SYSTEM IDENTIFIKASI GANGGUAN STROKE ISKEMIK MENGGUNAKAN METODE OTSU DAN FUZZY C-MEAN (FCM)

dokumen-dokumen yang mirip
Identifikasi Gangguan Neurologis Menggunakan Metode Adaptive Neuro Fuzzy Inference System (ANFIS)

BAB 2 TINJAUAN PUSTAKA 2.1 Dasar Teori Citra Digital

BAB I PENDAHULUAN 1.1 Latar Belakang

Prosiding Seminar Sains dan Teknologi FMIPA Unmul Vol. 1 No. 2 Desember 2015, Samarinda, Indonesia ISBN :

Algoritma Kohonen dalam Mengubah Citra Graylevel Menjadi Citra Biner

Program Aplikasi Komputer Pengenalan Angka Dengan Pose Jari Tangan Sebagai Media Pembelajaran Interaktif Anak Usia Dini

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI

CLUSTERING KARYAWAN BERDASARKAN KINERJA DENGAN MENGGUNAKAN LOGIKA FUZZY C-MEAN

Deteksi Penyakit Tulang Osteopenia dan Osteoporosis Menggunakan Metode Threshold Otsu

PENERAPAN ALGORITMA K MEANS UNTUK PENENTUAN PENCOCOKAN PEWARNAAN CLUSTERING SECARA OTOMATIS PADA PRODUK FASHION

BAB III METODE PENELITIAN

PENENTUAN NILAI PANGKAT PADA ALGORITMA FUZZY C- MEANS

BAB IV HASIL DAN PEMBAHASAN. Implementasi antar muka dalam tugas akhir ini terdiri dari form halaman

KLASIFIKASI USAHA KECIL DAN MENENGAH (UKM) SEKTOR INDUSTRI DENGAN METODE FUZZY C-MEANS CLUSTERING WILAYAH KOTA CILEGON

BAB IV ANALISIS DAN PERANCANGAN

Segmentasi Dan Pelabelan Pada Citra Panoramik Gigi

SEGMENTASI CITRA MEDIK MRI (MAGNETIC RESONANCE IMAGING) MENGGUNAKAN METODE REGION THRESHOLD

BAB 3 ANALISIS DAN PERANCANGAN PROGRAM APLIKASI

COMPUTER VISION UNTUK PENGHITUNGAN JARAK OBYEK TERHADAP KAMERA

SISTEM REKOGNISI KARAKTER NUMERIK MENGGUNAKAN ALGORITMA PERCEPTRON

BAB III METODE PENELITIAN. Tujuan tugas akhir ini akan membangun suatu model sistem yang

SEGMENTASI CITRA DIGITAL DENGAN MENGGUNAKAN ALGORITMA WATERSHED DAN LOWPASS FILTER SEBAGAI PROSES AWAL ( November, 2013 )

MATHunesa Jurnal Ilmiah Matematika Volume 2 No.6 Tahun 2017 ISSN

SEGMENTASI CITRA RETINA DIGITAL RETINOPATI DIABETES UNTUK MEMBANTU PENDETEKSIAN MIKROANEURISMA

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai teori-teori yang akan digunakan untuk menunjang dalam proses pembuatan tugas akhir ini.

BAB 2 LANDASAN TEORI

Klasifikasi Kualitas Keramik Menggunakan Metode Deteksi Tepi Laplacian of Gaussian dan Prewitt

Penggunaan Jaringan Syaraf Tiruanuntuk Membaca Karakter pada Formulir Nilai Mata Kuliah

Pertemuan 2 Representasi Citra

BAB III METODE PENELITIAN

BINERISASI CITRA DOKUMEN DENGAN FILTERISASI HOMOMORPHIC

Penerapan Metode Fuzzy C-Means dengan Model Fuzzy RFM (Studi Kasus : Clustering Pelanggan Potensial Online Shop)

BAB I PENDAHULUAN 1.1. Latar Belakang

KOMPRESI CITRA (2) & SEGEMENTASI CITRA. Pertemuan 13 Mata Kuliah Pengolahan Citra

Operasi Titik Kartika Firdausy

Pengenalan Karakter Sintaktik menggunakan Algoritma Otsu dan Zhang-Suen

oleh: M BAHARUDIN GHANIY NRP

Analisis Pengaruh Automatic Thresholding dalam Pemrosesan Citra Batupasir Berea

BAB III PEMBAHASAN. arsitektur, prosedur, dan hasil model Radial Basis Function Neural Network untuk

