SINTESIS DAN OPTIMALISASI GEL KITOSAN-ALGINAT

dokumen-dokumen yang mirip
Sintesis dan Optimalisasi Gel Kitosan-Gom Guar

OPTIMALISASI SINTESIS DAN KAJIAN ADSORPSI GEL KITOSAN-ALGINAT TERHADAP ION Cu(II) DWI WAHYONO

SINTESIS GEL KITOSAN-HIALURONAT PAJRI SAMSI NASUTION

PENDAHULUAN Latar Belakang

KEBIJAKAN DAN STRATEGI PENA TAAN RUANG KAWASAN PERBATASAN ANTARNEGARA DI PROVINSI NtJM TENGGARA TIMUR

PERILAKU DIFUSI KETOPROFEN MELALUI MEMBRAN KITOSAN-GOM GUAR FERI NATA

SINTESIS DAN OPTIMALISASI GEL KITOSAN-GOM XANTAN DWI WAHYU UTOMO

ADSORPSI LOGAM Cu(II) DAN Cr(VI) PADA KITOSAN BENTUK SERPIHAN DAN BUTIRAN DIAN NURDIANI

CIRI NANOPARTIKEL KITOSAN DAN PENGARUHNYA PADA UKURAN PARTIKEL DAN EFISIENSI PENYALUTAN KETOPROFEN DWI WAHYONO

TINGKATAN KUALITAS KITOSAN HASIL MODIFIKASI PROSES PRODUKSI. Abstrak

SINTESIS GEL KITOSAN-HIALURONAT PAJRI SAMSI NASUTION

BAB I PENDAHULUAN. Budidaya (2014), menyatakan bahwa udang vannamei (Litopenaeus vannamei) tertinggi sehingga paling berpotensi menjadi sumber limbah.

BAB I PENDAHULUAN. Kitosan merupakan kitin yang dihilangkan gugus asetilnya dan termasuk

TRANSFORMASI KITIN DARI HASIL ISOLASI LIMBAH INDUSTRI UDANG BEKU MENJADI KITOSAN

ENKAPSULASI KETOPROFEN DENGAN KITOSAN-ALGINAT BERDASARKAN JENIS DAN RAGAM KONSENTRASI TWEEN 80 DAN SPAN 80

BAB I PENDAHULUAN. Kitosan dihasilkan dari kitin dan mempunyai struktur kimia yang sama

BAB I PENDAHULUAN. Universitas Sumatera Utara

BAB I PENDAHULUAN. dalam bidang perindustrian. Penggunaan logam krombiasanya terdapat pada industri

BAB III METODE PENELITIAN. Penelitian ini dilakukan di Laboratorium Riset Kimia Jurusan Pendidikan

et al., 2005). Menurut Wan Ngah et al (2005), sambung silang menggunakan glutaraldehida, epiklorohidrin, etilen glikol diglisidil eter, atau agen

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN Latar Belakang

4. Hasil dan Pembahasan

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

PEMBUATAN KITOSAN DARI KULIT UDANG PUTIH (Penaeus merguiensis) DAN APLIKASINYA SEBAGAI PENGAWET ALAMI UNTUK UDANG SEGAR

TINGKATAN KUALISTAS KITOSAN HASIL MODIFIKASI PROSES PRODUKSI. Abstrak

BAB I PENDAHULUAN. Kitin dan kitosan merupakan biopolimer yang secara komersial potensial

DISOLUSI MIKROENKAPSULASI KURKUMIN TERSALUT GEL KITOSAN-ALGINAT-GLUTARALDEHIDA

PEMBUATAN KHITOSAN DARI KULIT UDANG UNTUK MENGADSORBSI LOGAM KROM (Cr 6+ ) DAN TEMBAGA (Cu)

PEMANFAATAN CANGKANG UDANG SEBAGAI BIOADSORBEN ION LOGAM Cu DAN Zn PADA SAMPEL AIR PERMUKAAAN KOTA BENGKULU

Makalah Pendamping: Kimia Paralel E PENGARUH KONSENTRASI KITOSAN DARI CANGKANG UDANG TERHADAP EFISIENSI PENJERAPAN LOGAM BERAT

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan

BAB IV HASIL DAN PEMBAHASAN

PENGGUNAAN KITOSAN DARI LIMBAH KULIT UDANG SEBAGAI INHIBITOR TERHADAP KEASAMAN TUAK SKRIPSI. Oleh: FIKRIATUN NURHIKMAWATI NIM.

