Rancang Bangun Prototipe Emulator Sel Surya Menggunakan Buck Converter Berbasis Arduino

dokumen-dokumen yang mirip
BAB III METODE PENELITIAN. Penelitian tugas akhir dilaksanakan pada bulan Februari 2014 hingga Januari

BAB I PENDAHULUAN. Kebutuhan akan sumber energi listrik terus meningkat seiring meningkatnya

Rancang Bangun Interleaved Boost Converter Berbasis Arduino

BAB II TINJAUAN PUSTAKA. Konversi energi dari cahaya matahari menjadi energi listrik dilakukan oleh

PEMODELAN DAN SIMULASI MAXIMUM POWER POINT TRACKER

Rancang Bangun Catu Daya Digital Menggunakan Buck Converter Berbasis Mikrokontroler Arduino

Simulasi Maximum Power Point Tracking pada Panel Surya Menggunakan Simulink MATLAB

Hari Agus Sujono a), Riny Sulistyowati a), Agus Budi Rianto a)

BAB I PENDAHULUAN. sumber energi tenaga angin, sumber energi tenaga air, hingga sumber energi tenaga

Auto Charger System Berbasis Solar Cell pada Robot Management Sampah

Perancangan Simulator Panel Surya Menggunakan LabView

Kendali Sistem Pengisi Baterai Tenaga Surya Metode Incremental Conductance Berbasis Mikrokontrol

LAMPIRAN 1 CATU DAYA TRANSFORMATOR RANGKAIAN SENSOR ARUS SENSOR DAYA. Gambar 1. Realisasi alat

MEMAKSIMALKAN KONVERSI ENERGI PV MODULE BERDASARKAN KURVA KARAKTERISTIK PADA LERENG TEGANGAN

BAB III PERANCANGAN PEMODELAN SISTEM

Simulasi Sel Surya Model Dioda dengan Hambatan Seri dan Hambatan Shunt Berdasarkan Variasi Intensitas Radiasi, Temperatur, dan Susunan Modul

Perancangan Battery Control Unit (BCU) Dengan Menggunakan Topologi Cuk Converter Pada Instalasi Tenaga Surya

Perbaikan Variabel Step Size MPPT pada Aplikasi Panel Surya untuk Perubahan Iradiasi Matahari yang Cepat

PERENCANAAN DAN PEMBUATAN DC-DC KONVERTER UNTUK PANEL SURYA PADA DC HOUSE SKRIPSI

Rancang Bangun Modul DC DC Converter Dengan Pengendali PI

Pemodelan Kurva I(V) Normal Light dan Dark Current Modul PV Untuk Menentukan Unjuk Kerja Solar Sel

Prof.Dr. Ir. Mochamad Ashari, M.Eng. Vita Lystianingrum B.P, ST., M.Sc.

DESAIN DAN IMPLEMENTASI PENAIK TEGANGAN MENGGUNAKAN KOMBINASI KY CONVERTER DAN BUCK- BOOST CONVERTER

Desain dan Implementasi Soft Switching Boost Konverter Dengan Simple Auxillary Resonant Switch (SARC)

BAB III METODE PENELITIAN. Penelitian dan penulisan laporan tugas akhir dilakukan di Laboratorium

RANCANG BANGUN MAXIMUM POWER POINT TRACKER (MPPT) PADA PANEL SURYA DENGAN MENGGUNAKAN METODE FUZZY

DESAIN DAN IMPLEMENTASI MAXIMUM POWER POINT TRACKER (MPPT) MIKROKONTROLLER AVR. Dosen Pembimbing

NAMA :M. FAISAL FARUQI NIM : TUGAS:ELEKTRONIKA DAYA -BUCK CONVERTER

PERANCANGAN MULTILEVEL BOOST CONVERTER TIGA TINGKAT UNTUK APLIKASI SEL SURYA

PERANCANGAN KONVERTER ARUS SEARAH TIPE CUK YANG DIOPERASIKAN UNTUK PENCARIAN TITIK DAYA MAKSIMUM PANEL SURYA BERBASIS PERTURB AND OBSERVE

Materi 3: ELEKTRONIKA DAYA (2 SKS / TEORI) SEMESTER 106 TA 2016/2017 PROGRAM STUDI PENDIDIKAN TEKNIK ELEKTRONIKA

MEMAKSIMALKAN DAYA PHOTOVOLTAIC SEBAGAI CHARGER CONTROLLER

IMPLEMENTASI MAXIMUM POWER POINT TRACKER (MPPT) UNTUK OPTIMASI DAYA PADA PANEL SURYA BERBASIS ALGORITMA INCREMENTAL CONDUCTANCE

DESAIN SISTEM HIBRID PHOTOVOLTAIC-BATERAI MENGGUNAKAN BI-DIRECTIONAL SWITCH UNTUK CATU DAYA KELISTRIKAN RUMAH TANGGA 900VA, 220 VOLT, 50 HZ

SIMULASI MAXIMUM POWER POINT TRACKING (MPPT) PANEL SURYA MENGGUNAKAN PERTURB AND OBSERVE SEBAGAI KONTROL BUCK-BOOST CONVERTER Mochamad Firman Salam

DESAIN DAN ANALISIS PROPORSIONAL KONTROL BUCK-BOOST CONVERTER PADA SISTEM PHOTOVOLTAIK

Sistem MPPT Untuk PV dan Inverter Tiga Fasa yang Terhubung Jala-Jala Menggunakan Voltage-Oriented Control

I. PENDAHULUAN. hingga peningkatan efesiensi energi yang digunakan. Namun sayangnya

PERANCANGAN DAN REALISASI INVERTER MENGGUNAKAN MIKROKONTROLER ATMEGA168

BAB II SEL SURYA. Simulator algoritma..., Wibeng Diputra, FT UI., 2008.