BAB 3 PENGENALAN KARAKTER DENGAN GABUNGAN METODE STATISTIK DAN FCM

JURNAL TEKNOLOGI INFORMASI & PENDIDIKAN ISSN : VOL. 2 NO. 1 SEPTEMBER 2010

Pendekatan Statistik Pada Domain Spasial dan Frekuensi untuk Mengetahui Tampilan Citra Yustina Retno Wahyu Utami 1)

Traffic IP Camera untuk Menghitung Kendaraan Roda Empat Menggunakan Metode Luasan Piksel

BAB II DASAR TEORI. 2.1 Meter Air. Gambar 2.1 Meter Air. Meter air merupakan alat untuk mengukur banyaknya aliran air secara terus

UJI COBA PERBEDAAN INTENSITAS PIKSEL TIAP PENGAMBILAN GAMBAR. Abstrak

BAB II LANDASAN TEORI

DETEKSI WAJAH BERBASIS SEGMENTASI WARNA KULIT MENGGUNAKAN RUANG WARNA YCbCr & TEMPLATE MATCHING

Modifikasi Algoritma Pengelompokan K-Means untuk Segmentasi Citra Ikan Berdasarkan Puncak Histogram

BAB III PERANCANGAN SISTEM. Pada dewasa sekarang ini sangat banyak terdapat sistem dimana sistem tersebut

APLIKASI DETEKSI MIKROKALSIFIKASI DAN KLASIFIKASI CITRA MAMMOGRAM BERBASIS TEKSTUR SEBAGAI PENDUKUNG DIAGNOSIS KANKER PAYUDARA

APLIKASI ALGORITMA FUZZY C-MEANS CLUSTERING UNTUK PENGELOMPOKKAN LULUSAN

APLIKASI PENGENALAN PLAT NOMOR KENDARAAN BERMOTOR MENGGUNAKAN METODE LEARNING VECTOR QUANTIZATION

KLASIFIKASI TELUR AYAM DAN TELUR BURUNG PUYUH MENGGUNAKAN METODE CONNECTED COMPONENT ANALYSIS

JUDUL THRESHOLDING DENGAN PEMILIHAN WINDOW SECARA ADAPTIVE BERBASIS PENGUKURAN TINGKAT KETAJAMAN CITRA

Modifikasi Algoritma Pengelompokan K-Means untuk Segmentasi Citra Ikan Berdasarkan Puncak Histogram

SAMPLING DAN KUANTISASI

BAB III ANALISIS DAN PERANCANGAN SISTEM

MILIK UKDW BAB I PENDAHULUAN. 1.1 Latar Belakang Permasalahan

EVALUASI KEMAJUAN STUDI MAHASISWA DENGAN PENDEKATAN BASIS DATA FUZZY

SISTEM PENGENALAN BARCODE MENGGUNAKAN JARINGAN SYARAF TIRUAN LEARNING VECTOR QUANTIZATION

Pengukuran Blok Window Terbaik Berdasarkan MSE...

Pertemuan 3 Perbaikan Citra pada Domain Spasial (1) Anny Yuniarti, S.Kom, M.Comp.Sc

PENENTUAN KUALITAS DAUN TEMBAKAU DENGAN PERANGKAT MOBILE BERDASARKAN EKSTRASI FITUR RATA-RATA RGB MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR

BAB I PENDAHULUAN Latar Belakang

PRAKTIKUM 2. MATRIK DAN JENIS CITRA

BAB 2 LANDASAN TEORI

BAB III ANALISIS DAN PERANCANGAN

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

MKB3383 TEKNIK PENGOLAHAN CITRA Pemrosesan Citra Biner

BAB III METODE PENELITIAN. menjawab segala permasalahan yang ada dalam penelitian ini.

