ANALISIS KUAT GESER STRUKTUR BALOK BETON BERTULANG DENGAN LUBANG HOLLOW CORE PADA TENGAH PENAMPANG BALOK NASKAH PUBLIKASI TEKNIK SIPIL

dokumen-dokumen yang mirip
PERBANDINGAN KUAT LENTUR DUA ARAH PLAT BETON BERTULANGAN BAMBU RANGKAP LAPIS STYROFOAM

BAB I PENDAHULUAN. pozolanik) sebetulnya telah dimulai sejak zaman Yunani, Romawi dan mungkin juga

Naskah Publikasi. untuk memenuhi sebagian persyaratan mencapai derajat Sarjana-1 Teknik Sipil. diajukan oleh : BAMBANG SUTRISNO NIM : D

BAB I PENDAHULUAN. 1.1 Latar Belakang. Perkembangan pada setiap bidang kehidupan pada era globalisasi saat ini

TINJAUAN KUAT LENTUR BALOK BETON BERTULANG DENGAN PENAMBAHAN KAWAT YANG DIPASANG LONGITUDINAL DI BAGIAN TULANGAN TARIK.

Studi Eksperimental Kuat Geser Pelat Beton Bertulang Bambu Lapis Styrofoam

TINJAUAN REKAYASA PENULANGAN GESER BALOK BETON BERTULANG DENGAN SENGKANG VERTIKAL MODEL U

PENGARUH VARIASI DIMENSI BENDA UJI TERHADAP KUAT LENTUR BALOK BETON BERTULANG

IV. HASIL DAN PEMBAHASAN. Pembahasan hasil penelitian ini secara umum dibagi menjadi lima bagian yaitu

ANALISIS DAN EKSPERIMEN PELAT BETON BERTULANG BAMBU LAPIS STYROFOAM

PENGARUH VARIASI MODEL TERHADAP RESPONS BEBAN DAN LENDUTAN PADA RANGKA KUDA-KUDA BETON KOMPOSIT TULANGAN BAMBU

EKSPERIMEN DAN ANALISIS BEBAN LENTUR PADA BALOK BETON BERTULANGAN BAMBU RAJUTAN

ANALISIS KUAT LENTUR STRUKTUR BALOK BETON BERTULANG DENGAN LUBANG HOLLOW CORE PADA TENGAH PENAMPANG BALOK NASKAH PUBLIKASI TEKNIK SIPIL

INFRASTRUKTUR KAPASITAS LENTUR BALOK BETON BERTULANG DENGAN MENGGUNAKAN AGREGAT KASAR TEMPURUNG KELAPA

PENGARUH VARIASI LUAS PIPA PADA ELEMEN BALOK BETON BERTULANG TERHADAP KUAT LENTUR

TINJAUAN KUAT LENTUR BALOK BETON BERTULANG BAJA DENGAN PENAMBAHAN KAWAT YANG DIPASANG DIAGONAL DI TENGAH TULANGAN SENGKANG.

PENGUJIAN KUAT LENTUR PANEL PELAT BETON RINGAN PRACETAK BERONGGA DENGAN PENAMBAHAN SILICA FUME

PENGARUH KUAT TEKAN TERHADAP KUAT LENTUR BALOK BETON BERTULANG

Rojul Gayuh Leksono et al., Analisis dan Pengujian Batang Elemen Struktur Beton Bertulang Berlubang 1

BAB III LANDASAN TEORI

PERBANDINGAN KUAT LENTUR SATU ARAH PELAT BETON TULANGAN BAMBU DENGAN PELAT BETON TULANGAN BAMBU ISI STYROFOAM PUBLIKASI ILMIAH TEKNIK SIPIL

PENGUJIAN KUAT LENTUR BALOK BETON BERTULANG DENGAN VARIASI RATIO TULANGAN TARIK

STUDI PERILAKU MEKANIK BETON RINGAN TERHADAP KUAT GESER BALOK

REKAYASA PENULANGAN GESER BALOK BETON BERTULANG DENGAN MENGGUNAKAN SENGKANG VERTIKAL MODEL U

BAB I PENDAHULUAN A. Latar Belakang

TINJAUAN KUAT GESER KOMBINASI SENGKANG ALTERNATIF DAN SENGKANG U ATAU n DENGAN PEMASANGAN SECARA VERTIKAL PADA BALOK BETON SEDERHANA

III. METODE PENELITIAN

BAB I PENDAHULUAN Latar Belakang. Di zaman sekarang, perkembangan ilmu dan teknologi pada setiap bidang

BAB I PENDAHULUAN A. Latar Belakang

KUAT LENTUR PROFIL LIPPED CHANNEL BERPENGAKU DENGAN PENGISI BETON RINGAN BERAGREGAT KASAR AUTOCLAVED AERATED CONCRETE HEBEL

TINJAUAN KUAT LENTUR BALOK BETON DENGAN TULANGAN MODEL RANGKA DARI KAYU MERANTI DENGAN VARIASI JARAK ANTAR BEGEL

BAB I PENDAHULUAN. meningkat dibandingkan beberapa tahun sebelumnya. Perkembangan yang. perkuatan untuk elemen struktur beton bertulang bangunan.