RANCANG BANGUN KONVERTER PHOTOVOLTAIC DAN PENTAKSIRAN DAYA PHOTOVOLTAIC UNTUK DC POWER HOUSE

BAB III ALGORITMA PENDETEKSI KERUSAKAN MODUL SURYA

Pengendalian Kecepatan Motor DC Magnet Permanen Dengan Menggunakan Sensor Kecepatan Rotari

BAB II TINJAUAN PUSTAKA. Konverter elektronika daya merupakan suatu alat yang mengkonversikan

ANALISIS STEP-UP CHOPPER SEBAGAI TRANSFORMASI R SEBAGAI INTERFACE PHOTOVOLTAIC DAN BEBAN

Andriani Parastiwi. Kata-kata kunci : Buck converter, Boost converter, Photovoltaic, Fuzzy Logic

BAB IV HASIL PENGUJIAN DAN ANALISA

Desain dan Simulasi Average Model Voltage Source Inverter pada Generator Induksi

BAB IV HASIL PENGUJIAN DAN PEMBAHASAN

SISTEM MAXIMUM POWER POINT TRACKER (MPPT) DENGAN KONVERTER DC-DC TIPE BOOST MENGGUNAKAN LOGIKA FUZZY UNTUK PANEL SURYA SKRIPSI

DESAIN DAN IMPLEMENTASI MAKSIMUM POWER POINT TRACKER MELALUI DETEKSI ARUS

JIEET: Volume 01 Nomor (Journal Information Engineering and Educational Technology) ISSN : X

KEMENTRIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO

PV-Grid Connected System Dengan Inverter Sebagai Sumber Arus. Pada Beban Resistif

BAB I PENDAHULUAN. 1.1 Latar Belakang

ISSN : e-proceeding of Engineering : Vol.4, No.3 Desember 2017 Page 3122

Dwi Agustina Hery Indrawati

UNIVERSITAS INDONESIA SIMULASI DAN ANALISIS PHOTOVOLTAIC SIMULATOR BERBASIS BUCK CONVERTER LAPORAN SKRIPSI MUHAMAD YASIL FARABI

DAFTAR PUSTAKA. [1] Felix. Y dan Pratomo, H. L, 2009 Memaksimalkan Daya Photovoltaic

BAB I PENDAHULUAN. Energi listrik adalah energi yang mudah dikonversikan ke dalam bentuk

RANCANG BANGUN CATU DAYA TENAGA SURYA UNTUK PERANGKAT AUDIO MOBIL

EVALUASI NILAI TAHANAN INTERNAL MODUL PANEL FOTOVOLTAIK (PV) BERDASARKAN PEMODELAN KURVA I(V) NORMAL LIGHT DAN DARK CURRENT

DESAIN MAXIMUM POWER POINT TRACKER PADA PHOTOVOLTAIC

III. METODE PENELITIAN. dari bulan November 2014 s/d Desember Alat dan bahan yang digunakan dalam perancangan Catu Daya DC ini yaitu :

Studi Analisa Synchronous Rectifier Buck Converter Untuk Meningkatkan Efisiensi Daya Pada Sistem Photovoltaic

KOMPARASI ENERGI SURYA DENGAN LAMPU HALOGEN TERHADAP EFISIENSI MODUL PHOTOVOLTAIC TIPE MULTICRYSTALLINE

PERCOBAAN 5 REGULATOR TEGANGAN MODE SWITCHING. 1. Tujuan. 2. Pengetahuan Pendukung dan Bacaan Lanjut. Konverter Buck

BAB IV HASIL PENGUJIAN DAN ANALISA. Pada bab ini akan dibahas hasil pengujian dan analisa dari system buck chopper

HASIL KELUARAN SEL SURYA DENGAN MENGGUNAKAN SUMBER CAHAYA LIGHT EMITTING DIODE

INVERTER 15V DC-220V AC BERBASIS TENAGA SURYA UNTUK APLIKASI SINGLE POINT SMART GRID

PENDEKATAN BARU UNTUK SINTESIS KONVERTER DAYA

Desain Sistem Photovoltaic (PV) Terhubung Dengan Grid Sebagai Filter Aktif

BAB 4 ANALISIS DAN BAHASAN

DC-DC Step-Up Converter Rasio Tinggi Kombinasi Charge Pump dan Boost Converter untuk Catu Daya Motor Induksi pada Mobil Listrik

Latar Belakang dan Permasalahan!