Segmentasi Gambar Berwarna menggunakan Metode Hibrida Modifikasi Sauvola dan Fuccy C-Means (SMFCM)

BAB 2 LANDASAN TEORI

PERAMALAN BEBAN LISTRIK JANGKA PENDEK DI BALI MENGGUNAKAN PENDEKATAN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)

PENDETEKSI TEMPAT PARKIR MOBIL KOSONG MENGGUNAKAN METODE CANNY

Analisa Hasil Perbandingan Metode Low-Pass Filter Dengan Median Filter Untuk Optimalisasi Kualitas Citra Digital

PENGKLASIFIKASIAN LULUSAN JURUSAN TEKNIK ELEKTRO BERDASARKAN NILAI IPK DENGAN METODE FUZZY CLUSTERING. M. Rodhi Faiz

BAB II LANDASAN TEORI

DATA MINING CLUSTERING DENGAN ALGORITMA FUZZY C-MEANS UNTUK PENGELOMPOKAN JADWAL KEBERANGKATAN DI TRAVEL PT. XYZ TASIKMALAYA

PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK

PENGOLAHAN CITRA RADIOGRAF PERIAPIKAL PADA DETEKSI PENYAKIT PULPITIS MENGGUNAKAN METODE ADAPTIVE REGION GROWING APPROACH

BAB III METODE PENELITIAN

BAB II LANDASAN TEORI

ANALISIS CONTRAST STRETCHING MENGGUNAKAN ALGORITMA EUCLIDEAN UNTUK MENINGKATKAN KONTRAS PADA CITRA BERWARNA

IDENTIFIKASI SEL DARAH BERBENTUK SABIT PADA CITRA SEL DARAH PENDERITA ANEMIA

BAB 3 PERANCANGAN SISTEM

BAB 3 METODOLOGI PENELITIAN. a. Spesifikasi komputer yang digunakan dalam penelitian ini adalah

SEGMENTASI CITRA MENGGUNAKAN K-MEANS DAN FUZZY C- MEANS DENGAN BERBAGAI RUANG WARNA

BAB III METODOLOGI PENELITIAN

PENGKLASIFIKASIAN MAHASISWA JURUSAN TEKNIK ELEKTRO YANG MENGIKUTI MATA KULIAH RANGKAIAN LISTRIK DENGAN METODE FUZZY CLUSTERING. M.

KLUSTERING BERBASIS PROTOTIPE DENGAN METODE FUZZY C-MEANS

Klasifikasi Mutu Buah Manggis Berdasarkan Warna Berbasis Fuzzy C Means dan Template Matching

Rika Oktaviani

Pemanfaatan Algoritma FCM Dalam Pengelompokan Kinerja Akademik Mahasiswa

SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON

PERBANDINGAN SEGMENTASI CITRA BERWARNA DENGAN FUZZY CMEANS CLUSTERING PADA BEBERAPA REPRESENTASI RUANG WARNA

PENGKONVERSIAN IMAGE MENJADI TEKS UNTUK IDENTIFIKASI PLAT NOMOR KENDARAAN. Sudimanto

Pemilihan Minat Topik Tugas Akhir Menggunakan Metode Fuzzy C-Means

Implementasi Adaptive Neuro-Fuzzy Inference System (Anfis) untuk Peramalan Pemakaian Air di Perusahaan Daerah Air Minum Tirta Moedal Semarang

PEMBANGKITAN ATURAN FUZZY MENGGUNAKAN FUZZY C-MEANS (FCM) CLUSTERING UNTUK DIAGNOSA RISIKO PENYAKIT JANTUNG KORONER (PJK)

Transkripsi:

SYSTEM IDENTIFIKASI GANGGUAN STROKE ISKEMIK MENGGUNAKAN METODE OTSU DAN FUZZY C-MEAN (FCM) Jani Kusanti Program Studi Teknik Informatika, Fakultas Teknik Elektro dan Informatika Universitas Surakarta (UNSA), Surakarta Jl.Raya Palur Km.5-Surakarta 57772, Jawa Tengah Email : jani_kusanti@yahoo.com Abstrak Stroke Iskemik merupakan salah satu gangguan neurologis yang terjadi pada bagian kepala yang menyebabkan aliran darah ke otak sebagian atau keseluruhan terhenti sehingga menyebabkan terjadinya penyumbatan pembuluh darah arteri. CT Scan biasanya tidak sensitive mengidentifikasi infark serebri karena terlihat normal pada > 50% pasien, tetapi cukup sensitive untuk mengidentifikasi pendarahan intracranial akut. Pengolahan citra digunakan untuk mengolah data berupa citra hasil ct scan. Ciri khas citra ct scan dapat dianalisis dengan cara memperbaiki kualitas hasil citra. Tujuan yang ingin dicapai dalam penelitian ini adalah untuk menghasilkan metode baru untuk deteksi stroke iskemik dengan memanfaatkan citra ct scan dengan analisa thresholding metode Otsu. Dari metode tersebut dapat diketahui tingkat akurasi kebenaran yang diperoleh, sehingga dapat dipergunakan sebagai acuan layak tidaknya metode ini digunakan sebagai metode untuk mendeteksi stroke iskemik. Teknik yang digunakan dalam penelitian ini meliputi ekualisasi, otsu dan thresolding. Untuk mengklasifikasi digunakan FCM (Fuzzy C-Mean). Dari hasil penelitian didapatkan tingkat error sebesar 0.0432053 membuktikan bahwa tingkat kesalahan yang dihasilkan sangat kecil. Akurasi yang didapat dari penelitian sebesar 95% sehingga membuktikan dengan metode otsu dapat digunakan sebagai acuan untuk mendeteksi stroke iskemik. Kata kunci : Stroke Iskemik, Global threshold, Otsu, FCM(Fuzzy C-Mean) 1. PENDAHULUAN Stroke iskemik merupakan penyumbatan pembuluh darah sementara yang dapat menyebabkan kematian dan kecacatan. Untuk mencegah terjadinya kecacatan jangka panjang pada seseorang yang terkena stroke iskemik, maka dimana bagian tersumbatnya pembuluh darah harus diketahui secara tepat. Untuk membantu dalam mengklasifikasikan stroke digunakan pengolahan citra sehingga hasil ct scan dapat digunakan untuk mengklasifikasi stroke iskemik. Dalam penelitian ini digunakan data hasil ct scan, berupa citra grayscale. Data yang digunakan dalam pengujian sebanyak 25 data. Citra ct scan dilakukan segmentasi menggunakan otsu untuk mendapatkan level intensitas. Dari hasil otsu didapatkan hasil berupa nilai mean, standar deviasi (stddev). Hasil otsu digunakan sebagai input untuk melakukan proses clustering. Pengklasifikasian ciri data dilakukan menggunakan metode FCM (Fuzzy C-Mean) sehingga didapatkan hasil optimum dalam mengidentifikasi stroke iskemik. 2. METODE PENELITIAN Metode penelitian yang digunakan dalam mengolah hasil citra ct scan dilakukan dalam beberapa tahap. Langkah pertama yang dilakukan adalah menyiapkan data yang akan digunakan dalam pengujian. Digunakan 25 data untuk pelatihan dan 20 data untuk sampel pengujian. Dalam penelitian ini digunakan tahapan dengan kerangka proses mengacu pada Gambar 1 menunjukakan perancangan sistem deteksi ct scan secara garis besar. 216

E.36 Mulai Proses pengolahan citra Proses Segmentasi citra Proses Klasifikasi fitur Tampilkan hasil Identifikasi dan menyimpan data hasil Selesai Gambar 1 Proses Sistem Deteksi CT Scan 2.1 Proses pengolahan citra stroke (CT Scan) Citra yang diolah f(x,y) yang memiliki koordinat spatial, dan tingkat kecerahan yang diskrit, dilakukan proses pengolahani citra ( Prasetyo, 2011) Berikut algoritma proses yang dilakukan dalam proses pengolahan citra: Algoritma yang digunakan : Ambil data citra ct scan dari folder yang telah disiapkan Simpan data yang diambil ke variable = image Tampilkan data image 2.2 Proses segmentasi citra Setelah citra data uji hasil proses ekstraksi citra dihasilkan, langkah berikutnya dilakukan proses segmentasi citra menggunakan metode otsu. Proses Otsu digunakan untuk mencari nilai threshold (ambang) yang optimal, untuk memisahkan object dan background yang didapat dari nilai histogram intensitas sehingga ciri dari citra akan semakin terlihat. Bagian yang cenderung hitam (bagian yang terjadi pembengkakan) dan bagian yang cenderung terang atau putih (bagian yang tidak terjadi pembengkakan) dalam citra ct scan kepala. Proses otsu akan diawali dengan menghitung luas citra yang diuji, proses akan dilanjutkan untuk menghitung mean atau nilai rata-rata dari warna pixel. Dalam proses ini nantinya akan menghitung nilai pixel setiap baris sampai setinggi citra, proses ini dimulai dari pixel awal sampai pixel terakhir, nilai yang didapatkan akan diakumulasi. Tahap selanjutnya dihitung nilai pixelnya untuk setiap kolom sampai selebar citra tersebut, nilai yang didapatkan akan diakumulasikan. Dari proses ini akan didapatkan nilai ambang atau posisi otsunya (Otsu,N., 1979). Algoritma yang digunakan pada proses ini: Memanggil citra f(x,y) berupa citra hasil histogram intensitas nilai threshold = j, j berada dalam range 0 j m-1. m = derajat keabuan dari citra Bagi citra menjadi dua group Group A dengan nilai derajat keabuan T Group B dengan nilai derajat keabuan T Dua group disimbolkan dengan (μ1 dan μ2 ) yang merupakan jumlah dari pixel dengan nilai rata-rata derajat keabuan untuk group A dan group B. Fungsinya mengacu pada persamaan [1]-[7]. (Kusumadewi,S., H. P., 2010) Dimana : (1) Prosiding SNST ke-6 Tahun 2015 Fakultas Teknik Universitas Wahid Hasyim Semarang 217