Perilaku Disolusi Ketoprofen Tersalut Gel Kitosan-Karboksimetilselulosa (CMC)

BAB I PENDAHULUAN. Proporsi Protein kasar limbah (%) (% BK) Palabilitas. Limbah jagung Kadar air (%)

BAHAN DAN METODE Waktu dan Tempat Penelitian Bahan dan Alat

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

1 I PENDAHULUAN. Identifikasi Masalah, (1.3) Maksud dan tujuan Penelitian, (1.4) Manfaat

Bab III Metodologi Penelitian

I. PENDAHULUAN. Udang dan kepiting merupakan komoditas andal dan bernilai ekonomis

KEGUNAAN KITOSAN SEBAGAI PENYERAP TERHADAP UNSUR KOBALT (Co 2+ ) MENGGUNAKAN METODE SPEKTROFOTOMETRI SERAPAN ATOM

I. PENDAHULUAN. ditemukan sangat banyak dalam kehidupan sehari-hari, sehingga banyak orang

4 Hasil dan Pembahasan

KAJIAN ADSORPSIFe(III) PADA KOMPOSIT ARANG KAYU APU (Pistia stratiotesl.)- KITOSAN-GLUTARALDEHIDA

UJI STABILITAS OBAT ANTI PERADANGAN INDOMETASIN FARNESIL YANG TERSALUT GEL KITOSAN-GOM GUAR DEBBY ISDARULYANTI

BAB III BAHAN, ALAT DAN CARA KERJA

PENGGUNAAN KITOSAN DARI TULANG RAWAN CUMI-CUMI (LOLIGO PEALLI) UNTUK MENURUNKAN KADAR ION LOGAM Cd DENGAN MENGGUNAKAN SPEKTROFOTOMETRI SERAPAN ATOM

BAB V. PEMBAHASAN. 5.1 Amobilisasi Sel Lactobacillus acidophilus FNCC116. Amobilisasi sel..., Ofa Suzanti Betha, FMIPA UI, 2009

1 PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN. I.1 Latar belakang

BAB I PENDAHULUAN 1.1 Latar Belakang

3. Metodologi Penelitian

HASIL DAN PEMBAHASAN. Lanjutan Nilai parameter. Baku mutu. sebelum perlakuan

PENGARUH KOMPOSISI BERAT KITOSAN-ZEOLIT TERHADAP STABILITAS FISIKO-KIMIA KOMPOSIT YANG DIHASILKAN

KARAKTERISTIK MUTU DAN KELARUTAN KITOSAN DARI AMPAS SILASE KEPALA UDANG WINDU (Penaeus monodon)

PENGARUH ph DAN LAMA KONTAK PADA ADSORPSI ION LOGAM Cu 2+ MENGGUNAKAN KITIN TERIKAT SILANG GLUTARALDEHID ABSTRAK ABSTRACT

Untuk mengetahui pengaruh ph medium terhadap profil disolusi. atenolol dari matriks KPI, uji disolusi juga dilakukan dalam medium asam

BAB IV HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN 1.1 Latar Belakang

3 Metodologi Penelitian

Laboratorium Teknologi Pengolahan Limbah Jurusan Teknik Kimia Fakultas Teknik Industri Institut Teknologi Sepuluh November

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. 1. Optimasi pembuatan mikrokapsul alginat kosong sebagai uji

Penyerapan Zat Warna Tekstil BR Red HE 7B Oleh Jerami Padi +) Saepudin Suwarsa Jurusan Kimia FMIPA - ITB Jl. Ganesa 10 Bandung, 40132

I. PENDAHULUAN. sehingga memiliki umur simpan yang relatif pendek. Makanan dapat. dikatakan rusak atau busuk ketika terjadi perubahan-perubahan yang