PROSENTASE DEVIASI BIAYA PADA PERENCANAAN KONSTRUKSI BALOK BETON KONVENSIONAL TERHADAP BALOK BETON PRATEGANG PADA PROYEK TUNJUNGAN PLAZA 5 SURABAYA

STUDI EKSPERIMENTAL PENGARUH PENGGUNAAN PS BALL SEBAGAI PENGGANTI PASIR TERHADAP KUAT LENTUR BETON

TINJAUAN KUAT LENTUR BALOK BETON BERTULANGAN BAMBU LAMINASI DAN BALOK BETON BERTULANGAN BAJA PADA SIMPLE BEAM. Naskah Publikasi

PENGARUH JARAK SENGKANG TERHADAP KAPASITAS BEBAN AKSIAL MAKSIMUM KOLOM BETON BERPENAMPANG LINGKARAN DAN SEGI EMPAT

PENELITIAN AWAL TENTANG PENGGUNAAN CONSOL FIBER STEEL SEBAGAI CAMPURAN PADA BALOK BETON BERTULANG

BERAT VOLUME DAN KEKAKUAN PLAT SATU ARAH PADA PLAT BETON BERTULANGAN BAMBU DENGAN LAPIS STYROFOAM

PENGARUH VARIASI JARAK SENGKANG DAN RASIO TULANGAN LONGITUDINAL TERHADAP MEKANISME DAN POLA RETAK KOLOM BERTULANGAN RINGAN AKIBAT BEBAN SIKLIK

POLA RETAK DAN LEBAR RETAK DINDING PANEL JARING KAWAT BAJA TIGA DIMENSI DENGAN VARIASI RASIO TINGGI DAN LEBAR (Hw/Lw) TERHADAP BEBAN LATERAL STATIK

Kajian Eksperimental Perilaku Lentur dan Geser Balok Sandwich Beton

ANALISIS DAN PENGUJIAN PERILAKU DARI VARIASI LUBANG PADA BATANG ELEMEN STRUKTUR BETON BERTULANG PENAMPANG PERSEGI TERHADAP BEBAN LENTUR

PENGUJIAN KAPASITAS LENTUR DAN KAPASITAS TUMPU KONSTRUKSI DINDING ALTERNATIF BERBAHAN DASAR EPOXY POLYSTYRENE (EPS)

PENGARUH PENAMBAHAN KAIT PADA TULANGAN BAMBU TERHADAP RESPON LENTUR BALOK BETON BERTULANGAN BAMBU

BAB I PENDAHULUAN A. Latar Belakang

SLOOF PRACETAK DARI BAMBU KOMPOSIT

I. PENDAHULUAN. Pekerjaan struktur seringkali ditekankan pada aspek estetika dan kenyamanan

BAB I PENDAHULUAN A. Latar Belakang

BAB I PENDAHULUAN. ekonomis, lebih tahan akan cuaca, lebih tahan korosi dan lebih murah. karena gaya inersia yang terjadi menjadi lebih kecil.

STUDI EKSPERIMENTAL KUAT LENTUR PADA BALOK BETON BERTULANG DENGAN PERKUATAN BAJA RINGAN PROFIL U TUGAS AKHIR. Disusun oleh : LOLIANDY

PENGUJIAN GESER BALOK BETON BERTULANG DENGAN MENGGUNAKAN SENGKANG KONVENSIONAL

BAB III LANDASAN TEORI

UJI EKSPERIMENTAL KEKUATAN DRAINASE TIPE U-DITCH PRACETAK

TINJAUAN KUAT GESER DAN KUAT LENTUR BALOK BETON ABU KETEL MUTU TINGGI DENGAN TAMBAHAN ACCELERATOR

BAB II STUDI PUSTAKA

PENGARUH JARAK SENGKANG PADA PEMASANGAN KAWAT GALVANIS MENYILANG TERHADAP KUAT LENTU BALOK BETON BERTULANG

PENGARUH KAWAT AYAM DALAM PENINGKATAN KEKUATAN PADA BALOK BETON. Abstrak

STUDI EKSPERIMENTAL PERILAKU GESER BALOK PADA SAMBUNGAN BALOK KOLOM BETON BERTULANG ABSTRAK

BAB I PENDAHULUAN. 1.1 Latar Belakang. Pada masa sekarang, dapat dikatakan penggunaan beton dapat kita jumpai