(7) Pixel pada citra direpresentasikan ke dalam derajat keabuan L[1, 2,, L]. Jumlah pixel dengan derajat keabuan i dinotasikan dengan n i dan jumlah keseluruhan pixel dengan N=n 1 + n 2 + + n i.p i adalah representasi histogram, k adalah nilai threshold.( Kusumadewi,S., H. P., 2010) Dimana : o o n i = jumlah pixel dengan nilai gray level yang ke-i Nilai average gray level dari semua pixel dalam citra f(x,y) mengacu pada persamaan (Kusumadewi,S., H. P., 2010) Jarak varian antara dua group, dilambangkan dengan dua group mengacu pada persamaan (Gonzales, R., P. 2004). (2) (3) (4) (5) (6), fungsi dari jarak varian antara o Range untuk k dari 0 sampai dengan L-1, hitung setiap dan nilai k menunjuk pada nilai jarak varian terbesar yang merupakan hasil dari threshold T. 2.3 Proses clustering dengan FCM Fuzzy clustering adalah salah satu teknik untuk menentukan cluster optimal dalam suatu ruang vector yang didasarkan pada bentuk normal Euclidian untuk jarak antar vector. Fuzzy clustering sangat berguna bagi pemodelan fuzzy terutama dalam mengidentifikasi aturan-aturan fuzzy. Untuk lebih jelasnya Algoritma fuzzy c-mean (FCM) yang digunakan sebagai berikut: (Wang, 1996) Menentukan jumlah data sampel (X) yang digunakan, X= 20 Menentukan banyaknya cluster (C), C= 3 Tentukan centroid setiap cluster. Data yang digunakan untuk data centroid didapat dari nilai mean dari data latih citra global thresholding (otsu). Pangkat (w) = 2 Maksimum Iterasi (MaxIter) = 500 Error terkecil yang diharapkan (ξ) = 10-5 Fungsi objektif awal (P 0 ) = 0 Iterasi awal (t) = 1 Misalkan matriks partisi awal U yang terbentuk (secara random) adalah sebagai berikut: Μ 21 = derajat keanggotaan data ke-2 di cluster ke-1 Μ 82 = derajat keanggotaan data ke-8 di cluster ke-2 Μ 13 = derajat keanggotaan data ke-1 di cluster ke 3 Pada iterasi pertama, dengan menggunakan persamaan[8]. (Lin, 1996) Dapat dihitung 3 pusat cluster, V kj dengan k = 1, 2, 3 ; dan j = 1, 2, 3 sebagai berikut : V 31 = pusat cluster ke-3, atribut ke-1 (mean) V 12 = pusat cluster ke-2, atribut ke-2 (standar deviasi) V 43 = pusat cluster ke-4, atribut ke-3 (entrophy) Fungsi objektif pada iterasi pertama P 1 dapat dihitung dengan menggunakan persamaan (9). (Kusumadewi,S., H. P., 2010) (9) Perbaiki matriks partisi U, menggunakan persamaan (10). (Kusumadewi,S., H. P., 2010) (8) 218