BAB I PENDAHULUAN 1.1. Latar Belakang

Jurnal ILMU DASAR Vol. 10 No : Bagus Rahmat Basuki & I Gusti Made Sanjaya Jurusan Kimia,FMIPA, Universitas Negeri Surabaya

ADSORPSI ZAT WARNA PROCION MERAH PADA LIMBAH CAIR INDUSTRI SONGKET MENGGUNAKAN KITIN DAN KITOSAN

HASIL DAN PEMBAHASAN

BAB III BAHAN DAN METODE

MAKALAH PENDAMPING : PARALEL A EFEKTIVITAS AMPAS TEH SEBAGAI ADSORBEN ZAT WARNA TEKSTIL MALACHITE GREEN

III. BAHAN DAN METODE. Penelitian ini dilaksanakan di Laboratorium Pengolahan Hasil Pertanian dan

BAB III METODE PENELITIAN. Kegiatan penelitian ini dilaksanakan selama 6 bulan, dimulai dari bulan

PEMBERIAN CHITOSAN SEBAGAI BAHAN PENGAWET ALAMI DAN PENGARUHNYA TERHADAP KANDUNGAN PROTEIN DAN ORGANOLEPTIK PADA BAKSO UDANG

PEMBAHASAN. I. Definisi

Bab IV Hasil Penelitian dan Pembahasan

BAB I PENDAHULUAN BAB I PENDAHULUAN

HASIL DAN PEMBAHASAN. Kode Sampel A1 A2 A3 A4

BAB I PENDAHULUAN. 1.1 Latar Belakang. Industri yang menghasilkan limbah logam berat banyak dijumpai saat ini.

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

PEMBUATAN KITOSAN DARI KULIT UDANG SEBAGAI BAHAN PENGAWET TAHU

4 HASIL DAN PEMBAHASAN

BAB III METODE PENELITIAN

III. METODE PENELITIAN

BAB I PENDAHULUAN. A. Latar Belakang Masalah

Unnes Journal of Public Health

SEMINAR NASIONAL ke 8 Tahun 2013 : Rekayasa Teknologi Industri dan Informasi

BAB I PENDAHULUAN. industri tapioka, yaitu : BOD : 150 mg/l; COD : 300 mg/l; TSS : 100 mg/l; CN - :

PERILAKU DISOLUSI KETOPROFEN TERSALUT GEL KITOSAN-GOM GUAR FITHRI AMELIA

PEMANFAATAN KITOSAN DARI CANGKANG UDANG SEBAGAI MATRIKS PENYANGGA PADA IMOBILISASI ENZIM PROTEASE. Skripsi

BAB III METODOLOGI PENELITIAN

PRODUKSI KITOSAN GRADE FARMASI DARI KULIT BADAN UDANG MELALUI PROSES DEASETILASI DUA TAHAP

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari - Juni 2015 di Balai Besar

EKSTRAKSI GELATIN DARI LIMBAH TULANG IKAN TENGGIRI (Scomberomorus sp.) DENGAN JENIS DAN KONSENTRASI ASAM YANG BERBEDA

BAB 1 PENDAHULUAN 1.1 Latar Belakang

HASIL DAN PEMBAHASAN A. PENENTUAN JENIS BAHAN PENGENTAL

STUDI PEMBUATAN MIKROKAPSUL SITRONELAL DENGAN PENYALUT KITOSAN Lia Listianingsih, Elvina Dhiaul Iftitah*, Siti Mariyah Ulfa ABSTRAK ABSTRACT

Indo. J. Chem. Sci. 3 (3) (2014) Indonesian Journal of Chemical Science

II. TINJAUAN PUSTAKA. Pupuk adalah bahan yang ditambahkan ke dalam tanah untuk menyediakan

BAB I PENDAHULUAN I.1 Latar Belakang

Transkripsi:

SINTESIS DAN OPTIMALISASI GEL KITOSAN-ALGINAT Purwantiningsih Sugita, Achmad Sjachriza, Dwi Wahyono Departemen Kimia, FMIPA IPB, Kampus IPB Baranang Siang, Bogor 16144 Email: atiek@indo.net.id Abstrack Shrimp shell can be used to make chitosan. The objective of this work is to sythesis and optimize chitosan-alginate gel by comparing its rheological properties. Rheological properties of chitosan were improved by gelation using glutaraldehyde as cross linker and natural hydrocolloids such as alginate. Rheological properties measured were strength, break point, rigidity, swelling and shrinking The gel was made by mixing chitosan solution 2.5% (w/v), glutaraldehyde 4%, 5%, and 6% (v/v), and alginate 0%, 0.75%, and 1.0%. According Modde 5, the optimum gel happened at glutaraldehyde and alginate concentration are 4.0% and 0.82%, respectively. This optimalization to adsorp metal ions gave gel strength, break point, pembengkakan, rigidity and shrinking properties are 881,4385 g cm -2, 1,0267 cm, 4,5313 g, 8,5179 g cm -1 and 1,6280 g, respectively. Kata Kunci : chitosan-glutaraldehyde-alginate 1. PENDAHULUAN Udang merupakan salah satu hasil perikanan Indonesia yang banyak dikonsumsi oleh masyarakat. Selain dikonsumsi, udang juga banyak dimanfaatkan dalam dunia industri sebagai salah satu komoditas ekspor non-migas. Udang diekspor dalam bentuk udang beku, yang sudah mengalami proses pembuangan bagian kepala dan kulit. Ekspor udang Indonesia ke Amerika pada triwulan pertama tahun 2005 mencapai 14 ribu ton, sedangkan pada periode yang sama tahun 2004 hanya mencapai 6 ribu ton (Kustiani R. 2005). Dengan makin meningkatnya ekspor udang Indonesia dari tahun ke tahun berakibat pula pada peningkatan jumlah limbahnya. Selama ini di Indonesia, limbah udang baru dimanfaatkan sebagai campuran ran-sum pakan ternak dalam bentuk tepung isolat, hidrolisat protein, bahan campuran pembuatan terasi, petis, dan kerupuk udang. Sementara di negara maju seperti Amerika dan Jepang, limbah udang telah banyak dimanfaatkan sebagai sumber bahan baku pembuatan kitin, kitosan, dan turunan dari keduanya yang berdaya guna dan bernilai tinggi di berbagai bidang industri modern, seperti farmasi, biokimia, kosmetika, industri kertas, industri pangan, industri tekstil, dan lain-lain. Salah satu kegunaan kitosan adalah afinitasnya dalam menjerap ion logam berat. Besarnya afinitas kitosan dalam mengikat logam sangat tergantung dari karakteristik makro-struktur kitosan yang dipengaruhi oleh sumber dan kondisi pada proses isolasi (Schmuhl et al. 2001). Bentuk serpihan kitosan, afinitasnya terhadap ion logam telah diuji coba terhadap ion Pb 2+, Ni 2+, dan Cr 6+ oleh Jamaludin (1994) dan ion logam Cu(II) dan Cr(VI) oleh Nurdiani (2005). Modifikasi kitosan dapat dilakukan untuk meningkatkan penjerapannya terhadap ion logam. Guibal (1997) menyatakan bahwa modifikasi kimia kitosan menjadi bentul gel dapat meningkatkan kemampuan dan kapasitas jerapnya terhadap ion logam berat. Hal ini disebabkan karena bentuk gel mempunyai volume pori yang lebih besar dibandingkan dengan bentuk serpihan. Daya adsorpsi dari gel kitosan sangat dipengaruhi oleh kestabilan sifat gel yang terbentuk. Telah dilaporkan bahwa penam-bahan polivinilalkohol (PVA) pada pemben-tukan gel kitosan dapat memperbaiki sifat gel yang terbentuk, yaitu menurunkan waktu gelasi dan meningkatkan kekuatan mekanis gel (Wang et al. 2004). Modifikasi lain terhadap kitosan adalah dengan penambahan hidrokoloid alami seperti alginat, gom guar, dan kaboksimetilselulosa (CMC). Modifikasi ini dapat memperbaiki penerapannya dalam sistem penghantaran obat. Cardenas et al. (2003) telah mensintesis kitosan alginat, sedangkan Sugita et al. (2006a dan b) telah mengoptrimalisasi sintesis kitosan-gom guar dan kitosan-karboksimetil selulosa, berdasarkan 22 Jurnal Sains dan Teknologi Indonesia Vol. 9 No. 1 April 2007 Hlm. 22-26