BAB I PENDAHULUAN. 1.1 Latar Belakang

ISSN : e-proceeding of Engineering : Vol.3, No.2 Agustus 2016 Page 1375

SIMULASI DAN ANALISIS SISTEM MAXIMUM POWER POINT TRACKER BERBASIS RANGKAIAN BOOST CONVERTER SKRIPSI

PENGARUH SUHU PADA MODUL 100Wp MENGGUNAKAN PEMODELAN DAN SIMULASI 36 SEL PHOTOVOLTAIC

LAPORAN AKHIR Penelitian Unggulan Perguruan Tinggi ( P )

PENGARUH FILTER WARNA KUNING TERHADAP EFESIENSI SEL SURYA ABSTRAK

RANCANG BANGUN MODUL BOOST CHOPPER VOLT DC 200 WATT BERBASIS MIKROKONTROLLER ATMEGA 16 ABSTRAK

DESAIN DAN IMPLEMENTASI MULTI-INPUT KONVERTER DC-DC PADA SISTEM TENAGA LISTRIK HIBRIDA PV/WIND

Jurusan Teknik Elektro, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

PENENTUAN DAYA MAKSIMUM PHOTOVOLTAIK DENGAN METODE GROUP

Manajemen Hybrid Photovoltaic System Dengan Memanfaatkan Peramalan Beban dan Penyinaran Matahari

Sistem Panel Surya Terhubung Grid melalui Single Stage Inverter

ABSTRAK. Kata kunci: Solar Cell, Media pembelajaran berbasis web, Intensitas Cahaya, Beban, Sensor Arus dan Tegangan PENDAHULUAN

BAB III RANCANGAN SMPS JENIS PUSH PULL. Pada bab ini dijelaskan tentang perancangan power supply switching push pull

Desain dan Implementasi Self Tuning LQR Adaptif untuk Pengaturan Tegangan Generator Sinkron 3 Fasa

BAB I PENDAHULUAN. Teknologi konverter elektronika daya telah banyak digunakan pada. kehidupan sehari-hari. Salah satunya yaitu dc dc konverter.

Oleh : Aries Pratama Kurniawan Dosen Pembimbing : Prof. Dr.Ir. Mochamad Ashari, M.Eng Vita Lystianingrum ST., M.Sc

RANCANGAN SENSOR ARUS PADA PENGISIAN BATERAI DARI PANEL SURYA

BAB II TINJAUAN PUSTAKA

BAB I Pendahuluan. 1.1 Latar Belakang

STUDI KOMPARASI MPPT ANTARA SOLAR CONTROLLER MPPT M10-20A DENGAN MPPT TIPE INCREMENTAL CONDUCTANCE SEBAGAI CHARGER CONTROLLER LAPORAN TUGAS AKHIR

PERBEDAAN EFISIENSI DAYA SEL SURYA ANTARA FILTER WARNA MERAH, KUNING DAN BIRU DENGAN TANPA FILTER

PERANCANGAN STAND ALONE PV SYSTEM DENGAN MAXIMUM POWER POINT TRACKER (MPPT) MENGGUNAKAN METODE MODIFIED HILL CLIMBING

BAB I PENDAHULUAN 1.1 Latar Belakang

Simulasi Optimasi Sistem Photovoltaic (PV) Stand-alone dan Battery Menggunakan Pengendali Logika Fuzzy SKRIPSI

Transkripsi:

ELECTRICIAN Jurnal Rekayasa dan Teknologi Elektro Rancang Bangun Prototipe Emulator Sel Surya Menggunakan Buck Converter Berbasis Arduino Nanang Hadi Sodikin 1, Ahmad Saudi Samosir 2, Endah Komalasari 3 Jurusan Teknik Elektro Universitas Lampung, Bandar Lampung Jl. Prof. Sumantri Brojonegoro No.1 Bandar Lampung 35145 1 nananghadisodikin@gmail.com Intisari Penelitian untuk memperbaiki sistem sel surya dalam hal keandalan dan efisisensi membutuhkan kontinyuitas yang tidak terhalang kondisi lingkungan seperti intensitas cahaya matahari, suhu ataupun faktor lain. Sehingga diperlukan suatu perangkat untuk menggantikan sel surya yang tidak terpengaruh oleh faktor-faktor tersebut, namun tetap memiliki keluaran dan karakteristik yang sama. Perangkat yang ditawarkan pada tugas akhir ini adalah emulator sel surya yang berbasiskan buck converter. Emulator sel surya akan menghitung arus dan tegangan berdasarkan nilai masukan berupa nilai irradiance dan suhu sel pada nilai beban yang bervariasi. Karakteristik yang diperoleh dari simulasi dan pengujian perangkat keras emulator sel surya saat diberikan nilai irradiance dan suhu sel yang bervariasi adalah penurunan irradiance menyebabkan arus hubung singkat, tegangan hubung terbuka serta daya maksimum yang dihasilkan menurun, sedangkan peningkatan nilai suhu sel akan menurunkan besar tegangan hubung terbuka dan daya maksimum, namun arus hubung singkat akan bertambah walaupun tidak signifikan. Kata kunci Emulator Sel Surya, Buck converter, Irradiance, Suhu. Abstract The research to improve the solar cell system in terms of reliability and efficiency requires a continuity that is not obstructed environmental conditions such as light intensity and temperature or the other factors. The research needs a device to replace the solar cells which is not affected by these factors, but still has the same output and characteristics. The device which is porposed in this thesis is solar cell emulator based on buck converter. Solar cells emulator will calculate the current and voltage based on the value of the input of irradiance and cell temperature values at varians load value. The characteristics obtained from the simulation and testing hardware solar cells emulators at various irradiance and cell temperature values, that was decreased in irradiance values that leaded short circuit current, open circuit voltage and maximum power which was generated was decreased, while the increased in the cell temperature value that leaded decreased open circuit voltage and maximum power, but the short circuit current increased but not significantly. Keywords Solar Cells Emulator, Buck Converter, Irradiance, Temperature. I. PENDAHULUAN Semakin meningkatnya ketertarikan pengembangan konversi energi menggunakan sel surya, menyebabkan semakin tinggi tuntutan dalam hal keandalan dan efisisensi dari sistem tersebut. Oleh karena itu, upaya untuk memperbaiki sistem sel surya terus dilakukan. Penelitian dan pengujian ini sebagai evaluasi dan kontrol bagi performa dan efisiensi sel surya yang harus terus diperbaiki. Proses penelitian membutuhkan kontinyuitas yang tidak terhalang kondisi lingkungan ataupun faktor lain, mengingat sel surya ini sangat bergantung pada kondisi lingkungan yang baik (cahaya matahari dan suhu yang cukup). Oleh karena itu diperlukan suatu divais untuk menggantikan sel surya yang tidak terpengaruh faktor-faktor tersebut namun tetap memiliki keluaran dan karakteristik yang sama. Divais yang ditawarkan pada penelitian ini adalah emulator sel surya. Emulator ini akan

ELECTRICIAN Jurnal Rekayasa dan Teknologi Elektro 172 menggantikan sel surya yang sebenarnya untuk menghasilkan karakteristik dari sel surya tersebut. Emulator sel surya memiliki kelebihan akan memudahkan untuk mengatur kondisi pengujian, seperti irradiance dan suhu. Selain itu ruang pengujian yang dibutuhkan lebih kecil dan biaya pengujian lebih murah karena tidak harus membeli berbagai jenis panel sel surya jika akan menguji beberapa jenis panel sel surya. Rancang bangun prototipe emulator sel surya ini dibagi menjadi dua bagian, yaitu pemodelan simulasi dan realisasi ke perangkat keras. Selain itu dilakukan analisa pengaruh variasi nilai irradiance, suhu pada nilai beban yang bervariasi terhadap keluaran emulator sel surya dan membandingkan hasil pengujian perangkat keras emulator sel surya dengan hasil simulasi serta modul referensi yang digunakan sebagai evaluasi dan validasi rancang bangun emulator sel surya. II. TINJAUAN PUSTAKA Persamaan (1) menjelaskan prinsip sederhana dari rangkaian ekivalen sel surya di atas, yaitu: I = I I I (1) Persamaan tersebut dapat dijabarkan dengan persamaan berikut : [1] I = N I N I exp 1 (2) Penjabaran dari persamaan (2) di atas sebagai berikut: [2] Arus photovoltaic, I ph, I = [I + K (T T )] (3) Arus saturasi sel surya, Is, I = I exp (4) Arus gelap saturasi, I rs, I = I [exp(qv N k nt ) 1] (5) A. Karakteristik Sel Surya 1) Rangkaian Ekivalen Sel Surya Rangkaian ekivalen sel surya terdiri dari sebuah arus fotovoltaik, sebuah dioda, hambatan seri (R s ) dan hambatan paralel (R sh ), seperti yang ditunjukkan pada Gambar 1 berikut. Hambatan Seri, R s : [3] R = (6) Ideal Faktor, n : [3] n = ( ) (7) Hambatan shunt, [4] R =, (8) Gbr. 1 Rangkaian Ekivalen dari Sel Surya Light generated current atau photocurrent (I ph ) bervariasi secara linear terhadap radiasi matahari dan tergantung pada suhu yang diberikan. Hambatan R sh dan R s menunjukkan hambatan intrinsik paralel dan seri dari sel. Dimana : I pv = Arus photovoltaic I ph = Photocurrent I D = Arus pada dioda I rsh = Arus hambatan shunt I s = Arus saturasi sel surya q = Elektron = 1.6 x 1-19 C V = Tegangan pada sel