ANALISIS DEFORMASI STRUKTUR BALOK BETON BERTULANG DENGAN LUBANG HOLLOW CORE PADA TENGAH BALOK ABSTRAK

PENGARUH VARIASI LETAK TULANGAN HORIZONTAL TERHADAP DAKTILITAS DAN KEKAKUAN DINDING GESER DENGAN PEMBEBANAN SIKLIK (QUASI-STATIS)

PENGUJIAN KUAT LENTUR TERHADAP PELAT BETON PRACETAK BERONGGA

TINJAUAN KUAT TEKAN DAN KERUNTUHAN BALOK BETON BERTULANG MENGGUNAKAN TRAS JATIYOSO SEBAGAI PENGGANTI PASIR. Naskah Publikasi

Kata Kunci : beton, baja tulangan, panjang lewatan, Sikadur -31 CF Normal

PEMANFAATAN KAWAT GALVANIS DIPASANG SECARA MENYILANG PADA TULANGAN BEGEL BALOK BETON UNTUK MENINGKATKAN KUAT LENTUR BALOK BETON BERTULANG

PENGARUH CAMPURAN KADAR BOTTOM ASH DAN LAMA PERENDAMAN AIR LAUT TERHADAP LENDUTAN PADA BALOK

BAB III LANDASAN TEORI

KUAT LENTUR BALOK BETON TULANGAN BAMBU PETUNG VERTIKAL

TINJAUAN KEKUATAN DAN ANALISIS TEORITIS MODEL SAMBUNGAN UNTUK MOMEN DAN GESER PADA BALOK BETON BERTULANG TESIS

BAB I PENDAHULUAN 1.1. Latar Belakang

SEMINAR NASIONAL TEKNIK FST-UNDANA TAHUN 2017 Hotel On The Rock, Kupang, November 2017

PENELITIAN BALOK BETON BERTULANG DENGAN DAN TANPA PEMAKAIAN SIKAFIBRE

Pengaruh Luas Lubang Pipa Pada Kolom Pendek Dengan Variasi Diameter Lubang Pipa 1½, 2, 2½ Dan 3.

BAB I PENDAHULUAN Latar Belakang. Kolom memegang peranan penting dari suatu bangunan karena memikul

REKAYASA TULANGAN SENGKANG VERTIKAL PADA BALOK BETON BERTULANG

PENGUJIAN KUAT LENTUR PANEL PELAT BETON RINGAN PRACETAK BERONGGA DENGAN PENAMBAHAN FLY ASH

TINJAUAN MOMEN LENTUR BALOK BETON BERTULANG DENGAN PENAMBAHAN KAWAT YANG DIPASANG MENYILANG PADA TULANGAN GESER. Naskah Publikasi

STUDI EKSPERIMEN KUAT TEKAN BETON MENGGUNAKAN SEMEN PPC DENGAN TAMBAHAN SIKAMENT LN

material lokal kecuali semen dan baja tulangan. Pembuatan benda uji, pengujian

BAB 4 PENGOLAHAN DATA DAN ANALISA

PENGARUH LAMA WAKTU PENGECORAN PADA BALOK LAPIS KOMPOSIT BETON BERTULANG TERHADAP AKSI KOMPOSIT, KAPASITAS LENTUR DAN DEFLEKSI

BAB III LANDASAN TEORI. A. Pembebanan

STUDI EKSPERIMENTAL KUAT LENTUR PADA BALOK BETON BERTULANG DENGAN PERKUATAN BAJA RINGAN PROFIL U

STUDI EKSPERIMENTAL MOMEN BATAS PADA PELAT BERUSUK AKIBAT PEMBEBANAN MERATA

KAJIAN KUAT LENTUR BALOK BETON BERTULANG BIASA DAN BALOK BETON BERTULANGAN KAYU DAN BAMBU PADA SIMPLE BEAM. Naskah Publikasi

PERILAKU BALOK BERTULANG YANG DIBERI PERKUATAN GESER MENGGUNAKAN LEMBARAN WOVEN CARBON FIBER

BAB I PENDAHULUAN A. Latar Belakang

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai

BAB III LANDASAN TEORI

BAB I PENDAHULUAN Latar Belakang. Dalam bidang konstruksi, beton dan baja saling bekerja sama dan saling