analisis MODDE 5 dari sifat reologi gel yang terukur dapat diterapkan untuk memperbaiki sistem penghantaran obat. Penelitian ini bertujuan mengoptimalisasi sintesis gel kitosan-alginat yang diharapkan dapat memperbaiki sifat reologi gel dalam penyerapan ion logam berat. Sintesis dilakukan dengan memvariasikan konsentrasi glutaraldehida dan alginat pada konsentrasi kitosan yang tetap. 2. BAHAN DAN METODE Penelitian dilakukan di Laboratorium Kimia Organik Departemen Kimia FMIPA IPB. Bahan-bahan yang digunakan adalah kitosan (hasil isolasi limbah kulit udang pancet berasal dari Muara Angke Jakarta) yang memiliki kadar air, kadar abu, derajat deasetilasi dan berat molekul berturut-turut 5,89%, 0,15%, 73,61 dan 429734,281 g/mol, akuades, bufer asetat ph 4, bufer fosfat ph 7, CH 3 COOH, glutaraldehida, dan alginat. Sifat reologi gel diukur dengan penganalisis tekstur Stevens LFRA yang dilakukan di Laboratorium Kimia dan Biokimia Pangan Pusat Antar Universitas (PAU) IPB. 2.1 Pembuatan Gel Kitosan-Alginat Gel kitosan-alginat dibuat dengan variasi konsentrasi alginat dan glutaraldehida. Konsentrasi alginat yang digunakan adalah 0,00; 0,75; dan 1,00% (b/v) sedangkan konsentrasi glutaraldehida 4,00; 5,00; dan 6,00% (v/v). Konsentrasi kitosan dibuat tetap yaitu 2,50% (b/v). Sebanyak 2,50 g kitosan dilarutkan dalam 100 ml asam asetat 1,00% (v/v) kemudian 30 ml larutan kitosan tersebut ditambahkan 5,00 ml larutan alginat dengan variasi konsentrasi 0,00% 0,75%, dan 1,00% (b/v). Campuran diaduk sampai homogen. Setelah homogen ditambahkan 1 ml glutaraldehida dengan variasi konsentrasi 4,00; 5,00; dan 6,00% (v/v). Larutan yang terbentuk kemudian didiamkan selama semalam. Gel kitosan-alginat yang terbentuk kemudian dianalisis sifat reologinya yang meliputi kekuatan gel (Kg), pembengkakan (Sw), pengerutan (Sn), titik pecah (Tp), dan ketegaran (Rg) dengan menggunakan texture analyzer. 2.2 Pengukuran Sifat Reologi Gel Kekuatan pecah gel (gel strength) ditentukan dengan menggunakan alat Texture Analyzer. Penganalisis tekstur yang dipakai memiliki luas bidang probe 0.1923 cm 2, beban probe 96 97 g, dan jarak probe ke gel 2.525 2.575 cm. Sampel dalam cetakan diletakkan dalam platform tempat sampel, selanjutnya alat dioperasikan untuk melihat gaya maksimum yang diperlukan untuk memecahkan Nilai kekuatan pecah dihitung dengan persamaan (Angalett 1986; Fry & Hudson 1983): Beban pecah (g) A B C Kekuatan gel (g/cm 2 ) = beban pecah (BC) x nilai kalibrasi luas bidang penekan beban penekan Nilai kalibrasi = jarak penekan ke gel Titik pecah (cm) = penetrasi pecah (AC) beban pecah (BC) Ketegaran (g/cm) = penetrasi pecah (AC) Daya serap gel terhadap air dilakukan dengan merendam ± 1,0000 g gel dalam 30 ml larutan buffer asetat ph 4 selama 24 jam pada suhu kamar. Selama proses pembengkakan, wadah ditutup untuk mencegah terjadinya penguapan larutan buffer. Setelah 24 jam, gel ditimbang kembali untuk mengetahui bobot air yang terserap (Wang et al. 2004). Pengerutan dilakukan dengan merendam ± 2,0000 g gel dalam 30 ml larutan buffer fosfat ph 7 selama 24 jam pada suhu 10 o C. Setelah itu gel ditimbang kembali untuk mengetahui bobot air yang dikeluarkan oleh gel (Wang et al. 2004). Rancangan Percobaan. Hasil penelitian diolah dengan menggunakan perangkat lunak MODDE 5 untuk melihat pengaruh dari perubahan konsentrasi gom guar dan glutaraldehida terhadap nilai kekuatan, titik pecah, ketegaran, pembengkakan, dan pengerutan gel, serta mengetahui konsentrasi gom guar dan glutaraldehida yang optimum untuk memperbaiki sistem penghantaran obat. 3. HASIL DAN PEMBAHASAN Penetrasi pecah (mm) Sifat reologi gel kitosan-alginat yang meliputi kekuatan gel, titik pecah, ketegaran, pembengkakan, dan pengerutan diamati untuk melihat pengaruh konsentrasi alginat (alg) dan glutaraldehida (glut) terhadap sifat reologi Sintesis Dan Optimalisasi Gel...( Purwantiningsih Sugita, Achmad Sjachriza, Dwi Wahyono) 23