ELECTRICIAN Jurnal Rekayasa dan Teknologi Elektro 173 T c = Suhu kerja sel R s = Hambatan seri R sh = Hambatan shunt n = Faktor ideal k = Konstanta Boltzmann =1.38 x 1-23 J/K N s = Jumlah sel surya yang disusun seri N p = Jumlah sel surya yang disusun paralel = Solar irradiance = Solar irradiance reference =1 W/m 2 K i = Koefisien suhu dari arus I sc I sc = Arus hubung singkat pada suhu kerja T ref = Suhu referensi = 25 C = 298 K I rs = Arus saturasi gelap I sc-ref = Arus hubung singkat pada STC V oc-ref = Tegangan hubung singkat pada STC I m = Arus maksimum sel surya V m = Tegangan maksimum sel surya V oc = Tegangan open circuit sel surya V sc = Tegangan short circuit sel surya I sc = Arus hubung singkat pada suhu kerja I = Arus pada hambatan shunt 2) Kurva Karakteristik Sel Surya Sel surya memiliki kurva karakteristik yang menunjukkan hubungan antara arus dengan tegangan keluaran (kurva I-V) dan daya dengan tegangan keluaran sel surya (kurva P-V). Kurva ini ditunjukan pada Gambar 2 berikut: Pada saat tahanan bernilai tak terhingga (open cicuit) maka arus bernilai minimum (nol) dan tegangan pada sel berada pada nilai maksimum, disebut tegangan open circuit (V oc ). Pada keadaan lain, ketika tahanan bernilai nol (short cicuit) maka arus bernilai maksimum, yang disebut arus short circuit (I sc ). Selain itu terdapat nilai daya maksimum (P m ) yang dapat dihasilkan pada saat tegangan maksimum (V m ) dan arus maksimum (I m ). Titik dimana nilai arus dan tegangan pada titik yang menghasilkan daya terbesar disebut dengan Maximum Power Point (MPP). [4] 3) Buck Converter Buck converter merupakan konverter DC- DC yang berfungsi untuk menurunkan tegangan. Gambar 3 berikut merupakan rangkaian dari buck converter: Gbr. 3 Topologi Buck Converter Untuk mempermudah dalam menganalisa rangkaian buck, Gambar 4 berikut ini merupakan state dari rangkaian buck pada saat state ON dan state OFF: Gbr. 2 Kurva Karakteristik Sel Surya [5] Gbr. 4 Rangkaian Buck pada saat State ON dan State OFF

ELECTRICIAN Jurnal Rekayasa dan Teknologi Elektro 174 State ON Ketika berada pada state ON, switch Q1 akan berfungsi sebagai saklar yang menutup (konduksi) selama interval waktu dt, maka arus dari tegangan sumber V in akan mengalir melalui induktor L, beban dan kembali lagi ke sumber. Karena tegangan yang diberikan kepada induktor konstan, maka arus yang melewati induktor meningkat secara linier. State OFF Ketika berada pada state OFF, Q1 menjadi terbuka mengakibatkan arus dari sumber input tidak dapat mengalir melewati switch ini. Sehingga sumber dari tegangan output sekarang berasal dari induktor dan kapasitor dimana dioda D menjadi aktif. Arus mengalir dari induktor L ke beban melalui dioda dan kembali menuju induktor L. Karena tegangan induktor menjadi lebih kecil dibandingkan saat state ON dan konstan, maka arus yang melewati induktor akan menjadi turun secara linier. Nilai tegangan masukan yang dihasilkan dapat dihitung melalui persamaan berikut : V o = D.V in (9) Untuk mendesain konverter perlu ditetapkan beberapa variabel, yaitu tegangan input, tegangan output, arus output dan frekuensi switching. Dalam menentukan besarnya nilai induktor dan kapasitor dapat menggunakan persamaan berikut : [6] L = C = ( ) ( ) Dimana : V = Tegangan keluaran V = Tegangan masukan D = Duty cycle L = Nilai induktor (induktansi) I = Ripple arus f = Frekuensi C = Nilai Kapasitor (1) (11) V = Ripple tegangan III. METODE PENELITIAN A. Pemodelan dan Simulasi Emulator Sel Surya Secara umum pemodelan dan simulasi emulator sel surya dapat direpresentasikan dengan blok diagram yang ditunjukkan pada Gambar 5 sebagai berikut : Solar Irradiations Suhu Sel BEBAN V I Tegangan MODEL SEL SURYA Arus Iref + - I BUCK CONVERTER PENGENDALI PI PWM GENERATOR Gbr. 5 Blok Diagram Pemodelan dan Simulasi Emulator Sel Surya 1) Pemodelan Sel Surya Pemodelan sel surya didasarkan pada penggunaan persamaan matematis dari karakteristik sel surya. Dalam penelitian ini menggunakan modul sel surya Shell SP75 sebagai modul referensi. Tabel 1 Parameter Modul Shell SP75 pada Standart Test Conditions No Parameter Nilai 1 Daya Maksimum (P m ) 75 W 2 Tegangan pada Daya Maksimum (V m ) 17 V 3 Arus pada Daya Maksimum (I m ) 4.4 A 4 Tegangan Hubung Terbuka (V oc ) 21.7 V 5 Arus Hubung Singkat (I sc ) 4.8 A 6 Jumlah Sel Seri (N s ) 36 7 Resistansi Seri (Rs).338 Ω 8 Resistansi paralel (Rsh) 185 Ω 9 Faktor Ideal (n) 1.3971