BAB III METODOLOGI. 3.1.Ruang Lingkup

BAB I PENDAHULUAN. 1.1 Latar Belakang

ANALISIS KUAT GESER PADA PEMANFAATAN BATU APUNG BERLAPIS CAT SEBAGAI ALTERNATIF PENGGANTI AGREGAT KASAR PADA BETON

BAB 1 PENDAHULUAN A. Latar Belakang

PENGGUNAAN PASIR WEOL SEBAGAI BAHAN CAMPURAN MORTAR DAN BETON STRUKTURAL

PENGUJIAN LENTUR BALOK BETON BERTULANG DENGAN MENGGUNAKAN MODIFIKASI ALAT UJI TEKAN

INFO TEKNIK Volume 14 No. 1 Juli 2013 (65-73)

PENGARUH VARIASI LUAS PIPA PADA ELEMEN KOLOM BETON BERTULANG TERHADAP KUAT TEKAN

PENGARUH VARIASI JARAK SENGKANG TERHADAP KAPASITAS LENTUR BALOK BETON BERTULANG BAMBU YANG TERKANG PADA JALUR TEKANNYA

BAB I PENDAHULUAN. banyak diterapkan pada bangunan, seperti: gedung, jembatan, perkerasan jalan, balok, plat lantai, ring balok, ataupun plat atap.

Transkripsi:

ANALISIS KUAT GESER STRUKTUR BALOK BETON BERTULANG DENGAN LUBANG HOLLOW CORE PADA TENGAH PENAMPANG BALOK NASKAH PUBLIKASI TEKNIK SIPIL Ditujukan untuk memenuhi persyaratan memperoleh gelar Sarjana Teknik AJI KUKUH PAMBUDI NIM. 115060101111009 UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK MALANG 2016

Analisis Kuat Geser Struktur Balok Beton Bertulang Dengan Lubang Hollow Core pada Tengah Penampang Balok Aji Kukuh Pambudi, Sri Murni Dewi, R. Martin Simatupang Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Jalan MT. Haryono 167 Malang 65145, Jawa Timur Indonesia Email: ajikukuhp@gmail.com ABSTRAK Balok yang dilubangi dan diberi styrofoam akan memiliki berat yang lebih ringan. Maka dari itu penelitian ini berfungsi untuk mendapatkan balok yang memiliki berat yang lebih ringan dari yang sewajarnya yaitu dengan cara memberi perlakuan terhadap balok yang dilubangi secara horizontal pada badan balok. Pengukuran yang dilakukan pada benda uji berupa pengukuran berat sendiri dan beban maksimum. Pengujian dilakukan untuk mencari beban maksimum yang dapat diterima oleh balok. Untuk mengukur berat sendiri digunakan timbangan berkapasitas maksimal 300 kg. Kemudian load shell berfungsi untuk mengetahui beban maksimum yang terjadi. Balok beton bertulang normal sebagai balok kontrol memiliki berat volume sebesar 2038,7 kg/m 3 dan mampu menahan beban maksimum rata rata sebesar 5725 kg. Pada balok beton bertulang dengan lubang hollow core ukuran 5 x 10 x 60 cm memiliki berat volume sebesar 2000 kg/m 3 dan mampu menahan beban maksimum sebesar rata rata 5475 kg dengan persentase pengurangan pada berat volume terhadap balok kontrol sebesar 1,9 % dan persentase pengurangan kekuatan geser sebesar 4,37 %. Pada balok beton bertulang dengan lubang hollow core ukuran 7 x 10 x 60 cm dan 9 x 10 x 60 cm yang memiliki berat volume rata rata masing-masing sebesar 1922,4 kg/m 3 dan 1911,5 kg/m 3. Balok ini mampu menahan beban maksimum rata rata sebesar 4800 kg untuk balok dengan lubang hollow core ukuran 7 x 10 x 60 cm dan 4850 kg untuk balok dengan lubang hollow core ukuran 9 x 10 x 60 cm. Persentase pengurangan berat volume terhadap balok kontrol masing - masing sebesar 5,7% dan 6,2%. Untuk persentase pengurangan kekuatan geser masing masing sebesar 16,16% dan 15,28%. Dengan demikian dapat dilihat bahwa pengaruh pengurangan volume beton pada balok beton bertulang dengan lubang hollow core dapat mengurangi kekuatan balok untuk menahan kuat geser yang terjadi. Kata kunci : kuat geser, Lubang Hollow Core, balok