E.36 (10) Berikutnya cek kondisi berhenti. Karena P 1 -P 0 = -0 = 0.39 0.25 0.71 >>ξ (=10-5 ), dan iteraasi = 1 < MaxIter (=500), maka dilanjutkan iterasi ke-2 (t=2), demikian seterusnya, hingga P t P t-1 < ξ atau t > MaxIter. 3. HASIL DAN PEMBAHASAN Hasil pengolahan citra dapat ditunjukkan pada Gambar 2 Gambar 2 Hasil pengolahan citra Data-1 3.1 Hasil Uji Segmentasi Citra Hasil data uji segmentasi ditunjukkan pada Gambar 3 Gambar 3 Implementasi proses segmentasi citra menggunakan otsu Data citra hasil segmentasi dari 20 data dikelompokkan menjadi dua, yaitu data citra untuk penyumbatan sebelah kanan, dan data citra untuk identifikasi penyumbatan sebelah kiri. Hasilnya ditunjukkan pada Tabel 2. Tabel 2 Data hasil clustering No Nama Data mean Std_dev 1 Data_1 0.280392 0.729412 2 Data_2 0.256863 0.717647 3 Data_3 0.366667 0.829412 4 Data_4 0.386275 0.868627 5 Data_5 0.366667 0.805882 6 Data_6 0.366667 0.805882 7 Data_7 0.3 0.782353 8 Data_8 0.366667 0.829412 9 Data_9 0.366667 0.821569 10 Data_10 0.343137 0.798039 11 Data_11 0.333333 0.737255 12 Data_12 0.398039 0.864706 13 Data_13 0.280392 0.717647 14 Data_14 0.466667 0.772549 15 Data_15 0.331373 0.778431 16 Data_16 0.3 0.752941 17 Data_17 0.3 0.752941 18 Data_18 0.366667 0.84902 19 Data_19 0.3 0.758824 20 Data_20 0.331373 0.768627 Prosiding SNST ke-6 Tahun 2015 Fakultas Teknik Universitas Wahid Hasyim Semarang 219

3.2 Proses Klasifikasi Citra Stroke dengan Metode FCM Untuk pengelompokkan citra dilakukan dengan menggunakan metode fuzzy c-mean (FCM). Hasil uji klasifikasi ditunjukkan pada Tabel 3. Tabel 3 hasil klasifikasi ciri No Nama Data output Keterangan 1 Data_1 0.54 terjadi infark luas pada arteri serebri media kanan 2 Data_2 0.60 terjadi oklusi distral arteri serebri media kiri 3 Data_3 0.56 terjadi infark luas pada arteri serebri media kanan 4 Data_4 0.56 terjadi infark luas pada arteri serebri media kanan 5 Data_5 0.60 terjadi oklusi distral arteri serebri media kiri 6 Data_6 0.8 terjadi oklusi distral arteri serebri media kanan 7 Data_7 0.42 Tidak terjadi gangguan 8 Data_8 0.9 terjadi oklusi distral arteri serebri media kiri dan kanan 9 Data_9 0.9 terjadi oklusi distral arteri serebri media kiri dan kanan 10 Data_10 0.62 terjadi oklusi distral arteri serebri media kiri 11 Data_11 0.59 terjadi oklusi distral arteri serebri media kiri 12 Data_12 0.82 terjadi oklusi distral arteri serebri media kiri dan kanan 13 Data_13 0.66 terjadi infark luas pada arteri serebri media kiri 14 Data_14 0.53 terjadi infark luas pada arteri serebri media kanan 15 Data_15 0.54 terjadi infark luas pada arteri serebri media kiri 16 Data_16 0.63 terjadi oklusi distral arteri serebri media kiri 17 Data_17 0.62 terjadi oklusi distral arteri serebri media kiri 18 Data_18 0.74 terjadi oklusi distral arteri serebri media kanan 19 Data_19 0.64 terjadi infark luas pada arteri serebri media kiri 20 Data_20 0.65 terjadi infark luas pada arteri serebri media kiri Setelah dilakukan pengujian data didapatkan hasil dari hasil iterasi, Tabel 4 menunjukkan hasil data iterasi Tabel 4 Rata-rata error dan RMSE output ANFIS dengan menggunakan 20 data uji Iterasi epoch recog_test Dataset-1 Dataset-2 Rata-rata error 25 94.6667 0.00690684 50 93.3333 0.000194831 75 88 0.000058023 100 86.6667 3.73E-05 25 94.6667 0.0177865 50 96 0.0177822 75 96 0.0177809 100 96 0.0177803 initial recognation rate Rata-rata RMSE 96 0.0596182 97 0.0462827 3.3 Analisa Pengujian Dari hasil pengujian yang didapat diperoleh hasil akurasi data sebesar 95% dengan tingkat error sebesar 5%. ditunjukkan pada Tabel 5. Dengan hasil yang diperoleh dari tingkat error dihasilkan dari citra ct scan dengan tingkat warna grayscale. 220