ELECTRICIAN Jurnal Rekayasa dan Teknologi Elektro 175 Dari nilai persamaan dan nilai setiap parameter di atas maka dapat dihasilkan pemodelan yang ditunjukkan Gambar 6 sebagai berikut : Tabel 2 Parameter-Parameter untuk Pemodelan Buck Converter No Parameter Nilai 1 Tegangan Masukan (V in ) 35 V 2 Tegangan Keluaran (V out ) 21.7 V 3 Arus Keluaran (I sc ) 4.8 A 4 Ripple Arus ( I) 5 % 5 Ripple Tegangan ( V) 5 % 6 Frekuensi (f) 2 Hz 7 Duty Cycle (D).62 8 Nilai Induktor (L) 1,718 9 Nilai Kapasitor (C) 1,382 µ 3) Pengujian Model Emulator Sel Surya Keseluruhan Setelah setiap subsistem telah selesai dimodelkan dan diuji, maka selanjutnya adalah menggabungkan subsistem-subsistem menjadi satu sistem emulator sel surya. Gbr. 6 Model Simulasi Sel Surya 2) Pemodelan Buck Converter Penelitian ini menggunakan DC-DC konverter jenis buck converter untuk menghasilkan tegangan dan arus keluaran yang sesuai dengan karakteristik sel surya. Pemodelan buck converter menggunakan nilai parameter-parameter yang ditunjukkan pada Tabel 2 berikut: Gbr. 7 Model Emulator Sel Surya Secara Keseluruhan Gambar 7 di atas adalah sistem emulator sel surya keseluruhan yang digunakan dalam

ELECTRICIAN Jurnal Rekayasa dan Teknologi Elektro 176 simulasi: Pengujian sistem emulator sel surya dilakukan dengan memberikan masukan irradiance dan suhu sel yang bervariasi serta memberikan nilai beban yang bervariasi untuk mendapatkan kurva karakteristiknya. B. Perancangan Perangkat Keras Emulator Sel Surya Rancangan emulator sel surya yang dibuat terdiri dari beberapa subsistem, yaitu mikrokontroler Arduino Mega 256, rangkaian gate driver berbasis HCPL312, rangkaian buck converter, sensor tegangan, sensor arus ACS712, beban, antarmuka masukan (menggunakan keypad) dan keluaran (menggunakan liquid crystal display, LCD). Masing-masing subsistem tersebut memiliki fungsi dan saling terhubung dengan subsistem yang lain. Urutan kerja dari emulator sel surya dijelaskan sebagai berikut: a. Mikrokontroler digunakan untuk memodelkan sel surya dengan menggunakan persamaan matematis sel surya. Dengan memberikan masukan nilai irradiance, suhu serta nilai arus dan tegangan keluaran buck converter yang diumpanbalikkan, maka pemodelan secara matematis ini akan menghasilkan nilai arus referensi. Kesalahan nilai arus akan dikendalikan oleh kendali PI dan sinyal kendali yang dihasilkan sebagai masukan osilator untuk menghasilkan pulsa kontrol. b. Pulsa-pulsa kontrol akan mengendalikan switch pada buck converter untuk membuka atau menutup. c. Tegangan dan arus keluaran dari buck converter akan disensor sebagai keluaran dari emulator sel surya dan diumpan balikkan ke mikrokontroler. d. Saat nilai beban berubah maka arus dan tegangan akan berubah sehingga arus referensi hasil pengolahan di dalam Arduino akan berubah sesuai karakteristik sel surya. Operasi ini akan terus berulang secara close loop, sehingga akan dihasilkan nilai tegangan dan arus yang sesuai dengan karakteristik sel surya. Rancangan rangkaian sistem emulator sel surya secara keseluruhan ditunjukkan pada Gambar 8 sebagai berikut : Gbr. 8 Rancangan Rangkaian Emulator Sel Surya IV. HASIL DAN PEMBAHASAN Pengujian dilakukan memberikan variasi nilai masukan berupa irradiance, suhu sel pada nilai beban yang juga bervariasi. Nilai irradiance adalah 2 hingga 1 W/m 2 dengan kenaikan sebesar 2 W/m 2, sedangkan nilai suhu adalah 2 hingga 6 ºC dengan kenaikan sebesar 2 ºC, serta divariasikan pada nilai beban resistif dari 1 hingga 5 Ω. Pada penelitian ini menggunakan modul Shell SP75 sebagai modul referensi. Realisasi prototipe emulator sel surya ditunjukkan pada Gambar 9 berikut:

ELECTRICIAN Jurnal Rekayasa dan Teknologi Elektro 177 Gbr. 9 Prototipe Emulator Sel Surya Untuk memvalidasi bahwa hasil pengujian emulator sel surya telah dapat menggantikan sel surya sebenarnya dalam menghasilkan karakteristik sel surya, maka dilakukan pembandingan antara data hasil pengujian emulator sel surya karakteristik yang dimiliki modul sel surya Shell SP75 yang tertera pada Tabel 1. Pengujian pada kondisi standar (suhu sel 25ºC dan irradiance 1 W/m 2 ), emulator sel surya menghasilkan karakteristik yang sesuai dengan karakteristik acuan yang dimiliki modul sel surya referensi. Pada simulasi didapatkan daya maksimum sebesar 74.742 W pada tegangan 16.962 V dan arus 4.46 A. Pada pengujian perangkat keras emulator sel surya didapatkan daya maksimum sebesar 75.53 W pada tegangan 16.6 V dan arus 4.56 A. Jika dibandingkan dengan karakteristik modul Shell SP75 yang tertera pada Tabel 3.1, dimana daya maksimum adalah 75 W pada tegangan 17 V dan arus 4.4 A, maka hasil simulasi maupun perangkat keras emulator sel surya memiliki nilai kesalahan yang sangat kecil. Hasil simulasi emulator sel surya memiliki rata-rata kesalahan sebesar.344% untuk nilai daya,.136% untuk nilai arus, dan.224% untuk nilai tegangan. Sedangkan pada perangkat keras emulator sel surya memiliki rata-rata kesalahan sebesar.77% untuk nilai daya, 3.636% untuk nilai arus, dan 2.353% untuk nilai tegangan. Selain dengan menggunakan nilai parameter di atas, perbandingan dapat dilakukan dengan membandingkan kurva karakteristik yang dihasilkan dari simulasi dan pengujian perangkat keras emulator sel surya dengan kurva karakteristik yang dimiliki modul Shell SP75. Perbandingan tersebut ditunjukkan pada Gambar 1 dan 11 berikut : Arus (A) Arus (A) 5 4.5 4 3.5 3 2.5 2 1.5 1.5 Suhu Sel = 25 C 5 1 15 2 25 5 4.5 4 3.5 3 2.5 2 1.5 1 (a) (b) (c) 1 W/m2 8 W/m2 6 W/m2 4 W/m2 2 W/m2 1 W/m2 8 W/m2 6 W/m2 4 W/m2 2 W/m2.5 Suhu Sel 25 C 5 1 15 2 25 Gbr. 1 Perbandingan Kurva Karakteristik I-V Emulator Sel Surya (a) Simulasi dan (b) Perangkat Keras dengan (c) Modul Shell SP75 pada Irradiance yang Bervariasi

ELECTRICIAN Jurnal Rekayasa dan Teknologi Elektro 178 Perbandingan kurva karakteristik hubungan antara nilai arus dan tegangan (kurva I-V) saat nilai irradiance divariasikan pada nilai beban yang juga bervariasi ditunjukkan pada Gambar 1. Perbandingan kurva karakteristik hubungan antara nilai arus dan tegangan (kurva I-V) saat nilai suhu sel divariasikan pada nilai beban yang juga bervariasi ditunjukkan pada Gambar 11. Arus (A) 5 4.5 4 3.5 3 2.5 2 1.5 1 2 C 3 C 4 C 5 C 6 C Terlihat dari Gambar 1 dan 11 di atas bahwa kurva karakteristik hasil pengujian emulator sel surya memiliki kesamaan dengan kurva karakteristik modul referensi. Saat nilai irradiance dan suhu sel divariasikan, kurva karakteristik yang dihasilkan mampu mengikuti karakteristik sel surya sebenarnya. Selain kurva karakteristik I-V, hasil pengujian emulator sel surya dapat disajikan dalam kurva karakteristik hubungan antara tegangan dan daya (kurva P-V) untuk melihat pengaruh masukan irradiance dan suhu terhadap daya keluaran. Kurva P-V tersebut ditunjukkan pada Gambar 12 dan 13 dimana Gambar 12 menunjukkan kurva karakteristik P-V saat nilai irradiance divariasikan dan Gambar 13 saat nilai suhu sel divariasikan. Arus (A).5 Irradiance = 1 W/m2 5 1 15 2 25 6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1.5 2 C 3 C 4 C 5 C 6 C Irradiance = 1 W/m2 (a) 5 1 15 2 (b) Daya (W) Daya (W) 8 1 W/m2 7 8 W/m2 6 6 W/m2 4 W/m2 5 2 W/m2 4 3 2 1 Suhu Sel = 25 C 5 1 15 2 25 8 7 6 5 4 3 1 W/m2 8 W/m2 6 W/m2 4 W/m2 2 W/m2 (a) 2 (c) Gbr. 11 Perbandingan Kurva Karakteristik I-V Emulator Sel Surya (a) Simulasi dan (b) Perangkat Keras dengan (c) Modul Shell SP75 pada Suhu Sel yang Bervariasi 1 Suhu Sel 25 C 5 1 15 2 25 (b) Gbr. 12 Kurva Karakteristik P-V saat Nilai Irradiance Divariasikan pada (a) Simulasi dan (b) Perangkat Keras Emulator Sel Surya