ABSTRACT The beams are hollowed out and given a Styrofoam will have a lighter weight. Therefore this study serves to obtain a beam that has a lighter weight than normal, by giving the treatment of perforated beams horizontally on the beam body. Measurements were performed on the test specimen in the form of its own weight measurements and maximum load. The test is performed to find the maximum load that can be accepted by the beam. To measure the weight itself is used scales maximum capacity of 300 kg. Then load the shell serves to determine the maximum load that occurs. Reinforced concrete beams normal as volume control beam has a weight of 2038.7 kg / m3 and able to withstand the maximum load of the average - average of 5725 kg. In the reinforced concrete beams with holes hollow core size of 5 x 10 x 60 cm has a volume weight of 2000 kg / m3 and is able to withstand the maximum load of the average - average 5475 kg with a reduction in the percentage by weight of the beam control volume by 1.9% and the percentage reduction of the shear strength of 4.37%. In the reinforced concrete beams with hollow core hole size 7 x 10 x 60 cm and 9 x 10 x 60 cm with a weight average volume - average each of 1922.4 kg / m3 and 1911.5 kg / m3. This beam is able to withstand the maximum load of the average - average of 4800 kg for beams with hollow core hole size 7 x 10 x 60 cm and 4850 kg for beams with hollow core hole size 9 x 10 x 60 cm. The percentage of weight reduction of the volume of the control beam each - each by 5.7% and 6.2%. For each percentage reduction in shear strength - amounted to 16.16% and 15.28%. Thus it can be seen that the effect of the reduction of the volume of the concrete beams reinforced concrete hollow core holes can reduce the strength of the beam to withstand shear strength occurs. Keywords: shear strength, Hollow Core hole, beam PENDAHULUAN Beton sendiri merupakan salah satu bahan konstruksi yang telah banyak digunakan untuk bangunan gedung, jembatan, jalan, dan bangunan konstruksi lainnya. Beton merupakan satu kesatuan yang homogen. Beton sendiri dihasilkan dengan cara mencampurkan pasir (agregat halus), kerikil (agregat kasar), atau jenis agregat lain dan penambahan air secukupnya, dengan semen portland atau semen hidrolik yang lain. Kadang pula di tambahkan dengan bahan tambahan (additif) yang bersifat kimiawi ataupun fisikal pada perbandingan tertentu yang dimana fungsinya tergantung kebutuhan pada saat di lapangan. Ada yang berfungsi untuk memperlambat pengerasan beton dan ada juga yang berfungsi untuk mempercepat pengerasan beton. Balok yang dilubangi dan diberi styrofoam akan memiliki berat yang lebih ringan. Maka dari itu penelitian ini berfungsi untuk mendapatkan balok yang memiliki berat yang lebih ringan dari yang sewajarnya yaitu dengan cara memberi perlakuan terhadap balok yang dilubangi secara horizontal pada badan balok. Maksud dari penelitian ini adalah penggunaan lubang terhadap badan balok diharapkan dapat menjadi model struktural yang lebih inovatif dimana dapat mengurangi berat isi dari beton dan mempunyai kuat tekan yang cukup untuk menjadi balok struktural. Adapun tujuan dari penelitian ini adalah untuk mengetahui pengaruh penggunaan lubang