tersebut. Gambar 1 menunjukkan pengaruh alginat dan glutaraldehida terhadap nilai kekuatan pecah Makin tinggi konsentrasi glutaraldehida yang ditambahkan, maka kekuatan gel akan makin besar. Hal ini jelas terlihat mengingat fungsi glutaraldehida dalam pembuatan gel adalah sebagai pembentuk ikatan silang. Makin besar jumlah glutaraldehida maka makin banyak ikatan silang yang dapat dibentuk dan akan menyebabkan gel makin keras. Makin tinggi konsentrasi alginat maka gel akan makin kuat. Penambahan alginat dapat memperbaiki struktur ikatan silang kitosan dalam gel sehingga ikatan silang menjadi lebih kaku dan gel menjadi lebih kuat. Makin tinggi nilai kekuatan pecah gel, makin kaku dan makin kuat ikatan yang terjadi antara polimer-polimer yang membentuk jaringan gel tersebut (Rahayu 2000). Gambar 2.Kurva 2 dimensi pengaruh alginat dan glutaraldehida terhadap titik pecah Gambar 3 menunjukkan pengaruh alginat dan glutaraldehida terhadap nilai ketegaran. Dari Gambar 3 dapat dilihat bahwa makin tinggi konsentrasi alginat dan glutaraldehida maka nilai ketegaran gel kitosan-alginat makin besar. Seperti yang telah dijelaskan, penambahan glutaraldehida akan meningkatkan jumlah ikatan silang dalam gel sehingga gel menjadi lebih kaku akibatnya nilai ketegarannya meningkat. Demikian juga halnya dengan penambahan alginat yang dapat memperbaiki struktur ikatan silang akibatnya ikatan silang gel menjadi lebih kaku dan nilai ketegaran gel meningkat. Gambar 1 Kurva 2 dimensi pengaruh alginat dan glutaraldehida terhadap nilai kekuatan pecah Gambar 2 menunjukkan pengaruh alginat dan glutaraldehida terhadap nilai titik pecah. Dari Gambar 2 terlihat bahwa nilai titik pecah mengalami penurunan dengan bertambahnya konsentrasi glutaraldehida. Hal ini disebabkan karena glutaraldehida sebagai pembentuk ikatan silang dengan jumlah yang banyak akan menyebabkan kerapuhan gel sehingga gerakan segmen di dalam gel menjadi berkurang akibatnya titik pecah makin kecil. Adanya penambahan alginat ke dalam struktur gel pada konsentrasi 0,75% sampai 1,00% akan menurunkan titik pecah gel kitosan-alginat. Hal ini disebabkan karena alginat akan memperbaiki struktur ikatan silang di dalam gel tetapi alginat sendiri memiliki sifat meyerap air sehingga pada saat konsentrasi alginat yang tinggi titik pecah gel akan makin kecil. Gambar 3 Kurva 2 dimensi pengaruh alginat dan glutaraldehida terhadap nilai ketegaran Gambar 4 menunjukkan pengaruh alginat dan glutaraldehida terhadap nilai pembengkakan Dari Gambar 4 dapat dilihat bahwa makin besar jumlah glutaraldehida yang ditambahkan, pembengkakan gel sulit terjadi. Hal ini disebabkan 24 Jurnal Sains dan Teknologi Indonesia Vol. 9 No. 1 April 2007 Hlm. 22-26