E.36 No Nama Data Tabel 5 Hasil akurasi data Teridentifikasi Benar 1 Data_1 v 2 Data_2 v Teridentifikasi salah 3 Data_3 x 4 Data_4 v 5 Data_5 v 6 Data_6 v 7 Data_7 v 8 Data_8 v 9 Data_9 v 10 Data_10 V 11 Data_11 V 12 Data_12 V 13 Data_13 V 14 Data_14 V 15 Data_15 V 16 Data_16 V 17 Data_17 V 18 Data_18 V 19 Data_19 V 20 Data_20 V 95% 5% 4. KESIMPULAN Dari pembahasan yang telah dilakukan maka dapat ditarik kesimpulan sebagai berikut: 1. Pola, warna dan tingkat kecerahan citra ct scan kepala pada manusia memiliki ciri yang berbeda-beda satu dengan yang lainnya sehingga dapat digunakan untuk media identifikasi personal. 2. Identifikasi citra ct scan kepala memanfaatkan fitur grayscale dalam pengujian, dibutuhkan tahapan pengolahan citra untuk mendapatkan hasil yang optimal. 3. Metode FCM dapat digunakan untuk melakukan klasifikasi stroke iskemik. 4. Tingkat pengujian citra ct scan pada kepala manusia menggunakan metode otsu dan FCM dengan 20 data citra uji memiliki akurasi mencapai 95%. 5. Dari hasil 20 data citra uji, masih ditemukan tingkat kesalahan sebesar 5 % untuk data citra ct scan yang didapat dari hasil scanning dengan tingkat intensitas level keabuan = 0 lebih tinggi di banding dengan tingkat level keabuan = 1. 6. Tingkat RMSE (Root Mean Square Error) yang dihasilkan sebesar 0.0462827, menunjukkan tingkat kesalahan yang terjadi selama pengujian untuk klasifikasi ciri dari 20 data citra ct scan sangatlah kecil. SARAN Saran untuk pengembangan penelitian lebih lanjut antara lain, perlu dikembangkan segmentasi yang sifatnya otomatis dan real-time sehingga dapat digunakan langsung pada citra ct scan kepala yang akan dianalisis serta penentuan jenis objek yang mengklasifikasikan ke dalam jenis (tipe) infark perlu Prosiding SNST ke-6 Tahun 2015 Fakultas Teknik Universitas Wahid Hasyim Semarang 221

dikembangkan untuk mengurangi subjektivitas radiolog yang memudahkan teknisi dalam membaca citra hasil citra ct scan kepala DAFTAR PUSTAKA Gonzales, R., P. 2004, Digital Image Processing (Pemrosesan Citra Digital), Vol. 1, Ed.2, diterjemahkan oleh Handayani, S., Andri Offset, Yogyakarta. Jang, J.S.R., Sun, C.T., and Mizutani, E., 1997, Neuro Fuzzy and Soft Computing, London : Prentice- Hall. Kusumadewi,S., H. P., 2010, Aplikasi Logika Fuzzy untuk Pendukung Keputusan, Ed.2, Graha Ilmu, Yogyakarta. Lin, 1996, Neural Fuzzy System, Prentice Hall International, Inc. Otsu,N., 1979, A Threshold Selection Method from Gray Level Histogram, IEEE Transantions of Systems, MAN Cybernetics, Vol SMC-9, No.1., Janvani Prasetyo, 2011, Pengolahan Citra Digital dan Aplikasinya menggunakan Matlab, Andi Offset, Yogyakarta. Wang, 1996, A Course In Fuzzy Systems And Control, Prentice Hall International, Inc. 222