yang di beri Styrofoam pada badan balok terhadap kekuatan geser balok dan menambah wawasan mengenai ilmu struktural khusunya mengenai balok. Kuat geser balok Untuk perhitungan kuat geser sendiri digunakan rumus sebagai berikut : Kapasitas Geser Beton Normal V c 1 f 6 dengan Vc = kuat geser (N), fc = kuat tekan beton (MPa), bw = lebar badan balok (mm), d = jarak dari tekan terluar ke pusat tulangan tarik (mm). (SNI 07-2052-2002) Kapasitas Geser Beton Hollow Core V c 1 f ( m) 6 dengan Vc = kuat geser (N), fc = kuat tekan beton (MPa), b = lebar badan balok (mm), m = lebar badan lubang (mm),d = jarak dari tekan terluar ke pusat tulangan tarik (mm). (Sapramedi, 2005) dengan Kapasitas Vs Geser = kuat tulangan gese Sengkang A f y V s s r (N), Av = luas total tulangan sengkang (mm 2 ), fy = Kuat tarik baja (Mpa), d = jarak dari tekan terluar ke pusat tulangan tarik (mm), dan S = jarak antar sengkang (mm). (SNI 07-2052-2002) Tegangan geser Balok Tegangan geser pada semua fiber dengan jarak yo dari sumbu netral diberikan dengan formula: Dimana, = tegangan geser V = gaya geser b = lebar penampang balok I = momen-area kedua yda = momen-area pertama METODE PENELITIAN Bahan Penelitian Semen portland tipe 1 produksi PT. Semen Gresik. Agregat halus (pasir) menggunakan pasir Wlingi. Agregat kasar (kerikil) dengan ukuran ±ø 5 mm. Air PDAM Kota Malang. Baja Tulangan polos dengan ø 12 mm sebagai tulangan lentur. Baja Tulangan polos dengan ø 6 mm sebagai sengkangstyrofoam 10 cm x 5 cm x 60 cm; 10 cm x 7 cm x 60 cm; 10 cm x 9 cm x 60 cm Alat Penelitian Satu set ayakan dengan motorized dynamic sieve shaker Timbangan senticial merk standart. Mesin pencampur beton (concrete mixer). Penguji slump (kerucut Abrams). Sendok semen. Bekesting Balok Beton penampang persegi dengan ukuran 200x200x2400 mm. Mesin uji tekan. Dongkrak hidraulik (Hydraulic Jack). Alat pengukur lendutan (LVDT). Alat pengukur peningkatan pembebanan Load Shell kapasitas 10 ton. Frame Pengujian Benda Uji Pembuatan Benda uji Balok tanpa lubang sebanyak 2 benda uji dan untuk Balok berlubang sebanyak 6 benda uji di bagi 3 macam penampang lubang yang berukuran masing-masing 10 cm x 5 cm x 60 cm; 10 cm x 7 cm x 60 cm; 10 cm x 9 cm x 60 cm seperti Tabel 1.

Sengkang Tabel 1. Rancangan benda uji Perlakuan Lubang pada Model Balok Benda Uji Balok dengan Lubang Penampang 10x5x60 (cm) 10x7x60 (cm) 10x9x60 (cm) Balok Normal Ø6 40 2x 2x 2x 2x Pelaksanaan Penelitian Mulai Perumusan Masalah Perencanaan Benda Uji Persiapan Bahan Pengujian Bahan: Agregat halus Agregat kasar Baja tulangan Design Benda Uji Pembuatan Pembuatan Benda uji Balok Benda uji Balok tanpa lubang, 2 dengan lubang, 6 benda uji benda uji Balok benda uji diposisikan diatas dua tumpuan sendi-rol dengan bentang 2,2 m. Beban diletakkan pada 0,6 m dari tiap masing - masing tumpuan menuju tengah bentang. Pengujian balok dilaksanakan seperti pada Gambar 2. Data yang diambil adalah dengan mengamati lendutan yang terjadi pada balok. Hal ini ditunjukkan oleh LVDT yang terpasang pada balok. Data yang dipakai adalah data yang ditunjukkan LVDT ketika balok mengalami keruntuhan struktur. Beban P maksimum yang dipakai adalah beban maksimum ketika balok sudah mengalami keruntuhan struktur dengan interval kenaikan beban sebesar 50 kg. Beban didapat dari data yang ditunjukan oleh Load Shell. Pengujian Benda Uji Analisis Data dan Pembahasan Kesimpulan Selesai Gambar 1. Diagram Alir Penelitian

PEMBAHASAN Pengujian Pendahuluan Hasil pengujian 8 silinder beton diperoleh kuat tekan rata-rata sebesar 23,09 Mpa. Untuk tulangan utama Ø12 didapatkan hasil uji tarik rata-rata sebesar 311 Mpa. Lalu untuk tulangan sengkang Ø6 didapatkan hasil uji tarik rata-rata sebesar 99 Mpa. Kapasitas Beban Perhitungan geser balok berlubang dilakukan dengan cara eksperimen dan untuk balok normal perhitungan disesuaikan dengan SNI-03-2847-2002. Hasil perhitungan bisa dilihat pada Tabel 2. Tabel 2. Hasil perhitungan Vu No Benda Uji Pu maksimum Kg 1 N/Φ6 400 5850 2 L5/Φ6-400 4506 3 L7/Φ6-400 4506 4 L9/Φ6 400 4506 Keterangan: N : Benda uji balok normal L5 : Benda uji balok hollow core 5 x 10 x 60 cm L7 : Benda uji balok hollow core 7 x 10 x 60 cm L9 : Benda uji balok hollow core 9 x 10 x 60 cm tengah penampang balok uji. Dapat dilihat dalam Tabel 3. Tabel 3. Perhitungan Vu akibat Momen Inersia No Benda Uji Pu Max Kg 1 N/Φ6 400 4741 2 L5/Φ6 400 2695 3 L7/Φ6 400 2681 4 L9/Φ6 400 2679 Dimensi Balok Untuk mengetahui berat balok dan mengetahui ukuran balok setelah pengecoran. Lalu menghitung Volume balok. No Tabel 4. Berat dan dimensi balok Benda Uji Berat (kg) Panjang (m) Lebar (m) Tinggi (m) 1 N.1 197,41 2,4 0,2 0,2 2 N.2 194,02 2,4 0,2 0,2 3 L5.1 194 2,4 0,2 0,2 4 L5.2 192 2,4 0,2 0,2 5 L7.1 183,9 2,4 0,2 0,2 6 L7.2 185,2 2,4 0,2 0,2 7 L9.1 183 2,4 0,2 0,2 8 L9.2 184 2,4 0,2 0,2 Tegangan geser Balok Perhitungan dilakukan secara teoritis dengan menggunakan rumus tegangan geser maksimum yang di tinjau dari titik

