel dengan terminal keluaran generator. Kapasitor yang terpasang harus mampu memberikan daya reaktif yang dibutuhkan untuk menghasilkan fluksi di celah udara. Karena generator dapat melakukan eksitasi sendiri maka generator tersebut dinamakan generator induksi penguatan sendiri [4]. ada mesin induksi tidak terdapat hubungan listrik antara stator dengan rotor, karena arus pada rotor merupakan arus induksi. Jika belitan stator diberi tegangan tiga fasa, maka pada stator akan dihasilkan arus tiga fasa, arus ini kemudian akan menghasilkan medan magnet yang berputar dengan kecepatan sinkron (n s ) dan kemudian akan melakukan pengisian muatan ke kapasitor (C) yang dipasang parallel dengan stator yang tujuannya untuk mensuplai tegangan ke stator nanti untuk mempertahankan kecepatan sinkron (n s ) motor induksi pada saat dilakukan pelepasan sumber tegangan tiga fasa pada stator [5]. Gambar 3.1. Karakteristik torsi kecepatan mesin induksi Dari kurva karakteristik antara kecepatan dan kopel motor induksi (Gambar 3.1) [6-7] dapat dilihat, jika sebuah motor induksi dikendalikan agar kecepatannya lebih besar daripada kecepatan sinkron oleh penggerak mula, maka arah kopel yang terinduksi akan terbalik dan akan beroperasi sebagai generator. Semakin besar kopel pada penggerak mula, maka akan memperbesar pula daya listrik yang dihasilkan. ada gambar karakteristik, generator mulai menghasilkan tegangan pada saat putaran rotor (n r ) sedikit lebih cepat dari putaran sinkron (n s ) mesin induksi tersebut. 3. Kapasitor Eksitasi Kapasitor eksitasi adalah salah satu sumber eksitasi yang digunakan sebagai penghasil daya reaktif pada generator induksi. Dengan eksitasi yang mencukupi, akan diperoleh kondisi optimal pengoperasian pembangkit dalam bentuk faktor daya dan efisiensi yang tinggi, regulasi tegangan yang rendah dan pada gilirannya akan memperbaiki keseluruhan performansi sistem [4]. Untuk sistem 3 fasa, kapasitor dapat dihubungkan dalam dua bagian yaitu: 1. Hubungan delta ( ) 2. Hubungan wye (Y) -90- copyright @ DTE FT USU

4. engujian dan Hasil engujian Untuk memperoleh data-data yang diinginkan untuk dianalisis selanjutnya, maka dilakukan beberapa pengujian, yaitu pengujian beban nol dan berbeban. engujian beban nol bertujuan untuk mengetahui karakteristik motor induksi sebagai generator pada saat beban tidak terpasang. Rangkaian beban nol motor induksi sebagai generator ditunjukkan pada Gambar 4.1. Gambar 4.2. Rangkaian pengujian berbeban MISG Adapun data hasil pengujian berbeban MISG ditunjukkan pada Tabel 4.2. Tabel 4.3 Data hasil pengujian berbeban MISG CΔ/ fasa (μf) Load (watt) V (L-L) IL (A) IC (A) nr f (Hz) Slip (%) Gambar 4.1. Rangkaian pengujian beban nol MISG Adapun data hasil pengujian beban nol MISG ditunjukkan pada Tabel 4.1. Tabel 4.1 Data hasil pengujian beban nol MISG 16 μf 150 416 0,28 0,12 3050 50-1,67 250 389 0,42 0,17 3050 50-1,67 400 370 0,65 0,2 3050 50-1,67 150 421 0,34 0,15 3050 50-1,67 CΔ/fasa (μf) V (L-L) n s n r 20 μf 250 398 0,47 0,19 3050 50-1,67 400 382 0,71 0,26 3050 50-1,67 16 423 3000 3050 20 428 3000 3050 24 435 3000 3050 24 μf 150 429 0,41 0,2 3050 50-1,67 250 408 0,54 0,24 3050 50-1,67 400 394 0,81 0,32 3050 50-1,67 Dan untuk mengetahui karakteristik motor induksi sebagai generator pada saat beban terpasang, maka dilakukan pengujian berbeban. Rangkaian berbeban motor induksi sebagai generator ditunjukkan pada Gambar 4.2. engujian dilakukan di laboratorium usat engembangan dan emberdayaan endidik dan Tenaga Kependidikan (4TK) Medan. Segala peralatan digunakan sesuai dengan perlengkapan Laboratorium 4TK Medan dan inventaris penulis sendiri. -91- copyright @ DTE FT USU