karena dengan makin bertambahnya jumlah glutaraldehida menyebabkan ikatan silang dalam matriks gel makin rapat. Berger et al. (2004) menyebutkan bahwa penambahan senyawa pembentuk ikatan silang, dalam hal ini glutaraldehida akan menurunkan nisbah pembengkakan pada gel kitosan. Penambahan alginat akan menurunkan nilai pembengkakan gel karena alginat akan masuk ke dalam pori-pori gel, makin banyak alginat yang masuk maka air akan sulit untuk masuk sehingga mengurangi proses pembengkakan. Gambar 5 Kurva 2 dimensi pengaruh alginat dan glutaraldehida terhadap nilai pengerutan Gambar 4 Kurva 2 dimensi pengaruh alginat dan glutaraldehida terhadap nilai pembengkakan Gambar 5 menunjukkan pengaruh alginat dan glutaraldehida terhadap nilai pengerutan Dari Gambar 5 dapat dilihat bahwa makin tinggi konsentrasi alginat dan glutaraldehida yang digunakan maka nilai pengerutan gel akan makin besar. Hal ini disebabkan karena reaksi antara glutaraldehida dengan kitosan meru-pakan reaksi kondensasi yang mengeluarkan air sehingga dapat meningkat-kan proses pengerutan. Selain itu, penggunaan bufer fosfat dalam proses pengerutan juga memberikan pengaruh yang besar, yaitu dapat menarik keluarnya air dari dalam gel karena ukuran molekulnya yang besar. Peningkatan nilai pengerutan juga disebab-kan oleh terbentuknya ikatan hidrogen antara gugus amino kitosan yang tidak berikatan silang dengan glutaraldehida sehingga struktur gel menjadi lebih rapat dan akan memeras air keluar. Hasil analisis keragaman ANOVA menghasilkan persamaan glutaraldehida, alginat, dan interaksinya terhadap respon yang diukur yaitu kekuatan gel, titk pecah, ketegaran, pembengkakan, dan pengerutan. Menurut Lindblad (2003) gel yang baik adalah gel yang elastis, lembut, dan mudah membengkak dalam air. Nilai optimum dari gel kitosan-alginat pada konsentrasi kitosan tetap 2.5% yang diperoleh dengan menggunakan software Modde 5.0 adalah pada konsentrasi glutaraldehida dan alginat berturut-turut adalah 4,00 % dan 0,82 % yang memenuhi syarat gel untuk aplikasi sebagai penjerap ion logam. Persamaan alginat dan glutaraldehida terhadap nilai kekuatan pecah, titik pecah, ketegaran, pembengkakan dan pengerutan disajikan pada Tabel 1. Tabel 1. Persamaan alginat, glutaraldehida, dan interaksinya terhadap respon Respon Persamaan Kekuatan 983,052 + 84,0158 alg + 105,321 gel glut 48,8751 alg*alg Titik pecah 0,986753-0,014561 alg - 0,054043 glut - 0,0314747 alg*alg Ketegaran 4,98687 + 0,414784 alg + 0,60503 glut - 0,146354 alg*alg Pembengkakan glut + 0,176441 alg*alg 3,7099-0,238856 alg - 0,265837 Pengerutan 1,53869 + 0,0463741 alg + 0,0294892 glut - 0,0589481 alg*alg Keterangan: glut (glutaraldehida), alg (alginat), alg*alg (interaksi glutaraldehida dengan alginat) Sintesis Dan Optimalisasi Gel...( Purwantiningsih Sugita, Achmad Sjachriza, Dwi Wahyono) 25