ELECTRICIAN Jurnal Rekayasa dan Teknologi Elektro 179 Daya (W) Daya (W) 8 7 6 5 4 3 2 1 Irradiance = 1 W/m2 5 1 15 2 25 8 7 6 5 4 3 2 1 2 C 3 C 4 C 5 C 6 C 2 C 3 C 4 C 5 C 6 C (a) Irradiance = 1 W/m2 5 1 15 2 25 (b) Gbr. 13 Kurva Karakteristik P-V saat Nilai Suhu Sel Divariasikan pada (a) Simulasi dan (b) Perangkat Keras Emulator Sel Surya Kurva karakteristik yang ditunjukkan oleh Gambar 11 sampai dengan Gambar 13 memperlihatkan bahwa variasi nilai irradiance dan suhu sel mempengaruhi nilai keluaran emulator sel surya yaitu arus, tegangan dan daya. Pengaruh tersebut adalah semakin menurun nilai irradiance maka arus hubung singkat emulator sel surya akan semakin menurun. Nilai tegangan hubung terbuka juga menurun walau tidak terlalu besar. Perubahan nilai irradiance dapat mengacu berdasarkan persamaan 3, dimana besarnya arus I yang dihasilkan adalah berbanding lurus dengan besarnya irradiance. Pada modul sel surya sebenarnya, hal ini terjadi karena saat irradiance berkurang menyebabkan elektron-elektron yang terlepas semakin sedikit sehingga arus listrik yang dihasilkan menurun. Pemberian nilai suhu sel yang bervariasi juga mempengaruhi nilai keluaran emulator sel surya, yaitu nilai tegangan hubung terbuka dan daya maksimum keluaran akan semakin menurun saat suhu sel semakin besar. Sedangkan arus hubung singkat akan semakin besar namun tidak terlalu signifikan. Penurunan nilai tegangan ini adalah karena menurunnya energi gap ketika suhu meningkat sehingga perbedaan potensial juga akan menurun. Selain itu akibat menurunnya band gap ini maka elektron akan mudah melompati daerah band gap sehingga akan terjadi sedikit peningkatan arus sel. Terlihat pada kurva karakteristik di atas bahwa setiap penurunan irradiance sebesar 2 W/m 2 maka arus hubung singkat, tegangan hubung terbuka dan daya maksimum akan menurun. Nilai penurunan rata-rata adalah sebesar.97 A untuk nilai arus hubung singkat,.54 V untuk tegangan hubung terbuka dan 15.313 W untuk daya maksimum. Selain itu, nilai rata-rata penurunan tegangan hubung terbuka dan daya maksimum yang terjadi setiap kenaikan suhu sebesar 1 ºC adalah sebesar sebesar.833 V dan 3.525 W, sedangkan arus akan bertambah yaitu sebesar.73 A. V. PENUTUP Emulator sel surya yang diusulkan telah dapat menggantikan sel surya sebenarnya dalam menghasilkan karakteristik dari sel surya. Pada pengujian kondisi standar (25 ºC dan 1 W/m 2 ), memiliki karakteristik yang sama dengan modul referensi dengan rata-rata kesalahan pengujian sebesar.77% untuk pengukuran daya maksimum, 3.636% untuk pengukuran arus hubung singkat dan 2.353% untuk pengukuran tegangan hubung terbuka. Penurunan nilai irradiance menyebabkan arus hubung singkat dan tegangan hubung terbuka menurun, serta menurunkan nilai daya maksimum yang dihasilkan emulator sel surya. Peningkatan nilai suhu sel akan menurunkan besar tegangan hubung terbuka, namun arus hubung singkat akan bertambah

ELECTRICIAN Jurnal Rekayasa dan Teknologi Elektro 18 walaupun tidak signifikan, serta menurunkan nilai daya maksimum yang dihasilkan emulator sel surya. Penurunan irradiance sebesar 2 W/m 2 mengakibatkan arus hubung singkat, tegangan hubung terbuka dan daya maksimum mengalami penurunan rata-rata sebesar.97 A,.54 V dan 15.313 W, sedangkan kenaikan suhu sel sebesar 1ºC mengakibatkan tegangan hubung terbuka dan daya maksimum mengalami penurunan rata-rata sebesar sebesar.833 V dan 3.525 W namun nilai arus hubung singkat mengalami kenaikan sebesar.73 A. REFERENSI [1] De Soto, W, S.A Klein, and W.A. Beckman. 26. Improvement and Validation of a Model for Photovoltaic Array Performance. Solar Energy 8. Halaman 78-88. [2] Pandiarajan, N, and Ranganath Muthu. 211. Mathematical Modeling of Photovoltaic Module with Simulink. International Conference on Electrical Energy System (ICESS 211). Halaman 314-319. [3] Khezzar, R, M Zereg, and A Khezzar. Comparative Study of Mathematical Methods for Parameters Calculation of Current- Voltage Characteristic of Photovoltaic Module. Jurnal. Universite Mentouri. Constantine, Algeria. Halaman 24-28. [4] Yusivar, F, Y. Farabi, R. Suryadiningrat, W.W. Ananduta, and Y. Syaifudin. 211. Buck Converter Photovoltaic Simulator. International Journal of Power Electronics and Drive System (IJPEDS). Halaman 156-167. ISSN: 288-8694. [5] Petkov, M, D. Markova, St. Platikanov. 211. Modelling of Electrical Characteristics of Photovoltaic Power Supply Sources. Brief Scientific Paper. Contemporary Materials (Renewable Energy Source), II-2. Page 171 of 177. [6] Durago, Joseph. 211. Photovoltaic Emulator Adaptable to Irradiance, Temperature and Panel- Specific I-V Curves. Thesis. Faculty of California Polytechnic State University. San Luis Obispo.