Beban Maksimum (kg) No Tabel 5. Volume balok Berat Perbandingan Benda Uji Volume Selisih Kg/m 3 % 1 Normal 2038,7 0,0 2 L5 2000,0-1,9 3 L7 1922,4-5,7 Kapasitas Beban Eksperimen Membandingkan dari perhitungan beban maksimum secara teoritis dan beban maksimum yang dihasilkan dari eksperimen di laboratorium. Hasil perbandingan pada Tabel 6. No Tabel 6. Perbandingan Hasil Pengujian dan Teoritis Benda Uji Pu Pu Eksperimen Teoritis Selisih Kg Kg % 1 N/1 6000 5850 2,56 2 N/2 5450 5850-6,83 3 L5/1 6050 4506 34,26 4 L5/2 4900 4506 8,74 5 L7/1 4550 4506 0,97 6 L7/2 5050 4506 12,07 7 L9/1 4850 4506 7,63 8 L9/2 4850 4506 7,63 Beban Maksimum Eksperimen 7000 6000 5000 6000 6050 5450 4900 4550 5050 4850 4850 4000 3000 Benda Uji 1 Benda Uji 2 2000 1000 0 Normal Hollow Core 5 Hollow Core 7 Hollow Core 9 Gambar 3. Grafik Pu Eksperimen Belok Beton Uji

Tegangan Maksimum (Mpa) Beban Maksimum (kg) 5800 5600 Perbandingan Beban Maksimum 5725 5475 5400 5200 5000 4800 4600 4400 4800 4850 4200 Normal Hollow Core 5 Hollow Core 7 Hollow Core 9 Gambar 4. Grafik Pu rata-rata Balok Beton Uji 18 16 Perbandingan Tegangan Geser Maksimum 15,83 15,94 16,15 14 12 10,96 10 8 6 4 2 0 Normal Hollow Core 5 Hollow Core 7 Hollow Core 9 Gambar 5. Grafik Tegangan Geser Maksimum Balok Beton Uji

Berat Volume Kg/m3 2050,00 Perbandingan Berat Volume 2038,698 2000,00 2000,00 1950,00 1900,00 1922,396 1911,458 1850,00 1800,00 Normal Hollow Core 5 Hollow Core 7 Hollow Core 9 Gambar 6. Grafik Perbandingan Berat Volume Balok Beton Uji Pengaruh lubang Hollow Core pada tengah penampang Balok mengakibatkan berkurang nya beban maksimum yang dapat di pikul oleh balok, seperti yang tertera pada Gambar 4. Yang menunjukkan grafik penurunan dari balok normal hingga balok Hollow core 9. Yang menyebabkan berkurangnya beban maksimum dikarenakan tegangan geser maksimum yang ditahan oleh balok Hollow Core lebih besar dari pada balok normal. Dikarenakan momen inersianya yang lebih kecil karena adanya pengurungan dari luasan Holow Core itu sendiri. Sehingga menyebabkan tegangan geser semakin besar yang berdampak secara langsung dengan beban maksimum yang bisa ditahan oleh balok uji. Seperti yang dijelaskan pada gambar 5. Dimana ada penambahan tegangan geser yang terjadi di setiap variable Hollow Core. Penambahan lubang Hollow core juga berpengaruh terhadap volume balok yang semakin berkurang karena adanya pertambahan Styrofoam sebagai perumpamaan Hollow Core. Tetapi pengurangan volume pada saat eksperimen tidak sesuai rencana yang seharusnya dikarenakan Styrofoam mengalami susut pada saat beton mongering. Hasil berat volume sesuai dengan Gambar 6.