Validasi. Validasi dilakukan pada kondisi gel optimum. Pada Tabel 2 ditampilkan validasi dari hasil respons menurut Modde 5 dan hasil penelitian. Dari hasil validasi dapat dilihat bahwa nilai seluruh respon mendekati nilai Modde 5.0 kecuali untuk nilai ketegaran (Rg) Hal ini berarti nilai optimum konsentrasi alginat dan glutaraldehida sesuai dengan Modde 5.0. Ktidaksesuaian ini diduga karena ragam konsentrasi dan pengulangan yang dilakukan kurang banyak. Tabel 2. Hasil validasi gel optimum Respon Modde 5.0 validasi Kg 891,3160 881,4385 Tp 1,0247 1,0267 Rg 4,5973 8,5179 Sw 4,0691 4,5313 Sn 1,4561 1,6280 4. KESIMPULAN Berdasarkan hasil penelitian, optimalisasi gel kitosan-alginat pada konsentrasi kitosan tetap 2.5% terjadi pada konsentrasi glutaral-dehida dan alginat berturut-turut 4.00% dan 0.82%. Sifat reologi yang terukur pada kondisi optimum berdasarkan analisis dengan modde 5 mem-berikan nilai kekuatan, titik pecah, ketegaran, pembengkakan dan pengerutan berturut-turut a-dalah 881,4385 g cm -2, 1,0267 cm, 8,5179 g cm -1, 4,5313 g dan 1,6280 g. Kondisi ini dioptimalisasi untuk penerapannya pada penjerapan ion logam berat. DAFTAR PUSTAKA Berger J et al. 2004. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J of Pharmaceutics and Biopharmaceutics 57: 19-34. Kustiani R. 2005. 25 Juni 2005. 11 Eksportir Udang Diperiksa Amerika. Koran Tempo: A22 (1-4). Lindblad MS. 2003. Strategies for building polymers from renewable source: using prepolymers from steam treatment of wood and monomers from fermentation of agricultural products [Tesis]. Swedia: KTH Fibre and Polymer Technology, Royal Institute of Technology Stockholm. Nurdiani D. 2005. Adsorpsi Logam Cu(II) dan Cr(VI) Pada Kitosan Bentuk Serpihan dan Butiran [Skripsi]. Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor. Rahayu Sri. 2000. Mempelajari Pengaruh ph, Penambahan CaCl 2, dan Algi-natTerhadap Karakteristik Gel Cincau Hijau (Cyclea barbata L. Miers) [Skripsi]. Fakultas Teknologi Pertanian. Institut Pertanian Bogor. Schmuhl R et al., 2001. Adsorption of Cu(II) and Cr(VI) ions by chitosan: kinetics and equilibrium studies. Studies Water SA 27 (1). Sugita P. Sjacriza A. Lestari SI. 2006a. Sintesis dan Optimalisasi Gel Kitosan-Gom Guar. J. Nature [In progress]. Sugita P. Sjacriza A. Rachmanita. 2006b. Sintesis dan Optimalisasi Gel Kitosan-Karboksimetil selulosa. J. Alchemy [In progress]. Wang T, Turhan M, Gunasekaram S. 2004. Selected properties of ph-sensitive, biodegradable chitosan-poly(vinyl alco-hol) hydro Society of Chemical Industry. Polym Int 53: 911-918. Cardenas A, Monal WA, Goycoolea FM, Ciapara IH, Peniche C. 2003. Diffusion through membranes of the polyelec-trolyte complex of chitosan and alginate. Macromol Biosci 3:535-539. Guibal E, Milot C, Roussy J. 1997. Chitosan gel beads for metal ion recovery. European Chitin Society. France. Jamaludin M.A. 1994. Isolasi dan Pencirian Kitosan Limbah Udang Windu (Penaeus monodon fabricus) dan Afinitasnya terhadap Ion Logam Pb 2+, Cr 6+, dan Ni 2+ [Skripsi]. Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor. 26 Jurnal Sains dan Teknologi Indonesia Vol. 9 No. 1 April 2007 Hlm. 22-26