Karakteristik beban nol dan berbeban suatu MISG [1] sangat mempengaruhi regulasi tegangan dan efisiensi MISG tersebut. Oleh karena itu, tulisan ini juga menganalisa regulasi tegangan dan efisiensi. Regulasi tegangan adalah kehandalan suatu sistem dalam mempertahankan kestabilan tegangan. Rumus regulasi tegangan ditunjukkan pada ersamaan 4.1. Vnl Vfl VR 100%...(4.1) Vfl Untuk C=16 μf ; = 150 watt Vnl Vfl VR = 100% Vfl Maka, η = = in 150 153,12 x 100% = 97,8 % x 100% Demikian selanjutnya dilakukan perhitungan untuk mendapatkan nilai efisiensi dari pembebanan dan harga kapasitor yang lainnya, ditunjukkan pada Tabel 4.3. Tabel 4.3 Hasil perhitungan pengaruh karakteristik beban nol dan berbeban terhadap regulasi tegangan dan efisiensi pada MISG 423 416 = 100% 418 = 1,683 % Demikian selanjutnya dilakukan perhitungan untuk mendapatkan nilai regulasi tegangan dari pembebanan dan harga kapasitor yang lainnya, ditunjukkan pada Tabel 4.3. CΔ/ fasa (μf) 16 μf Load (watt) V (L-L) I 1 (A) f (Hz) n r Cos VR (%) η (%) 150 416 0,4 50 3050 0,98 1,683 97,8 250 389 0,59 50 3050 0,98 8,74 95,7 400 370 0,85 50 3050 0,97 14,3 91,4 150 421 0,49 50 3050 0,96 1,662 96,4 Efisiensi adalah kemampuan suatu sistem dalam menjaga keseimbangan pada pengeluaran yang dibutuhkan sesuai dengan dengan batas kemampuan. Rumus Efisiensi ditunjukkan pada ersamaan 4.2. in loss 100% in in...(4.2) Loss Untuk CΔ/fasa = 16 μf; = 150 W in = + Loss = 150 + 3. I 1 2. R 1 = 150 + 3. (0,4) 2. 6,475 20 μf 24 μf 250 398 0,66 50 3050 0,96 7,53 94,7 400 382 0,97 50 3050 0,95 12,04 89,1 150 429 0,61 50 3050 0,96 1,398 95,3 250 408 0,78 50 3050 0,94 6,62 92,6 400 394 1,13 50 3050 0,93 10,41 85,8 Dari data pengujian dan hasil perhitungan maka dapat dilihat kurva analisa pengaruh besar nilai kapasitor eksitasi terhadap karakteristik beban nol dan berbeban serta pengaruh karakteristik beban nol dan berbeban terhadap regulasi tegangan dan efisiensi, pada Gambar 4.3, 4.4, 4.5, dan 4.6. = 153,12-92- copyright @ DTE FT USU

Gambar 4.3. Kurva pengaruh kapasitor eksitasi terhadap karakteristik beban nol Gambar 4.6. Kurva pengaruh karakteristik beban nol dan berbeban terhadap efisiensi 5. Kesimpulan Dari tulisan ini dapat diperoleh kesimpulan bahwa: Gambar 4.4. Kurva pengaruh kapasitor eksitasi terhadap karakteristik berbeban Gambar 4.5. Kurva pengaruh karakteristik beban nol dan berbeban terhadap regulasi tegangan 1. Dari analisa data dapat dilihat bahwa semakin besar nilai kapasitor eksitasi maka tegangan yang dihasilkan semakin besar. Hal ini disebabkan karena semakin besar nilai kapasitor eksitasi maka daya reaktif semakin besar, sehingga tegangan dihasilkan semakin baik (besar pula). 2. Dari data pengujian dapat dilihat bahwa frekuensi dan slip konstan, hal ini disebabkan putaran rotor dijaga konstan, (frekuensi dan slip dipengaruhi kecepatan putar rotor). 3. Dari data pengujian diperoleh arus beban (I L ) semakin besar, dan tegangan semakin kecil jika beban yang digunakan semakin besar. Hal ini disebabkan semakin besar beban, daya reaktiv yang disuplai semakin besar pula. Karena penyuplaian daya reaktif termasuk beban yang dipikul oleh generator induksi maka arus beban (I L ) semakin besar, dan tegangan semakin kecil. 4. Dari data pengujian dapat diperoleh semakin besar kapasitor eksitasi, faktor daya yang dihasilkan stabil atau malah cenderung menurun. Hal ini disebabkan daya reaktif mengakibatkan faktor daya menjadi leading sehingga semakin besar daya reaktiv yang diberikan semakin leading faktor daya yang dihasilkan. -93- copyright @ DTE FT USU

5. Dari analisa data diperoleh, semakin besar nilai kapasitor eksitasi maka regulasi tegangan semakin kecil (baik). Hal ini disebabkan semakin besar nilai kapasitor, tengan yang dihasilkan semakin besar. 6. Dari analisa data diperoleh, semakin besar nila kapasitor maka efisiensi semakin kecil (buruk). Hal ini disebabkan semakin besar nilai kapasitor eksitasi, maka arus kapasitor (I C ) semakin besar, dan I C termasuk beban. [7] Theraja, B.L. & Theraja, A.K., A Text Book of Electrical Technology, New Delhi, S.Chand and Company Ltd., 2001. 6. Ucapan Terima Kasih enulis mengucapkan terima kasih kepada Ayahanda dan Ibunda, Alm. H. Alian Lubis dan Suriani, Bapak Ir. Masykur Sjani, M.T bimbingannya dalam penulisan jurnal ini. enulis juga mengucapkan terima kasih kepada Bapak Ir. anusur SML Tobing, Ir.Raja Harahap, M.T dan Ibu Ir. Windalina Syafiar yang telah memberikan saran-saran yang membangun dalam penulisan jurnal ini. 7. Referensi [1] Surya, Wasimudin Analisis Karakteristik Motor Induksi Sebagai Generator ada embangkit Listrik Generator, UI, Bandung. [2] Zuhal, Dasar Teknik Tenaga Listrik dan Elektronika Daya, Edisi ke-5, enerbit Gramedia, Jakarta, 1995. [3] Lister, E.C., Mesin dan Rangkaian Listrik, Sixth Edition, McGraw-Hill, Inc., 1984.diterjemahkan oleh : Ir.Drs. Gunawan, H.,.T. Gelora Aksara ratama, 1993. [4] Boldea, I., and Nasar, S.A., Induction Machines Handbook, CRC ress LLC, Boca Raton, Florida, 2002. [5] Chapman, Stephen J, Electric Machinery Fundamentals,Third Edition Mc Graw Hill Companies, New York, 1999. [6] Wildi, Theodore., Electrical Machines, Drive, ower Systems, Fifth Edition, rentice Hall, 2002. -94- copyright @ DTE FT USU