PENUTUP Kesimpulan Berdasarkan hasil dari penelitian dan pengujian dapat diambil kesimpulan yaitu sebagai berikut: 1. Balok normal (Tanpa Hollow Core) memiliki berat volume 2038,7 kg/m 3 dan dapat menahan beban maksimum rata rata 5725 kg. Pada balok lubang hollow core ukuran 5 x 10 x 60 cm dengan berat volume 2000 kg/m 3 dan mampu menahan beban maksimum rata rata 5475 kg dengan persentase berkurangnya berat volume terhadap balok kontrol sebesar 1,9 % dan persentase pengurangan kekuatan geser sebesar 4,37 %. 2. Balok beton bertulang dengan lubang hollow core ukuran 7 x 10 x 60 cm memiliki berat volume 1922,4 kg/m 3 dan dapat menahan beban maksimum rata rata 4800 kg. Dengan persentase berkurangnya berat volume terhadap balok kontrol sebesar 5,7 % dan persentase pengurangan kekuatan geser sebesar 16,16 % 3. Balok beton bertulang dengan lubang hollow core ukuran 9 x 10 x 60 cm memiliki berat volume 1911,5 kg/m 3 dan dapat menahan beban maksimum rata rata 4850 kg. Dengan persentase berkurangnya berat volume terhadap balok kontrol sebesar 6,2 % dan persentase pengurangan kekuatan geser sebesar 15,28 % 4. Pengurangan ukuran beton pada balok beton bertulang dengan lubang hollow core dapat mengurangi kekuatan balok untuk menahan kuat geser yang terjadi karena tegangan geser yang terjadi lebih besar yang diakibatkan momen Inersia yang lebih kecil karena pengurangan luasan Styrofoam pada tengah penampang balok. 5. Balok beton dengan lubang (hollow core) memiliki berat volume yang lebih kecil dibandingkan dengan balok beton normal tanpa lubang Saran 1. Pada saat pengecoran balok harus di cek sedemikian rupa untuk letak Styrofoam agar tidak naik melebihi garis netral yang telah di rencanakan. Lebih baiknya di beri penahan atau sejenisnya untuk menjaga posisi lubang Hollow Core agar tidak naik karena tekanan air dari bawah. Gunakan alat yang lebih efisien untuk memindahkan balok dari tempatnya menuju ke alat uji tekan agar tidak terjadi cidera yang di akibatkan karena berat balok yang beratnya hampir 300 kg. Sehingga memudahkan untuk proses pemindahan. 2. Membuat skala uji yang lebih kecil untuk mempermudah proses pengujian dan untuk meringankan ongkos biaya yang lebih sedikit. 3. Pengawasan saat kegiatan pembesian dan pembuatan bekesting perlu diperhatikan secara seksama agar mutu benda uji terkontrol dengan baik. 4. Proses pemadatan harus diperhatikan agar tidak terjadi rongga-rongga pada beton. 5. Pengecekan ulang letak styrofoam saat balok sudah mengeras dengan cara di belah. 6. Memilih bahan yang lebih kuat untuk menjadi Hollow Core di tengah penamapang balok. 7. Memilih bahan yang lebih kuat untuk menjadi Hollow Core di tengah penamapang balok.

DAFTAR PUSTAKA Asroni, A. (2010). Balok dan Plat Beton Bertulang. Yogyakarta: Graha Ilmu. Dipohusodo, I. (1993). Struktur Beton Bertulang. Jakarta: Departemen Pekerjaan Umum RI. Frick, H. (1999). Ilmu Konstruksi Bangunan 1. Yogyakarta: Kanisius. Nawy, E. G. (1998). Beton Bertulang Suatu Pendekatan Dasar. Bandung: PT Refika Aditama. Pamungkas, A., & Harianti, E. (2009). Gedung Beton Bertulang Tahan Gempa. Surabaya: ITS Press. Purwono, R. (2005). Perencanaan Struktur Beton Bertulang Tahan Gempa Sesuai SNI-1726 dan SNI-2847 Terbaru. Surabaya: ITS Press. Purwono, R. (2010). Pengendalian Mutu Beton Sesuai SNI, ACI dan ASTM. Surabaya: ITS Press. Sapramedi, W. (2005). Analisis perilaku geser dan lentur pada balok beton bertulang lingkaran (hollow core RC beam). UGM. Yogyakarta. SNI 07-2052-2002 (2002). Baja Tulangan Beton. Badan Standarisasi Nasional. SNI 08-2847-2002 (2002) Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung. Badan Standarisasi Nasional. Thambah, J. (2010). Beton Bertulang. Bandung: Rekayasa Sains.